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Abstract

The size of a sampling unit has a critical effect on our perception of ecological phenomena; it influences the
variance and correlation structure estimates of the data. Classical statistical theory works well to predict the
changes in variance when there is no autocorrelation structure, but it is not applicable when the data are spatially
autocorrelated. Geostatistical theory, on the other hand, uses analytical relationships to predict the variance and
autocorrelation structure that would be observed if a survey was conducted using sampling units of a different size.
To test the geostatistical predictions, we used information about individual tree locations in the tropical rain forest
of the Pasoh Reserve, Malaysia. This allowed us to simulate and compare various sampling designs. The original
data were reorganised into three artificial data sets, computing tree densities (number of trees per square meter in
each quadrat) corresponding to three quadrat sizes (5 � 5, 10 � 10 and 20 � 20 m2). Based upon the 5 � 5 m2

data set, the spatial structure was modelled using a random component (nugget effect) plus an exponential model
for the spatially structured component. Using the within-quadrat variances inferred from the variogram model, the
change of support relationships predicted the spatial autocorrelation structure and new variances corresponding
to 10� 10 m2 and 20 � 20 m2 quadrats. The theoretical and empirical results agreed closely, while the classical
approach would have largely underestimated the variance. As quadrat size increases, the range of the autocorrelation
model increases, while the variance and proportion of noise in the data decrease. Large quadrats filter out the spatial
variation occurring at scales smaller than the size of their sampling units, thus increasing the proportion of spatially
structured component with range larger than the size of the sampling units.

Introduction

The concept of spatial scale is of fundamental import-
ance in ecological modelling. A model cannot account
for every detail of a system, and in return it may intro-
duce false characteristics into our representation of
the system. Determination of the appropriate spatial
scale improves the quality of a model (Matheron 1984).
Over the past few years, considerable efforts have been
expanded to determine the scales at which the most sig-
nificant variations of ecological variables occur, and to
quantify these variations (Levin 1992). Most variables
in natural environments display spatial structures such

as gradients, patches, trends or other complex patterns.
These structures can exist at many scales; they corres-
pond to physical features of the environment, or they
may result from ecological processes.

Several quantitative techniques have been brought
to the attention of ecologists to assess the spatial
variations of ecological variables: autocorrelograms
(Legendre & Fortin 1989), variograms (Rossi et al.
1992), spectral analysis (Kenkel 1988), analysis of
variance (Ludwig & Goodall 1978), fractal analys-
is (Palmer 1988), aggregation indices (Taylor et al.
1988). All these techniques depend on features of the
sampling programme, and particularly on the size of
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the sampling units. The size of the sampling units is an
important component of the scale of an investigation
and may critically influence our perception of ecolo-
gical phenomena. Changing the size of the sampling
units induces changes in the variance, the spatial auto-
correlation structure, the indices of aggregation based
on the variance-to-mean-ratio, and so on (He et al.
1994; Levin 1989).

Relating the size of the sampling units to the vari-
ance of plant densities has been extensively used in
plant community ecology to empirically estimate the
spatial scale of phenomena, or the size of patches (Car-
lile et al. 1989; Greig-Smith 1952; Ludwig & Goodall
1978; Marceau et al. 1994). These empirical studies
do not provide a general framework to make predic-
tions from a single sampling design; these methodo-
logies require specific surveys to construct empirical
relationships.

Classical statistical and geostatistical theories
provide analytical solutions to predict the change in
variance associated with different sizes of sampling
units. Classical statistical theory works well to predict
these changes when the sampling units are independ-
ent of one another. This is rarely the case in the natural
sciences, however. In the present study, our primary
objective is to present an analytical approach enabling
the prediction of statistical parameters and features
of the spatial autocorrelation structure that would be
observed if a survey had been designed using different
sizes for the sampling units; this may help plan future
surveys. This analytical study complements the previ-
ous empirical studies which attempted to relate spatial
scales to the size of the sampling units.

This method is already known in geostatistics
as a change of support transformation (Journel &
Huijbregts 1978). We will study a rain forest plot of
Malaysia as a test case, using variable ‘tree density’
measured for different quadrat sizes. The change of
support methodology is very general and the conclu-
sions drawn from this test case are applicable to a wide
range of studies dealing with additive variables that are
spatially autocorrelated. Values of an additive variable
can be added or averaged linearly in space to create
larger quadrats.

Change of sampling unit size transformations can
be used to compare different surveys where variables
are estimated using different measurement devices.
Buckland & Elston (1993) pointed out that the rapid
growth of geographic information systems gives access
to a wide range of variables recorded at different levels
of resolution. For example, field work performed at

small scale (i.e., small quadrat size) is essential to
understand mechanisms and phenomena, and to estim-
ate the activity or contribution of these phenomena at
some local scale. Global environmental and ecological
studies attempt to verify the applicability of ecological
models over a wide range of spatial scales. Airborne
or shipborne remote sensing involves data represent-
ing a large-scale perception of phenomena. A change
in the sampling unit size is required when comparing
or jointly using different types of data representing
various scales of investigation.

Study site and variables

A tract of mapped forest, located at 102�180 W and
2�550 N, was established in the Pasoh Reserve, Negeri
Sembilan, Malaysia, to monitor long term changes in
a primary forest (Kochummen et al. 1991). The forest
tract under study is a rectangle 1 km long and 0.5 km
wide (50 ha). The survey enumerated all free-standing
trees and shrubs at least 1 cm in diameter at breast
height, positioning each one by geographic coordinates
on a reference map, and identifying the species. This
data set is almost unique in that all individual trees
are identified, sized, and geographically located. We
reorganised the data into quadrats and calculated tree
densities (number of trees per m2 in each quadrat)
corresponding to 5 � 5, 10 � 10, and 20 � 20 m2

quadrats.

Methods

Classical statistical theory

Classical statistical theory attempts to predict the
change in variance due to different sampling unit sizes
for additive variables such as tree density. Classical
theory states that given a population and a group of
n independent sampling units drawn from that popu-
lation of mean � and variance �2, the mean value of
this sample (x) is itself a random variable of mean �

and variance �2/n. Classical statistical theory suggests
(assuming no spatial structure) that the variance of the
quadrats should decrease linearly with the number of
sampling units in a quadrat or in a composite sample:

Var(VcjA) = Var(vjA)=N , (1)

where Var (Vc | A) is the variance of the composite
samples Vc in an area A, Var (v | A) is the original

ve10542.tex; 28/03/1997; 7:51; v.6; p.2



91

variance of the sampling units v in the same area, and
N is the number of sampling units in a composite.
A composite sample is formed by combining several
adjacent sampling units.

This relationship (Equation (1)) is valid only for
homogeneous areas where sampling units are inde-
pendent of each other. When the process is complic-
ated by patterns of spatial heterogeneity, Equation (1)
is no longer valid. Levin (1989) and Wiens (1989)
present some empirical results showing the complex-
ity of such heterogeneous processes, where non-linear
relationships occur between the variance and the size
of the sampling units.

Most of the classical sampling textbooks mention
that when a finite population is sampled using ran-
dom sampling with replacement, the n observations
are independent and identically distributed, so that
the usual central limit theorem applies (e.g. Cochran
1977; Thompson 1992). Classical sampling theory is
of limited help to analyse and characterise the spatial
variability of natural processes. The random sampling
method does not consider the structured spatial com-
ponent of the variance. It assumes instead that the ran-
dom component accounts for all the variance. Ecolo-
gists, on the other hand, are directly interested in the
spatially-structured component of variation and have
now developed methods to explicitly measure and map
this component, independently of the non-spatially-
structured random component (Borcard et al. 1992;
Borcard & Legendre 1994).

Performing random sampling over spatial (or tem-
poral) series does not insure that the sampling units
are independent, because the values are part of a phys-
ical spatial (or temporal) process where the similarit-
ies between values depend expressly on the distance
among locations. So, it is necessary to consider the
spatial structure of phenomena in order to correctly
predict the effect of a change of sampling unit size,
or ‘compositing’ (i.e., creating composite samples by
combining several sampling units into a single sample:
Isaaks & Srivastava 1989, p. 341).

Spatial structure

Spatial continuity among observations of a given vari-
able may be characterised by a variogram, which
reveals the random and the structured aspects of the
spatial dispersion. The variogram has been widely used
to describe the spatial structure of ecological variables
(Legendre & Fortin 1989; Rossi et al. 1992). The tradi-

tional estimator of the variogram is defined as (Journel
& Huijbregts 1978; Cressie 1993):

�(h) = (2N (h))�1�[Z(x)� Z(x+ h)]2 (2)

whereZ(x) and Z(x+h) are measurements of a given
variable at locations x and x + h, separated by the
vector of directional distance h, andN (h) is the number
of pairs of samples considered in the given distance
class. This calculation is repeated for different values
of h and provides the empirical variogram, which is a
plot of the values of �(h) as a function of distance h.
The rate of increase of �(h) allows us to characterise
the continuity of the variable.

Generally, the variogram tends to level off at a sill
equal to the variance of the variable. The distance at
which this occurs is referred to as the range of the vari-
able. The discontinuity at the origin (non-zero inter-
cept) is called the nugget effect, which is a random
component; the geostatistical origin of the method tran-
spires in that name. It corresponds to local variations
occurring at scales smaller than the sampling interval,
including sampling error, fine-scale spatial variability,
and measurement error. The variance component due
to the nugget effect is called C0, while the spatially
structured component is C1.

Change of sampling unit size operations

Problems of change of support have received attention
in the geostatistical literature dealing with ore reserve
estimation (e.g. Journel & Huijbregts 1978, pp. 61-
94; Isaaks & Srivastava 1992, Chapter 19). Geostat-
isticians want to estimate the grade of large blocks
from small drill core data. Equation (1) cannot be used
here because the data are usually autocorrelated. In
the field of vegetation science, Ver Hoef et al. (1993)
have developed a relationship to express the variogram
of aggregated (blocked) contiguous quadrats (large
composite quadrats) as a function of an unaggregated
variogram (smallest quadrats). The technique requires
measurement of contiguous quadrats along transects or
surfaces.

The additivity property of variances in nested
designs implies:

Var(vjA) = Var(vjV ) + Var(V jA); (3)

where Var (v | A) is the variance of a small sampling
unit v in area A, Var (V | A) is the variance of a large
sampling unit V in area A, and Var (v | V ) is the vari-
ance of a small sampling unit v in the large sampling
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unit V . This relationship shows that the variance of
sampling units v in a certain area A can be expressed
as the variance of sampling units v in blocksV , plus the
variance of block values V within the area A. Journel
& Huijbregts (1978, pp. 66–67) show that the variance
Var (v | V ) is related to the variogram:

Var(vjV ) = (V; V )� (v; v); (4)

where  (V ,V ) is the average point variogram value
calculated over all possible distance vectors h con-
tained in V , and similarly for  (v,v). It represents the
within-surface variance. Equations (3) and (4) allow
one to calculate the variance corresponding to a new
sampling unit size V , if we know the spatial autocor-
relation structure for a point support.

When v is used to compute an empirical variogram,
a regularised form of variogram is estimated. We must
deduce a point model (h) (i.e., v = 0) from a regu-
larised model v(h), using the following formula from
Journel & Huijbregts (1978, p. 78):

v(h) = (v; vh)� (v; v): (5)

v(h) is the variogram defined for a sampling unit
of size v, while  (v, vh) represents the average
value of the variogram, where one extremity of vec-
tor h describes a point within sampling unit v and
the other extremity describes a point within another
sampling unit v of the same size located at distance h.
If v(1) = C1v , which is the sill value or the variance
component of the spatial structure for v, then:

C1v = C1p � (v; v); (6)

where C1p is the sill value for a point support. This
relationship leads to:

C1p = C1v=(1� F ); (7)

where F is equal to 1 (v,v), representing the mean
variogram value for a point variogram model with a
sill equal to 1. Then, F can be computed from only the
knowledge of the type of model and its range (Journel
& Huijbregts 1978, p. 109). This correction only con-
cerns the spatially-structured part of the variance. The
variance component ascribed to random variation and
modelled by a nugget effect (C0) follows the classical
relationship (Equation (1)).

The range of the spatial structure is also affected by
the size of the sampling units. For example, the range
of a spatial structure estimated from a sampling unit
of size l � l = v, is ap + l, where ap is the practical

range that would be measured if the support was a
point. Therefore, changing the size of the sampling
unit produces changes in the overall variance and in the
parameters characterising the variogram:nugget effect,
relative nugget effect, structured variance component,
and range. Analytical relationships are developed to
predict the variance and the autocorrelation structure
corresponding to change of sampling unit size.

In practice, if the data are defined for v, it is neces-
sary to deduce first an approximate point model (h)
which is coherent with the empirical variogram v(h).
Obtaining the point variogram from a regularised vari-
ogram is, strictly speaking, impossible as it requires
knowledge of the point scale structure, which is not
available. Moreover, the model corresponding to a
sampling unit of size v is not exactly equivalent to
the model associated to a sampling unit of size v0.
However, the main features (sill and range) of the new
model v0(h) can be deduced from the model v(h).
The following rules provide acceptable approximations
to obtain the point variogram and the regularised vari-
ograms v0(h) corresponding to new sampling units of
size v0:

(1) For the structured part of v(h), the point vari-
ogram is approximated by a variogram of the same
type with a practical range of ap = av � l and a sill
C1p = C1v=(1� F ).

(2) The above-defined point variogram is used,
assuming that v0(h) is of the same type with a range
ap + l0 and a sill C1v0 = C1p � (v0; v0):

(3) The nugget effect component, corresponding
to v0, is computed as C0v0 = C0v=v

0, where C0v is
the nugget effect corresponding to v. This random
component is added to the spatially-structured mod-
el v0(h) defined in (2).

So, a point variogram model (h) is defined from
the model fitted to the empirical values (v(h)), and
the various parameters (range, sill, etc.) of the point
model are obtained from the equations above. Once
the point model (h) and its parameters have been
found, another expression v0(h) can be deduced for
another sampling unit size v0. Knowledge of the point
model allows the calculation of mean variogram values
((v,v)) for any size of sampling units.
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Results

Histograms and summary statistics

Histograms and summary statistics of density values
for quadrats of 5�5, 10�10, and 20�20 m2, show that
as size increases, extreme values disappear because
they are diluted and combined into larger quadrats (Fig-
ure 1). The mean remains constant but the variance
decreases. The variance-to-mean-ratio, which is the
basic statistic for a large family of aggregation indices
(Taylor’s b, Morisita and Lloyd indices, among others)
decreases as size increases (Patil & Stiteler 1974). This
dependence of the variance-to-mean-ratio on quadrat
size has been pointed out by Sawyer (1989). Equation
1 shows that, for additive variables such as density, and
assuming no spatial structure in the data, the variance
of quadrats should decrease linearly with the number
of sampling units in a quadrat or in a composite sample.
Our empirical results show a significant departure from
classical theory predictions. Considering the empirical
counts in 5�5 m2 quadrats as our basis for calculations
(variance = 0.0610), we would expect, from classical
theory, variances of 0.0153 and 0.00381 for quadrats of
10� 10 and 20� 20 m2 respectively. These results are
much smaller than the empirical variances of 0.0275
and 0.0161 (Figures 1b, 1c).

Spatial structure of tree density

Empirical variograms of the tree density variable cor-
responding to the 5 � 5, 10 � 10 and 20 � 20 m2

quadrat sizes, for the north-south and east-west dir-
ections, show well-defined sills (Figure 2). They are
largely isotropic, i.e., (h) does not depend on the
direction of h. Exponential models with nugget effect
provided good fit to the empirical variograms:

(h) = C0 + C1(1� exp(�h=a)); (8)

where C0 is the nugget effect, C1 is the variability
due to the structure in the exponential model and a is a
shape parameter related to the practical range (Table 1).
The exponential model reaches its sill (C0 + C1)
asymptotically. The ratio of the nugget effect to the
sill, called the relative nugget effect RelC0, represents
the random component proportion in the spatial vari-
ance. The range of a model with a sill is the distance
where the spatial influence disappears, i.e. where (h)
ceases to increase. The practical range of an exponen-
tial model is defined as 3a, the distance at which the
variogram is 95% of C1.

Figure 1. Histograms of tree density values for (a) 5�5 m2, (b) 10�
10 m2, and (c) 20� 20 m2 quadrats.

As quadrat size increases, sill values decrease and
ranges increase. The most important effect is the
decrease in relative nugget effect. For the 5 � 5 m2

quadrats, the proportion of random variation is very
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Figure 2. Directional variograms of the tree density variable for
5� 5 m2, 10� 10 m2 and 20� 20 m2 quadrats.

Table 1. Parameters of exponential variogram models for 5 �
5 m2, 10� 10 m2 and 20� 20 m2 quadrat sizes.

Quadrat C0 C1 Sill a RelC0

size (m2) (m)

5� 5 0.0446 0.0151 0.0597 104 0.75

10� 10 0.0113 0.0139 0.0253 110 0.45

20� 20 0.00245 0.0118 0.0145 129 0.17

C0 is the nugget effect, C1 is the variance component associated
to the structured spatial scale, the sill isC0+C1, a is the practical
range and RelC0 is the relative nugget effect (C0=(C0 + C1)).

high (75%), and the process does not seem very
strongly spatially structured. On the other hand, for
20�20 m2 quadrats, the process displays an important
spatially-structured component accounting for 83% of

the spatial variance. Large quadrats have filtered out
the spatial variation occurring at scales smaller than
their sampling unit size, thus increasing the proportion
of spatially-structured components with ranges greater
than the size of the sampling units.

Empirical verification of the change of sampling
unit size relationships

The previous sections have shown empirically that
changing the size of the sampling units extensively
modifies the variance estimate, as well as our percep-
tion of the spatial autocorrelation structure of data. We
will now check whether the geostatistical relationships
provide an analytical solution allowing us to predict
our empirically obtained results.

For the 5 � 5 m2 quadrat size, the practical range
is 3 � 34:67 m = 104 m (Table 1). Given that for
an exponential model, the practical range equals 3a,
then the parameter ap of a point model is equal to
(3a � l)=3 = (104 � 5)=3 = 33:0. Estimating the
point sill value of the structured component requires
the evaluation of the within-quadrat variance (v; v).
The mean value (v; v) can be calculated numerically
from function (h) by discretising sampling unit v into
a finite number of points or by generating random lags
within v, and calculating the average variogram values
for lags contained in v (Table 2). This calculation can
also be done by evaluating the integral of the variogram
function. For this purpose, Journel & Huijbregts (1978,
pp. 108–123) developed a series of auxiliary functions
giving a precalculated mean value (v; v) correspond-
ing to simple geometries of v which are frequently
found in practice. Tables and graphs giving (v; v)
from these auxiliary functions are presented in Journel
& Huijbregts (1978, pp. 125–147) for some variogram
models.

Using the mean variogram values for the 5� 5 m2

quadrat size (Table 2), the point sill value of the struc-
tured component is given by formula (7) as:

C1p = C1v=(1� F );

C1p = 0:0151=(1� 0:0755);

C1p = 0:0163:

The theoretical point support variogram is an expo-
nential model:

(h) = 0:0163(1� exp(�h=33)): (9)
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Table 2. Mean variogram values of various quadrat size.

Quadrat (v; v) F

size v (m2)

5� 5 0.00123 0.0755

10� 10 0.00234 0.143

20� 20 0.00429 0.263

(v; v) is the average point variogram value calculated for a
quadrat v, representing the within-surface variance. The calcula-
tion uses the following exponential model [(h) = 0:0163(1 �
exp(�h=33))] as a theoretical point variogram. F is the mean
variogram value for the point variogram model with a sill equal
to 1.

In the previous section, the exponential model was
shown to be an appropriate model of spatial structures
(Figure 2). Such a point variogram model could be
deduced for any other quadrat size, as long as the quad-
rats are not too large relative to the range of the point
variogram. From this theoretical point model, it is pos-
sible to calculate the variance of any given sampling
unit size in the whole area and to find an appropri-
ate variogram model describing the spatial structure
features for various quadrat sizes.

The point variogram model is obtained by assum-
ing that it is of the same type as the one corresponding
to support v. We verify the adequacy of this approxim-
ation by comparing theoretical regularised variograms
(for 5 � 5 m2, 10 � 10 m2 and 20 � 20 m2 quad-
rats) obtained from the point variogram model (Equa-
tion 9) and Equation (5), with variograms obtained
under the assumption that the point variogram mod-
el is of the same type as the one corresponding to
sampling unit size v. These models were also com-
pared with the empirical variograms modelled from
the original data. The point variogram model deduced
for variable ‘tree density’ is shown in Figure 3a. The
regularised variograms for supports of size 5 � 5 m2,
10� 10 m2 and 20� 20 m2 are shown in Figures 3b,
3c, and 3d. These regularised variograms were cal-
culated numerically from equation (5), by stochastic
integration where 100 000 random lags were gener-
ated within v. The above approximation leads to mod-
els (Figure 3b, c, d, dashed) showing a good fit to the
regularised variograms (full lines). Departure from the
theoretical model is more important near the origin,
at a scale smaller than the sampling units, although
departure from the whole curve increases with the size
of the sampling units. It could be explained by a slight
lack of stationarity in the data indicated by an increase
in variogram values beyond 250 m in the north–south

direction. This increase corresponds to another struc-
ture with a range that cannot be evaluated from the
available data; it actually represents a trend in the data.

The variogram models have two components each:
a random and a spatially structured component (Fig-
ure 2). The change in the random component due to
a change of support follows the classical relationship
and is defined by Equation (1). So, knowledge of the
variance corresponding to a given sampling unit size
allows the estimation of the random component corres-
ponding to any other sampling unit size. The random
component for the 5� 5 m2 quadrats is 0.0446. There-
fore, for 10� 10 m2 quadrats, the random component
should be 0:0446=4 = 0:0112, and for 20 � 20 m2

quadrats, 0:0446=16 = 0:00279.
On the other hand, the effect of a change of

sampling unit size operation on the spatially-structured
component of variance depends on the spatial autocor-
relation structure (point model variogram) and is given
by Equation (6). For example, for 10 � 10 m2 quad-
rats, using parameters given in Table 2, the structured
variance component for the 10�10 m2 quadrat size is:

C1(10� 10) = C1p � (10; 10);

C1(10� 10) = 0:0163� 0:00234;

C1(10� 10) = 0:0140:

This analytical solution gives an overall variance of
0.0252 for 10�10 m2 quadrats (C0(10�10)+C1(10�10)).
The empirical value is 0.0275, while the classical
approach would have given 0:0610=4 = 0:0153. Thus
the analytical solution is closer to the empirical value
than the classical relationship. The slight underestim-
ation may be due to a long-range spatial structure in
the north-south direction which is not modelled, con-
sidering the size of this structure compared with the
size of the study area. Table 3 allows comparison of
the empirical variogram parameters to the parameters
inferred from the theoretical point model (Equation
(9)); the theoretical models are very close to the empir-
ical results. These results show that in practice, from
an empirical variogram, we can deduce a theoretical
point model which enables the estimation of appropri-
ate models corresponding to given sampling unit sizes.

Discussion

The change of sampling unit size operation uses
both the among-sampling-unit and within-sampling-
unit variances to compute the statistical parameters of
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Figure 3. (a) Point model variogram deduced for the tree density variable. (b) to (d): regularised variograms (full lines) for sampling units of
size 5 � 5 m2, 10 � 10 m2 and 20 � 20 m2, calculated numerically from Equation (5), models derived from approximations (dashed), and
empirical models (points).

Table 3. Results of the change of support transformation.

Quadrat C0(emp) C0(inf) C1(emp) C1(inf) Var(v | A) s2

size (m2)

5� 5 0.0446 0.0446 0.0151 0.0151 0.0597 0.0610

10� 10 0.0113 0.0112 0.0139 0.0140 0.0252 0.0275

20� 20 0.00245 0.00279 0.0118 0.0120 0.0148 0.0161

C0(emp) is the empirical nugget effect, C0(inf) is the nugget effect inferred from the
empirical value of the 5� 5 quadrat size, C1(emp) is the empirical structured variance
component, C1(inf) is the structured variance component inferred from the theoretical
model where C1v = C1p � (v; v);Var(vjA) is the variance of a unit v in the study
area A, given by the analytical relationship, and s2 is the empirical variance. The
number of significant digits has been kept the same from row to row in the table.
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a distribution and the features of the spatial structure
that would be observed if a survey had been conduc-
ted using different sizes for the sampling units. The
calculation of these variance components is based on
a variogram model which expresses the variance of a
spatial process as a function of geographical distances.
The variance is broken up into its random and spatially
structured components of variation.

Greig-Smith (1952) and subsequent authors
(among others, Ludwig & Goodall 1978) developed
methods based on quadrat-count analysis. The peaks
in a plot of mean square against support size are con-
sidered to be associated with a given patch size, or
the scale of an ecological phenomenon. Change of
sampling unit size relationships lead to very different
conclusions about the determination of spatial scales.
Parameters of the variograms for different quadrat sizes
show that phenomena spread out in space do not have
discrete spatial scales, but a continuum of spatial struc-
tures whose perception depends on the size of the
sampling units.

A change of sampling unit size operation involves
the following three steps: (1) An empirical variogram
�(h) is calculated from the data, and a variogram
model v(h) is derived, corresponding to a regular-
ised form of variogram for a given sampling unit size
v. (2) A point model (h) (i.e., v = 0) is deduced
from the regularised model v(h), using Equation (7):
C1p = C1v=(1�F ). The variance component ascribed
to random variation follows the classical relationship
(Equation (1)). The range of the point model is deduced
from the relationship: av = ap + l, where ap is the
practical range of the point model. (3) Once the point
model (h) and its parameters have been found, an
expression v0(h) can be derived for another sampling
unit size v 0. Knowledge of the point model allows one
to calculate the mean variogram values (v; v) for any
size of sampling units.

The geostatistical predictions were verified using
an exhaustive data set including tree density in the
tropical rain forest of the Pasoh Reserve. This data
set allowed us to confirm that change of sampling unit
relationships agree closely with the empirical results.
We have shown five key results: (1) As the sampling
unit size increases, extreme values disappear from
the distribution because they are diluted and com-
bined into larger quadrats; consequently, the variance
decreases while the mean remains constant. (2) With
the increase in quadrat size, the range of autocorrela-
tion increases, while the variance and the proportion
of noise in the data decrease. (3) For a homogeneous

area, the reduction in variance associated with a cer-
tain increase in sampling unit size is more important
than for a heterogeneous area where spatial autocor-
relation is present. (4) Large quadrats filter out the
spatial variation occurring at scales smaller than their
sampling unit size, thus increasing the proportion of the
spatially-structured component with range greater than
the size of the sampling units. (5) From an empirical
variogram, we can deduce a theoretical point model
that enables the estimation of appropriate models cor-
responding to various supports.

In practice, it is not possible to infer properties and
features for sampling unit sizes smaller than the smal-
lest available sampling unit without introducing unveri-
fiable hypotheses. The variogram calculated from large
sampling units does not contain information about
structures smaller than the size of the actual sampling
units. Large quadrats do filter out possibly interesting
short-range spatial scales.

On the other hand, small sampling units introduce
a larger variance and a smaller degree of precision than
larger units. Several authors have discussed the prob-
lem of determining the sampling variance for any given
sampling unit size (general review in Kratochvil et al.
1984), which is related to the expected fluctuations of
the estimation error due to a lack of representativeness
of that unit size. Considering surfaces, this variance
can be expressed as a relationship of the form:

s2 / d2=A; (10)

where d is the linear size of the object of interest (aver-
age diameter of trees for example) andA is the surface
area of the sampling unit. The sampling variance, in
that case, is proportional to the square (or the cube in
the case of a volume) of the linear size of the object
of interest in the sampling unit, and inversely propor-
tional to the area (or volume) of the sampling unit. So,
measuring large sampling units decreases the estima-
tion error.

David (1977, p. 337) proposes the following
example. Let us count the number of objects in
sampling units that contain on average three objects
each, distributed among the units following a Pois-
son process (random distribution). The variance being
equal to the mean, the standard deviation is

p
3 =

1:73 or, in relative values (coefficient of variation),
(1:73=3)�100 = 58%. Now, let us use larger sampling
units containing on average ten objects each. The
standard deviation is

p
10 = 3:16 and its relative value

to the mean is 3:16=10�100 = 32%, which is smaller
than 58%. Obviously, reality displays a higher degree

ve10542.tex; 28/03/1997; 7:51; v.6; p.9



98

of complexity; but these relationships clearly show
that random fluctuations become less important, and
the relative precision becomes better, when increasing
the size of the sampling units.
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