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1 Introdution20 Estimates of abundane are important indiators of stok size and spae-time distribution of marine popu-21 lations. Suh indiators ontain valuable information for stok assessment, where they are used as �sheries-22 independent inputs, and, more generally, for �sheries advie and eologial management. Several methods23 have been proposed to study abundane using design-based tehniques (Cohran 1960; Thompson 1992;24 Smith and Gavaris 1993); spei� statistial distributions like log-normal (MConnaughey and Conquest25 1993; Brynjarsdottir and Stefansson 2004; Dingsor 2005; Smith 1990), delta (Pennington 1983; Stefansson26 1996; Smith 1988), Poisson and negative binomial (O'Neill and Faddy 2003; Pradhan and Leung 2006) or27 zero in�ated distributions (Martin et al. 2005; Mendes 2007); and di�erent modelling proedures like gen-28 eralised linear models (Smith 1990; Stefansson 1996; Brynjarsdottir and Stefansson 2004; Chen et al. 2004;29 Sousa et al. 2007), generalised additive models (Piet 2002), geostatistis (Rivoirard et al. 2000; Roa-Ureta30 and Niklitshek in press) or hierarhial models (Mendes 2007).31 Considering that individuals of the same age or length, group together looking for food, protetion, repro-32 dutive onditions, et; sampling these populations will naturally originate datasets with high orrelation,33 both in population struture and spatial distribution. Reently, Hrafnkelsson and Stefansson (2004) and34 Babak et al. (2007), following the work of Aithison (1982, 2003) on statistial analysis for ompositional35 data, desribe methods to model the orrelation between length groups using Bayesian methods and maxi-36 mum likelihood estimators, respetively. It must be notied that ompositional data is de�ned by the vetor37 of proportions of some whole, subjet to the onstraint of the sum of all proportions being one, whih is38 exatly what the population age struture represents. On the other hand, the spatial patterns enountered39 on abundane data are expressed by the orrelation between observations related to the distane between40 the geographial loations where the observations were olleted, whih an be modelled with geostatistial41 methods (Cressie 1993; Diggle et al. 1998; Chiles and Del�ner 1999; Diggle and Ribeiro 2007).42 Our aim with this work is to propose a new methodology that ombines the spatial distribution of the stok43 and the relation between age groups in a single model. The methodology provides a framework to obtain44 simulations of abundane at age that an be used as input to large simulation frameworks like Management45 Strategy Evaluation (MSE) (Hammond and Donovan in press; Johnston and Butterworth 2005; Punt et al.46 2005; Kell et al. 2007), a major subjet for modern sienti� advie on �sheries and eologial management.47 An appliation to Hake (Merluius meluius) aught by the Autumn Series of Portuguese Bottom Trawl48 Surveys (BTS) is presented, and methods are proposed to handle spei� harateristis of the problem at49 hand.50 The next setion desribes the Portuguese BTS, the data olleted and the dataset used for analysis. On51 the Methods setion we will start by presenting the model and its most important harateristis followed52 2



by a detailed desription of parameter estimation for abundane at age. The Results setion desribes53 the adjustments required to apply the proposed model to estimate the Hake abundane at age o� the54 Portuguese mainland and presents abundane estimates by year, at age by year, and spatial distribution by55 year. Finally, we disuss the model and its limitations, and ompare the results obtained with the abundane56 at age estimates obtained using design-based statistis.57 2 Material58 The Portuguese BTS have been arried out in Portuguese ontinental waters sine 1979 on board the R/V59 Noruega and R/V Capriórnio. The main objetives of these surveys are: (i) to estimate indies of abun-60 dane and biomass of the most important ommerial speies; (ii) to desribe the spatial distribution of the61 most important ommerial speies, and (iii) to ollet individual biologial parameters suh as maturity,62 sex-ratio, weight, food habits, et. The target speies are hake (Merluius merluius), horse makerel63 (Trahurus trahurus), makerel (Somber sombrus), blue whiting (Miromessistius poutassou), megrims64 (Lepidorhombus bosii and L. whi�agonis), monk�sh (Lophius budegassa and L. pisatorius) and Norway65 lobster (Nephrops norvegius). A Norwegian Campbell Trawl 1800/96 (NCT) with a odend of 20 mm mesh66 size, mean vertial opening of 4.8 m and mean horizontal opening between wings of 15.6 m has been used67 (Anonymous 2002).68 The sampling design between 1989 and 2004 followed a strati�ed random strategy. The strati�ation was69 de�ned by 12 setors along the Portuguese ontinental oast subdivided into 4 depth ranges: 20-100m, 101-70 200m, 201-500m and 501-750 m, with a total of 48 strata. Due to onstraints in vessel time the sample size71 was limited to a total of 97 loations, whih were alloated evenly to obtain 2 loations in eah stratum. The72 oordinates of the sampling loations were seleted randomly, albeit onstrained by the historial reords of73 lear tow positions and other information about the sea �oor, thus avoiding plaes where trawling was not74 possible. In 2005 a new sampling design, omposed by a regular grid with a set of additional random loations,75 was introdued following Jardim and Ribeiro (2007). The tow duration was 60 minutes until 2001 and then76 redued to 30 minutes for the subsequent years, based on an experiment that showed no signi�ant di�erenes77 in the mean abundane and length distribution between the two tow durations (Cardador, pers.omm.).78 Historially the Portuguese Autumn bottom trawl survey has been arried out between September and79 Deember and hauls ourred during daylight. The number of hauls per year, the estimates of abundane by80 year together with its standard deviation and oe�ient of variation are presented in the �rst �ve olumns81 of Table 1. Sampling statistis of abundane at age per year and oe�ient of variation are showed on the82 top panel of Table 2.83 The dataset inluded all valid hauls exeuted during the Autumn surveys between 1989 and 2006. Eah84 3



reord orresponds to hake athes in number of individuals by age, haul duration (minutes), haul time,85 haul date, oordinates (UTM, Zone 29), bottom salinity and bottom temperature. Cathes obtained with86 R/V Capriórnio (1996, 1999, 2003 and 2004) were alibrated to R/V Noruega's athes using fators by87 age estimated in a alibration exerise in 2006 (Cardador, pers.omm). Figure 1 shows the map of observed88 age aggregated athes of hake during the study period.89 3 Methods90 The model we propose for the abundane at age variable I onsists of a produt of two random variables91
Iij = YiPij where i = 1, . . . , n indexes years and j = 1, . . . , m indexes ages. In this notation Yi represents the92 age aggregated abundane for the ith year and Pij refers to the proportion of individuals at the ithyear and93
jthage and the vetor Pi denotes the age omposition for eah year. Our aim is to disentangle population94 abundane from its omposition by age, so that appropriate statistial modelling methods an be used95 independently, taking into aount the nature of these variables. Inferenes on Iij are based on Monte Carlo96 methods to derive the distribution of I by the produt of simulated values from the distributions of Y and97
P .98
Pi was modelled using ompositional data analysis (Aithison 1982, 2003), with additive log-ratios trans-99 forming ompositions to the multivariate Gaussian (MVG), a onvenient sale for parameter estimation and100 simulation. The main advantage of these methods is that the ovariane struture of the age ompositions101 an be estimated from the data and subsequently used in the simulation proedure. Consider the ommon102 univariate observation of ath per unit e�ort in year i, age j and haul h = 1, . . . , H represented by Cijh, then103 proportion at age is Pijh = Cijh(
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i is the vetor of marginal sample varianes (Murteira 1990). Using parametri107 bootstrap (Efron and Tibshirani 1993) we sample from MGV(µ̂i, ς̂i) to simulate the empirial distribution108 of the transformed age omposition by year and then bak-transform to get the empirial distribution of age109 ompositions.110 Abundane Yi was modelled as a spatial stohasti proess (Diggle et al. 1998; Diggle and Ribeiro 2007)111 expliitly taking into aount the spatial orrelation between loations. However, there are fators a�eting112 abundane observations unrelated to population size suh as lighting and sea onditions (Petrakis et al.113 2001; Chen et al. 2004; Hjellvik et al. 2004; Johnsen and Lilende 2007), that might blur the spatial patterns.114 In those situations where information about those fators exist, a GLM (MCullagh and Nelder 1991) an115 be used to estimate their e�et and alibrate the observations to equal hauling onditions. The alibrated116 4



abundane represents the predited observations if the hauling onditions were the same. To ompute it a117 GLM is used to predit yearly abundane in spei� onditions, the referene onditions, and the deviane118 residuals are then added. A seond advantage that may be enountered if GLMs are applied at this stage, is119 to be able to deal with asymmetry and over-dispersion aused by the large number of null athes (Martin120 et al. 2005; Maunder and Punt 2004) or the ourrene of very large athes (Smith 1997; Kappenman 1999).121 Consider now a new variable Zi(xk) that represents the alibrated abundane in year i at loation xk122 where k = 1, . . . , K indexes sampled loations in the study region A ⊂ R
2. Following the formulation123 proposed by Diggle and Ribeiro (2007) the Gaussian model for the vetor of variables Z(x) an be written as124

Z(x) = S(x) + ǫ where S(x) is a stationary Gaussian proess at loations x, with E[S(x)] = β, V ar[S(x)] =125
σ2 and an isotropi orrelation funtion ρ(h) = Corr[S(x), S(x′)], where h = ‖x − x′‖ is the Eulidean126 distane between loations x and x′. The terms ǫ are assumed to be mutually independent and identially127 distributed Gau(0, τ2). Under these settings Z(x) ∼ MVG(β, Θ) with Θ parametrised by (σ2, φ, τ2), where128
φ is the orrelation range. Several geostatistial methods are available to make inferene about Θ (Isaaks129 and Srivastava 1989; Cressie 1993; Diggle et al. 1998; Chiles and Del�ner 1999; Rivoirard et al. 2000; Diggle130 and Ribeiro 2007). We adopt Bayesian methods to ompute the posterior distributions of the orrelation131 parameters and preditive distributions for the values of Z(x0), where x0 is a grid of unsampled loations132 over the study area (Diggle and Ribeiro 2007). Our main goal with this approah is to take into aount133 expliitly parameter unertainty. Notie that β re�ets mean abundane over the study area and the posterior134 distribution is used to obtain the empirial distribution of Y . On the other hand, the predited Z(x0) over135 the study area re�ets the spatial distributions of abundane allowing the study of spatial patterns and their136 evolution by year.137 The analysis of both, Yi and Pi are performed in parallel and the Monte Carlo simulations are ombined138 to produe the distribution of abundane at age by Iijs = YisPijs where s = 1, . . . , S indexes simulations.139 Statistis of interest are omputed based on Iijs and the abundane at age simulations an be used as input140 to large simulation frameworks, like those requested by MSE.141 All analysis were arried out using the R software (R Development Core Team 2007) and the add-on pakage142 geoR (Ribeiro Jr and Diggle 2001).143 4 Results144 We have started the analysis searhing for diagnostis for the model assumptions and suitable transfor-145 mations. The assumption of independene between ompositions and total ath was supported by �tting146 a multinomial model with proportions explained by the total ath and omparing it to a model without147 ovariates. For all the years the non signi�ane of the oe�ient provides enough evidene that the pro-148 5



portions are not assoiated with the total ath. For the additive log-ratio transformation it is neessary149 to hoose the referene lass and, given the ourrene of zero values, a onstant needs to be added to the150 data. Choies for age lass two as referene lass and a value 0.1 for the onstant ensure, for most of the151 datasets, better properties in terms of skewness and normality at transformed sale, all together induing152 only a small average hange rate for all ages, exept for age 5 whih showed some rates of around 3, mainly153 due to the small values observed.154 Figure 2 shows the results of 1000 bootstrap simulations of the age ompositions per year. In most years155 age 1 has the highest relative ath and ages 4 and 5 the lowest with age zero behaving more erratially. In156 1989, 1991, 1995, 1997, 1999, 2000, 2002 and 2006 age 2 had the highest relative athes. Suh shift between157 ages 1 and 2 an be aused by ageing errors known to exist in Hake (de Pontual et al. 2006; Pineiro et al.158 2007). Notie that, despite of the survey ourring on the reruitment season, age 0 is not the most aught,159 although in reent years an inrease in the proportion of individuals of age 0 has been observed. There is a160 higher variability in the proportions at age, presenting higher values than expeted by the log transform.161 To model Yi we alibrated the observations to remove e�ets not related with population abundane however162 in�uening abundane observations. The data showed greater variability than predited by a Poisson model163 and a negative binomial GLM with log link funtion provided the best �t. The available ovariates were164 dayperiod, fortnight, bottom salinity and bottom temperature. Dayperiod aimed to apture the e�et of165 daylight with tree levels: until one hour after sunrise, after one hour before sunset and between both limits.166 Fortnight aptured seasonal e�ets with seven levels, starting from the seond half of September until the end167 of Deember. Bottom temperature and salinity were inluded as ontinuous variables to apture geophysial168 e�ets. The GLM was �tted by �rstly inluding and �xing the year e�et and then testing for all the169 other ovariates inluding seond degree interations. The analysis showed signi�ant e�ets only for year,170 fortnight and their interation. The non-signi�ane of the other ovariates an be explained by the fat that171 all hauls are exeuted with some daylight and the bottom temperature and salinity are roughly onstant at172 the depths where most sampling took plae. The adjusted model explained only 13% of the data variability,173 a situation not unusual for this kind of analysis (Maunder and Punt 2004).174 The alibrated dataset Zi(xk) used in the geostatistial analysis was obtained by prediting abundane per175 year for the seond fortnight of Otober and adding these values to the orresponding deviane residuals.176 To verify the univariate normality of Zi(xk) the Shapiro-Wilks normality test was omputed and 16 out of177 18 datasets did not rejet the null hypothesis of normality at an α = 0.01, whereas for the log-transformed178 original dataset, the null hypothesis was not rejeted only for one out of 18.179 To arry out the geostatistial analysis we adopted the exponential funtion with algebrai form ρ(h) =180
exp{−h/φ} where ρ(h) ≃ 0.05 when h = 3φ, a ommon hoie for spatial orrelation modelling. Taking into181 6



aount the small dataset available and the lak of observations at short distanes, we deided to avoiding182 estimating one more orrelation parameter from the data. Before proeeding with inferene and predition183 we heked for anisotropy e�ets using pro�led likelihoods (Diggle and Ribeiro 2007). The pro�les obtained184 were too �at to identify anisotropy parameters and the analysis proeeded assuming an isotropi spatial185 proess. In pratie, anisotropy e�ets are extremely di�ult to identify and usually require subjetive186 information and/or a fairly large amount of samples whih is unommon on bottom trawl surveys datasets.187 Taking into aount isotropy and the small number of samples available per year we rotated the southern188 ontinental shelf 90o lokwise so that it beame aligned with the western oast in order to use as muh189 information as possible for inferene on model parameters.190 The priors for the orrelation parameters were set based on our knowledge of the stohasti proess orrelation191 struture. For the range parameter φ we used an exponential prior distribution with an expeted value of192 20km, re�eting higher beliefs on short orrelations. The nugget variane parameter τ2 was reparameterized193 into a relative nugget τ2

REL = τ2σ−2 and the prior set as a zero in�ated Poisson (ZIP) distribution with mean194 of the positive values of 1.25 and a probability of zero values of 0.25. These probabilities were omputed for195 values 0 to 8 but attributed to 9 even intervals between 0 and 2 of the relative nugget. Our hoie is based on196 the prior belief that the GLM analysis should have removed most of the random noise from the data and τ2197 should be small. On the other hand, to estimate τ2 it is neessary to have observations at the same loation198 or at very lose distanes whih is operationally not feasible for BTS. For the mean parameter β we used a199 �at prior. Common priors were adopted for all years. The prior and posterior distributions of φ and τ2

REL200 are shown in Figure 3. The posterior distributions of φ showed modes approximately between 10 and 20201 km, re�eting a orrelation range between 30 and 60 km, perfetly aeptable onsidering the length of the202 Portuguese oast, whereas for τ2

REL it is lear that the data does not ontain muh information about the203 parameter and the posterior distributions are very similar to the priors, in partiular in 1990 and between204 1992 and 1997. This has a large impat in the results, in partiular on the predition varianes as τ2 re�ets205 the random variability of the proess.206 Yearly abundane simulations were omputed by Yis = exp(βis) where βis are the yearly simulations of the207 posterior distribution of β. The abundane index and the 95% redibility intervals were obtained omputing208 the median and the 0.025 and 0.975 perentiles of Yi (Figure 4). Abundanes showed a yli pattern with209 high values in 1991, 1997, 2001 and 2005; and low values in 1993, 1996, 1999, 2003 and 2006. There is a per-210 sistent inrease from 1993 although still within the historial limits. The redibility intervals are asymmetri211 and showed larger intervals in the highest estimates as expeted by the GLM log transformation. Table 1212 presents several metris omputed using design statistis and geostatistis. Considering the asymmetry of Yis213 we omputed the relative median absolute deviation, the ratio between the median absolute deviation and214 the median, that an be seem as a robust adimensional indiator of preision, omparable to the oe�ient of215 7



variation. The values obtained by geostatistis are smaller than those obtained by design statistis, although216 the time trend is similar. This result an be explained by a sreening e�et (Isaaks and Srivastava 1989)217 that downweights groups of observations nearby as the information ontained in eah observation beomes218 redundant. Aggregations of high observations in spae (Figure 1) have a lower impat on the results of the219 geostatistial analysis than on design-based methods given the sensibility of the sample mean to high values.220 The higher preision obtained with design estimators is apparently over-optimisti for BTS, where sample221 sizes are always small due to the operational osts. Ignoring the orrelation between samples overestimates222 the quantity of information ontained in eah sample leading to an underestimated variane. Geostatistial223 results present a relative median absolute deviation between 14 and 25, more in agreement with other studies224 (e.g. see Smith and Gavaris 1993; Dingsor 2005; Sousa et al. 2007; Roa-Ureta and Niklitshek in press).225 Spatial preditions were arried out on a grid over the study area with loations at 5 km of eah other226 resulting in 1255 loations within the study area. Figure 5 presents the spatial distribution of Hake over227 the study area standardised by the maximum in eah year so that the year e�et was removed and only the228 spatial e�et is present on the maps. It is possible to identify persistent areas of high abundane on the229 west oast at latitudes approximately of 4150km (UTM), 4280km (UTM) and 4400km (UTM). The �rst and230 seond areas are known reruitment spots and the last one is less persistent, but also known to be an area231 of high reruitment.232 Abundane at age and year are presented in the bottom panel of Table 2 with the relative median absolute233 deviation between brakets. As with Yi the estimates of abundane at age are smaller and less preise than234 the design-based ones, resulting from the fat that Iij aounts for the variability of Yi and Pi. The same235 reasoning presented above regarding the sreening e�et and variane underestimation also applies here. In236 Figure 6 a omparison between design-based statistis and our estimates is presented with both time series237 standardised to mean 0 and variane 1. In general both series are similar and identify the same maxima and238 minima.239 5 Disussion240 Modelling abundane at age requires that two main harateristis, the aggregation of individuals of similar241 length and the spatial patterns of abundane, are taken into aount, so that the major soures of variability242 are onsidered. The model proposed here takles both issues and suggests solutions to ommon pratial243 problems when modelling �sh abundane using data from an area with spei� harateristis. By separating244 the age ompositions from the age-aggregated ath per unit e�ort, suitable models an be applied to eah245 variable, greatly improving the analysis of the importane of eah fator. Age strutures were studied by246 ompositional data analysis (Aithison 1982, 2003) allowing the full ovariane struture of age ompositions247 8



to be onsidered. Age-aggregated ath data was modelled with geostatistial methods (Diggle and Ribeiro248 2007) expliitly modelling the orrelation between abundane at di�erent loations. Geostatistial models for249 ompositional data (Walvoort and de Gruijter 2001; Pawlowsky-Glahn and Olea 2004) are still inipient and250 our view is that the sarity of data provided by BTS tend to impair the use of data demanding approahes.251 Modelling abundane data requires several adjustments depending on the speies, area and study objetives.252 Our ase study has allowed us to point out possible solutions but it will always be neessary to alloate some253 researh e�ort at understanding the individual harateristis of the problem at hand and �nd appropriate so-254 lutions before simulating and omputing yearly distributions of abundane at age. The appliation presented255 assumed that age ompositions were independent from age aggregated athes, an assumption supported by256 the exploratory data analysis. However, more generally, this issue an be solved by post-strati�ation of the257 study area into strata where this assumption stands, either by disretizing the age aggregated athes and258 modelling eah dataset independently or by expliitly modelling this relation.259 The problem of asymmetry and over-dispersion surfaed during the analysis of our dataset, aused by a260 large number of null or small observations and oasional very large athes. The GLM with negative261 binomial errors used to alibrate the observations provide a way to sort out suh problems, and explained262 a onsiderable part of the spatially unstrutured variability, as indiated by the low values of τ2. On the263 other hand, the issue of null observations is restrited to the modelling of Pi and had a negligible impat on264 the geostatistial analysis whih uses the age-aggregated athes, less likely to have null observations. This265 is another major advantage of the proposed approah, as modelling abundane at age using geostatistis266 an be severely limited by null observations, ommonly present on ages poorly represented in the sample.267 Attempts to apply geostatistial models separately to di�erent ages will most likely result in di�erent and268 eventually on�iting inferenes on the orrelation parameters, and inonsistent spatial preditions.269 Another major advantage of the proposed model is the full parametri spei�ation allowing for Monte270 Carlo simulation methods. Simulation provides the means to overome di�ulties in obtaining an analytial271 expression for the full distribution of abundane at age, while still allowing for the omputation of several272 statistis of interest. Outputs an also be used as inputs for larger simulation frameworks like MSE. MSE273 onstitutes a modern and sophistiated approah to management of �sheries and eosystems but, despite274 its formal omplexity, the output and advie obtained it is equally reliant on the quality of its inputs. The275 approah presented in this work is one step forward in that diretion.276 The methods advoated in this paper produe several abundane indiators that provide an overview of277 abundane along di�erent perspetives. The analysis of age ompositions provides an insight on how the278 population struture evolves over time. The geostatistial submodel returns abundane indiators in both279 spae and time perspetives, whereas the possibilities of expliitly modelling spae-time interations an be280 9
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Table 1: Age aggregated abundane estimates by design statistis and geostatistis. The design statistiswere the strati�ed mean, Ŷ , its standard deviation, σ
Ŷ
, and oe�ient of variation, CV

Ŷ
. The geostatistiswere the median, Ỹ , the median absolute deviation, MADỸ , the relative median absolute deviation, RMADỸ ,the 0.025, Q(Ỹ , 0.025), the 0.975 perentiles, Q(Ỹ , 0.975), and the interquartile range, IQRỸ .design statistis geostatistisYear hauls Ŷ σ

Ŷ
CV

Ŷ
Ỹ MADỸ RMADỸ Q(Ỹ , 0.025) Q(Ỹ , 0.975) IQRỸ1989 130 59.2 1.7 0.03 33.6 6.6 0.2 21.2 49.7 28.41990 108 157 9.7 0.06 38.9 6.4 0.16 25.9 52.8 26.91991 80 194.1 12.2 0.06 154.8 27.4 0.18 101.3 250.4 149.11992 44 65.3 3.2 0.05 46.1 10.4 0.22 26.4 79.5 531993 58 54.1 4.5 0.08 8.1 1.5 0.18 5.5 11.9 6.51994 76 95.9 4.7 0.05 61.8 8.5 0.14 46.6 82.3 35.71995 80 85.2 4.1 0.05 59.4 8.5 0.14 42.1 80.7 38.51996 63 44.6 2.3 0.05 25.1 6.4 0.25 15.7 44.1 28.41997 51 207.2 21.5 0.1 123.9 20.1 0.16 86.9 188.4 101.41998 64 139.8 7.8 0.06 109.4 21.3 0.19 65.5 164.5 991999 71 71.2 2.5 0.04 27.3 5.8 0.21 16.1 42.2 26.12000 65 102.2 5.8 0.06 89.2 14.3 0.16 63 134.3 71.42001 58 164 15.3 0.09 140.3 23.2 0.17 91 199 107.92002 66 117.5 7.9 0.07 75 18.7 0.25 41.8 120.4 78.62003 72 55.3 2 0.04 41.5 8.4 0.2 25.6 65.2 39.62004 79 124.4 6.3 0.05 77.8 19.4 0.25 42.6 134.7 92.12005 87 214 9.4 0.04 153 29.7 0.19 93.6 235.2 141.72006 88 125.9 4.4 0.03 42.6 8.8 0.21 26.4 66.3 39.9
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Table 2: Abundane at age estimates by design statistis on the top panel and this study on the bottompanel. The design statistis are the strati�ed mean and between brakets its oe�ient of variation. Theestimates provided by this study are the median and between brakets the relative median absolute deviation.Estimator Year 0 1 2 3 4 5Design 1989 12.9 (0.08) 20.1 (0.05) 16.9 (0.04) 7.4 (0.06) 1.5 (0.09) 0.4 (0.14)based 1990 82.1 (0.11) 45.4 (0.05) 19.3 (0.05) 7.4 (0.05) 2.4 (0.07) 0.4 (0.12)1991 56.6 (0.14) 82.4 (0.10) 36.7 (0.11) 14.6 (0.08) 3.1 (0.09) 0.6 (0.12)1992 12.1 (0.16) 20.4 (0.09) 19.3 (0.08) 10.2 (0.07) 2.7 (0.10) 0.6 (0.17)1993 23.2 (0.18) 17.1 (0.09) 8.6 (0.11) 3.6 (0.10) 1.3 (0.14) 0.3 (0.32)1994 18.5 (0.14) 51.4 (0.07) 18.2 (0.08) 5.9 (0.10) 1.5 (0.15) 0.3 (0.21)1995 2.1 (0.16) 34.6 (0.09) 37.2 (0.07) 8.1 (0.13) 2.9 (0.17) 0.4 (0.23)1996 9.0 (0.10) 15.1 (0.09) 10.8 (0.12) 6.9 (0.12) 1.9 (0.16) 0.9 (0.17)1997 40.4 (0.22) 70.4 (0.18) 83.7 (0.18) 8.7 (0.17) 2.3 (0.29) 1.6 (0.32)1998 54.0 (0.11) 46.5 (0.10) 22.8 (0.08) 12.3 (0.09) 3.0 (0.13) 1.1 (0.17)1999 9.1 (0.12) 26.9 (0.05) 25.0 (0.07) 7.8 (0.09) 2.0 (0.13) 0.4 (0.22)2000 29.9 (0.14) 39.3 (0.09) 21.4 (0.08) 8.9 (0.10) 1.7 (0.12) 1.0 (0.16)2001 50.9 (0.23) 73.9 (0.13) 22.2 (0.10) 14.3 (0.09) 2.1 (0.15) 0.6 (0.20)2002 43.5 (0.16) 37.1 (0.09) 26.8 (0.08) 7.5 (0.11) 2.1 (0.15) 0.4 (0.26)2003 5.9 (0.08) 28.6 (0.05) 13.2 (0.08) 6.1 (0.09) 1.3 (0.15) 0.2 (0.27)2004 42.5 (0.10) 48.6 (0.08) 22.8 (0.08) 7.9 (0.11) 1.7 (0.16) 0.8 (0.18)2005 105.8 (0.08) 67.5 (0.05) 30.2 (0.06) 7.8 (0.10) 2.0 (0.13) 0.7 (0.20)2006 44.7 (0.07) 35.4 (0.06) 32.6 (0.06) 10.0 (0.09) 2.5 (0.13) 0.6 (0.21)This study 1989 2.9 (0.25) 9.8 (0.21) 12.2 (0.20) 6.4 (0.22) 1.6 (0.24) 0.7 (0.25)1990 3.9 (0.26) 13.6 (0.20) 11.9 (0.19) 6.0 (0.23) 2.4 (0.24) 0.7 (0.25)1991 14.8 (0.32) 51.3 (0.25) 52.0 (0.23) 25.5 (0.26) 7.0 (0.30) 2.0 (0.30)1992 2.7 (0.40) 9.1 (0.31) 13.5 (0.27) 13.8 (0.26) 4.7 (0.34) 1.5 (0.38)1993 1.2 (0.30) 2.6 (0.24) 2.2 (0.23) 1.2 (0.29) 0.5 (0.29) 0.2 (0.33)1994 5.2 (0.24) 26.3 (0.21) 15.3 (0.20) 10.5 (0.23) 3.3 (0.26) 0.9 (0.27)1995 1.0 (0.30) 19.0 (0.19) 27.5 (0.16) 8.2 (0.19) 2.8 (0.23) 0.6 (0.26)1996 2.6 (0.34) 8.7 (0.30) 6.4 (0.28) 4.6 (0.28) 1.7 (0.33) 1.1 (0.32)1997 2.9 (0.38) 25.9 (0.29) 78.4 (0.18) 11.7 (0.25) 2.5 (0.29) 1.8 (0.31)1998 16.2 (0.36) 29.0 (0.26) 27.5 (0.23) 24.5 (0.26) 6.8 (0.31) 2.7 (0.31)1999 1.7 (0.31) 8.4 (0.26) 12.3 (0.21) 3.7 (0.26) 0.7 (0.28) 0.2 (0.30)2000 7.8 (0.32) 25.6 (0.23) 32.8 (0.19) 16.6 (0.22) 3.7 (0.24) 2.5 (0.25)2001 11.7 (0.31) 49.1 (0.25) 42.7 (0.22) 29.5 (0.24) 3.8 (0.28) 1.8 (0.29)2002 12.1 (0.32) 23.7 (0.3) 26.8 (0.27) 7.8 (0.29) 2.5 (0.32) 0.9 (0.35)2003 3.6 (0.27) 17.9 (0.24) 12.7 (0.22) 5.1 (0.26) 1.4 (0.29) 0.5 (0.28)2004 15.7 (0.29) 37.5 (0.25) 17.1 (0.3) 4.5 (0.33) 1.5 (0.32) 1.0 (0.33)2005 37.2 (0.26) 68.0 (0.21) 33.8 (0.24) 9.5 (0.26) 2.5 (0.28) 1.3 (0.29)2006 5.3 (0.29) 13.0 (0.23) 15.9 (0.23) 6.3 (0.24) 1.5 (0.27) 0.5 (0.28)
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Figure 1: Yearly maps with loations of hauls (+) and observed athes of Hake (Merluius merluius)during the Autumn series of the Portuguese bottom trawl survey. The gray irles are proportional to thelogarithm of the numbers of individuals aught per hour. The full line represents the Portuguese ontinentaloast.
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Figure 2: Age ompositions empirial distribution obtained by parametri bootstrap. The full irle repre-sents the median proportion and the gray lines represent the on�dene interval omputed by the 0.025 and0.975 perentiles.

17



Figure 3: Yearly priors and posteriors for the orrelation range φ and the relative nugget τ2

REL used for thegeostatistial analysis of the alibrated dataset. The dashed line represents the priors for eah parameter,kept onstant for all datasets. The full line represents the posteriors obtained per year for eah dataset.
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Figure 4: Yearly abundane estimates by design statistis (dashed line) and geostatistis (full line). Theblak irle represents the median abundane and the gray lines represent the on�dene interval omputedby the 0.025 and 0.975 perentiles.
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Figure 5: Spatial distribution of age aggregated abundane by year, standardised to the seond fortnight ofOtober. The gray degrees are proportional to the number of individuals aught by unit e�ort, resaled tothe maximum estimate within eah year. The blak olor represent 1 and the white olour represents 0.
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Figure 6: Abundane at age and year standardised to have mean 0 and variane 1. Design estimates indashed line and geostatistial estimates in full line.
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