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Abstract — The objective of thisstudy wasto eval uate the efficiency of spatial statistical analysisinthe selection
of genotypesin a plant breeding program and, particularly, to demonstrate the benefits of the approach when
experimental observations are not spatially independent. The basic material of this study was ayield trial of
soybean lines, with five check varieties (of fixed effect) and 110 test lines (of random effects), in an augmented
block design. The spatia analysisused arandomfield linear model (RFML), with acovariance function estimated
from theresidual s of the analysis considering independent errors. Results showed aresidual autocorrel ation of
significant magnitude and extension (range), which allowed abetter discrimination among genotypes (increase
of the power of statistical tests, reduction in the standard errors of estimates and predictors, and a greater
amplitude of predictor values) when the spatial analysiswas applied. Furthermore, the spatial analysisledto a
different ranking of the genetic materials, in comparison with the non-spatial analysis, and a selection less
influenced by local variation effects was obtained.

Index terms: augmented design, mixed model, information recovery, autocorrelation, correl ated data, geostatistics.

Selecédo de genotipos e analise estatistica espacial no melhoramento
de plantas

Resumo — O objetivo deste trabalho foi avaliar aeficiénciadaandlise estatisticaespacial naselecdo de gendtipos
de plantas num programa de melhoramento. Buscou-se demonstrar os beneficios potenciais dessa abordagem
guando as observagdes experimentai s ndo sdo espacialmente independentes. O material consistiu de um ensaio
de competi¢do de linhagens de soja, com cinco cultivares testemunhas (de efeitos fixos) e 110 novos gendtipos
(deefeitos aleatorios), delineado em blocos aumentados. O ajuste espacial foi feito pelo modelo linear de campo
aleatdrio (RFLM), com funcéo de autocovariancia estimada a partir dos residuos da andlise sob erros indepen-
dentes. Os resultados apontaram uma autocorrelacéo residual de magnitude e alcance significativos, o que
garantiu aabordagem espacial umamelhoriaconsiderével nadiscriminacéo dostratamentos genéticos—aumen-
to do poder dos testes estatisticos, reducdo nos erros padréo de estimativas e de preditores e alargamento na
amplitude das predigdes genotipicas. A andlise espacial levou a um diferente ordenamento das linhagens em
relacdo aandlise ndo espacial e, finalmente, auma sele¢do menosinfluenciada por efeitos davariagéo local.

Termos paraindexagdo: delineamento aumentado, modelo misto, recuperacdo de informacdo, autocorrel agéo,
dados correlacionados, geoestatistica.

Introduction

In plant breeding, two featuresindicatethe preliminary
phases of selective programs: the large numbers of new
genotypesto be eval uated and the small amount of ma-
terial for their propagation. Both of them limit the use of
replications of these genetic treatments, which are
frequently evaluated in a single experimental plot, i.e.,
without replications. Federer (1956) proposed the
augmented experimental designsto deal with thistype

of limitation, which allow the adjustment of thetest line
(new treatment) means for environmental effects
(blocks, lines, or columns) estimated on the basis of
repeated check genotypes. The author also presented
the corresponding methods of statistical analysis, based
on ordinary least squares (OLS) and, therefore, on the
assumption of independence among observations.
Thelimited availability of propagation material, such
as seedsand tubers, on the other hand, forcesthe breeder
toadopt small plots, usually with just one or two rows of
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plants. This increases the chance of violating the
independence among observations assumed when using
the OLS method, due to the likely similarity of
observations of neighboring plots (Stroup et a., 1994).
This phenomenon, referred to as spatia correlation —
also called spatial dependence or autocorrelation — can
seriously affect the comparison of treatments. Es & Es
(1993) have demonstrated that when this correlation
occurs, the statistical tests associated with contrasting
treatments in plots nearer together have higher
probabilitiesof typell error, which consists of different
trestments appearing to beidentical. On the other hand,
higher probabilitiesof typel error, i.e., identical treatments
appearing to be different, were observed in the contrasts
between treatments in which plots were farther apart.

The traditional analysis of variance relies on
randomization to neutralize the harmful effects of this
type of correlation, but frequently this is not attained
adequately (Stroup et al., 1994). For this reason,
Kempton et al. (1994) support agreater use of methods
that consider some accounting for spatial dependence
to improve the precision of variety trials. Recent
advancesin statisticsfor spatially distributed data have
provided a number of alternative methods. One
interesting approach is that of Zimmerman & Harville
(1991). Inthisanalysis, the plot effect (trend + error) is
modeled in such a way that the observations are
collectively taken asapartial outcome of arandom field,
similar to predictive models used in geostatistical
applications (Martinez, 1994). The model aims at
estimating the general covariancefunction, whichisused
in estimation and prediction, through generalized |east
sguares (GLS). Therefore, it is a mixed linear model
with spatially correlated errors, called a random field
linear model (RFLM).

Dueto therelatively limited use of these techniques
among plant breeders, it is necessary to assess their
effects on selection of genotypesto finally demonstrate
their true potential . Thisstudy illustratesthe application
of the RFLM approach, adapting it to the augmented
block design, whichistypical inthe preliminary phases
of the selection process in plant breeding. The attempt
does not intend to represent the best spatial approach
for the set of data analyzed, but, rather, to demonstrate
the benefits of a less restrictive statistical analysis in
comparison with the traditional one, based on spatially
independent observations.
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Material and M ethods

The data used in this study were obtained in asoybean
variety trid, with Fg3linesof the semi-early maturity group,
conductedinthelocdlity of Arego, municipdity of Firacicaba,
SP, Brazil, in 1999/1995. The trial is part of a selection
program conducted to increase soybean yield, carried out
by the Department of Genetics of Esalg/USP. Genetic
material swereeval uated in augmented block design, witht
t = 5 check varieties (Bossier, Davis-1, IAC-12, IAS5
andVigoja) and p=110test lines, digtributedinb=4blocks
with approximately 50 plots each. The plot corresponded
to two rows of plants, spaced 0.6 m apart and 5m long.
Only grainyield data (kg hal) were considered here. For
spatial statistical analysis, it was necessary, in addition,
to obtain the distances (meters) among plots, which
was donefrom thegeographical coordinatesof the center
of each plot in the experimental field grid — COORDX
represents the width coordinate of the plots and
COORDY, the length coordinate.

Two mathematical models were used for statistical
analysis. i) amodel which assumes spatially independent
observations; and ii) amodel alowing spatia correlations
among observations. In both cases, the effects of test
lines were taken as random, and here were assumed to
be derived from asingle base population, that is, varying
randomly about a common mean. For this reason, the
independent error analysis here does not correspond to
the fixed model (OLS). Thus, both are mixed models,
despite the adjustment for checks. The only difference
between them is the assumption on the experimental
error.

Inthe case of spatially independent observations, this
analysis is described as intergenotypic information
recovery analysis(Wolfinger et al., 1997; Federer, 1998).
Onepeculiarity of such anaysisin theaugmented designs
is that the mathematical model needs to accommodate
two types of treatment effects: fixed effects for the
checks (t populations) and random effects for the test
lines. Theselines congtitute the (t+1)™" popul ation, which
isalso assumed to have afixed effect. Thus, in the first
aternative (i), the observations can be individually
characterized by the model (an adaptation to the model
of Scott & Milliken, 1993, proposed by Duarte, 2000):
Yik =M+ by + ¢k + Qi + €k
inwhich Y istheobservation in the plot with genotypei,
stemming from population k in block j; p is the constant
common to all observations; b isthe fixed effect of the
j" block (j=1,2,...,b); c is the fixed effect of the kth
population (k=1,2,...,t,t+1; herethe check cultivars plus
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the population of lines); giw) is the effect of the it"
genotype within the kth popul ation, assumed to be fixed
and with anull mean, if the genotypeisacheck (i) = 1),
or random with independent distribution N(O, og), if the
genotypeisatestline (ix=1,2,...,p« , with Zp, = p); and
&jk Is the random experimental error associated with
the ijkt plot, which is assumed to be independent, that
is, null covariance among the errors of different plots,
andwith distribution N(0, o2).

In model (ii), the term ey is assumed to have the
digtribution g ~N[0,C(h)], inwhich C(h) isthe covariance
between two errors of plots which are h units of distance
apart (=0). If such errors are denoted by € and gs: ), in
which s represents the spatia position of theijk® plot, in
the RFLM approach, C(h) isdefined as(Littell et a., 1996):

Ho?, if h=0; and

C(h)= |
g“*%(s»e(yh) =o?[f(h)], if h>0

Thus, it is assumed that the covariance of the errors
is a function of the distance that separates the
corresponding plots (f(h)). However, this is not
predetermined, but is estimated from the “uniformity
experiment” suggested by the residuals (&;y ) of the
independent error model adjustment.

Representing the observations by a vector y, both
models can be expressed in matrix notation by the ge-
neral mixed linear model (Henderson, 1984): y = X3 +
Zy + g; with y~N(9,G), e~N(@,R), E(y)=Xp and
Var(y) =V =ZGZ' +R.

The fixed effects are in parametric vector 3; the
random effects, in parametric vector y, except theerrors
that are in vector €; X and Z are incidence matrices of
theeffectscontainedin 3 andy, respectively. Therandom
genotypic effects (y) are assumed, without loss of
generdity, to haveanormal distribution with anull mean
(¢) and matrix of covariance G = Iog (where | is an
identity matrix). The experimental errors are presumed
to have a normal distribution with a null mean and a
generic matrix of covariance R. Thus, in thefirst model
(i), R=102, whilein the other (ii), R = Z, i.e,, anon-
diagonal matrix with structure defined by the general
covariance function and by the autocorrelation range.

Thefirst stepinthisspatia analysisisthe adjustment
of the model which postulate spatial independence
among observations. The components of variance 05
and g2 wereestimated by restricted maximum likelihood

(REML). The estimated residual vector of this
adjustment is: €=y - ¢, with § = Xp° + zy, inwhich

B =(X'VIX)"X'Vly and y=Gz'V'(y-XB°),
representing the solution vectors of the mixed model
equations (Henderson, 1984). The residuals were then
used to estimate the spatial correlation structure. This
was done graphically by means of a so-called
semivariogram or simply variogram (Stroup et al., 1994).

In this graphic representation, estimated values of
semivariance, S(h) , are plotted against their respective
distancesh, resulting in ascatter plot (sample variogram).
Thesemivarianceisdefinedas S(h)="Var[ €.,y — €9 |

whichisesiimatedby S(h) = 5k > [&(sy) —&g]% with
N(h)

N(h) being the number of differences at the distance h.
Inthisgraph, values S(h) that are distributed randomly
as a function of h reflect independent observations
(residuals). The typical configuration of spatial
dependence among observations occurs if values S(h)

tend to increase as h increases up to a certain distance
(range), after which the semivariance stabilizesreaching
a plateau (or sill). Less variability is associated with
smaller distances. The spatial correlation range (a) is
the mean distance influence of an observation (plot),
asserted hereto be uniform in all directions (isotropy).
Thesill (o) correspondsto theintrinsic variance of the
variable under study (Var[gg] = Cov[ey),gg)]), Whichis
also equivalent to the covariance between residuals of
plots separated by a distance equal to or greater than
the range (Cov([e), &+, With h=a).

Thereisan advantagein eva uating spatia dependence
by means of the variogram. Under stationarity — spatial
law unaffected by trand ation—the variogram hasadirect
and simple relation to the function of autocovariance
C(h), that is: S(h) = a?>-C(h); in which 2= C(h = 0)
(Es & Es, 1993; Stroup et al., 1994; Pannatier, 1996).
Thus, fitting acontinuous model to the samplevariogram,
the corresponding spatia covariance function for this
relation is obtained. The most commonly utilized
variogram functions are the so-called spherical,
exponential and Gaussian models (Grondona& Cressie,
1991; Zimmerman & Harville, 1991; Vieira, 2000). Due
to thewide application of the variogram in geostatistics,
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software that facilitates this adjustment is available
(ex: Variowin; Geo-Eas). In such programs, the search
for the function that best fits the observationa pointsis
carried out by changing slightly thevaluesof ¢ anda.
In the present case, the exponential model provided the
best fit, corresponding to the following covariance
function (for isotropic random fields):
C(h) = 0” exp(=n).

After defining parameters (o and a) and the gene-
ral covariance function, the next step isfitting the model
to account for spatial dependence (R = ). Thisinvolves
obtaining estimates, predictors, and statistical testsrel ated
to treatment effects, which must be free from estimated
autocorrelation effects. To evaluate only the effects of
the spatial adjustment on the statistical analysis, the same
estimate of og obtained in the former analysis (under
R =102) was used. The following procedure consisted
of resolving the mixed model equations (Henderson,
1984):

X's™'X X'z7'z OR°0 X'z'yO
FEX ZEZ+GrAWE ety
which solutions have aready been reported.

Results and Discussion

Characterization of spatial covariance

The experimental data showed a positive spatial
correlation of first-order to sixth-order, in the series of
residuals(Table 1). Thisfactisindicative of theviolation
of spatial independence among observations postul ated
by the first model (under R = Icg). Residuals of this

Table 1. First to tenth-order autocorrelations (p) and the
respective Durbin-Watson statistics (d) for theresidual (& )
series obtained from the adjustment of an augmented block
design model with independent errors.

~

Order p d Pr<d®
1 0.64125 0.7003 0.0001
2 0.50359 0.9599 0.0001
3 0.42519 1.0895 0.0001
4 0.38857 1.1313 0.0001
5 0.29623 1.2942 0.0001
6 0.16385 1.5386 0.0143
7 0.09528 1.6624 0.0839
8 -0.00189 1.8176 0.3440
9 -0.06130 1.9241 0.6153

10 -0.10327 2.0027 0.7964

MMarginal probability of the statistical test (Ho: 0 =0) (one-sided to
the left, in this case).
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analysiswerenot randomly distributed inthe experimental
field (Figure 1). Rather, there is a clear tendency for
larger residual values (&;y ) to be concentrated in the
top of the field map graph, that is, to be associated with
plots having smaller COORDX values.

This fact aso determined a predominant gradient in
the direction of plot widths (COORDX). Considering
this is how the blocks were constructed, it is possible
that such an orientation may not have beenideal. Given
the features of the residual surface, which provides an
estimate of theuniformity trial underlying the experiment,
itisreasonableto supposethat alengthwise blocking of
the plots would have been more effectivein controlling
local variation. The possibility of making thisdiagnosis
represents an advantage of the spatial approach, which
creates perspectives for the application of alternative
forms of a posteriori local control or post-blocking
(Federer, 1998).

The variogram obtained for distanceslessthan 30 m
is showed in Figure 2. The configuration of the dotsis
typical of stochastic processeswith spatial dependence,
that is, with decreasing variability as distance decreases.
After 20 m (range) thevariability tendsto stabilize. The
value of this plateau represents the residual variance
among independent plots, and the existence of the
increasing variogram with aplateau isan indication that
the intrinsic hypothesis of stationarity was satisfied
(Vieira, 2000). Furthermore, on the assumption of
isotropy, the continuous function that best fitsthe dotsis
the exponential semivariance model:
S(h) = o?[1-exp(=1)], with: 2=126450 (kg ha1)?
and a = 20.4 m. Consequently, the respective
autocovariance function is expressed by
C(h) =126450exp(gh) . This defines the residual

Residual
626.94
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%‘R‘:‘!"‘ A\\
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COORDX 26.2 55 COOR]2)2\.(5

-356.20

-847.77
0.6
32.5
39.0 2.5
Figure 1. Residuals (kg ha 1) of the augmented block design
model adjustment, with recovery of test lines information,

under independent errors as a function of the plot center
coordinates, in meters (COORDX and COORDY).
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covariancematrix R = S, whose main diagonal elements
were all equal to 126450 and the off-diagonal elements
were equal to 126450exp(z8) , inwhich histhedistance
that separates each two plotsidentified by arow and a
column in the matrix. Thus, the spatial covariance
inherent to the experiment was characterized. The
implications of the use, or not, of this information in
statistical analysisare evaluated in thefollowing section.

Comparison of the spatial and non-spatial
statistical analysis models

Models with a larger number of covariance
parameters always exhibit better fit than those with a
simpler structure. For this reason, comparative criteria
that penalize the more parametrized models, such asthe
Akaike's Information Criterion (AIC) and Schwarz's
Bayesian Criterion (BIC) should be adopted. Both are
based on the value which maximizes the restricted
likelihood logarithm, Lrem (GR), reduced fromafunction
of the number of parameters. Thus, the model with the
greatest AIC or BIC values should be preferred (Littell
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Figure 2. Sample variogram (dots) of the residuals of an
augmented block design analysis that assumed independent
errors, and adjustment (continuous line) by the exponential
semivariance model [a= 20.4 m; $2=126450 (kg ha1)4. The
dotted line illustrates the corresponding autocovariance
function.
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et a., 1996). The results in Table 2 show that the
covariance structure R = X provides a better fit to the
respective model in comparison with the independent
error model (R =1g?2).

With regard to statistical testsrelated to the genotypic
effects, it was observed that variation among the six
fixed populationswas not significant in thefirst analysis
(at the5%level of probability), but reached high statitical
significance (p-value<0.01) in the spatial analysis
(Table 3). With further partitioning of the population
effects, the F values were a so higher under the spatial
analysis, both in the detection of differences among
checks (four degree of freedom) and in the contrast
between checks and test lines (one degree of freedom).
Considering the three contrasts chosen to illustrate the
comparison among some of these lines, the superiority
of the spatial analysis was again evident and even

greater. Whilethe analysisunder R=1 g2 did not detect

any difference among these genotypes (p-value>0.90),
the spatial analysisshowed that two of thethree contrasts
were significant (p-value<0.025). These results reflect
greater genotypic discrimination ability under the spatial
analysis, compared with the non-spatial procedure.
This superiority was confirmed when the predicted
genotypic values (EBLUP) were considered. While in
the first analysis these varied between -98.2 and 100.5
(complete datain Duarte, 2000), with a range of about
Table 2. Characteristics of thefitting of non-spatial and spatial

modelsfor grainyield data (kg hal) in asoybean variety trial
in an augmented block design.

Description Vaue

Non-spatial analysis Spatial analysis
Leew (G R) -881.125 -838.975
Akaike's Information
Criterion (AIC) -883.125 -841.975
Schwarz's Bayesian
Criterion (BIC) -885.896 -846.131

Table 3. Statistical tests of some genotypic effects obtained on the basis of spatial and non-spatial analysis modelsd.

Source NDF® Non-spatial analysis Spatial analysis
DDF® Pr>F DDF®@ F Pr>F
Populations 5 12.0 271 0.0727 31.9 3.95 0.0067
Checks 4 11.4 0.93 0.4793 315 1.79 0.1547
Checksvs. Test lines 1 155 9.89 0.0065 33.3 10.28 0.0030
LineGlyvs. Line G3 1 0.20 0.00 0.9859 23.7 0.46 0.5064
LineGlvs. LineG24 1 0.20 0.01 0.9712 25.8 6.00 0.0214
Line G3 vs. Line G24 1 0.20 0.01 0.9575 25.0 9.82 0.0044

(WGrain yield data, in kg hal; soybean variety trial in augmented block design. @NDF and DDF are the numbers of degrees of freedom of numerator
and denominator of F (Snedecor) statistic, respectively; the last obtained by the Satterthwaite approximation.
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200 kg ha'l, in the spatia analysis the detected range
was greater than 500 kg ha® (values between -337 and
200.5). This represents an increase of more than 150%
in the differentiation among thetest lines, in favor of the
gpatial analysis. The smaller standard errors associated
with EBLUP also confirm the better genotypic
discrimination of thisanalytic model. Pontes (2002) has
demonstrated a gain of 7% in the efficiency of these
predictors when an iterative process to estimate the
variogram and its parameters (aand o*) was used.
When a selection intensity of 25% of the most
productive lines was assumed (28 in 110 genotypes), a
coincidence of only 46% between the two statistical
analysis models was observed (Table 4). In addition,
among the genotypes selected by the more traditional
analysis (non-spatia), at least 30% would occupy poor
ranking positions in the spatial analysis (up to fiftieth
position). Examples include the following lines:

J.B. Duarte and R. Vencovsky

USP 93-2048, USP 93-2393, USP 93-2153 and
USP93-2198. Ontheother hand, four linesclassifiedin
the gpatial analysis as among the ten most productive
would be discarded using the other analysis
(under R =102).

The disagreement between these selections can be
better understood if the spatial positions of plots with
theselected linesin the experimental field are considered.
The evidence of the effect of spatial adjustment on
selection can be seen in Figure 3. When the non-spatial
model was used, the selected genotypes were located
exclusively intheleft side strip of the experimental field,
probably itsmost fertile area. However, when the spatial
adjustment was taken into account, the selected
genotypes were detected in plots scattered throughout
the whole experimental area. The predominance of
genotypes from the |eft side-stripe can be explained as
aresult of possible remaining fertility effects or of the

Table 4. Predictors (EBLUP) of individual genotypic effects of 28 soybean lines, respective standard errors and ranking of test

lines under two statistical analysis models(®.

Lines Non-spatial analysis Spatial analysis

EBLUP Standard error Rank EBLUP Standard error Rank
USP 93-2802 100.48 123.96 1 200.50 103.71 1
USP 93-2850 96.97 123.98 2 172.97 103.68 2
USP 93-2547 76.77 123.98 3 66.91 103.27 20
USP 93-2075 76.37 123.95 4 64.51 107.80 22
USP 93-2302 72.64 123.96 5 107.14 103.34 11
USP 93-2114 70.08 123.95 6 42.59 107.77 31
USP 93-2623 69.27 123.96 7 67.11 103.33 19
USP 93-2642 68.46 123.98 8 13.76 111.13 50
USP 93-2722 66.80 123.96 9 83.48 103.35 14
USP 93-2753 65.68 123.96 10 156.46 103.34 4
USP 93-2171 62.45 123.95 11 126.62 103.54 6
USP 93-2159 58.72 123.96 12 150.22 103.69 5
USP 93-2479 56.78 123.98 13 -21.24 111.08 65
USP 93-2881 53.56 123.96 14 172.84 103.34 3
USP 93-2187 53.41 124.01 15 47.13 111.11 29
USP 93-2037 52.79 123.95 16 5.82 111.74 53
USP 93-2148 52.43 123.96 17 38.83 103.63 35
USP 93-2475 50.86 123.96 18 33.96 103.35 37
USP 93-2474 48.70 124.01 19 64.17 111.68 23
USP 93-2048 48.53 123.95 20 -45.25 104.17 83
USP 93-2198 47.49 123.96 21 -32.91 111.20 75
USP 93-2266 46.90 124.01 22 25.62 103.35 42
USP 93-2153 46.51 123.95 23 -40.82 103.73 81
USP 93-2916 44.66 124.01 24 17.93 103.33 48
USP 93-2418 43.98 124.01 25 76.09 102.76 18
USP 93-2393 40.76 123.96 26 -43.15 103.34 82
USP 93-2077 38.15 123.98 27 -4.27 107.06 55
USP 93-2985 37.30 123.95 28 25.77 108.87 41

(MGrain yield data in kg hal; variety trial with 110 lines and five checks, in augmented block design.
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Figure 3. Location of plotswith the most productivetest lines (25%) among the 110 evaluated lines (unreplicated), using two
models of statistical analysis: with R =1 62 (non-spatial) (a) and with R =X (spatial) (b) of asoybean variety tria, in augmented

block design.

breeder’s preferencein all ocating genotypes of the same
parent side by side. In any event, what is expected from
experiments of this nature is an outcome as shown in
part (b) of Figure 3 rather than one displayed in its
part (a). Similar results are also reported by Besag &
Kempton (1986), Cullis et al. (1989), and Kempton &
Gleeson (1997).

Considering that the cause of the divergence in the
two sel ections was the genotypic adjustment for position
effects, which are of purely environmental nature, it can
be concluded that, in similar conditions, the use of spatial
analysis can assure greater efficiency to the breeding
programs.

Conclusions

1. In variety trials with large numbers of treatments
and limited availability of propagation material, experi-
mental observations can not be spatially independent; in
such conditions, spatial analysis allows better
discrimination among genotypes, because it provides
increased power in statistical tests, reduced standard
errors of genotypic estimates, and greater amplitudes
among predicted values.

2. Thegpatial analysiscan beledto adifferent ranking
of the genetic materials, in comparison with the non-
spatial analysis, and aselection lessinfluenced by local

variation; such differences may have important
consequences for the final outcome of plant breeding
programs.
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