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Summary. Statisticians analyzing spatial data often need to detect and model associations based upon
distances on the Earth’s surface. Accurate computation of distances are sought for exploratory and inter-
pretation purposes, as well as for developing numerically stable estimation algorithms. When the data come
from locations on the spherical Earth, application of Euclidean or planar metrics for computing distances is
not straightforward. Yet, planar metrics are desirable because of their easier interpretability, easy availability
in software packages, and well-established theoretical properties. While distance computations are indispens-
able in spatial modeling, their importance and impact upon statistical estimation and prediction have gone
largely unaddressed. This article explores the different options in using planar metrics and investigates their
impact upon spatial modeling.
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1. Introduction
The analysis and modeling of geographically referenced data
play an indispensable role in diverse disciplines such as en-
vironmental sciences, ecology, and public health. Such data
are often obtained from a set of locations referenced by geo-
graphical coordinates (longitude and latitude) that form the
“spatial domain.” Spatial modeling attempts to detect and
model associations between the observed variables as a func-
tion of distances (and perhaps angles) between locations.

Distance computations are indispensable in spatial analy-
sis. Precise intersite distance computations are used in vari-
ogram analysis to assess the strength of spatial association.
They help in specifying priors on the range parameter in
Bayesian modeling (Ecker and Gelfand, 1997), and in set-
ting starting values for the nonlinear least-squares algorithms
in classical analysis (Cressie, 1993), making them crucial for
correct interpretation of spatial range and the convergence
of statistical algorithms. Yet, this is not an issue that has re-
ceived much attention in the existing statistical literature and
ambiguity prevails among practicing statisticians about dis-
tance metrics. For example, the analysis of the scallops data
appearing in Kaluzny et al. (1998, p. 76–79), and in Ecker
and Gelfand (1997), uses naive Euclidean distances treating
the geographical coordinates as planar. Except when the spa-
tial domain is “small enough” as to have negligible curva-
ture (where how “small” is “small enough” depends upon the
specific application), the usual planar metrics for calculating
distances are inappropriate. Treating geodetic coordinates as
planar can induce deceptive anisotropy in the models because
of the difference in differentials in longitude and latitude (a
unit increment in degree longitude is not the same length as
a unit increment in degree latitude except at the equator).

Spurious nonstationarity may be induced as well due to the
systematic properties of these differentials.

Nevertheless, Euclidean metrics are popular due to their
simplicity and availability in standard software. More im-
portantly, statistical modeling of spatial correlations pro-
ceed from correlation functions that are often valid only with
Euclidean metrics. As we demonstrate later, applying these
metrics on geographical coordinates requires care, and can
otherwise have unattractive consequences on statistical esti-
mation and subsequent interpretation. Note that in geostatis-
tics interest often resides in points that are “closer” together,
so the sensitivity of planar metrics may seem irrelevant. How-
ever, an important feature of formal spatial modeling (par-
ticularly isotropic models) is inference on the effective spatial
range, a critical distance beyond which spatial correlation is
deemed negligible. The range is relative to the spatial domain
and is likely more sensitive to the definition of distance, espe-
cially for larger domains.

This article explores options for computing distances and
investigates their impact upon statistical modeling, keeping
in mind the practicing modeler. While mathematical car-
tography presents a rich literature (see, e.g., Snyder, 1987)
in the study of geodetic distortions and planar projections,
such topics focus upon the thematic properties based upon
mapping objectives, but are less useful for practicing statis-
ticians seeking appropriate intersite distances for statistical
modeling.

Spatial statisticians, however, often need to use carto-
graphic concepts and do so using Geographical Informa-
tion Systems (GIS). These databases offer versatile interfaces
for manipulating and visualizing spatial data and play an
indispensable role in spatial statistics that is too huge to
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be addressed comprehensively here (see, e.g., Jones, 1997).
Focusing upon distance computations, GIS offers a wide ar-
ray of planar map projections using appropriate coordinate
transformations, and more flexible distance computations us-
ing polygonal methods. Map projections and polygonal meth-
ods both require caution for computing distances. The former
always distorts distances and can influence statistical estima-
tion as we discuss later. The polygonal methods treat “dis-
tances” informally (e.g., actual roadway distance or rail track
distance), rather than purely geometric concepts. Such inter-
site distance matrices can be imported from GIS, but they
need not be valid arguments for statistical correlation func-
tions leading to unstable or even infeasible numerical algo-
rithms. Here, we focus upon direct distance computations and
do not discuss the polygonal methods further.

We also restrict attention to point-referenced or geosta-
tistical data where the sites are fixed, as opposed to point
processes where the sites (and hence intersite distances) are
random. The remainder of this article evolves by reviewing
a basic framework for spatial modeling, concentrating upon
isotropic models, where distances are particularly helpful for
interpreting the spatial range. In Section 3, we discuss dis-
tance computations using the spherical coordinate system and
map projections. Section 4 illustrates the impact of the dif-
ferent metrics on statistical modeling and Section 5 concludes
the article with a summary.

2. Review of Spatial Regression Models
There is a growing literature on statistical modeling for point-
referenced or geostatistical data. The most common setting
assumes a response or a dependent variable Y(s) observed at
a generic location s, referenced by its latitude and longitude,
along with a vector of covariates x(s). One seeks to model the
dependent variable in a spatial regression setting such as

Y (s) = xT(s)β + w(s) + ε(s). (1)

The residual is partitioned into a spatial process, w(s), captur-
ing residual spatial association, and an independent process,
ε(s), also known as the nugget effect, modeling pure error.
Inferential goals include estimation of regression coefficients,
spatial and nugget variances, and the strength of spatial as-
sociation through distances.

When we have observations, Y = (Y (s1), . . . ,Y (sn)), from
n locations, we treat the data as a partial realization of
a spatial process, modeled through w(s). Hence, w(s) ∼
GP(0, σ2ρ(·,η)) is a zero-centered Gaussian process with vari-
ance σ2 and a valid correlation function ρ(·,η), which de-
pends upon intersite distances (dij = ‖si − sj‖) and pa-
rameters η quantifying correlation decay and smoothness of
process realizations. Also, we assume ε(s) are i.i.d. N(0, τ 2).
Likelihood-based inference proceeds from the distribution of
the data, Y ∼ N(Xβ,Σ), with Σ = σ2H(η) + τ 2I, where X
is the matrix of covariates (or model matrix) and H(η) is
the spatial correlation matrix (corresponding to w(s)) with
Hij = ρ(dij ,η). See Cressie (1993) for details, including maxi-
mum likelihood and restricted maximum likelihood methods.

Statistical prediction (kriging) at a new location s0 pro-
ceeds from the conditional distribution of Y (s0) given the
data Y (for details see, e.g., Banerjee, Carlin, and Gelfand,

2004, p. 48–52). Collecting all the model parameters into
θ = (β, σ2, τ 2,η), we note that

E[Y (s0) |Y] = x(s0)
Tβ + γTΣ−1(Y −Xβ),

var[Y (s0) |Y] = σ2 + τ 2 − γTΣ−1γ,

where γ = (σ2ρ(d01;η), . . . , σ2ρ(d0n;η)) and d0j = ‖s0 − sj‖
when s0 �= sj for all j, while the nugget effect is added to
the jth entry if s0 = sj for some j. Classical prediction com-
putes the best linear unbiased predictor (BLUP) by substitu-
ting maximum likelihood estimates for the above parameters.
A Bayesian solution first computes a posterior distribution
p(θ |Y) ∝ f(Y |θ)p(θ), where f(Y |θ) is the normal data
likelihood and p(θ) is the prior distribution for the parame-
ters, and then computes the posterior predictive distribution
p(Y (s0) |Y) by marginalizing over the posterior distribution,∫
f(Y (s0) |Y,θ)p(θ |Y).
The function ρ(d, η) depends upon the metric used to com-

pute d and must ensure that H(η) is positive definite. Valid
classes of correlation functions for Euclidean spaces are gener-
ated by Bochner’s theorem (see, e.g., Stein, 1999), highlight-
ing the theoretical importance of Euclidean metrics. Appar-
ently, the parameters most sensitive to the choice of the metric
are those associated with the correlation function. Also, note
that the correlation function features prominently in both
the likelihood as well as the predictive distribution suggesting
concern regarding inferential sensitivity to the metric.

Focusing upon the correlation function parameters, we con-
sider the flexible Matérn family, where η =(ψ, ν) involves a
smoothness parameter ν in addition to the correlation decay
parameter ψ, and is given by

ρ(d, ν, ψ) =
1

2ν−1Γ(ν)
(2
√
ν dψ)νKν(2

√
ν dψ),

where Γ( ) is the usual Gamma function and Kν is the mod-
ified Bessel function of the second kind of order ν (see,
e.g., Abramowitz and Stegun, 1965). In particular, with ν =
0.5, we obtain the exponential correlation function ρ(d,ψ) =
exp(−ψd). Recent interest in the study of smoothness of a
spatial process and spatial gradients (Stein, 1999; Banerjee,
Gelfand, and Sirmans, 2003) warrants estimation of ν. In
our context it is unclear how the distance metrics will affect
smoothness, so we investigate the exponential (with fixed ν)
and the more general Matérn family with unknown ν.

A Bayesian framework is convenient here, allowing infer-
ence by assigning proper and moderately informative priors on
the weakly identified correlation function parameters. For ex-
ample, for the smoothness parameter ν in the Matérn, we can
follow Stein (1999) that the data cannot distinguish between
ν = 2 and ν > 2, which suggests placing a Unif(0, 2) prior on
ν. Usually a Markov chain Monte Carlo (MCMC) algorithm
is required to obtain the joint posterior distribution of the
parameters, but again there are different strategies to opt for.
For example, we may work with the marginalized likelihood
as above, Y |θ ∼ N(Xβ, σ2H(η) + τ 2I), or we may add a hi-
erarchy with spatial random effects W = (w(s1), . . . ,w(sn))
such that

Y |θ,W ∼ N(Xβ + W, τ 2I),

W ∼ N(0, σ2H(η)).
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In either framework, a Gibbs sampler may be designed, with
embedded Metropolis or slice-sampling steps, to obtain the
marginal posterior distribution (see, e.g., Banerjee et al.,
2004).

Much more complex hierarchical models have been dis-
cussed extensively in the spatial literature but, irrespective
of their complexity, they typically incorporate a spatial cor-
relation function whose computation involves intersite dis-
tance computations. Therefore, although we work with sim-
pler isotropic spatial models, our results will be relevant in a
broader context.

3. Computing Distances
We consider a few different approaches for computing dis-
tances on the Earth, classifying them as those arising from the
classical spherical coordinates, and those arising from planar
projections. Our treatment is comparative, eliciting some non-
trivial aspects that impact spatial modeling. While spherical
geometry may suggest natural metrics (such as the geodetic
metric to be discussed shortly), we do not recommend a true
distance metric because none may be appropriate for scien-
tific data analysis. Henceforth, ‖·‖ will denote the Euclidean
metric in �2 or �3 as the case may be.

Recall that a spherical model of the Earth is divided by
parallels of latitude, referencing east–west, and the meridians
of longitude that are great-circle arcs (circle passing through
the two points with center as the center of the Earth) joining
the poles, intersecting the parallels orthogonally. The Earth is
not exactly a sphere, but an ellipsoid (surface obtained by re-
volving an ellipse). For geodetic computations requiring very
high degrees of accuracy, the ellipsoidal model of the Earth is
used, but for spatial modeling a spherical model suffices. In
fact, apart from locations in the polar regions the accuracy of
the spherical model is excellent.

3.1 Spherical Coordinates, the Geodetic Formula,
and Euclidean Approximations

Figure 1 shows the spherical coordinate system, where P 1 =
(λ1, θ1) and P 2 = (λ2, θ2) are two points on the surface of the
Earth (sphere not shown) with center O, given by longitudes
λ1 and λ2, and latitudes θ1 and θ2. The geodetic distance is
the length of the arc of a great circle joining P 1 and P 2 and is
obtained as Rφ, where R is the radius of the Earth and φ is the
angle between the vectors OP 1 and OP 2. A three-dimensional
orthogonal coordinate system (x, y, z) is set up with the origin
at the center O, the z-axis directed toward the North Pole, the
x-axis, on the equatorial plane, along the Greenwich meridian
(the 0◦ meridian, passing through Greenwich England), and
the y-axis perpendicular to the x-axis on the equatorial plane.

Using projections P ′
1 and P ′

2 on the x–y plane, we obtain

(x, y, z) = (R cos θ cosλ,R cos θ sinλ,R sin θ).

Letting u1 = (x1, y1, z1) and u2 = (x2, y2, z2) be the unit vec-
tors

−−→
OP1 and

−−→
OP2, our desired angle φ is given by cosφ = 〈u1,

u2〉, where 〈u1, u2〉 denotes the inner product between these
vectors. Simple trigonometric identities reveal the geodetic
distance as

Rφ = R arc cos(sin θ1 sin θ2 + cos θ1 cos θ2 cos(λ2 − λ1)). (2)

x

y

z

2
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Figure 1. The spherical coordinate system. The shortest
distance from P 1 to P 2 is through the great circle arc (not
shown) formed by intersecting the sphere with the plane con-
taining O, P 1, and P 2.

This is given in Cressie (1993, p. 265) as the great-arc dis-
tance. The correct scale is obtained with the angle φ in ra-
dian measure with the distance expressible in kilometers or
miles depending upon the unit of R. Using R = 6371 km
results in a sufficiently good approximation. For example,
to obtain the geodetic distance between Chicago (87.63W,
41.88N) and Minneapolis (93.22W, 44.89N), we plug in the
appropriate values in (2) to obtain the required distance as
6371 × arc cos(0.9961) ≈ 562 km.

The transcendental nature of equation (2) dispels any mis-
conception that the relationship between the Euclidean dis-
tances and the geodetic distances is just a matter of scaling
and merits further investigation. A simple scaling of the geo-
graphical coordinates results in a “naive Euclidean” metric (as
is done by Kaluzny et al., 1998 and Ecker and Gelfand, 1997)
obtained directly in degree units, and converted to kilome-
ter units as ‖P 1 − P 2‖πR/180. This metric performs well on
small domains but always overestimates the geodetic distance,
flattening out the meridians and parallels, and stretching the
curved domain onto a plane, thereby stretching distances as
well. As the domain increases, the estimation deteriorates.

A more natural metric to consider is along the “chord”
joining the two points. This is simply the Euclidean metric
‖u2 − u1‖, yielding a “burrowed through the Earth”
distance—the chordal length between P 1 and P 2. The slight
underestimation of the geodetic distance is expected, because
the chord “penetrates” the domain, producing a straight line
approximation to the geodetic arc.
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Table 1
Comparison of different methods of computing distances

Methods Colorado data (farthest) Chicago–Minneapolis New York–New Orleans

Geodetic 741.7 km 562.0 km 1897.2 km
Naive Euclidean 933.8 km 706.0 km 2172.4 km
Chord 741.3 km 561.8 km 1890.2 km
Mercator 951.8 km 773.7 km 2336.5 km
Sinusoidal 742.7 km 562.1 km 1897.7 km
Centroid-based 738.7 km 562.2 km 1901.5 km

The first three rows of Table 1 compare the geodetic dis-
tance with the “naive Euclidean” and chordal metrics. The
first column corresponds to the distance between the farthest
points in a spatially referenced data set comprising 50 lo-
cations in Colorado (more of this in Section 4), while the
next two present results for two differently spaced pairs of
cities. The overestimation and underestimation of the “naive
Euclidean” and “chordal” metrics, respectively, is clear, al-
though the chordal metric excels even for distances over
2000 km (New York and New Orleans).

This approximation of the chordal metric has an important
theoretical implication for the spatial modeler. A troublesome
aspect of geodetic distances is that they are not necessarily
valid arguments for correlation functions defined on Euclidean
spaces (e.g., the exponential, spherical, Matérn, etc.). How-
ever, the excellent approximation of the chordal metric (which
is Euclidean) ensures that in most practical settings, as in
our illustration in Section 4, valid correlation functions in �3

such as the Matérn and exponential yield positive definite cor-
relation matrices with geodetic distances and enable proper
convergence of the statistical estimation algorithms.

Schoenberg (1942) develops a necessary, sufficient represen-
tation for valid positive-definite functions on spheres in terms
of normalized Legendre polynomials Pk of the form:

ψ(t) =

∞∑
k=0

akPk(cos t),

where ak ’s are positive constants such that
∑∞

k=0 ak converges.
An example is given by

ψ(t) =
1√

1 + α2 − 2α cos t
, α ∈ (0, 1),

which can be easily shown to have the Legendre polynomial
expansion

∑∞
k=0 α

kPk(cos t).
The chordal metric also provides a simpler way to construct

valid correlation functions over the sphere using a sinusoidal
composition of any valid correlation function on Euclidean
space. To see this, consider a unit sphere (R = 1) and note
that

‖u1 − u2‖ =
√

2 − 2〈u1,u2〉 = 2 sin(φ/2).

Therefore, a correlation function ρ(d) (suppressing the range
and smoothness parameters) on the Euclidean space trans-
forms to ρ(2 sin(φ/2)) on the sphere, thereby inducing a valid
correlation function on the sphere. This has several advan-
tages over the Legendre polynomial approach of Schoenberg:
(1) We retain the interpretation of the smoothness and de-
cay parameters, (2) is simpler to construct and compute, and

(3) builds upon a rich legacy of investigations (both theo-
retical and practical) of correlation functions on Euclidean
spaces. We do not explore spherical correlation functions
here, restricting ourselves to the Matérn, and its special case,
the exponential, correlation functions that are popular in
practice.

3.2 Map Projections
An alternative approach to using Euclidean metrics is that of
a planar projection of the spatial domain. This is particularly
popular among GIS users, where several map projections are
available, and has the added advantage of working with two-
dimensional coordinates, unlike the three-dimensional chordal
metric. In fact, currently most existing spatial statistics soft-
ware (e.g., WinBUGS [Thomas et al., 2002], geoR [Ribeiro and
Diggle, 2003]) allow specification of only two-dimensional Eu-
clidean coordinates.

We will restrict ourselves to the purely mathematical map
projections that derive a relationship between geographical
coordinates (λ, θ) and cartesian coordinates (x, y) through

x = f(λ, θ), y = g(λ, θ),

where f and g are functions that are determined by map-
ping infinitesimal quadrilaterals with desirable map proper-
ties. Ideally, we would seek to preserve all intersite distances
but the existence of such a projection is precluded by Gauss’
Theorema Eggregium in differential geometry (see, e.g.,
Guggenheimer, 1977, p. 240–242). Projections such as the
gnomonic projection (Snyder, 1987, p. 164–168) give the cor-
rect distance from a single reference point, but is less useful for
the practicing spatial analyst who needs to obtain complete
intersite distance matrices, which would require, not one, but
several such maps.

Areas and angles can, however, be preserved and most
mathematical projections offered by GIS can be classified as
either conformal (preserving angles) or equal-area (preserv-
ing areas). These are developed using geometric constructions
or differential geometric analysis to provide underdetermined
systems of partial differential equations with further map
properties leading to the final equations. See Banerjee et al.
(2004, p. 12–14) for some heuristic derivations. Distances are
always distorted, with its extent varying by type, but typi-
cally conformal projections distort distances much more than
equal-area.

We illustrate with two popular projections, one of each
type: the Mercator (conformal) and the sinusoidal (equal-
area). The Mercator projection is a classical conformal pro-
jection where loxodromes (curves that intersect the meridians
at a constant angle) are straight lines on the map, a property
particularly useful for navigation purposes, derived by letting
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∂g/∂θ = R sec θ. After suitable integration, this leads to the
analytical equations (with the 0◦ meridian as the central
meridian),

f(λ, φ) = Rλ, g(λ, φ) = R ln tan

(
π

4
+

φ

2

)
. (3)

The sinusoidal projection yields equally spaced rectilinear
parallels (with the 0◦ meridian as the central meridian), by
specifying

f(λ, θ) = Rλ cos θ, g(λ, θ) = Rθ. (4)

These and several other projections are routinely available
in the GIS software, and in interfaces such as the R package
mapproj (McIlroy, 2004), but are simple enough to be com-
puted without accessing such packages.

Yet another class of projections are site-adaptive in that
they use information on the specific configuration of the sites
(the data). One such projection, which we call centroid-based,
sets up rectangular axes along the centroid of the observed
locations and scales the points according to these axes. Thus,
with N locations (λi, θi)

N
i=1, we first compute the centroid

(λ̄, θ̄) (the mean longitude and latitude). Next, two geode-
tic distances are computed that scale the axes: dX is the
geodetic distance (using (2)) between (λ̄, θmin) and (λ̄, θmax),
where θmin and θmax are the minimum and maximum of the
observed latitudes; analogously, dY is that between (λmin, θ̄)
and (λmax, θ̄). This centroid-based projection then defines a
two-dimensional, planar coordinate system as scaled displace-
ments with respect to the axes along the centroid:

x =
λ− λ̄

λmax − λmin
dX , y =

θ − θ̄

θmax − θmin
dY . (5)

Returning to the bottom half of Table 1, we compare the
three projections in equations (3)–(5). We find that the sinu-
soidal and centroid-based projections seem to be distorting
distances much less than the Mercator, which performs even
worse than the naive Euclidean. Their impact upon statistical
estimation and prediction will be discussed in Section 4.

Note that Table 1 is more pertinent from a geographical or
geodetic viewpoint than for the spatial statistician, as they do
not reflect how statistical estimation is affected, where points
that are “closer” together have greater influence on analysis.
Nevertheless, the distortion brought about by a poor metric
alters the definition of “closeness” and can lead to erroneous
statistical estimates (see Section 4).

The centroid-based projection has the potentially unattrac-
tive property of being data dependent in that its computation
changes with new sites being added. Addition of new sites is
particularly common in spatiotemporal settings such as envi-
ronmental monitoring, and (5) needs to be recomputed every
time. Because the sinusoidal does not suffer from this, has
comparable accuracy, and is easy to compute, it might be pre-
ferred. Nevertheless, being site-adaptive the centroid-based
projection is more flexible than the sinusoidal and may per-
form better for certain configurations. Also, it is inexpensive
to compute and, unless the number of sites is huge, presents
itself as a viable alternative.

We conclude this section with a brief discussion of the Uni-
versal Transverse Mercator (UTM) projection system. Rather
than a purely mathematical projection, the UTM is more of

a coordinate or grid system (also known as state plane coor-
dinates) using a transverse aspect of the Mercator projection
(see, e.g., Snyder, 1987). The projection equations are further
transformed into “Easting–Northing” coordinates by overlay-
ing a grid that divides the domain into zones each 6◦ wide,
referencing each point from a zone-specific central meridian.
While these UTM grids can be used to adjust for local scale
to provide accurate measurements, they are in the same scale
as the chordal or the sinusoidal. However, these accrue ad-
ditional computational complexity (for the grid) and should
always be imported from the GIS software or interfaces; yet
many GIS interfaces do not provide them (e.g., mapproj). For
these reasons, we do not explicitly use them in this article,
although their use typically produces accurate results compa-
rable to the geodetic metric.

4. Illustration
We illustrate spatial modeling under different geodetic com-
putations with a weather data set obtained from the National
Center for Atmospheric Research (NCAR), Boulder, Colorado
with the mean temperature measurements (in 10◦ C units)
obtained at 50 sites, in the month of January in 1997 as our
dependent variable Y(s). Also supplied is the elevation (in
100 m units) at each site, so the covariate x(s) comprises
an intercept and elevation. A univariate spatial model as in
(1) explains temperature given elevation, accounting for the
spatial correlation in the data. Figure 2 shows an elevation
map of the spatial domain with the solid circles indicating
our sampling locations. The contours represent a particularly
interesting topography where temperature is expected to show
rich spatial variation. A detailed spatiotemporal analysis of
this data set using coregionalized models is performed in
Gelfand, Banerjee, and Gamerman (2005).
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Figure 2. An image plot of the spatial domain in Colorado,
with elevation contours. The 50 sampling sites are indicated
by the solid circles. Three solid triangles represent the three
sensitive prediction locations while seven solid squares repre-
sent the remaining prediction locations seen in Figure 3.
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Table 2
Parameter estimates (medians and 95% posterior credible intervals) for the exponential correlation model under different metrics

Parameter Geodetic Naive Euclidean Chordal

Intercept 1.031 (0.501, 1.518) 1.020 (0.321, 1.607) 1.141 (0.750, 1.488)
Elevation −0.417 (−0.530, −0.300) −0.428 (−0.528, −0.331) −0.419 (−0.512, −0.315)
σ2 0.098 (0.031, 0.231) 0.110 (0.033, 0.341) 0.128 (0.035, 0.483)
ψ 1.09 × 10−2 (0.69 × 10−2, 0.71 × 10−2 (0.27 × 10−2, 1.12 × 10−2 (0.74 × 10−2,

7.63 × 10−2) 5.42 × 10−2) 8.50 × 10−2)
Range 275.2 (39.3, 434.8) 422.5 (55.4, 1109.2) 267.8 (35.3, 405.4)
τ 2 0.011 (0.003, 0.017) 0.011 (0.004, 0.024) 0.008 (0.003, 0.024)

Parameter Mercator Sinusoidal Centroid-based

Intercept 1.015 (0.307, 1.551) 1.035 (0.399, 1.569) 1.103 (0.601, 1.643)
Elevation −0.430 (−0.532, −0.327) −0.432 (−0.533, −0.329) −0.426 (−0.521, −0.321)
σ2 0.109 (0.031, 0.351) 0.105 (0.030, 0.348) 0.093 (0.033, 0.622)
ψ 0.66 × 10−2 (0.19 × 10−2, 1.12 × 10−2 (0.71 × 10−2, 1.15 × 10−2 (0.71 × 10−2,

5.24 × 10−2) 8.49 × 10−2) 7.80 × 10−2)
Range 454.5 (57.25, 1578.9) 267.9 (35.3, 422.5) 260.9 (38.5, 422.5)
τ 2 0.011 (0.003, 0.025) 0.011 (0.004, 0.023) 0.010 (0.003, 0.018)

We apply each of the six metrics in Table 1 to the exponen-
tial and Matérn functions. We also analyzed the data using
UTM projections for which our results were almost identical
to that of the geodetic metric and, hence, are not presented.
We performed classical likelihood-based as well as Bayesian
analysis for the exponential models, but only a Bayesian anal-
ysis for the Matérn (see Section 2). Because the classical and
Bayesian methods provided extremely consistent answers for
the exponential, we present results only from the latter.

We adopted a flat prior for β (the intercept coefficient),
and relatively vague IG(0.001, 0.001) (Inverted-Gamma) pri-
ors for σ2 and τ 2. We also chose a Gamma prior for the cor-
relation decay parameter η, specified so that the prior spatial
range has a mean of about half of the maximum intersite dis-
tance in our data, obtained from the first column of Table 1
for the respective metric. Practical analysis calculates the spa-
tial range by solving for ρ(d; η) = 0.05. In addition, for the
Matérn correlation function we use a U(0, 2) prior for the
smoothness parameter in our data.

Table 3
Parameter estimates (medians and 95% posterior credible intervals) for the Matérn correlation model under different metrics

Parameter Geodetic Naive Euclidean Chordal

Intercept 1.087 (0.789, 1.410) 1.031 (0.664, 1.447) 1.015 (0.707, 1.308)
Elevation −0.430 (−0.533, −0.336) −0.421 (−0.523, −0.322) −0.422 (−0.515, −0.329)
σ2 0.171 (0.043, 1.539) 0.097 (0.033, 0.505) 0.093 (0.034, 0.435)
ψ 7.47 × 10−3 (4.79 × 10−3, 4.26 × 10−3 (2.27 × 10−3, 7.63 × 10−3 (4.85 × 10−3,

51.18 × 10−3) 41.42 × 10−3) 54.51 × 10−3)
ν 0.770 (0.213, 1.413) 0.819 (0.227, 1.426) 0.742 (0.199, 1.402)
Range 273.7 (39.1, 426.7) 477.3 (48.2, 895.6) 268.7 (36.8, 422.8)
τ 2 0.008 (0.003, 0.019) 0.007 (0.003, 0.018) 0.008 (0.003, 0.017)

Parameter Mercator Sinusoidal Centroid-based

Intercept 1.015 (0.332, 1.597) 1.014 (0.377, 1.603) 1.088 (0.735, 1.511)
Elevation −0.426 (−0.527, −0.333) −0.431 (−0.530, −0.330) −0.427 (−0.527, −0.324)
σ2 0.111 (0.033, 0.363) 0.106 (0.031, 0.321) 0.102 (0.035, 0.684)
ψ 4.01 × 10−3 (1.98 × 10−3, 7.61 × 10−3 (4.89 × 10−3, 7.57 × 10−3 (4.74 × 10−3,

40.01 × 10−3) 55.08 × 10−3) 53.22 × 10−3)
ν 0.843 (0.331, 1.533) 0.767 (0.225, 1.441) 0.791 (0.212, 1.421)
Range 506.9 (51.7, 1025.5) 270.3 (38.9, 418.0) 269.5 (37.4, 430.2)
τ 2 0.011 (0.004, 0.024) 0.009 (0.004, 0.024) 0.007 (0.003, 0.017)

Three parallel MCMC chains were run for 10,000 iterations.
The CODA package in R was used to diagnose convergence by
monitoring mixing, Gelman–Rubin diagnostics, autocorrela-
tions, and cross-correlations. In each case, 5000 iterations were
enough for sufficient mixing of the chains, so the remaining
15,000 samples (5000 × 3) were retained for posterior analy-
sis. We used C/C++ code to fit these models with posterior
summarization in R. We remark that implementations with
the naive Euclidean and projection methods with an expo-
nential correlation function could be performed in WinBUGS

and geoR, because they need a two-dimensional coordinate in-
put. The Matérn is accessible only in the latter, but with a
fixed smoothness parameter. Classical analysis for the same
could also be performed in geoR (see, e.g., Banerjee et al.,
2004, p. 64–65).

Tables 2 and 3 show the parameter estimates (medians)
with 95% credible intervals for the exponential and Matérn
correlation functions, respectively, under different choices of
the distance metric. We see that the regression estimates are
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virtually unaffected by the metric; in each case there is a
significantly positive intercept and, quite expectedly, a signif-
icantly negative effect of elevation on temperature. The spa-
tial variance σ2 seems to explain a substantial portion of the
residual variation, dominating the nugget effect τ 2. For ex-
ample, in the geodetic setting with exponential correlation
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Figure 3. The predictive performance of the model under the six different metrics for the Matérn model. The results for
the exponential model are almost identical and not shown.

functions the spatial variance explains about σ2/(σ2 + τ 2) ≈
90% of spatial variation, while with the Matérn function this
is about 96%. This seems to be quite stable across the different
metrics. For the Matérn correlation function, the smoothness
parameter ν also seems to be robustly estimated across met-
rics, with 0.5 included in each of the intervals, but the median
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seems to shift to slightly higher values for the Mercator and
naive Euclidean indicating slight oversmoothing compared to
the other four.

The estimate that seems to be most sensitive to the choice
of the metric is φ, the correlation parameter, and hence the
implied spatial range. While on the one hand this is to be
expected, being in some sense “closest” to the distance met-
ric, this effect is interesting because larger distances (where
these metrics really differ) are downweighted by the correla-
tion functions. In fact, we see that the estimated spatial range
using the chordal, sinusoidal, and centroid-based metrics are
similar to the range estimated from the geodetic metric. In
comparison, the naive Euclidean metric and Mercator’s pro-
jection estimate the spatial range by a factor exceeding 1.5
times the geodetic range for the exponential correlation func-
tion; this is even more drastic for the Matérn. Apparently
this discrepancy seems to be consistent with the purely ge-
ographical effects in Table 1, resulting from a spurious ex-
pansion of the spatial domain. In the same vein, a benign
difference (lower range than the geodetic) is seen with the
chordal approximation, not surprising given the minor bias in-
herent in its definition. The estimates from the sinusoidal and
centroid-based projections are also quite close to the geodetic,
corroborating their claim as viable alternatives.

Turning next to predictive performance of these models, we
assess the models for 10 holdout locations (with known ele-
vation and temperature) and predict using our fitted model.
Figure 3 plots the predicted values against the observed val-
ues with the dots representing the predictive mean and the
bars representing 95% prediction intervals. Because there is
no inherent ordering of the sites, we sort them by the (true)
observed values arranged along the y = x line to better dis-
play discrepancies. While the geodetic, chordal, sinusoidal,
and centroid-based projections all seem to predict well for all
these sites, three sites (the second, seventh, and eighth in as-
cending order in each of the panels in Figure 3) seem to be
quite sensitive to the choice of the metric with their predic-
tion intervals not including the observed value (along the y =
x line). These three sites are indicated by solid triangles
in Figure 2 and are relatively isolated (in the eastern part)
from the sampling sites, while the remaining seven holdout
locations indicated by solid squares in Figure 2 are located
amidst the sampling locations and show more robust predic-
tive performance. The results for the exponential correlation
model are almost identical and not shown.

Finally, we computed the Deviance Information Criterion
(DIC) (Spiegelhalter et al., 2002) for our models to investigate
how the model choice criterion captures metric discrepancies.
Briefly, we summarize the fit of the model using the poste-
rior expectation D̄ = E[θ|y][D(θ)], where D(θ) is the deviance
statistic −2 log f(y |θ). The model is penalized by the effec-
tive number of parameters pD estimated as D̄ −D(E[θ |y]).
The DIC is then computed as the sum of D̄ and pD .

Table 4 shows these computations for the exponential and
Matérn models under the six different metrics. Generally, the
Matérn seems to perform better for this data set for each of
the metrics, even for the naive Euclidean metric where its
overestimation (relative to the geodetic) of the spatial range
is more drastic than the exponential. Apparently, in spite

Table 4
Deviance information criterion (DIC) for model choice

Exponential Matérn

Methods pD D̄ DIC pD D̄ DIC

Geodetic 7.25 11.83 18.08 7.23 9.80 17.03
Naive Euclidean 9.52 13.15 22.67 9.11 12.28 21.39
Chordal 7.18 11.92 19.10 7.29 9.86 17.15
Mercator 10.21 14.65 24.86 10.14 13.71 23.85
Sinusoidal 7.23 11.86 19.09 7.31 10.01 17.32
Centroid-based 7.57 11.98 19.55 7.41 10.28 17.69

of this overestimation, the Matérn’s flexibility in capturing
process smoothness (see, e.g., Stein, 1999) leads to a better
fit than the exponential. In fact, the criterion also seems to
capture the difference between the metrics with the Mercator
and the naive Euclidean metric having higher scores and the
other four performing much better.

5. Discussion
This article explored different options for approximating
geodetic distances providing theoretical clarifications and in-
vestigating impact upon statistical modeling and focusing
upon ease of implementation. While geometrically natural
metrics are not necessarily the most appropriate, often it is
difficult to ascertain what is. Keeping this in mind, the ar-
ticle has tried to convey that (1) the practicing spatial an-
alyst is often confronted with a choice of metrics which is
not easily resolvable with scientific information, and (2) the
choice of the metric may influence geostatistical analysis in-
cluding estimation and prediction of certain parameters. We
have demonstrated that uninformed formulation of metrics
can affect estimation of the spatial range leading to differ-
ences in predictive performance. Viable solutions have been
proposed and some have been shown to work well. Effects of
spurious nonstationarity and anisotropy can be undertaken as
further investigations. Future work can also focus upon the
point-process settings, where intersite distances arise as ran-
dom processes, with sensitivity of spatial tests of randomness
on choice of metric.
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