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Abstract This paper describes a geostatistical method,

known as factorial kriging analysis, which is well suited for

analyzing multivariate spatial information. The method

involves multivariate variogram modeling, principal com-

ponent analysis, and cokriging. It uses several separate

correlation structures, each corresponding to a specific

spatial scale, and yields a set of regionalized factors sum-

marizing the main features of the data for each spatial

scale. This method is applied to an area of high manganese-

ore mining activity in Amapá State, North Brazil. Two

scales of spatial variation (0.33 and 2.0 km) are identified

and interpreted. The results indicate that, for the short-

range structure, manganese, arsenic, iron, and cadmium are

associated with human activities due to the mining work,

while for the long-range structure, the high aluminum,

selenium, copper, and lead concentrations, seem to be

related to the natural environment. At each scale, the cor-

relation structure is analyzed, and regionalized factors are

estimated by cokriging and then mapped.

Keywords Heavy metal pollution � Amapá State, Brazil �
Factorial kriging � Multivariate geostatistics

Introduction

Contamination of surface and groundwaters causes short-

ages and even restricts their use. Generally groundwaters

can suffer direct undiluted contamination when pollution

reaches the groundwaters directly through abandoned,

deficiently constructed wells, and indirectly through diluted

contamination. In the indirect case the pollution reaches

the groundwaters after passing through areas with solid

residue deposition (urban and industrial), petroleum leaks,

or mining wastes. Fully understanding, estimating, and

mapping spatial variations of heavy metal water pollution

using efficient techniques enables accurate monitoring and

remedial action.

Univariate geostatistical techniques have been widely

used in Earth Science to analyze spatial patterns and

variations in pollutant concentrations, but multivariate geo-

statistical studies are less common than univariate analysis.

Two frequently observed features are correlations between

variables and scale-dependent spatial variability. The com-

bination of these two features means that regionalized

variables can have different degrees of correlation at differ-

ent spatial scales. To analyze multivariate spatial data sets,

Matheron (1982) proposed a geostatistical method named

factorial kriging analysis that involves semivariographic

multivariate modeling, principal component analysis, and

cokriging. This method allows correlation structures found

at different scales to be distinguished and produces a group of

regionalized factors summarizing the main data character-

istics at each spatial scale. Factorial kriging analysis has

been applied to geophysics (Chiles and Guilen 1984; Galli

et al. 1984), geochemistry (Sandjiv 1984; Wakernagel and

Butenuth 1989), soil science (Goulard 1989; Goovaerts

1991; Castrignanò et al. 2000; Lin et al. 2002), and hy-

drogeology (Rouhani and Wackernagel 1990).
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This study applies factorial kriging to assess the poten-

tial contamination of heavy metals in the soil, surface

waters and groundwaters caused by decades of intense

mining activity in the district of Santana, State of Amapá,

in northern Brazil. Analyses of the spatial scales of varia-

tion in contamination were applied in this study as a way to

separate local and regional phenomena characteristics, and

also to verify relationships seen between different metal

concentrations. In this way, it was possible to ascertain

whether the origin of contamination from certain metals is

due to human activities or the natural environment.

Study area

The study area is located in the district of Santana, Amapá

State, in the extreme north of Brazil, approximately

between 50� and 55� W and 0� to 5�N (Fig. 1a). Santana

City has a population of 80,439 inhabitants, the second

largest in the state (IBGE 2000). In 1953, following the

discovery of high quality manganese in Serra do Navio,

about 200 km from Macapá, the state’s capital (Fig. 1b, c),

the Ore Trade Industry Inc (ICOMI) was established to

exploit and commercialize the ore. In order to carry out the

mining, ICOMI constructed a residential colony near the

manganese mines in Serra do Navio and Santana with a

complete infrastructure, including sanitation, recreation

facility, schools, supermarket, hospital, and housing for the

company’s employees and their families, in addition to the

industrial installation. The industrial Santana area with

approximately 129 hectares, was defined to be strictly for

industrial purposes. The area was basically used to stock

manganese and iron ores, products (pellets/sinter and

alloys), and raw materials (fuel, coke, etc.) that arrived and

departed through the ICOMI port and rail terminal (PCA/

Environmental Control Plan 2001). The manganese and

chromite ore were transported by railway from the Serra do

Navio mines to the ICOMI industrial area in the Port of

Santana, a distance of approximately 200 km.

Geologically, the studied area, which extrapolates the

perimeter of ICOMI, is over sediments of the Barreiras

Formation consisting of silty organic clays, clay silts, and

hard clay with occasional intercalations of fine and coarse

sand. The hydrograph is an important element in the

physical landscape and the area’s economy. Santana Port

fronts the Northern Channel of the Amazon River, where

almost all its waters are discharged into the Atlantic Ocean.

The study area is drained by several tributaries, which are

generally narrow, sinuous water courses, just navigable by

small boats. It is drained by the Elesbão 1 and Elesbão 2

tributaries that cross the ICOMI industrial area. It is totally

covered by Quaternary sediments, silt rich in organic

matter, and covered with a 0.30 to 0.50 m thick humus

layer (PCA/Environmental Control Plan 2001).

Until its closure in 1997, the Serra do Navio deposit was

one of the most important sources of high-grade manga-

nese ore in the world. Tropical lateritic weathering

processes from metasedimentary manganese protoliths in

the Serra do Navio Formation (Paleoproterozoic) derived

the high-grade manganese oxide ores. The ores were

composed of manganese oxyhydroxides derived from me-

tasedimentary protore lithologies rich in rhodochrosite,

spessartine, rhodonite and tephroite. High-grade manga-

nese oxide ore is composed chiefly of cryptomelane,

pyrolusite and manganite.Through processes as dissolution,

migration, minerals deposition and replacement formed

also other type of manganese oxides, with high contents of

iron, silica and aluminum.

Sampling and analysis

Due to lack of financial resources, logistical support, and

local political questions, sampling did not totally adhere to

the initially proposed plan for around 80 water samples.

During the field work, it was only possible to acquire 42

water samples, with 26 from shallow wells inside the res-

idential area, 10 from control drilling wells inside ICOMI’s

industrial area and 6 from superficial waters and creeks,

locally so-called ‘‘igarapés’’. Moreover the results from 7

control drilling well water samples provided by ICOMI

were used. Figure 2 exhibits the sampling area with the

Fig. 1 a The location of the

state of Amapá; (b) and (c) the

state of Amapá, showing the

municipalities of Serra do

Navio, where the mining

occurred, and Santana, where

the manganese ore (pellets/

sinter) was shipped
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points of collection. For sample gathering a spherical

sampling device and polyethylene bottle of 100 ml were

used. For the sampling location points a global positioning

system, Magellan type, was used. All water samples were

analyzed by atomic spectrometry absorption in order to

measure the concentrations, in mg/l, of 16 elements, shown

in Table 1 (Queiroz 2003).

Geostatistical methods

Geostatistical methods are based on regionalized variable

theory that states that variables in an area exhibit both

random and spatially structured properties. The general

assumption in spatial geostatistics is that the regionalized

variable is second-order stationary.

Let zi(u), i = 1,…, p, where u is the vector of location

coordinates for the regionalized variables p (i.e., variables

related to some location space u-measurement at all loca-

tions). In this case, Zi(u); i = 1,…, p, is a random function

defined in the random variables set in a study area. A

spatial increment (zi(u) – zi(u + h)) is defined as the dif-

ference between zi-values at sites u and u + h for an

interval lag distance and direction class h-vector. Assum-

ing that the variable is second-order stationary, the two

moments: mean and variance, are independent of location

u and depend only on the h-vector.

The fundamental relations are

Mean-value vector:

m ¼ EfZðuÞg

Co-variance matrix:

CðhÞ ¼ E½fZðuÞ � mgTfZðuþ hÞ � mg�

Semi-variogram matrix:

CðhÞ ¼ 1=2E½fZðuÞ � Zðuþ hÞgTfZðuÞ � Zðuþ hÞg�

where transposed matrices are indicated by superscript T.

For h = 0 (lag zero), the co-variance C(h)-matrix is equal

to the classic variance–covariance V-matrix:

Cð0Þ ¼ E½fZðuÞ � mgTfZðuÞ � mg� ¼ V ð1Þ

Also, C(h) and CðhÞ are related by the expression

CðhÞ ¼ Cð0Þ � 1=2ðCðhÞ þ Cð�hÞÞ ð2Þ

The experimental semivariogram ĈðhÞ -matrix is a (p · p)-

matrix in which the diagonal and off-diagonal are,

respectively, the direct values and cross semivariogram

values for a lag h:

ĈðhÞ ¼
ĉ11ðhÞ � � � ĉ1pðhÞ

..

. . .
. ..

.

ĉp1ðhÞ � � � ĉppðhÞ

2
64

3
75 ð3Þ

An experimental semivariogram ĉijðhÞ is computed as

ĉijðhÞ ¼
1

2Nh

XNh

a¼1

fziðuaÞ � ziðua þ hÞgfzjðuaÞ � zjðua þ hÞg

ð4Þ

where Nh represents the number of pairs for a lag distance

and direction class, h.

In most cases, the experimental semivariogram is fitted

by combining theoretical models. This can occur when data

are available for a large extension and the experimental

semivariogram along that extension can reveal several

scales of spatial variability. Each variability scale can be

represented by a semivariogram model so that the space

variability is modeled by the sum of the semivariograms

(nested). Multivariate fatorial kriging allows us to analyze

Fig. 2 Samples location map
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the relationships between Zi(u) in the spatial scales detec-

ted by the experimental semivariograms (nested).

One of the major practical difficulties found in multi-

variate factorial kriging is modeling the p(p + 1)/2

experimental semivariograms. To ensure that the variances

of all finite linear combinations of the random Zi(u) func-

tions are positive, the semivariogram functions-matrix

must be conditionally negative semi-definite (Journel and

Huibregts 1978). The formulation that has received the

most attention is the linear model of coregionalization

(LMC) which assumes that the original set of random

correlated functions {Zi(u), i = 1,…, p} can be decomposed

into an uncorrelated random functions {Yu
k(u), k = 1,…,

p; s = 1,…,S (number of different space scales)} with

transformation coefficients ais
u :

ZiðuÞ ¼
XS

s¼0

Xp

k¼1

au
ikYu

k ðuÞ ð5Þ

where Yu
k (u) are called regionalized factors with k denoting

the different factors at a given spatial scale s. For a fixed scale

s, the p regionalized factors have the same semivariogram

function cs(h). Also, Yu
k (u) are mutually orthogonal by

construction:

1=2E½fYu
k ðuÞ � Yu

k ðuþ hÞYu0

k0 ðuÞ � Yu0

k0 ðuþ hÞg� ¼ csðhÞ;
if s ¼ s0 and k ¼ k0

and = 0 otherwise.

The direct and cross semivariograms cij(h) can be

expressed as a linear combination of the basic semivario-

gram cs(h) with coefficients bij
u:

cijðhÞ ¼ 1=2E½fZiðuÞ�ZiðuþhÞgfZjðuþhÞ�ZjðuþhÞg�

¼
XS

u¼1

XS

u0¼1

Xp

k¼1

Xp

k0¼1

as
ik as0

ik0
1=2 E½fYs

kðuÞ

�Ys
kðuþhÞgfYs0

k0 ðuÞ�Ys0

k0 ðuþhÞg�

¼
XS

s¼0

Xp

k¼1

as
ikas

jk csðhÞ ¼
XS

s¼0

bs
ij csðhÞ

ð6Þ

By grouping the regionalized factors Ys
k (u) with their

respective semivariogram function cs(h), each random

function Zi(u) can be expressed as the sum of random

orthogonal functions Zs
i (u) called spatial components:

ZiðuÞ ¼
XS

s¼0

Zs
i ðuÞ with Zs

i ðuÞ ¼
Xp

k¼1

as
ik Ys

kðuÞ ð7Þ

where Zs
i(u) represents the behavior of the random function

Zi(u) at a given spatial scale s. Eq. 6 then becomes:

cijðhÞ ¼
XS

s¼0

cs
ijðhÞ with cs

ijðhÞ ¼ bs
ijcsðhÞ ð8Þ

Table 1 Statistics values for

each element and maximum

values allowed (in mg/l) for

drinking water

Elements that show

concentration levels above those

established by the Brazilian

environmental legislation are

shown in bold
a (x 0.001 mg/l)
b (x 0.01 mg/l)

Element CONAMA (mg/l) Measured values

Mean Median Standard

deviation

Skewness Min Max Pollution (%)

Fe 0.300 6.22 0.12 17.81 3.67 0.000 85.41 36.6

Mn 0.100 2.32 0.03 8.59 5.05 0.002 51.44 27.0

As 0.050 1.28 0.00 4.75 3.85 0.000 22.92 9.80

Al 0.100 1.45 0.21 4.19 3.27 0.008 21.78 75.5

Seb 0.010 1.60 0.00 1.75 0.18 0.000 0.041 46.3

Pbb 0.030 1.83 1.27 0.91 0.38 0.008 0.04 4.90

Cub 0.020 0.36 0.00 0.68 3.35 0.000 0.03 4.90

Cda 0.001 0.32 0.00 0.66 2.90 0.004 0.003 7.30

Ba 1.000 0.11 0.04 0.22 3.38 0.000 0.989 0.00

Sr 0.10 0.03 0.19 3.26 0.000 0.94 0.00

Mo 0.04 0.00 0.16 4.36 0.000 0.88 0.00

Zn 0.180 0.02 0.00 0.02 0.64 0.000 0.07 0.00

Cob 0.200 0.29 0.17 0.46 4.11 0.000 0.03 0.00

Nib 0.025 0.23 0.12 0.41 2.99 0.018 0.02 0.00

Cr 0.050 0.14 0.00 0.31 4.40 0.000 0.002 0.00

Ag 0.010 0.20 0.00 0.35 2.27 0.000 0.001 0.00
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where cij
s (h) are the cross semivariograms between spatial

components Zs
i (u) and Zs

j (u).

The linear model of coregionalization, Eqs. 6 and 7 can

be rewritten using matrix notation:

ZðuÞ ¼
XS

s¼0

YsðuÞðAsÞT : ð9Þ

Bs ¼ AsðAsÞT ; ð10Þ

with ZðuÞ ¼ ½Z1ðuÞ; . . .; ZpðuÞ�; YsðuÞ ¼ ½Ys
1ðxÞ; . . .; Ys

pðxÞ�
and As (i,j) = aij

s , and Bs is a positive semi-definite matrix

of coefficients, bij
s , called the coregionalization matrix.

The linear correlation between any two spatial compo-

nents Zs
i(u) and Zs

j(u) is then measured by the structural

correlation coefficient:

qs
ij ¼ CorrfZs

i ðuÞ; Zs
j ðuÞg ¼

bs
ijffiffiffiffiffiffiffiffiffiffiffiffiffi

bs
ii � bs

jj

p : ð11Þ

The structural correlation coefficients matrix is defined as

Rs = [qs
ij].

Multivariate factorial kriging accounts for the regional-

ized nature of variables by analyzing the coregionalization

Bs-matrix or structural correlation coefficients Rs-matrix

separately. By so doing, each correlation structure is distin-

guished by filtering the structures belonging to the other

spatial variation scales.

The practical implementation of multivariate factorial

kriging involves the following procedures:

1. A coregionalization must be modeled that, in practice,

involves the following steps:

(i) Compute the p(p + 1)/2 direct and cross exper-

imental semivariograms;

(ii) Chose the number (S) and characteristics (type

and range) of the basic semivariogram functions

cs(h). Webster et al. (1994) recommend that

before fitting a coregionalization model, Princi-

pal Components Analysis be performed on the

variance–covariance V-matrix (or correlation

R-matrix) of the original variables, and the

spatial correlation structure of the principal

components should be evaluated by computing

their semivariograms.

(iii) Fit the selected model to the experimental

values, i.e., estimate the bij
s coefficients under

the constraint of positive semi-definiteness of

the coregionalization matrices-Bs (Pardo-Ig-

úzquiza and Dowd 2002).

2. Multivariate methods, such as Principal Components

Analysis, must then be applied to each matrix Bs.

Elements of each coregionalization matrix Bs thus

represent the relative contributions of the basic model,

cs(h), to direct and cross semivariograms. A Principal

Components Analysis in the coregionalization matrix

Bs would lead to the following spectral decomposition:

Bs ¼ QsKsðQsÞT ¼ AsðAsÞT with As ¼ QsðKsÞ1=2

ð12Þ

where Qs = [qs
ik] is the orthogonal matrix of eingenvectors

and Ks ¼ ks
k is the diagonal matrix of eigenvalues. The

correlation coefficient between spatial component Zs
i (u)

and t regionalized factor Ys
k(u) is

qs
ik ¼

qki

ffiffiffiffiffi
ks

k

p
ffiffiffiffiffi
bs

ii

p : ð13Þ

where bii
s is the sill of the basic model cI(h) of the direct

semivariogram. The correlation representation graph indi-

cates that interrelations between metals change as a

function of the spatial scale.

3. The regionalized factors Ys
k(u) are estimated by

ordinary cokriging as (Pardo-Igúzquiza and Dowd

2002):

Ŷ s
kðuÞ ¼

Xp

i¼1

Xn

a¼1

kiaðuÞZiðuaÞ ð14Þ

where Ŷ s
kðuÞ is the ordinary cokriging estimator of the k-th

regionalized factor at the s-th spatial scale, p is the number

of variables, n is the number of data points surrounding ua

used in the estimate, and kiaðuÞ is the weight assigned to

the datum Zi(ua). Minimizing the estimation subject to the

unbiased conditions yields the following system of

p(n + 1) linear equations, whose solution supplies the

weights kiaðuÞ :

Xp

i¼1

Xn

b¼1

kb icijðua � ubÞ � li ¼ as
ikcsðua � u0Þ

Xn

b¼1

kb i ¼ 0 for i ¼ 1; . . .; p and a ¼ 1; . . .; n:

ð15Þ

The estimator is unbiased as a consequence of the condi-

tions imposed on the weights. The condition that the sum

of the weights be zero means that the local mean of each

regionalized factor is a set of zeros.

4. In the same way, an unbiased estimate of a spatial

component may be obtained by cokriging (Pardo-

Igúzquiza and Dowd 2002):

Ẑs
i ðu0Þ ¼

Xp

i¼1

Xn

a¼1

kiaðuÞZiðuaÞ: ð16Þ

The system to be solved is
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Xp

i¼1

Xn

b¼1

kb icijðua � ubÞ � li ¼ bs
ikcsðua � u0Þ:

Xn

b¼1

kb i ¼ 0 to i ¼ 1; . . .; p and a ¼ 1; . . .; n

ð17Þ

where csðua � uoÞ is the value of the s-th basic semivari-

ogram between the a-th sampling point and uo, the point at

which the estimate is made.

The elements of bs
ikcsðua � uoÞ ¼ cikðua � uoÞ are the

cross semivariances between Zi(ua) and Zs
i(u0). The

condition where the sum of the weights is zero means that

the local mean of each spatial component is a set of zeros.

Results and discussion

Table 1 presents the 16 variables and the statistics for

each element. Iron shows a larger average value followed

by manganese, aluminum and arsenic. The median of

each variable is also presented and it is generally a unlike

value from the corresponding mean indicating no vari-

ables with normal distributions. That was confirmed by

observing that most elements exhibit accentuated positive

asymmetry. Some elements presented values inside the

limits established by the Brazilian environmental legisla-

tion (Table 1). The first column in Table 1 shows the

maximum limits allowed by the environmental legislation

(CONAMA 1986). Thus this study considered only 8

elements that show concentration levels above those

established by the Brazilian environmental legislation.

Aluminum presented the largest pollution percentage

(75.5%), followed by selenium (46.3%), iron (36.6%),

manganese (27%), arsenic (9.8%), cadmium (7.3%) lead

(4.9%) and copper (4.9%). These elements were submit-

ted to multivariate factorial kriging analysis. Metal

concentrations are to some extent linearly correlated. The

correlation matrix, R, listing the ordinary product-moment

correlation coefficients is shown in Table 2. It shows

strong correlations between lead and selenium (r = 0.965)

and iron and cadmium (r = 0.934).

All selected variables are standardized to zero mean and

unit variance. Relationships between the selected variables

were first studied by the classic method of principal com-

ponents analysis (PCA) applied to the correlation matrix.

Table 3 summarizes the eigenvalues, the factor loadings

and the explained variance for the first axis of PCA. The

first three principal components account for 74.1% of the

total variance. There were strong contributions from lead,

selenium, cadmium and iron in first component, evidenced

by the high values of the factorial loads for these elements

highlighted in boldface in the Table 3. Arsenic and man-

ganese contributed most to the third component, according

to the biggest values of the factorial loads highlighted in

Table 3, and the most important contributions in the second

component were from aluminum, iron and cadmium in

opposition to the copper variable (Table 3).

A linear coregionalization model was used to fit the

semivariograms of the principal components. All the

semivariograms have a nugget effect and show two scales

of spatial variation. The solid lines in Fig. 3 show these

fitted models, where C0 is the nugget variance, C1 is the sill

for the first structure (short-range variance), C2 is the sill

for the second structure (large-range variance) and a1 and

a2 are the amplitudes for the first and second structures,

respectively.

Omnidirectional semivariograms were modeled using a

nugget effect and two spherical schemes with ranges of

0.33 and 2.0 km, respectively. Both short and large-range

structures are apparent in the first component whereas the

short-range structure (0.33 km) plays an increasing role for

the second and third principal components. All 36 direct

and cross experimental semivariograms were computed

and modeled as the sum of a nugget effect and two

spherical schemes with a range of 0.33 and 2.0 km,

respectively. Queiroz (2003) presents the 36 direct and

cross experimental semivariograms fitted by linear coreg-

ionalization model.

In the selection of contrasting semivariograms for Fe,

Cd, Pb, and Se (Fig. 4) the large-range structure (2 km)

dominates the Pb and Se semivariograms and the short-

range structure (0.33 km) dominates the Fe and Cd

Table 2 Variables correlation

matrix

Values in bold typeface: less

than 5% significance

As Mn Al Fe Pb Se Cd Cu

As 1.000

Mn 0.024 1.000

Al –0.094 –0.090 1.000

Fe 0.070 0.166 0.369 1.000

Pb 0.172 0.336 0.105 0.415 1.000

Se 0.093 0.344 0.096 0.405 0.965 1.000

Cd 0.085 0.196 0.349 0.934 0.475 0.428 1.000

Cu –0.046 –0.006 –0.026 0.050 0.525 0.559 0.047 1.000
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semivariograms. The relative contributions of both struc-

tures to the direct semivariograms reflects the role played

by human and geological factors in the spatial pattern

displayed by each element.

Sill values for the two models, i.e., the bs
ij coefficients,

were assembled into two coregionalization matrices B1 and

B2. These describe the correlation structures of the variable

to small (0.33 km) and large (2 km) spatial scales,

respectively. The PCA results of these two coregionaliza-

tion matrices provide the regionalized factors which are the

principal components of each coregionalization matrix, in

their respective ‘‘s’’ scale and spatial components, Zs
i (u).

Table 4 presents the results of the Principal Component

Analysis of matrices B1 and B2. A strong correlation can be

observed in iron and cadmium for the B1-matrix (small

spatial scale) with the first regionalized factor. Manganese

correlated strongly with the second regionalized factor and

arsenic gave the strongest contribution to the third

regionalized factor. This suggests a possible relationship

between the contamination from these elements and con-

tamination linked to human activities. This source of

contamination generally occurs on a small spatial scale, the

case described by the B1-matrix. For the B2-matrix (large

spatial scale), the first regionalized factor accounts for most

of the variability (84.1%), and all variables correlate from

0.415 to 0.735, except copper with 0.097. This is inter-

preted as a dispersion effect, although lead, selenium and

arsenic contribute the most. Copper is more strongly cor-

related with the second factor, and no single variable

significantly contributes to the third factor which explains

only 3.2% of the total variability. Aluminum has a stronger

correlation with the first regionalized factor on the large

scale than to the small scale. This indicates that arsenic,

manganese, iron, and cadmium have stronger correlations

to the small variability scale, the one linked to human

activities. Meanwhile the high concentrations observed for

aluminum, lead, selenium, arsenic and copper are due to

the natural environment itself, deduced from their stronger

correlations with the large scale.

It is clear in Table 4 that the correlation structure

changes from one spatial scale to the other. Analyzing the

coregionalization matrices brings to light the scale-depen-

dent relationships that could not simply be detected by

analyzing the conventional correlation R-matrix (or vari-

ance-covariance V-matrix). For example, the correlation

between iron and cadmium is stronger in the small scale

Table 3 Loading factors of principal components (PC)

components As Mn Al Fe Pb Se Cd Cu k Explained variance (%) Cumulated explained variance (%)

PC 1 0.142 0.387 0.303 0.753 0.888 0.876 0.779 0.460 3.202 40.0 40.0

PC 2 0.073 0.177 –0.584 –0.560 0.356 0.389 –0.529 0.597 1.607 20.1 60.1

PC 3 –0.667 –0.508 0.425 –0.059 0.005 0.066 –0.091 0.467 1.118 14.0 74.1

The high values of the factorial loads for the elements are highlighted in boldface

k: eigenvalues
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Fig. 3 Experimental

omnidirectional semivariograms

of the three principal

components (lines linking

points) and the linear

coregionalization model fitted

semivariograms (solid lines)
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while selenium and lead have stronger correlation in the

large scale. The load values of the first regionalized factors

of the B1 and B2 matrix show more probability of some

correlation to occur between arsenic and manganese on the

large, rather than the small spatial scale. For the first

regionalized factor in the large scale, it can be observed

that the contribution, or load, of the arsenic variable is

similar to that of the selenium variable. This relation

between arsenic and selenium does not appear on the

correlation matrix R.

The regionalized factors Ys
k (u) and spatial components

Zs
i (u), s = 1,2 and i,k = 1, ..., 8 were mapped through

cokriging. Figures 5 and 6 show maps of the first region-

alized factor at the small and large spatial scales,

respectively. The value of any regionalized factor equals

zero at a distance greater than 0.33 km on the small scale,

and at a distance greater than 2.0 km on the large scale.

Regionalized Factor 1 on the small spatial scale, Y1
1,

which mainly denotes iron and cadmium, takes high values

in an area belonging to ICOMI indicated by a rectangle

(Fig. 5). Iron and cadmium association can be related with

the chemical aggregation capacity with manganese present

in the mineral deposit. The drainage is plotted on the maps

in white colors (Figs. 6 and 8). The spatial pattern related

to area drainage agrees well with low values of the

regionalized factor 1 at the large spatial scale showing the

effect of metal dispersion. This regionalized factor

accounts for 84.1% of the variability with reasonable

contribution from almost all element variables, except

copper.

Arsenic components on the small and large spatial scales

are shown in Figs. 7 and 8, respectively. On the small

spatial scale, the contribution from arsenic is more relevant

in only the third principal component (or third regionalized

Table 4 Regionalized factors

on the small (B1) and large

(B2) spatial scale

Values in bold indicate higher

factor loads

Variables Matrix B1 regionalized factor loads Matrix B2 regionalized factor loads

Y1
1 Y1

2 Y1
3 Y2

1 Y2
2 Y2

3

As 0.000 –0.003 0.517 0.663 0.098 –0.116

Mn 0.001 0.817 0.006 0.447 –0.044 –0.144

Al 0.316 –0.007 –0.011 0.438 0.097 0.025

Fe 0.803 –0.002 0.002 0.417 0.077 0.038

Pb 0.223 0.005 –0.003 0.735 –0.147 0.092

Se 0.219 0.010 –0.009 0.685 –0.147 0.140

Cd 0.836 –0.001 0.005 0.415 0.078 –0.116

Cu –0.006 –0.104 0.033 0.097 0.520 0.092

Eigenvalues 1.732 0.734 0.368 2.439 0.354 0.094

% Variance 52.7 22.3 11.2 84.1 12.2 3.2

Accumulated 52.7 75.0 86.2 84.1 96.3 99.5
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Fig. 4 Experimental

omnidirectional semivariogram

of iron, cadmium, lead and

selenium (lines linking points)

and the linear model

coregionalization fitted

semivariograms (solid lines)
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factor) which accounts for only 11.2% of the total variance

(Table 4). Two small negative anomalies can be seen on

the small scale map, one within the ICOMI industrial area

and the other in the Elesbão neighborhood by the Amazon

River (Fig. 7). Webster et al. (1994) and Goovaerts et al.

(1993) show that low and high values, meaning positive

and negative anomalies, observed in the regionalized fac-

tors maps are, in general, associated with the geology of the

area due to interactions among metals and soil types. Due

to the lack of data such as a reliable geology map of the

Fig. 5 Plot of first regionalized

factor associated with the small

spatial-scale spherical model

Fig. 6 Plot of first regionalized

factor associated with the large

spatial scale spherical model

(white lines refer to drainage)

Fig. 7 Plot of the arsenic

spatial component associated

with the small spatial scale

spherical model
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area in study, it was not possible to assess associations

between type and soil use and the locations of negative and

positive anomalies. On the large spatial scale, the contri-

bution from arsenic is more relevant in the first principal

component (or third regionalized factor) which accounts

for only 84.1% of the total variance (Table 4). Figure 8,

the large spatial scale map shows substantial areas with

high positive values in the ICOMI area, the Elesbão

neighborhood—to the northwest, and the residential area—

in the Hospitality estate, which seem to indicate that

arsenic is disseminated across the study area. The large

spatial scale map also shows a certain similarity between

spatial pattern and study area drainage.

Conclusions

Environmental characterization is fundamental in evaluat-

ing risk analysis. Multivariate factorial kriging yields a

regionalized factor set that summarizes the main features

of data at each spatial scale, thus allowing identification

of pollutant sources and patterns and supplying quantita-

tive measurements of the complex interactions between

analyzed variables. Modeling semivariograms allows dis-

tinction between small and large range variations. The

small-scale structure is likely to be due to local sources of

contamination linked to human activities. The large-scale

structure probably reflects regional changes in the natural

environment. Results in this study could probably be

improved by information on area geology and analysis of

pollutant concentrations at several different soil levels.

Even so, the manganese exploration and commercialization

activities in Santana have probably contributed to the high

concentrations of manganese, arsenic, iron, and cadmium,

in the study area. The high concentrations of aluminum,

selenium, lead, and copper seem to be more closely related

to the natural environment.
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