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3
Gaussian models for geostatistical data

Gaussian stochastic processes are widely used in practice as models for geostatis-
tical data. These models rarely have any physical justification. Rather, they are
used as convenient empirical models which can capture a wide range of spatial
behaviour according to the specification of their correlation structure. Histori-
cally, one very good reason for concentrating on Gaussian models was that they
are uniquely tractable as models for dependent data. With the increasing use
of computationally intensive methods, and in particular of simulation-based
methods of inference, the analytic tractability of Gaussian models is becom-
ing a less compelling reason to use them. Nevertheless, it is still convenient to
work within a standard model class in routine applications. The scope of the
Gaussian model class can be extended by using a transformation of the origi-
nal response variable, and with this extra flexibility the model often provides
a good empirical fit to data. Also, within the specific context of geostatistics,
the Gaussian assumption is the model-based counterpart of some widely used
geostatistical prediction methods, including simple, ordinary and universal krig-
ing (Journel and Huijbregts, 1978; Chilès and Delfiner, 1999). We shall use the
Gaussian model initially as a model in its own right for geostatistical data with
a continuously varying response, and later as an important component of a
hierarchically specified generalised linear model for geostatistical data with a
discrete response variable, as previously discussed in Section 1.4.

3.1 Covariance functions and the variogram

A Gaussian spatial process, {S(x) : x ∈ IR2}, is a stochastic process with the
property that for any collection of locations x1, . . . , xn with each xi ∈ IR2,



3.1. Covariance functions and the variogram 47

the joint distribution of S = {S(x1), . . . , S(xn)} is multivariate Gaussian. Any
process of this kind is completely specified by itsmean function, µ(x) = E[S(x)],
and its covariance function, γ(x, x�) = Cov{S(x), S(x�)}.

In any such process, consider an arbitrary set of locations x1, . . . , xn, define
S = {S(x1), . . . , S(xn)}, write µS for the n-element vector with elements µ(xi)
and G for the n × n matrix with elements Gij = γ(xi, xj). Then, S follows a
multivariate Gaussian distribution with mean vector µS and covariance matrix
G. We write this as S ∼ MVN(µS , G).

Now, let T =
�n

i=1 aiS(xi). Then T is univariate Gaussian with mean µT =�n
i=1 aiµ(xi) and variance

σ2
T =

n�

i=1

n�

j=1

aiajGij = a�Ga,

where a = (a1, . . . , an). It must therefore be the case that a�Ga ≥ 0. This
condition, which must hold for all choices of n, (x1, . . . , xn) and (a1, . . . , an)
constrains G to be a positive definite matrix, and the corresponding γ(·) to be
a positive definite function. Conversely, any positive definite function γ(·) is a
legitimate covariance function for a spatial Gaussian process.

A spatial Gaussian process is stationary if µ(x) = µ, a constant for all x, and
γ(x, x�) = γ(u), where u = x− x� i.e., the covariance depends only on the vec-
tor difference between x and x�. Additionally, a stationary process is isotropic
if γ(u) = γ(||u||), where || · || denotes Euclidean distance i.e., the covariance be-
tween values of S(x) at any two locations depends only on the distance between
them. Note that the variance of a stationary process is a constant, σ2 = γ(0).
We then define the correlation function to be ρ(u) = γ(u)/σ2. The correlation
function is symmetric in u i.e., ρ(−u) = ρ(u). This follows from the fact that for
any u, Corr{S(x), S(x−u)} = Corr{S(x−u), S(u)} = Corr{S(x), S(x+u)}, the
second equality following from the stationarity of S(x). Hence, ρ(u) = ρ(−u).
From now on, we will use u to mean either the vector x−x� or the scalar ||x−x�||
according to context. We will also use the term stationary as a shorthand for
stationary and isotropic. A process for which S(x)−µ(x) is stationary is called
covariance stationary. Processes of this kind are very widely used in practice as
models for geostatistical data.

In Chapter 2, we introduced the empirical variogram as a tool for exploratory
data analysis. We now consider the theoretical variogram as an alternative
characterisation of the second-order dependence in a spatial stochastic process.

The variogram of a spatial stochastic process S(x) is the function

V (x, x�) =
1

2
Var{S(x)− S(x�)}. (3.1)

Note that V (x, x�) = 1
2 [Var{S(x)} + Var{S(x�)} − 2Cov{S(x), S(x�)}]. In the

stationary case, this simplifies to V (u) = σ2{1 − ρ(u)} which, incidentally,
explains why the factor of one-half is conventionally included in the definition of
the variogram. The variogram is also well defined as a function of u for a limited
class of non-stationary processes; a one-dimensional example is a simple random
walk, for which V (u) = αu. Processes which are non-stationary but for which
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V (u) is well-defined are called intrinsic random functions (Matheron, 1973).
We discuss these in more detail in Section 3.9.

In the stationary case the variogram is theoretically equivalent to the covari-
ance function, but it has a number of advantages as a tool for data analysis,
especially when the data locations form an irregular design. We discuss the
data analytic role of the variogram in Chapter 5. Conditions for the theoretical
validity of a specified class of variograms are usually discussed in terms of the
corresponding family of covariance functions. Gneiting, Sasvári and Schlather
(2001) present analogous results in terms of variograms.

3.2 Regularisation

In Section 1.2.1 we discussed briefly how the support of a geostatistical mea-
surement could affect our choice of a model for the data. When the support
for each measured value extends over an area, rather than being confined to a
single point, the modelled signal S(x) should strictly be represented as

S(x) =

�

w(r)S∗(x− r)dr, (3.2)

where S∗(·) is an underlying, unobserved signal process and w(·) is a weighting
function. In this case, the form of w(·) constrains the allowable form for the
covariance function of S(·). Specifically, if γ(·) and γ∗(·) are the covariance
functions of S(·) and S∗(·), respectively, it follows from (3.2) that

γ(u) =

� �

w(r)w(s)γ∗(u+ r − s)drds. (3.3)

Now make a change of variable in (3.3) from s to t = r − s, and define

W (t) =

�

w(r)w(t− r)dr.

Then (3.3) becomes

γ(u) =

�

W (t)γ∗(u+ t)dt. (3.4)

Typical weighting functions w(r) would be radially symmetric, non-negative val-
ued and non-increasing functions of ||r||; this holds for the effect of the gamma
camera integration in Example 1.3, where w(r) is not known explicitly but is
smoothly decreasing in ||r||, and for the soil core data of Example 1.4, where
w(·) is the indicator corresponding to the circular cross section of each core. In
general, the effect of weighting functions of this kind is to make S(x) vary more
smoothly than S∗(x), with a similar effect on γ(u) by comparison with γ∗(u).

An analogous result holds for the relationship between the variograms of S(·)
and S∗(·). Using the relationship that V (u) = γ(0)− γ(u) it follows from (3.4)
that

V (u) =

�

W (t){V ∗(t+ u)− V ∗(t)}dt. (3.5)
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If the form of the weighting function w(·) is known, it would be possible
to incorporate it into our model for the data. This would mean specifying a
model for the covariance function of S�(·) and evaluating (3.4) to derive the
corresponding covariance function of S(·). Note that this would enable data
with different supports to be combined naturally, for example soil core data
using different sizes of core. A more pragmatic strategy, and the only available
one if w(·) is unknown, is to specify directly an appropriately smooth model for
the covariance function of S(·).

The question of regularisation can also arise in connection with prediction,
rather than model formulation. The simplest geostatistical prediction problem
is to map the spatial signal S(x), but in some applications a more relevant
target for prediction might be a map of a regularised signal,

T (x) =

�

S(u)du,

where the integral is over a disc with centre x i.e., T (x) is a spatial average over
the disc. We return to questions of this kind in Chapter 6.

3.3 Continuity and differentiability of stochastic
processes

The specification of the covariance structure of a spatial process S(x) directly
affects the smoothness of the surfaces which the process generates. Accepted
mathematical descriptors of the smoothness of a surface are its continuity and
differentiability. However, for stochastically generated surfaces S(x) we need to
distinguish two kinds of continuity or differentiability. In what follows, we shall
consider a one-dimensional space x, essentially for notational convenience.

We first consider mean-square properties, defined as follows. A stochastic
process S(x) is mean-square continuous if E[{S(x+h)−S(x)}2] → 0 as h→ 0.
Also, S(x) is mean-square differentiable, with mean-square derivative S�(x), if

E

��
S(x+ h)− S(x)

h
− S�(x)

�2
�

→ 0

as h→ 0. Higher-order mean-square differentiability is then defined sequentially
in the obvious way; S(x) is twice mean-square differentiable if S�(x) is mean-
square differentiable, and so on.

An important result, described for example in Bartlett (1955), is the following.

Theorem 3.1. A stationary stochastic process with correlation function ρ(u)
is k times mean-square differentiable if and only if ρ(u) is 2k times differentiable
at u = 0.

To examine differentiability at the origin of any particular correlation function
ρ(u), we need to consider the extended form of ρ(u) in which u can take positive
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Figure 3.1. Realisation of a binary-values, mean-square continuous stochastic process
(see text for details).

or negative arguments with ρ(−u) = ρ(u). Hence, for example, the exponential
correlation function ρ(u) = exp(−u/φ) is continuous but not differentiable at
the origin. In contrast, the Gaussian correlation function, defined by ρ(u) =
exp{−(u/φ)2}, is infinitely differentiable.

A second version of continuity and differentiability properties concerns path
continuity and differentiability. A process S(x) is path-continuous, or more gen-
erally k times path-differentiable if its realisations are continuous or k times
differentiable functions, respectively.

In general, there need be no link between mean-square and path properties
of stochastic processes. As a simple example, we can consider a binary-valued
process S(x) in which the real line is partitioned into a sequence of random inter-
vals, whose lengths are independent realisations from a unit-mean exponential
distribution, the value of S(x) within each interval is zero with probability p,
one otherwise, and the values of S(x) on successive intervals are determined
independently. Figure 3.1 shows a realisation with p = 0.5. Clearly, this process
is not path-continuous. However, its correlation function is the exponential,
ρ(u) = exp(−u), which is continuous at u = 0, hence S(x) is mean-square
continuous.

Kent (1989) gives a rigorous theoretical discussion of path-continuity for sta-
tionary, not necessarily Gaussian processes. Write ρ(u) = pm(u)+rm(u), where
pm(u) is the polynomial of degree m given by the Taylor series expansion of
ρ(u) about u = 0. Then, a sufficient condition for the existence of a path-
continuous two-dimensional stationary process with correlation function ρ(·) is
that ρ(·) is twice continuously differentiable and |r2(u)| = O(u2/| log u|3+γ) as
u → 0, for some γ > 0. A slightly stronger condition which is easier to check
in practice is that |r2(u)| = O(u2+�) for some � > 0. For stationary Gaussian
processes in two dimensions, a sufficient condition for path-continuity is that
ρ(0)− ρ(u) = O(1/| log u|1+�), which is only slightly stronger than the require-
ment for mean-square continuity, namely that ρ(·) is continuous at the origin.
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This justifies using mean-square differentiability as a convenient measure of the
smoothness of stationary Gaussian processes when considering their suitability
as empirical models for natural phenomena.

3.4 Families of covariance functions and their properties

Positive definiteness is the necessary and sufficient condition for a parametric
family of functions to define a legitimate class of covariance functions, but this
is not an easy condition to check directly. For this reason, it is useful to have
available a range of standard families which are known to be positive definite
but in other respects are sufficiently flexible to meet the needs of applications
to geostatistical data. In this section, we give the details of several such families
and outline their properties. Our concern here is with models for processes in
two spatial dimensions. All of the covariance families which we describe are
also valid in one or three dimensions. In general, a valid covariance family in
IRd does not necessarily remain valid in more than d spatial dimensions, but is
automatically valid in dimensions less than d.

3.4.1 The Matérn family

The most common form of empirical behaviour for stationary covariance struc-
ture is that the correlation between S(x) and S(x�) decreases as the distance
u = ||x − x�|| increases. It is therefore natural to look for models whose the-
oretical correlation structure behaves in this way. In addition, we can expect
that different applications may exhibit different degrees of smoothness in the
underlying spatial process S(x).

The Matérn family of correlation functions, named after Matérn (1960), meets
both of these requirements. It is a two-parameter family,

ρ(u) = {2κ−1Γ(κ)}−1(u/φ)κKκ(u/φ), (3.6)

in which Kκ(·) denotes a modified Bessel function of order κ, φ > 0 is a scale
parameter with the dimensions of distance, and κ > 0, called the order, is a
shape parameter which determines the analytic smoothness of the underlying
process S(x). Specifically, S(x) is �κ−1 times mean-square differentiable, where
�κ denotes the smallest integer greater than or equal to κ

Figure 3.2 shows the Matérn correlation function for each of κ = 0.5, 1.5 and
2.5, corresponding to processes S(x) which are mean-square continuous, once
differentiable and twice differentiable, respectively. In the diagram, the values
of φ have been adjusted so as to give all three functions the same practical
range, which we define here as the distance u at which the correlation is 0.05.
For Figure 3.2 we used u = 0.75 as the value of the practical range. For κ = 0.5,
the Matérn correlation function reduces to the exponential, ρ(u) = exp(−u/φ),
whilst as κ → ∞, ρ(u) → exp{−(u/φ)2} which is also called the Gaussian
correlation function or, somewhat confusingly in the present context, the Gaus-
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Figure 3.2. Matérn correlation functions with, κ = 0.5 (solid line), κ = 1.5 (dashed
line) and κ = 2.5 (dotted line), and adjusted values of φ for equivalent practical ranges.

sian model. Whittle (1954) proposed the special case of the Matérn correlation
function with κ = 1.

Note that the parameters φ and κ in (3.6) are non-orthogonal, in the following
sense. If the true correlation structure is Matérn with parameters φ and κ, then
the best-fitting approximation with order κ∗ �= κ will also have φ∗ �= φ. In other
words, scale parameters corresponding to different orders of Matérn correlation
are not directly comparable. The relationship between the practical range and
the scale parameter φ therefore depends on the value of κ. For instance, the
practical range as defined above is approximately 3φ, 4.75φ and 5.92φ for the
Matérn functions with κ = 0.5, 1.5 and 2.5, respectively, and

√
3φ for the

Gaussian correlation function. For this reason, Handcock and Wallis (1994)
suggest a re-parametrisation of (3.6) from κ and φ to a more nearly orthogonal
pair κ and α = 2φ

√
κ. The re-parametrisation does not, of course, change the

model but is relevant to our discussion of parameter estimation in Chapters 5
and 7.

Figure 3.3 shows a one-dimensional trace through a simulated realisation of
a spatial Gaussian process with each of the Matérn correlation functions above,
using the same random seed for all three realisations. The increasing analytic
smoothness of the process as κ increases is reflected in the visual appearance
of the three realisations, but the more noticeable difference is between the non-
differentiable and the differentiable case i.e., between κ = 0.5 on the one hand
and κ = 1.5 or κ = 2.5 on the other.

Figure 3.4 shows simulated two-dimensional realisations of Gaussian processes
whose correlation functions are Matérn with κ = 0.5 and κ = 2.5, again using
the same random number seed to make the realisations directly comparable.
The difference in smoothness between the non-differentiable and differentiable
cases is again visually striking.

3.4.2 The powered exponential family

This family is defined by the correlation function

ρ(u) = exp{−(u/φ)κ}. (3.7)
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Figure 3.3. One-dimensional realisations of spatial Gaussian processes whose correla-
tion functions are Matérn with κ = 0.5 (solid line), κ = 1.5 (dashed line) and κ = 2.5
(dotted line).
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Figure 3.4. Simulations of Gaussian processes with Matérn correlation functions with
κ = 0.5 and φ = 0.25 (left) and κ = 2.5 and φ = 0.13 (right).

Like the Matérn family, it has a scale parameter φ > 0, a shape parameter
κ, in this case bounded by 0 < κ ≤ 2, and generates correlation functions
which are monotone decreasing in u. Also like the Matérn family the relation
between the practical range and the parameter φ will depend on the value of
κ. However, the family is less flexible than the Matérn, in the sense that the
underlying Gaussian process S(x) is mean-square continuous and not mean-
square differentiable for all 0 < κ < 2 but infinitely mean square differentiable
when κ = 2, the maximum legitimate value. Figure 3.5 shows the powered
exponential correlation function for each of κ = 0.7, 1 and 2, and with values
of φ adjusted to provide the same practical range of 0.75. Figure 3.6 shows one-
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Figure 3.5. Powered exponential correlation functions with κ = 0.7 (dashed line),
κ = 1 (solid line) and κ = 2 (dotted line) and values of phi adjusted such that the
practical range is 0.75.
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Figure 3.6. One-dimensional realisations of spatial Gaussian processes whose correla-
tion functions are powered exponential, κ = 0.7 (dashed line), κ = 1 (solid line) and
κ = 2 (dotted line).

dimensional realisations of the corresponding Gaussian processes S(x). We used
the same seed as for the earlier simulations of the Matérn model. The realisation
for the powered exponential model with κ = 1 is therefore the same as for the
Matérn model with κ = 0.5. Notice that the realisations for κ = 0.7 and κ =
1, both of which correspond to mean-square continuous but non-differentiable
processes, look rather similar in character.

The extreme case κ = 2, which is equivalent to the limiting case of a Matérn
correlation function as κ → ∞, can generate very ill-conditioned covariance
structure. A process S(x) with this correlation function has the theoretical
property that its realisation on an arbitrarily small, continuous interval deter-
mines the realisation on the whole real line. For most applications, this would
be considered unrealistic.
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Figure 3.7. Correlation functions, the spherical (left) with φ = 0.75 and wave (right)
with φ = 0.05.

3.4.3 Other families

In classical geostatistics, the spherical family is widely used. This has correlation
function

ρ(u) =

�
1− 3

2 (u/φ) + 1
2 (u/φ)3 : 0 ≤ u ≤ φ

0 : u > φ
(3.8)

where φ > 0 is a single parameter with the dimensions of distance. One qual-
itative difference between this and the families described earlier is that it has
a finite range i.e., ρ(u) = 0 for sufficiently large u, namely u > φ. The spheri-
cal family lacks flexibility by comparison with the two-parameter Matérn class.
Also, ρ(u) is only once differentiable at u = φ, which causes technical diffi-
culties with maximum likelihood estimation (Warnes and Ripley, 1987; Mardia
and Watkins, 1989). The left-hand panel in Figure 3.7 shows the spherical cor-
relation function when φ = 0.75. The corresponding Gaussian process S(x) is
mean-square continuous but non-differentiable. The name and algebraic form
of the spherical family derives from the geometry of intersecting spheres; see
Exercise 3.3.

Non-monotone correlation functions are rare in practice. One example of a
valid non-monotone family is

ρ(u) = (u/φ)−1 sin(u/φ) (3.9)

where φ > 0 is a single parameter, again with the dimension of distance. The
right-hand panel of Figure 3.7 illustrates the characteristic damped oscillatory
behaviour of this correlation function, whilst Figure 3.8 shows a realisation
of the corresponding process S(x). Notice how the oscillatory nature of the
correlation function is reflected in the oscillatory behaviour of the simulated
realisation.

Other classes of correlation function, and criteria to check the validity of
candidate functions, are described in Schlather (1999), who in turn draws on
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Figure 3.8. One-dimensional realisation of a spatial Gaussian process whose correlation
function is ρ(u) = (u/0.05)−1 sin(u/0.05).

material in Gneiting (1997). However, for most geostatistical applications the
families described here should be sufficient, if only because more elaborate mod-
els are hard to identify unless the available data are abundant. In general, we
favour the Matérn family because of its flexibility, coupled with the tangible
interpretation of the shape parameter κ as a measure of the differentiability of
the underlying process S(x). Also, because of the difficulty of identifying all the
parameters of this model empirically, we would usually either fix the value of κ
according to the context of the application, or choose amongst a limited set of
values of κ, for example κ = 0.5, 1.5, 2.5 as illustrated in Figure 3.2.

3.5 The nugget effect

In geostatistical practice, the term“nugget effect”refers to a discontinuity at the
origin in the variogram. Within our model-based framework, its literal interpre-
tation is as the measurement error variance, τ2, or equivalently the conditional
variance of each measured value Yi given the underlying signal value S(xi).
Formally, this amounts to modelling the measurement process, Y (x) say, as
a Gaussian process whose correlation function is discontinuous at the origin,
hence

Corr{Y (x), Y (x�)} =

�
1 : x = x�

σ2ρ(||x− x�||)/(σ2 + τ2) : x �= x�

where ρ(·) is the (continuous) correlation function of S(x) and || · || denotes
distance.

In practice, when the sampling design specifies a single measurement at each
of n distinct locations, the nugget effect has a dual interpretation as either
measurement error or spatial variation on a scale smaller than the smallest
distance between any two points in the sample design, or any combination
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of these two effects. These two components of the nugget effect can only be
separately identified if the measurement error variance is either known, or can be
estimated directly using repeated measurements taken at coincident locations.

3.6 Spatial trends

The simplest form of departure from stationarity is to allow the mean response,
µ(x), to depend on location. We call any such varying mean a spatial trend.
In applications, we may choose to model µ(x) directly as a function of x. In
practice, this is most often done through a polynomial regression model, using
powers and cross products of the Cartesian coordinates of x as explanatory vari-
ables. Models of this kind are called trend surface models. They rarely have any
scientific foundation. Our view is that linear or quadratic trend surfaces can pro-
vide useful empirical descriptions of simple, unexplained spatial trends, but that
higher-degree surfaces should be avoided because complicated trends are better
described through the stochastic component of the model. See, for example, our
illustrative analysis of the surface elevation data reported in Chapter 2.

A more interesting kind of spatial trend arises when the mean function can
be modelled using spatially referenced covariates, hence for example µ(x) =
α + d(x)β where d(x) is a scientifically relevant property of the location x.
In our opinion, models of this kind are more interesting than trend surface
models because they seek to explain, rather than merely to describe, the spatial
variation in the response variable. For example, in the Gambia malaria data
of Example 1.3 modelling the spatial variation in prevalence as a function of
greenness has a natural scientific interpretation because the greenness index is
a surrogate measure of the suitability of each location for mosquitos to breed.
If, hypothetically, greenness showed a smooth east-west trend, then modelling
malaria prevalence as a function of greenness or as a function of longitude
might give equally good empirical fits to the data, but modelling prevalence as
a function of greenness would offer the more satisfying explanation and would
be the more likely to translate to other study regions.

As discussed in Section 1.2.2, when values of a potential explanatory variable
d(x) are only recorded at the same locations as give rise to the basic geostatisti-
cal data (xi, yi), we need to consider whether we should treat d(x) as a second,
stochastic variable to be analysed jointly with the primary signal process, S(x),
rather than as a deterministic quantity.

3.7 Directional effects

Another form of non-stationarity is non-stationarity in the covariance structure.
One specific way to relax the stationarity assumption is to allow directional
effects so that, for example, the rate at which the correlation decays with in-
creasing distance is allowed to depend also on the relative orientation between
pairs of locations.
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Figure 3.9. Rotation of the data configuration by the anisotropy parameters. The
left-hand panel shows the original locations, the right-hand panel the transformed
locations in isotropic space when ψA = 2π/3 and ψR = 2.

The simplest form of directional effect on the covariance structure is called
geometrical anisotropy. This arises when a stationary covariance structure is
transformed by a differential stretching and rotation of the coordinate axes.
Hence, geometrical anisotropy is defined by two additional parameters. Al-
gebraically, a model with geometrical anisotropy in spatial coordinates x =
(x1, x2) can be converted to a stationary model in coordinates x� = (x�1, x

�
2) by

the transformation

(x�1, x
�
2) = (x1, x2)

�
cos(ψA) − sin(ψA)
sin(ψA) cos(ψA)

� �
1 0
0 ψ−1

R

�

(3.10)

where ψA is called the anisotropy angle and ψR > 1 is called the anisotropy ratio.
The direction along which the correlation decays most slowly with increasing
distance is called the principal axis.

These operations are illustrated in Figure 3.9. The original locations are
shown in the left-hand panel. Suppose that the anisotropy angle is ψA = 2π/3,
and the anisotropy ratio is ψR = 2. Then, applying the coordinate transforma-
tion (3.10) we obtain the locations in the right-hand panel, which are now in an
isotropic space, and proceed to fit an isotropic model in this transformed space.
In practice, ψA and ψR are unknown, and the model fit would be optimised by
treating ψA and ψR as additional parameters to be estimated.

Figure 3.10 shows realisations of two Gaussian spatial process with geometri-
cal anisotropy. The directional effects are visually clear, with the principal axis
in each case running diagonally over the square region shown. For the left panel
the anisotropy angle is π/3 radians and the anisotropy ratio is 4. For the right
panel the anisotropy angle is 3π/4 radians and the anisotropy ratio is 2. The
two processes have common parameter values µ = 0, σ2 = 1 and exponential
correlation function with φ = 0.25, and the two realisations were generated
using the same random seed.
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Figure 3.10. A realisation of a geometrically anisotropic Gaussian spatial process whose
principal axis runs diagonally across the square region with anisotropy parameters
(π/3, 4) for the left-hand panel and (3π/4, 2) for the right-hand panel.

Note that geometric anisotropy cannot describe local directional features of
a spatial surface, only global ones. On the other hand, the presence of local
directional features in a realisation of a spatial process need not imply that the
underlying process is anisotropic. Consider, for example, a surface constructed
as the superposition of profiles f(·) translated by the points of a homogeneous
Poisson point process. Thus,

S(x) =
∞�

i=1

f(x−Xi) (3.11)

where the Xi are the points of the Poisson process. Figure 3.11 compares real-
isations of two such processes in which the intensity of the Poisson process is
16 points per unit area and the profile function is the probability density of a
bivariate Gaussian distribution with zero mean, standard deviation 0.1 in each
coordinate direction and correlation 0.75. In the left-hand panel, the global di-
rectional feature along the diagonal direction is clear. In the right-hand panel,
each profile has been randomly rotated so that, whilst local directional effects
can still be seen, the resulting model is isotropic with no global directional ef-
fects. Higdon (1998, 2002) has proposed constructions similar to, but more
general than, (3.11) to define a general class of non-stationary, non-Gaussian
models.

Geometrical anisotropy deals with a particular form of non-stationarity by
transforming the space x using stretching and rotation, so that the under-
lying process is stationary in the transformed space. Sampson and Guttorp
(1992), Guttorp, Meiring and Sampson (1994) and Guttorp and Sampson
(1994) develop a more general version of this approach. Their method seeks
a smooth deformation of the x-space, equivalent to a transformation from x
to x∗ say, so that the covariance function depends only on distance in the
deformed space, hence for any two locations x and y in the original space,



60 3. Gaussian models for geostatistical data

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 3.11. Realisations of two spatial processes with global (left-hand panel) and
local (right-hand panel) directional effects. See text for detailed explanation.

Cov{S(x), S(y)} = γ(||x∗ − y∗||). Perrin and Meiring (1999) discuss identifia-
bility issues for this class of models, whilst Schmidt and O’Hagan (2003) develop
a Bayesian version. Replicated observations are needed at each sampling loca-
tion in order to identify the required transformation. In practice, the approach
is feasible when a time series is collected at each location as this gives the
necessary, albeit dependent, replication.

Non-stationarity can also arise because Euclidean distance is not an appro-
priate measure of spatial separation. For example, Rathbun (1998) considers
non-Euclidean distances in modelling spatial variation in an estuary where,
amongst other considerations, the line segment joining two locations within the
estuary may cross a stretch of land.

3.8 Transformed Gaussian models

We now expand the discussion of Section 2.2, where we mentioned briefly that
the range of applicability of the Gaussian model can be extended by assuming
that the model holds after a marginal transformation of the response variable.

As in other areas of statistics, there are at least three different reasons for
using a transformation of the data. Firstly, a particular transformation might
be suggested by qualitative arguments, or even by convention. For example, if
effects are thought to be operating multiplicatively, then a log-transformation
converts the problem to a scale on which effects are, more conveniently, addi-
tive. Secondly, a transformation may be used as a variance-stabilising device
for a known, non-Gaussian sampling distribution. For example, square root
and arc-sine transformations approximately stabilise the sampling variance un-
der Poisson and binomial sampling, respectively. Note, however, that there is
no reason why a transformation which stabilises the variability in the measure-
ments conditional on the signal should also stabilise the variability in the signal,
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or vice versa. The transformation approach to variance instability used to be
widespread in regression modelling of non-Gaussian data, but has largely been
replaced by the use of generalized linear models (McCullagh and Nelder, 1989).
Section 1.4 and, in more detail, Chapter 4 describe an extension of classical
generalized linear models to accommodate non-Gaussian geostatistical data.
Finally, we can introduce a parametric family of transformations simply as an
empirical generalisation of the Gaussian model, in which case the choice of a
particular transformation corresponds to the estimation of an additional pa-
rameter. The most widely used example of this approach is the Box-Cox family
of transformations (Box and Cox, 1964),

Y ∗ =

�
(Y λ − 1)/λ : λ �= 0

log Y : λ = 0.
(3.12)

The log-transformation is perhaps the most widely used in practice, and ex-
plicit expressions can be derived for its mean and covariance structure. Suppose
that T (x) = exp{S(x)}, where S(x) is a stationary Gaussian process with mean
µ, variance σ2 and correlation function ρ(u). The moment generating function
of S(x) is

M(a) = E[exp{aS(x)}] = exp{aµ+
1

2
a2σ2}. (3.13)

It follows from (3.13), setting a = 1, that T (x) has expectation

µT = exp

�

µ+
1

2
σ2

�

. (3.14)

Similarly, setting a = 2 in (3.13) gives E[T (x)2], and hence the variance of T (x)
as

σ2
T = exp(2µ+ σ2){exp(σ2)− 1}. (3.15)

Finally, for any two locations x and x�, T (x)T (x�) = exp{S(x) + S(x�)}, and
S(x) + S(x�) is Gaussian with mean m = 2µ and variance v = 2σ2{1 + ρ(||x−
x�||)}. It follows that E[T (x)T (x�)] = exp(m+v/2), and straightforward algebra
gives the correlation function of T (x) as

ρT (u) = [exp{σ2ρ(u)} − 1]/[exp{σ2} − 1]. (3.16)

Note that the mean and variance of T (x) depend on both µ and σ2, whereas
the correlation function of T (x) does not depend on µ.

Log-Gaussian processes exhibit, to a greater or lesser extent depending on
the values of the model parameters, asymmetric behaviour with local patches
of values close to zero, interspersed with relatively sharp peaks. In particular,
we can write any Gaussian process S(x) as µ + σZ(x), and the correspond-
ing log-Gaussian process as T (x) = αT0(x)σ, where α = exp(µ) and T0(x) =
exp{Z(x)}. Hence, for any given Z(x), the value of µ affects the scale of the sur-
face T (x), whilst σ affects its shape, with larger values of σ producing sharper
peaks and flatter troughs

The two panels of Figure 3.12 illustrate this affect. They show realisations
of two log-Gaussian processes of the form T (x) = exp{σZ(x)}, where Z(x) is
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Figure 3.12. Realisations of two log-Gaussian processes. See text for parameter
specifications.

a Gaussian process with zero mean, unit variance and Matérn correlation of
order κ = 1.5 and with range parameter φ = 0.2. Both panels use the same
realisation of Z(x) and differ only in that the left-hand panel has σ = 0.1 and
the right-hand panel σ = 0.7.

The two panels of Figure 3.13 compare a realisation of a log-Gaussian process
and a Gaussian process with the same mean and variance, and closely matched
correlation structure. The log-Gaussian process used for the left-hand panel
of Figure 3.13 has its correlation structure ρT (u) induced by an underlying
Matérn correlation function ρ0(u) with parameters κ = 1.5 and φ = 0.2, and
variance σ2 = 1. We then used a simple least squares criterion to obtain a
Matérn correlation function, ρA(u) say, which approximated ρT (u) as closely
as possible, resulting in the parameter values φa = 0.18 and κa = 1.32. To
obtain the right-hand panel of Figure 3.13 we then simulated a Gaussian process
using the correlation function ρA(u) in conjunction with a mean and variance
chosen so as to match those of the log-Gaussian process. As usual, we used the
same random number seed for the two realisations being compared. Figure 3.14
compares the correlation functions ρT (u), ρA(u) and ρ0(u). We see that the
correlation functions of the processes used to generate the two realisations shown
in Figure 3.13 are almost identical, yet the realisations themselves are very
different in character because of their different distributional properties.

3.9 Intrinsic models

In Section 3.6 we discussed a simple form of non-stationary model, namely the
sum of a deterministic spatial trend and a stochastic, spatially correlated resid-
ual. Similarly, in Section 3.7 we discussed a deterministic strategy for dealing
with non-stationarity, in this case a transformation of the spatial coordinate
system to deal with a global directional effect in the underlying process. An
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Figure 3.13. Realisations of a log-Gaussian process (left-hand panel) and a Gaussian
process with closely matched correlation structure (right-hand panel). See text for
parametric specifications.
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Figure 3.14. Correlation functions ρT (u) (solid line) and ρA(u) (dashed line) for the
log-Gaussian and Gaussian processes whose realisations are compared in Figure 3.13.
The dotted line shows the Matérn correlation function ρ0(u). See text for parametric
specifications.

alternative strategy is to treat non-stationarity as an inherently stochastic
phenomenon.

As a simple, spatially discrete one-dimensional example of an intrinsic model
we consider a random walk, S(x), defined recursively by

S(x) = S(x− 1) + Z(x) : x = 0, 1, . . . (3.17)

where the Z(x) are mutually independent, normally distributed with mean 0
and variance 1. Conventionally, we add the initial condition that S(0) = 0, in
which case E[S(x)] = 0 for all x and Var{S(x)} = x. However, an alterna-
tive interpretation, which is perhaps more natural in the spatial setting where
any ordering along the coordinate axes is arbitrary, is that S(x) fluctuates
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Figure 3.15. Realisation of a one-dimensional random walk. See text for detailed
explanation

randomly about an arbitrary level i.e., the average is indeterminate and the
variation observed within a finite segment of space increases with the length of
the segment.

Figure 3.15 shows a simulated realisation of such a process. The process was
initialised at zero, allowed to run for 5000 steps, then observed and plotted
for an additional 1000 steps. By chance, the plotted values of S(x) vary over
the approximate range −60 to −10 although their theoretical expectation over
repeated realisations is zero. More interestingly, the initial and final portions of
Figure 3.15 appear on casual inspection to be approximately stationary whereas,
the portion between x = 300 and x = 450 suggests a decreasing, approximately
linear trend. One lesson which we take from this example is that when our data
consist of a single realisation of a correlated stochastic process, it is often the
case that qualitatively wrong models can give a reasonable empirical fit to the
data.

The random walk model (3.17) is an example of a general class of non-
stationary stochastic processes known as intrinsic random functions (Matheron,
1973). An intrinsic random function is a stochastic process S(x) with stationary
increments. This means that for any u ∈ IR2, the process Du(x) defined by

Du(x) = S(x)− S(x− u)

is stationary. Suppose that Var(Du) = σ2
u. Then, 1

2σ
2
u, regarded as a function

of u, is also the variogram of S(x). Hence, intrinsic random functions can be
thought of as processes for which the variogram, but not necessarily the co-
variance function, depends only on u. For the random walk process (3.17), the
variogram is V (u) = 1

2Var{S(x) − S(x − u)} = 1
2u, for u ≥ 0, whereas the

covariance function is γ(x, u) = Cov{S(x), S(x− u)} = |x− u|, which depends
on both u and x.

Examples of legitimate intrinsic variogram models include power law and
logarithmic forms. The power law model, V (u) = (u/φ)κ is valid for 0 < κ < 2.
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The most widely used special case is the linear variogram, V (u) = u/φ. The
logarithmic model,

V (u) = log(u/φ), (3.18)

occupies a special place in classical geostatistics because of its connection to
an empirical law discovered by De Wijs (1951, 1953). De Wijs observed that
when a sample of ore was broken into smaller pieces, the variability between
the grades of the pieces in relation to the average grade of the original sample
appeared to depend only on the ratio of the volume of the pieces to the volume of
the original, and not on the absolute volume of the original. Viewed as a model
for a variogram, (3.18) has the unattractive property that V (u) → −∞ as
u→ 0 which is incompatible with the definition of the variogram as a variance.
However, suppose that (3.18) holds for an unobserved process S∗(x), and that
we observe

S(x) =

�

w(r)S∗(x− r)dr, (3.19)

where w(u) is a non-negative valued weighting function. As discussed in Sec-
tion 1.2.1 this corresponds to each observed measurement having a finite support
deriving from a finite spatial neighbourhood centred on the point x. Now, as in
the derivation of (3.5), write

W (t) =

�

w(r)w(t− r)dr.

Combining (3.18) and (3.5) then gives the variogram of the regularised process
as

V (u) =

�

W (t)[log{(t+ u)/φ} − log(t/φ)]dt

=

�

W (t){log(t+ u)− log(t)}dt, (3.20)

which is non-negative valued for all u ≥ 0 and does not depend on φ. This rather
surprising result is the theoretical analogue of De Wijs’s empirical law. Besag
and Mondal (2005) establish a close theoretical link between the De Wijs pro-
cess and intrinsic autoregressive processes on a two-dimensional lattice and show
that, by making the lattice spacing sufficiently fine, the spatially discrete autore-
gressive process can give an excellent approximation to the spatially continuous
De Wijs process. The lattice formulation also brings substantial computational
benefits for large data-sets.

Intrinsic random functions embrace a wider class of models than do station-
ary random functions. With regard to spatial prediction, the main difference
between predictions obtained from intrinsic and from stationary models is that
if intrinsic models are used, the prediction at a point x is influenced by the
local behaviour of the data i.e., by the observed measurements at locations rel-
atively close to x, whereas predictions from stationary models are also affected
by global behaviour. One way to understand this is to remember that the mean
of an intrinsic process is indeterminate. As a consequence, predictions derived
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from an assumed intrinsic model tend to fluctuate around a local average. In
contrast, predictions derived from an assumed stationary model tend to revert
to the global mean of the assumed model in areas where the data are sparse.
Which of these two types of behaviour is the more natural depends on the
scientific context in which the models are being used.

3.10 Unconditional and conditional simulation

Simulation plays an important role in geostatistical practice, both in conducting
Monte Carlo experiments to gain insight into the properties of particular models
and associated statistical methods, and as a fundamental tool in conducting
geostatistical inference when the required analytical results are intractable.

The most basic simulation problem is to simulate a realisation, say Y =
(Y1, . . . , Yn), of a Gaussian model at a set of n locations xi ∈ IR2. Note firstly
that if the model for Y includes a nugget effect, with nugget variance τ2, we
can represent Y as Y = µ + S + τT where µ = E[Y ], T = (T1, .., Tn) is a set
of mutually independent N(0, 1) random variables, and the spatial signal S =
(S1, . . . , Sn) follows a zero-mean multivariate Gaussian distribution, namely
S ∼ MVN(0,Σ).

The standard method for simulating a realisation of S is to simulate an
independent random sample Z = (Z1, . . . , Zn) from the standard Gaussian
distribution, N(0, 1), and apply a linear transformation,

S = AZ, (3.21)

where A is any matrix such that AA� = Σ. Two ways to construct A are through
Cholesky factorisation and singular value decomposition.

The Cholesky factorisation of Σ is Σ = LL�, where L is a lower-triangular ma-
trix. Hence in (3.21) we take A = L. Because A is lower triangular, this method
of simulating S can be interpreted as first simulating S1 from its marginal, uni-
variate Gaussian distribution, then successively simulating S2, . . . , Sn from the
conditional distributions of each Si given S1, . . . , Si−1, each of which is again
univariate Gaussian.

The singular value decomposition of Σ is Σ = UΛU �, where Λ is a diago-
nal matrix whose diagonal elements λ = (λ1, . . . , λn) are the eigenvalues of Σ,
ordered from largest to smallest, whilst the columns of U contain the corre-
sponding eigenvectors, hence U �U = I. Because Σ is positive definite, all of the
λi are positive. Hence, a second possible choice for A in (3.21) is A = UΛ

1
2 ,

where Λ
1
2 is the diagonal matrix with diagonal elements

√
λi.

Simulating realisations of the stationary Gaussian model by either of these
methods becomes difficult in practice when n is very large, because of the com-
putational burden associated with the necessary matrix operations. Typically,
to simulate a realisation of a process S(·) over a spatial region, A say, we would
approximate the spatially continuous surface S(x) by its values on a fine grid to
cover the region of interest. For this situation, Wood and Chan (1994) provide
an ingenious algorithm which uses circulant embedding in conjunction with fast
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Fourier transform methods to achieve very substantial reductions in both com-
puting time and storage requirements when the number of grid points is large;
for example, simulation on a grid of size 256 by 256 becomes computationally
straightforward.

A completely different approach is to use a Markov chain Monte Carlo method
known as Gibbs sampling (Gilks et al., 1996). Define the full conditional distri-
butions of S = (S1, . . . , Sn) as the n univariate Gaussian distributions of each Si

given all other Sj . Choose any initial set of values for S, say S0 = (S01, . . . , S0n).
Now, simulate a new set of values, S1 = (S11, . . . , S1n) successively from the
full conditionals of each Si given the new values S1j : j = 1, . . . , i − 1 and the
old values S0j : j = i+ 1, . . . , n, with the obvious interpretations for i = 1 and
i = n. This defines a single sweep of the Gibbs sampler. Re-set S0 to be the
newly simulated S1 and repeat. If we iterate this process over many sweeps,
the distribution of the resulting sequence of simulations S1 converges to the
required multivariate Gaussian.

For the models considered in this chapter, the Gibbs sampler is generally not
a sensible option because the evaluation of each full conditional distribution
requires the inversion of an (n − 1) × (n − 1) covariance matrix. However, the
method becomes very attractive if we define our models by the form of their full
conditionals, especially so if the full conditionals are sparse i.e., the full condi-
tional of each Si depends only on a small number of Sj , called the neighbours
of Si. Models of this kind are known as Gaussian Markov random fields and
are discussed in Rue and Held (2005). For general geostatistical applications,
Markov random field models have the unattractive feature that they are tied to a
specified set of locations rather than being defined in a spatially continuous way.
Hence, they cannot be used directly to make spatially continuous predictions.
However, Rue and Tjelmeland (2002) have shown how a spatially continuous
Gaussian process can be approximated by a Gaussian Markov random field on
a fine grid. Hence, a feasible strategy is to define a spatially continuous model
but use its approximating Markov random field for computation.

In the geostatistical literature, simulating a realisation of a spatial process
S(x) on a set of locations xi : i = 1, . . . , n is called unconditional simulation,
to distinguish it from conditional simulation. The latter refers to simulation of
a spatial process S(x) at locations x∗i : i = 1, . . . , N , conditional on observed
values S(xi) at locations xi : i = 1, . . . , n or, more generally, conditional on data
Y = (Y1, . . . , Yn) which are stochastically related to S(·). In the present context,
the underlying model for Y is that Yi = S(xi) + Zi, where the Zi are mutually
independent and normally distributed, Zi ∼ N(0, τ2). Conditional simulation
is used informally to investigate to what extent the observed data do or do
not identify the essential features of the underlying spatially continuous surface
S(x). It is also an essential tool in formal geostatistical inference, and as such
will arise naturally in later chapters. Here, we note only that for the Gaussian
model, the conditional distribution of the values of the process S(x) at any
set of locations, say S∗ = {S(x∗i ), .., S(x∗N )}, given the data Y , is multivariate
Gaussian with a variance matrix which does not depend on Y . Hence, both
unconditional and conditional simulation require computationally feasible ways
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of simulating from high-dimensional multivariate Gaussian distributions with
particular kinds of structured covariance matrices.

3.11 Low-rank models

A low-rank model (Hastie, 1996) for a random vector S is one whose distribu-
tional dimension is less than the dimension of S itself. To motivate this idea in
the context of geostatistical modelling, we briefly re-visit the singular value de-
composition method for simulating realisations of S when the underlying model
is a Gaussian process.

Recall that the singular value decomposition method simulates S as S = AZ
where Z is a vector of mutually independent N(0, 1) random variables and

A = UΛ
1
2 . Here, the diagonal matrix Λ contains the eigenvalues of the required

covariance matrix of S, whilst U contains the corresponding eigenvectors. If
the eigenvalues are ordered from largest to smallest, then we could obtain an
approximate simulation of S by using only the first m < n columns of A to give

S = AmZ (3.22)

where now Z consists of only m independent N(0, 1) variates (see Exercise 3.4).
The resulting S has a singular multivariate Gaussian distribution, which can be
regarded as a low-rank approximation to the target, non-singular distribution.
Because A is derived from the covariance matrix of S = {S(x1, . . . , S(xn)} its
elements are, implicitly, functions of the sampling locations xi and we could
therefore think of (3.22) as a specification of the form

S(xi) =

m�

j=1

Zjfj(xi) : i = 1, . . . , n. (3.23)

This suggests that, rather than considering the low-rank approximation only as
a computational short-cut, we could also use it as a way of defining a model for
S(·). The general idea is to represent a spatially continuous stochastic process
S(x) as a linear combination of functions fj(x) and random coefficients Aj , so
that for any x ∈ IR2,

S(x) =

m�

j=1

Ajfj(x). (3.24)

If the Aj follow a zero-mean multivariate Gaussian distribution with
Cov(Aj , Ak) = γjk, then S(·) is a zero-mean Gaussian process with covariance
structure given by

Cov{S(x), S(x�)} =

m�

j=1

m�

k=1

γjkfj(x)fk(x�). (3.25)

In general, the covariance structure (3.25) is non-stationary. Whether or not it
has an intuitively appealing form depends on the choices made for the functions
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fj(·) and for the covariances amongst the Aj . The fk(·) would usually be chosen
to form an orthonormal basis, meaning that

�

fj(x)fk(x)dx = 1

if k = j and is zero otherwise. Typically, the coefficients Aj would then be
specified as mutually independent.

A familiar example of (3.24) in one dimension is the spectral representa-
tion of a time-series as a superposition of sine and cosine waves with mutually
independent random coefficients. For an exact representation of a time-series
S(x) : x = 1, .., n we define n functions fk(x) which correspond to n/2
sine-cosine pairs at frequencies 2πjx/n : j = 0, 1, . . . , [n/2]. The associated
coefficients are then assigned large or small variances corresponding to frequen-
cies which account for large or small proportions, respectively, of the overall
variation in the series. A low-rank approximation is obtained by setting some of
the coefficients to zero. Spectral representations can also be used in two spatial
dimensions and are discussed for example in Stein (1999).

Low-rank models for spatial processes can also be constructed using splines.
Splines (Wahba, 1990) are piece-wise polynomial functions. By choosing the
pieces to be cubics, constrained to be continuously differentiable at the joins, or
“knots” connecting successive pieces, we obtain a very flexible method for ap-
proximating any smooth function. In two spatial dimensions, the same idea can
be used to construct a flexible class of smooth surfaces by joining together lo-
cally polynomial pieces, known as thin-plate splines (Duchon, 1977). Thin-plate
spline models are discussed in Wood (2003). Kammann and Wand (2003) em-
phasise the connection between splines and linear random effect models which
is hinted at in (3.24) above. Laslett (1994) compares predictions obtained from
spline models and from more conventional geostatistical models of the kind dis-
cussed earlier in this chapter. Ruppert, Wand and Carroll (2003) discuss the
use of low-rank splines in semiparametric regression modelling.

3.12 Multivariate models

Multivariate geostatistical models are relevant when two or more different re-
sponse variables are measured at spatial locations within a continuous spatial
region. As discussed in Section 1.2.2 this situation can arise either because the
variables are all of equal scientific interest and we wish to describe their joint
spatial distribution, or because we wish to describe the conditional distribution
of a response variable of primary interest given one or more spatially referenced
covariates. When a covariate is only available at a finite set of sample locations
we may choose to treat it as a set of sampled values from an underlying stochas-
tic process. A third situation in which multivariate methods are useful is when
the variable of primary interest, Y say, is difficult or expensive to measure, but
it is easy to measure a second variable, Z, which is known to be correlated with
Y . In this situation, for efficient prediction of Y the most cost-effective design
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may be one in which a small number of measurements of Y are combined with
a large number of cheaper measurements of Z.

In the remainder of this section we describe some possible multivariate ex-
tensions to the univariate Gaussian models considered so far in this chapter.
All of the general ideas discussed for univariate processes carry over, but with
additional aspects introduced by the multivariate setting. We focus on the spec-
ification of valid models for stationary variation about a trend, including the
distinction between the observation process Y (x) and an unobserved signal
process S(x).

3.12.1 Cross-covariance, cross-correlation and cross-variogram

The covariance and correlation functions of a multivariate spatial process are
easily defined as follows. A d-dimensional spatial process is a collection of ran-
dom variables Y (x) = {Y1(x), . . . , Yd(x)}, where x ∈ IR2. Then, the covariance
function of Y (x) is a d×dmatrix-valued function Γ(x, x�), whose (j, k)th element
is

γjk(x, x�) = Cov{Yj(x), Yk(x�)}. (3.26)

For each pair of locations (x, x�), the matrix Γ(x, x�) is symmetric i.e.,
γjk(x, x�) = γkj(x, x

�).
When Y (x) is stationary, γjj(x, x) = Var{Yj(x)} = σ2

j does not depend on
x, and for j �= k, γjk(x, x�) depends only on u = ||x − x�||. We then define the
correlation function of Y (x) as the matrix-valued function R(u) whose (j, k)th

element is ρjk(u) = γjk(u)/(σjσk). When k = j, the functions ρjj(u) are the
correlation functions of the univariate processes Yj(x) and are symmetric in
u i.e., ρjj(−u) = ρjj(u). When k �= j, the functions ρjk(u), called the cross-
correlation functions of Y (x), are not necessarily symmetric but must satisfy
the condition that ρjk(u) = ρkj(−u).

To define a cross-variogram for Y (x), there are at least two possibilities. The
first, and the more traditional, is

V ∗jk(u) =
1

2
Cov[{Yj(x)− Yj(x− u)}{Yk(x)− Yk(x− u)}]. (3.27)

See, for example, Journel and Huijbregts (1978) or Chilès and Delfiner (1999).
Expanding the right-hand side of (3.27) we find that

V ∗jk(u) = γjk(0)−
1

2
{γjk(u) + γjk(−u)}

= σjσk[1−
1

2
{ρjk(u) + ρjk(−u)}]. (3.28)

The similarity between (3.28) and the corresponding relationship between
univariate covariance, correlation and variogram functions, as discussed in
Section 3.4, is clear.

The second possibility, introduced by Cressie and Wikle (1998) and called by
them the variance-based cross-variogram, is

Vjk(u) =
1

2
Var{Yj(x)− Yk(x− u)}. (3.29)
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Expanding the right-hand side of (3.29) gives

Vjk(u) =
1

2
(σ2

j + σ2
k)− σjσkρjk(u). (3.30)

The expansion (3.30) highlights an apparent objection to (3.29), namely that
it mixes incompatible physical dimensions. However, we can overcome this by
working with standardised, and therefore dimensionless, variables. An advan-
tage of (3.29) over (3.27) is that it suggests a way of estimating the variogram
empirically which does not require the different variables to be measured at a
common set of sampling locations.

Using standardised variables reduces the two definitions of the cross-
variogram in (3.30) and (3.28) to

V ∗jk(u) = 1−
1

2
{ρjk(u) + ρjk(−u)}

and

Vjk(u) = 1− ρjk(u),

respectively, hence

V ∗jk(u) =
1

2
{Vjk(u) + Vjk(−u)}.

In particular, provided that we use standardised variables, we see that V ∗jk(u) =
Vjk(u) whenever the cross-correlation function ρjk(u) is symmetric in u.

3.12.2 Bivariate signal and noise

To construct a stationary Gaussian model for bivariate data (Yij : i =
1, ..., nj , j = 1, 2) measured at locations xij we first specify a model for an unob-
served bivariate stationary Gaussian process {S(x) = (S1(x), S2(x)) : x ∈ IR2},
with bivariate mean zero, variances σ2

j = Var{Sj(x)} and correlation struc-
ture determined by three functions ρ11(u) = Corr{S1(x), S1(x − u)}, ρ22(u) =
Corr{S2(x), S2(x− u)} and ρ12(u) = Corr{S1(x), S2(x− u)}.

The simplest assumption we can make about the data Yij is that Yij = Sj(xij)
i.e., the signal at any location x can be observed without error. When the data
are subject to measurement error, the simplest assumption is that the Yij are
mutually independent given S(·) and normally distributed,

Yij ∼ N{µj(xij) + Sj(xij), τ
2
j } : i = 1, . . . , nj ; j = 1, 2. (3.31)

Under this model, each dimension of the response separately follows a univariate
Gaussian model, whilst dependence between the two response dimensions is
modelled indirectly through the structure of the unobserved process S(·). The
conditional independence assumption in (3.31) invites the interpretation that
the parameters τ2

j represent the measurement error variances in each of the two
response dimensions. A less restrictive assumption than (3.31) would be to allow
the measurement errors associated with Y (x) = {Y1(x), Y2(x)} to be correlated.
This would only affect the model at locations where both of Y1(x) and Y2(x)
are measured; where only one of the Yj(x) is measured, (3.31) would still hold.
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Correlated measurement errors might be particularly appropriate if, as already
discussed in the univariate setting, we want the nugget effect to include spatial
variation on scales smaller than the smallest inter-point distance in the sampling
design.

In the case of spatially independent error terms, the mean and covariance
structure of the data, Yij , are given by

E[Yij ] = µj(xij),

Var{Yij} = τ2
j + σ2

j

and, for (i, j) �= (i�, j�),

Cov{Yij , Yi�j�} = σjσj�ρjj�(||xij − xi�j� ||).

Note in particular that non-zero error variances τ2
j induce discontinuities at the

origin in the covariance structure of the measurement process.

3.12.3 Some simple constructions

In order to construct particular bivariate models, we need to specify explicit
forms for the two mean functions µj(x) and for the covariance structure of
S(·). With regard to the means, in practice the easiest models to handle are
those in which the means are linear functions of spatial explanatory variables,
as was also true in the univariate case. With regard to the covariance structure,
the univariate models discussed earlier are a natural starting point. However,
in extending these to the bivariate case, we need to be sure that the required
positive definiteness conditions are not violated. Note that these require that
arbitrary linear combinations of either or both of the response dimensions should
have non-negative variances. A simple way to ensure that this is the case is to
build a bivariate model explicitly from univariate components. The same holds,
with the obvious modifications, for multivariate processes of dimension d > 2.

A common-component model

One example of an explicit bivariate construction is the following. Suppose that
S∗0 (·), S∗1 (·) and S∗2 (·) are independent univariate stationary Gaussian processes
with respective covariance functions γj(u) : j = 0, 1, 2. Define a bivariate process
S(·) = {S1(·), S2(·)} to have components

Sj(x) = S∗0 (x) + S∗j (x) : j = 1, 2.

Then, by construction, S(·) is a valid bivariate process with covariance structure

Cov{Sj(x), Sj�(x− u)} = γ0(u) + I(j = j�)γj(u)

where I(·) is the indicator function, equal to one if its logical argument is true,
zero otherwise. Note that if, as is typically the case, the covariance functions
γj(u) are non-negative valued, then this construction can only generate non-
negative cross-covariances between S1(·) and S2(·). In practice this is often the
case or, if the two variables are inversely related, can be made so by revers-
ing the sign of one of the components. The common-component construction
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extends to processes of dimension d > 2 in which all of the components Sj(x)
share an underlying common component S∗0 (x). Note, however, that the sim-
ple device of applying a change of sign to S0(x) obviously cannot induce an
arbitrary mix of positive and negative cross-covariances. Also, as written the
construction implicitly assumes a common measurement scale for all of the com-
ponent processes. When this is not the case, the model requires an additional
d − 1 scaling parameters so that the common component S∗0 (x) is replaced by
S∗0j(x) = σ0jR(x) where R(x) has unit variance.

Linear combinations of independent components

Another simple construction is to begin with two, or more generally
d, independent univariate processes Uk(x) and define Sj(x) as a linear
combination,

Sj(x) =

d�

j=1

akjUj(x),

or in vector-matrix notation,

S(x) = AU(x). (3.32)

Without loss of generality, we can assume that each process Uk(x) has unit
variance. If Uk(x) has correlation function ρk(·), it follows that the matrix-
valued covariance function of S(x) is

Γ(x, x�) = ARA�, (3.33)

where R is the diagonal matrix with diagonal entries Rkk = ρk(x− x�). In the
special case where ρk(u) = ρ(u), (3.33) reduces to Γ(x, x�) = Bρ(x−x�). This is
sometimes called the proportional covariance model (Chilès and Delfiner, 1999).
The assumption that all of the Uk(x) share a common correlation function
reduces the number of parameters in the model to manageable proportions, but
otherwise does not seem particularly natural.

Schmidt and Gelfand (2003) use a variant of (3.32) in which there is a nat-
ural ordering of the components of S(x) so that S1(x) depends on U1(x) only,
S2(x) depends on U1(x) and U2(x), and so on. Gelfand, Schmidt, Banerjee and
Sirmans (2004) extend this model to allow the non-zero elements of the Ai to
depend on location, x.

The linear model of co-regionalisation

By construction, we can also obtain valid models by adding linear combinations
of p ≥ 2 models with independent components. Hence, we can define a model
for a d-dimensional process S(x) as

S(x) =

p�

i=1

AiU
i(x), (3.34)

where now each U i(x) = {U i
1(x), . . . , U i

d(x)} is a set of d independent univariate
processes and Ai is a d × d matrix. In practice, models of this kind would be
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very poorly identified without some restrictions being placed beforehand on the
processes U i

k(x). In the linear model of co-regionalisation, these restrictions are
that each term on the right-hand side of (3.34) is a proportional covariance
model. This again raised the question of whether the resulting savings in the
number of unknown parameters has a natural scientific interpretation or is
merely a pragmatic device.

How useful are standard classes of multivariate model?

The question is worth asking because, as the examples above illustrate, even
very simple multivariate constructions quickly lead to models with either large
numbers of parameters and consequent problems of poor identifiability, or
potentially severe restrictions on the allowable form of cross-correlation struc-
ture. A better modelling strategy than an empirical search through a richly
parameterised standard model class may be to build multivariate models by
incorporating structural assumptions suggested by the context of each specific
application; see, for example, Knorr-Held and Best (2001), who use the com-
mon component model in an epidemiological setting where it has a natural
interpretation.

3.13 Computation

We first show how to use geoR to compute and plot standard correlation func-
tions. The function cov.spatial() has an argument cov.model which allows
the user to choose from a set of correlation families. Options include the Matérn,
powered exponential, spherical and wave families discussed earlier in this chap-
ter; a complete list can be obtained by typing help(cov.spatial). Below, we
show the commands used to produce Figure 3.2. Similar commands were used
for Figure 3.5 and Figure 3.7.

> x <- seq(0, 1, l = 101)

> plot(x, cov.spatial(x, cov.model = "mat", kappa = 0.5,

+ cov.pars = c(1, 0.25)), type = "l", xlab = "u", ylab = expression(rho(u)),

+ ylim = c(0, 1))

> lines(x, cov.spatial(x, cov.model = "mat", kappa = 1.5,

+ cov.pars = c(1, 0.16)), lty = 2)

> lines(x, cov.spatial(x, cov.model = "mat", kappa = 2.5,

+ cov.pars = c(1, 0.13)), lty = 3)

We now illustrate the use of the geoR function grf() for generating sim-
ulations of two-dimensional Gaussian processes. We encourage the reader to
experiment with different input parameters so as to obtain an intuitive un-
derstanding of the different ways in which the model parameters affect the
appearance of the simulated realisations. The arguments to grf() specify the
model and the locations for which simulated values are required. The locations
can be specified to form a regular lattice, a completely random pattern, or a
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configuration supplied explicitly as a set of (x, y) coordinates. For example, to
produce Figure 3.4 we used the following commands.

> set.seed(159)

> image(grf(100^2, grid = "reg", cov.pars = c(1, 0.25)),

+ col = gray(seq(1, 0.1, l = 51)), xlab = "", ylab = "")

> set.seed(159)

> image(grf(100^2, grid = "reg", cov.pars = c(1, 0.13),

+ cov.model = "mat", kappa = 2.5), col = gray(seq(1,

+ 0.1, l = 51)), xlab = "", ylab = "")

Using the R function set.seed() ensures that simulations are generated with
the same random number seed, hence differences between the simulated real-
isations are due only to the different values of the model parameters. In the
example above, the realisation covers n = 1002 = 10, 000 locations, whilst the
argument grid="reg" instructs the function to generate the locations in a 100
by 100 regular square lattice.

For the simulations of the anisotropic model in Figure 3.10 we used the
argument aniso.pars to specify the anisotropy angle and ratio, as follows.

> set.seed(421)

> image(grf(201^2, grid = "reg", cov.pars = c(1, 0.25),

+ aniso.pars = c(pi/3, 4)), col = gray(seq(1, 0, l = 51)),

+ xlab = "", ylab = "")

> set.seed(421)

> image(grf(201^2, grid = "reg", cov.pars = c(1, 0.25),

+ aniso.pars = c(3 * pi/4, 2)), col = gray(seq(1, 0,

+ l = 51)), xlab = "", ylab = "")

The function grf() allows the user to select from several algorithms for gen-
erating the simulated realisations, including an automatic link to the function
GaussRF() within the R package RandomFields written by Martin Schlather.
To invoke this link, the user specifies the optional argument method="RF" in
the call to the function grf(). At the time of writing, the default in the latest
version of the geoR package is to use the Choleski factorisation for n ≤ 500, and
the link to GaussRF() for n > 500. The RandomFields package is also available
at the cran website, http://cran.r-project.org .

Note also that H̊avard Rue has written very efficient code, available for
download at http://www.math.ntnu.no/∼hrue/GMRFLib, for simulation of
Gaussian processes on very large numbers of locations using an approximat-
ing Markov random field, as described in Section 3.10. Rue and Held (2005)
provide details on the methods and on the use of the software.

Figure 3.16 shows two further examples of simulations generated by grf(),
using the commands below. The first call to the function produces the simulation
shown in the left-hand panel, a realisation of a stationary Gaussian model with
mean µ = 0, variance σ2 = 1 and Matérn correlation function with κ = 1.5
and φ = 0.15. The simulation generates 100 values at locations distributed
completely at random over the unit square. The right panel shows simulated
values at the 52 locations of the elevation data from Example 1.1. In this case,
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Figure 3.16. Realisations of two stationary Gaussian processes on irregularly
distributed sets of locations. See text for detailed specifications.

we have used a stationary Gaussian model with mean µ = 850, nugget variance
τ2 = 100, signal variance σ2 = 3500 and Matérn correlation function with
κ = 2.5 and φ = 0.8.

> sim1 <- grf(100, cov.pars = c(1, 0.15), cov.model = "matern",

+ kappa = 1.5)

> points(sim1)

> data(elevation)

> sim2 <- grf(grid = elevation$coords, cov.pars = c(3500,

+ 0.8), nugget = 100)

> sim2$data <- sim2$data + 850

> points(sim2)

3.14 Exercises

3.1. Consider a one-dimensional spatial process S(x) : x ∈ IR with mean µ,
variance σ2 and correlation function ρ(u) = exp(−u/φ). Define a new
process R(x) : x ∈ IR by the equation

R(x) = (2θ)−1

� x+θ

x−θ

S(u)du.

Derive the mean, variance and correlation function of R(·). Comment
briefly.
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3.2. Is the following a legitimate correlation function for a one-dimensional
spatial process S(x) : x ∈ IR?

ρ(u) =

�
1− u : 0 ≤ u ≤ 1

0 : u > 1

Give either a proof or a counter-example.

3.3. Derive a formula for the volume of the intersection of two spheres of equal
radius, φ, whose centres are a distance u apart. Compare the result with
the formula (3.8) for the spherical variogram and comment.

3.4. Consider the following method of simulating a realisation of a one-
dimensional spatial process on S(x) : x ∈ IR, with mean zero, variance 1
and correlation function ρ(u). Choose a set of points xi ∈ IR : i = 1, . . . , n.
Let R denote the correlation matrix of S = {S(x1), . . . , S(xn)}. Obtain
the singular value decomposition of R as R = DΛD� where λ is a diago-
nal matrix whose non-zero entries are the eigenvalues of R, in order from
largest to smallest. Let Y = {Y1, . . . , Yn} be an independent random sam-
ple from the standard Gaussian distribution, N(0, 1). Then the simulated
realisation is

S = DΛ
1
2Y. (3.35)

Write an R function to simulate realisations using the above method for
any specified set of points xi and a range of correlation functions of your
choice. Use your function to simulate a realisation of S on (a discrete
approximation to) the unit interval (0, 1).
Now investigate how the appearance of your realisation S changes if in
(3.35) you replace the diagonal matrix Λ by a truncated form in which
you replace the last k eigenvalues by zeros.

3.5. Consider a spatial process S(·) defined by

S(x) =

�

w(u)S∗(x− u)du

where w(u) = (2π)−1 exp(−||u||2/2) and S∗(·) is another stationary Gaus-
sian process. Derive an expression for the correlation function, ρ(u) say,
of S(·) in terms of w(·) and the correlation function, ρ∗(u) say, of S∗(·).
Give explicit expressions for ρ(u) when ρ∗(u) is of the form:

(a) pure nugget, ρ∗(u) = 1 if u = 0, zero otherwise;
(b) spherical;
(c) Gaussian.
(d) In each case, comment on the mean square continuity and differen-

tiability properties of the process S(·) in relation to its corresponding
S∗(·).


