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A Composite Likelihood Approach to 
Semivariogram Estimation 

Frank C. CURRIERO and Subhash LELE 

This article proposes the use of estimating functions based on composite likelihood 
for the estimation of isotropic as well as geometrically anisotropic semivariogram pa- 
rameters. The composite likelihood approach is objective, eliminating the specification 
of distance lags and lag tolerances associated with the commonly used moment estima- 
tor. Extensions to the geometric anisotropy case include a parameterized transformed 
distance function, which eliminates the subjective estimation of the parameters of geo- 
metric anisotropy. The composite likelihood approach requires no matrix inversions and 
the estimators are shown to be consistent in a fashion similar to maximum likelihood and 
restricted maximum likelihood but without reliance on strong distributional assumptions. 
Predictions based on composite likelihood estimates performed very well using isotropic 
and geometric anisotropic simulated data and compared favorably to predictions based 
on the traditional approach in the isotropic case. Comparisons were also made using data 
collected on iron-ore measurements where previous analyses determined a geometric 
anisotropic semivariogram model to be appropriate. 

Key Words: Estimating functions; Geometric anisotropy; Geostatistics; Kriging; Simu- 
lation; Spatial dependence; Variogram. 

1. INTRODUCTION 

Kriging, a geostatistical tool for spatial prediction, has proved extremely useful 
in various substantive areas of application such as mining, environmental remediation, 
and ecology. See Cressie (1991), Journel and Huijbregts (1978), and Haining (1990) 
for theoretical underpinnings of kriging and various applications. A key component in 
the geostatistical process is the estimation and modeling of spatial dependence which is 
usually accomplished with the semivariogram function, under the assumption of isotropic 
or anisotropic behavior (definitions provided in the next section). Common methods for 
estimation of semivariogram parameters are method of moments, maximum likelihood, 
and restricted maximum likelihood. Zimmerman and Zimmerman (1991) provided a 
review and comparison of these methods. 

Recently Lele (1997) introduced composite likelihood methods for the estimation 
of semivariogram parameters. The use of composite likelihood, similar to maximum 
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likelihood and restricted maximum likelihood methods, eliminates the need for subjective 
specification of distance lags and lag tolerances often required for the method of moments 
estimator, while at the same time retains the model robustness properties of method of 
moments. Lele (1997) compared performance of the method of moments estimation with 
the composite likelihood method using Godambe's information criterion (Godambe 1960) 
for isotropic semivariograms. His results indicate considerable gains in efficiency for the 
composite likelihood approach when compared to method of moments estimation based 
on least squares. 

The objectives of this article are two-fold. First, we present the composite likeli- 
hood approach as an objective procedure for the estimation of semivariogram parameters 
with isotropic and geometric anisotropic data. This technique provides a less subjec- 
tive approach than the currently used methods based on graphical descriptions. The 
composite likelihood estimators are also shown to be consistent in a fashion similar to 
maximum likelihood and restricted maximum likelihood but without reliance on strong 
distributional assumptions. Second, we evaluate predictive performance of the composite 
likelihood approach using both isotropic and geometric anisotropic simulated data. Data 
collected on iron-ore measurements are also re-analyzed to illustrate the composite like- 
lihood approach as an objective and simultaneous procedure for geometric anisotropic 
semivariogram parameter estimation. 

2. NOTATION AND PRELIMINARIES 

Let Z(s) represent a spatial process, where s denotes location coordinates, often 
taken to be of dimension two, and Z(.) the process value at location s. Consider the 
ordinary kriging model (Cressie 1991) which assumes E(Z(s)) = ,u. The semivariogram 
for the Z(.) process, denoted by -y(si, sj), is given by 

-Y(Si, sj) = 2var(Z(si) - Z(sj)). 

The variogram is defined to be 2-y(si, sj). Further assume the Z(-) process to be sta- 
tionary in the sense that 'y(Si, sj) reduces to a function of si - sj and var(Z(s)), if it 

exists, is constant. Covariances can also be modeled when var(Z(s)) < oo through the 
covariogram function C(.), defined to be 

C(si - sj) = var(Z(s)) - -(si-sj). 

In geostatistics spatial dependence is commonly modeled with the semivariogram or 
variogram and subsequently used in kriging (prediction of unsampled locations). 

Let IIsi -s 11 denote the Euclidean distance between locations si and sj. At times we 
will use h = si - sj and dij = d(si, sj) = Isi - sj 11. Suppose -y(si, sj) = -y(Ilsi - sj 11); 

that is, the semivariogram depends only on the distance between the locations. Such 
semivariograms are called isotropic semivariograms. One of the commonly used isotropic 
semivariogram models is the exponential model 

-Y(jlsi - sjlI; 4) =co+ 72 ( I - Isi-siii) 
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where = (co, a2 P). The parameters co and a2 are called the nugget and the sill, 
respectively, and co+u2 represents the process variance. The parameter p measures spatial 
dependence. In the geostatistical literature, p is often parameterized as exp(- 1/a), where 
a is called the range of the process. The value 3a is referred to as the effective range, 
denoting the approximate distance at which observations become spatially uncorrelated. 

We say that the process Z is anisotropic when the dependence between Z(si) and 
Z(sj) is a function of both distance and the direction between locations si and sj. 
Geometric anisotropy proposes 

-Y(si, sj; 4) = -y(I A(si - sj) I; 4), 

where A is a square matrix of appropriate dimension. That is, the process is isotropic 
after the space is transformed in an affine fashion. Such transformations can be interpreted 
as a rotation and stretching of the coordinate axes. See Journel and Huijbregts (1978, p. 
177) for details on geometric anisotropy. 

3. CLASSICAL ESTIMATION PROCEDURES 

3.1 METHOD OF MOMENTS 

Let {z(si),... , z(sn)} represent an observed set of spatial data. Undoubtedly the 
most popular approach to semivariogram estimation is that based on method of moments. 
The classical method of moments estimator of the semivariogram (due to Matheron 1962) 
is given by 

7(h) = 2 N(h)_ S (z(s )-z(sj))2, (3.1) 
N(h) 

where the set N(h), assuming isotropy, 

N(h) = { (s-, sj) : Ilsi -sj 11 = llhll; i, j = 1, . .., n}, 

is understood to contain all pairs of locations that are separated by distance llhll with 
IN(h) being the number of such pairs. In practice a smoothed version of (3.1) is usually 
employed because IN(h) I is often too small to allow for any reliable averaging, especially 
when data are irregularly spaced. The common method is to group the distances d(si, sj) 
into bins according to chosen distance lags and lag tolerances, similar to histogram 
smoothing. The corresponding averaged I (z(s%) - z(Sj))2 in each bin is taken as the 
semivariogram estimate for that distance lag. Lag tolerances must be chosen so that 
adequate spatial resolution and stability in the smoothed estimator are retained. Journel 
and Huijbregts (1978) suggested choosing lag tolerances so that at least 30 location-to- 
location pairs fall within each bin. Further smoothing is accomplished by considering 
only those location pairs (si, sj) that are within half the maximum d(si, sj), since the 
variability in these squared differences is usually extreme for locations "too far" apart. 

Once lag tolerances have been specified, a plot of the chosen distance lags, denoted 
by h(j),j = 1,..., k, versus the corresponding semivariogram estimate, '(h(j)), pro- 
vides a graphical display of the empirical semivariogram. Let -y(h; 4) be the parameteric 
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model to be fitted. Then the parameters in 4 can be estimated with least squares by 

minimizing 

k 

S w- (7(h(j)) - -y(h(j); 4))2 (3.2) 
j=1 

with respect to 4. In practice, the weights wj are commonly defined so that (3.2) repre- 

sents a weighted least squares (WLS) solution (Cressie 1985). 

Directional semivariogram estimates can be calculated by further restricting the 

paired differences in (3.1) to also be within given directions defined by prespecified 

angles and angle tolerances (Isaaks and Srivastava 1989). The directional moment semi- 

variogram estimator can be denoted by '(h; T), where T is a direction chosen as an 

angle from a fixed azimuth. The set N(h; T) would then contain the pairs of locations 

(si, sj) that are in each respective distance bin and within the specified angle tolerance 

of T. In practice, anisotropic spatial dependence is usually investigated with graphical 

procedures such as directional semivariogram estimates and rose diagrams describing the 

ellipse of anisotropy (Isaaks and Srivastava 1989). Rotation and stretching parameters for 

the case of geometric anisotropy (Journel and Huijbregts 1978) are usually determined 

based on these procedures. In addition to having to specify the angles T and angle tol- 

erances, characterizing anisotropy in this fashion also reduces the amount of data (i.e., 

location-to-location pairs) available for each semivariogram lag estimate. 

The method of moments approach to semivariogram estimation is subjective and can 

be sensitive to the chosen distance lags and lag tolerances (Myers, Begovich, Butz, and 

Kane 1982). Furthermore, Webster and Oliver (1992) suggested that it may take up to 

150 or 200 sample observations for such a procedure to produce reliable semivariogram 

estimates. On the other hand, the method of moments procedure is robust, requiring 

no strong distributional assumptions about the process Z(s), and the plotted empirical 

semivariogram provides a valuable graphical tool for exploring spatial dependence. 

3.2 MAXIMUM LIKELIHOOD AND RESTRICTED MAXIMUM LIKELIHOOD APPROACH 

If the underlying process follows a Gaussian distribution, one can also use maximum 

likelihood (ML) or restricted maximum likelihood (REML) methods to estimate the 

semivariogram parameters. Let Z = (Z(si),.. ., Z(sn)) and assume 

Z ' N(p,l C(+)), 

where ,u is a constant, 1 is the vector of l's, and C(?) is defined through the covariogram 
function with Cii(4) = cov(Z(si), Z(sj)) = var(Z(s))-y(si-sj; 4). The ML estimate 

of 4 is obtained by maximizing the log-likelihood 

l(4,,l; Z) =- - log IC(5)| - (Z - l)'C(0)<1(Z - pi) (3.3) 

where j denotes the determinant. 
It is advisable to eliminate the nuisance parameter ,u before estimating 4. This is 

achieved by considering the likelihood of the contrasts. Consider a vector of contrasts 
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Zc= {Z(si) - Z(si),i = 2,... ,rn}. It is easy to see that this vector corresponds to 
multiplying the original data vector Z by a matrix Q such that its first column consists 
of -1 and the ith column consists of zeros except in the ith place. Thus, 

Zc-QZ N(O, QC(4)Q'). 

The likelihood corresponding to Zc is given by 

L(4; Zc) =exp --Z"1Q1F(4)ZC~ (3.4) 
(27r)n/2 LXJ(4 1/2 2 c 

where 

ii(ii = 2'y(si, s1;4) 

pij(o) = 'y(si,si;4)+'+(sj,si;4))-'y(sj,sj;4). 

Notice that this is a function of 4 only and maximizing with respect to 4 yields the 
restricted maximum likelihood (REML) estimator. Details on the ML and REML methods 
for semivariogram estimation can be found in Zimmerman and Zimmerman (1991). 

The methods of ML or REML theoretically yield consistent estimators but require 
a full specification of the probabilistic model. Moreover, they involve inversion of large 
matrices which can be computationally prohibitive. Uniqueness of the maximum is also 
not always guaranteed (Warnes and Ripley 1987). In view of this, a natural question to 
ask would be: Can we approximate the likelihood function by something that behaves 
almost like a likelihood but is easy to deal with, both computationally and mathematically, 
and is less reliant on such strong distributional assumptions? The composite likelihood 
approach presented next addresses this issue. Recently, Barry, Crowder, and Diggle(1998) 
provided a parametric version of variogram estimation based on quasi-likelihood. Their 
technique is free of strong distributional assumptions, however, and still requires matrix 
inversions, although of a reduced size to that found in ML and REML, and is based on 
results obtained from the moment estimator (3.1). 

4. COMPOSITE LIKELIHOOD APPROACH 

The idea of composite likelihood, although discussed in various disguises such as 
pseudolikelihood (Besag 1975) or partial likelihood (Cox 1975), was developed in its 
own right by Lindsay (1988). To construct a composite likelihood, one starts with a set of 
conditional or marginal events for which one can write log-likelihoods. The log-composite 
likelihood is then formed by adding together these individual component log-likelihoods 
(Lindsay 1988). Therefore, log-composite likelihood simply refers to the pooling of log- 
likelihood contributions in an additive fa-shion in circumstances where the components 
do not necessarily represent independent replicates. 

There are two motivations for constructing composite likelihoods. First, they pro- 
vide a substitute method of estimation when maximum likelihood is very difficult to 
calculate. Second, they sometimes represent that portion of the model we are most com- 
fortable with modeling, and the resultant estimators can be consistent even when full 
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maximum likelihood estimators are not, a form of consistency robustness. Examples of 
composite likelihood applications include Heagerty and Lele (1998) for binary data in 
space; generalized Mantel-Haenszel analysis for 2 x 2 tables (Liang 1987); and working 
independence generalized estimating equations (Liang and Zeger 1986) for longitudinal 
data. In the following we illustrate the use of composite likelihood for semivariogram 
estimation in the isotropic and geometric anisotropic cases. Details regarding the va- 
lidity of the composite likelihood approach are then discussed followed by a summary 
comparison. 

4.1 COMPOSITE LIKELIHOOD ESTIMATION FOR ISOTROPY AND 

GEOMETRIC ANISOTROPY 

Consider the ordinary kriging situation, 

E(Z(si)) = 

var(Z(si) - Z(sj)) = E(Z(si) - Z(sj)) 
= 2-y(dij; 4). 

Let V be the vector of contrasts, vij = Z(si) - Z(sj). Now consider the product of the 
marginal densities of these contrasts, namely, 

n-I 

CL(4); V) = J ]I f (vij; )). (4.1) 
i=l j>i 

This is a "composite likelihood" because each of the components f (vij; 4) is a 
legitimate likelihood. Following this definition of composite likelihood (Lindsay 1988), 
selection of f (.) is restricted only to the pool of valid density functions. Now, as a matter 
of convenience, take vij - N(O, 2-y(dij; 4)), an assumption that will be relaxed later, so 
that, 

f (vij;0)= ff .1 expI (Z(Si) Z(S)j ))2 

Hence, ignoring constant terms, this negative log-composite likelihood up to a constant 
can be written as 

n:I{(Z(si) _ (4.2)) i t 2-7(dij; o) +lg( (7dj 4)))} (4.2) 

Composite likelihood semivariogram estimates can then be obtained by minimizing 
the above quantity with respect to 4. 

At this point, note that we considered the contrasts vij = Z(si) - Z(sj) to eliminate 
the nuisance parameter p (as in spirit of REML). The pairwise composite likelihood 
formulated in (4.1), along with normality of the v8 s, were taken to arrive at the objec- 
tive function (4.2) that is (a) computationally simpler than the ML or REML objective 
functions; and (b) as we demonstrate in the next section, corresponds to a zero unbiased 
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estimating function irrespective of the Gaussian density assumed for the v8js. Clearly, 
other composite likelihoods could have been constructed using different functions of the 
data with possibly different forms of compositing. 

The ideas discussed previously can be extended when the process Z(s) is anisotropic, 
that is dependence between Z(si) and Z(sj) is a function of both the distance and the 
direction between locations si and sj. Here we consider the case of geometric anisotropy, 

'y(si, sj; 4) = ay (IIA(si - sj)H; 4), 

where si, sj E R2 So that A is a 2 x 2 matrix. Let S = (s, .. ., s") denote the 2 x n 
matrix of coordinate locations at which observations are made. Let S* = AS denote the 
linear transformation of the original space S. Geometric anisotropy contends that on this 
linearly transformed space, the semivariogram is isotropic. Now consider the spectral 
decomposition of the matrix A, 

A _ cos a sina ][p 01 [ cos9 sin9 1 
[-sin a cos a J[ qJ L -sin9 cos9 ' 

for a , 0 E R, and p, q > 0. With A decomposed as above, the transformation AS first 
rotates the space S through the angle 0 (positive 0 in the counterclockwise direction), 
stretches each axes (the rows of S) by p and q, respectively, and then rotates again through 
an angle a. This last rotation through the angle a is unnecessary, because of invariance 
with respect to rotation; however, it is sometimes included for graphical purposes taking 
c= -0 so to rotate back to the original perspective. 

Expressing si as si = (xi, yi)', the distances in the transformed space S* = AS, 
with S* = (s*,. . . ,s*), can be written as 

si- l= {p2 ((Xi - Xj)2COS20 + (yi - yj)2sin20 

-2(xi - xj) (yi - yj) cos 0 sin 0) 

+q2 ((Xi - Xj)2 COS2 0 + (yi - yj)2 sin2 0 

+2(xi - xj) (yi - yj) cos 0 sin 0) }1/2 

- d*(p,q,90) 

These do not involve the parameter a, the invariance mentioned previously. The negative 
log-composite likelihood for the geometrically anisotropic process based on Z(si) - Z(sj) 
can be written as 

nI r(Z(Si)_Z(Sj))2 + log y (d* (p, q, (4.3) 

which can be minimized with respect to the parameters (4, p, q, 0). 
Estimation of geometric anisotropy parameters using the transformation A(si -s j) 

is not unique to the composite likelihood approach. Similar techniques have been used 
in regards to ML and REML (Vecchia 1988; Hobert, Altman, and Schofield 1997). 

Although, notice that 

d* (p, q, 0) = qd (p/q, 1, 0). 
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Hence if the geometric anisotropic exponential semivariogram model is used, 

y(d* (p, q, 9); 4)) = X + - j 

with 4) = (co, o2, p), then only (co, u2, p, A, 0), where p = pq and A = p/q are identifi- 

able. This identifiability problem is not unique to the method of composite likelihood. It 

also occurs with the methods of maximum likelihood and restricted maximum likelihood. 

Method of moments estimation can provide a graphical check on the appropriateness 
of the model and parameter estimates in the presence of isotropy or geometric anisotropy. 
In the geometric anisotropic case this can be accomplished by first deforming the sampling 

space according to 0 and A. The distances in this deformed space, dj (A, 1, 9), can then 

be used with the moment semivariogram estimator (3.1) to estimate the transformed 
isotropic spatial dependence. The fitted model, 

Y (dij (il, l ;0 I 

can then be plotted through these estimates to gauge the fit. We illustrate this technique 

using the iron-ore residuals in Section 6. 

4.2 COMPOSITE LIKELIHOOD ESTIMATING FUNCTIONS 

In the following we detail some properties of the composite likelihood approach 
based on the concept of estimating functions (Godambe and Kale 1991). The development 
further clarifies and extends the results found in Lele (1997). 

Consider the composite likelihood estimating procedure for the stationary isotropic 
case discussed in the previous section. Let -y(dij; 4) denote the semivariogram model. 

To obtain the CL estimator of 4, one minimizes the negative log-composite likelihood 

given in (4.2) 

z- (Z(si) - Z(Sj))2 
E E , 2|y(dsj;4)) + log (-y(dij; ))) 

The corresponding estimating function is given by (Lele 1997, eq. 3) 

n- y(dij; (Z2 -1 
n-s W;ty(diV; ) 0 (Z(si)- Z(sj) _ 1 _ 0. (4.4) 

y, (dii; L 2-y(dij;4) J 
Next we discuss several properties of the CL semivariogram estimator based on the 

above estimating function. 

4.2.1 Consistency 

The estimating function (4.4) is zero unbiased as long as E(Z(si) - Z(sj)) - 

2-y(dij; 4). We do not need to have correct specification of the marginal distribution of 

the contrasts vij. This is in contrast to the nonzero unbiasedness of the ML or REML es- 

timating functions if the joint distribution is misspecified. Then, following the arguments 
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in Crowder (1986) as modified by Heagerty and Lele (1998), it is easy to show that 
under increasing domain asymptotics there exists a consistent solution to the estimating 
functions (4.4); even if the marginal distribution of the contrasts vij are non-Gaussian, 
as long as E(Z(si) - Z(sj)) = 2-y(dij; 4) holds along with some conditions on the rate 
of decay of the correlations between any two locations. Consistency of the composite 
likelihood estimators, therefore, depends only on correct specification of the first two mo- 
ments of the process. This provides robustness properties similar to those described by 
Godambe and Thompson (1984). Similar consistency results for the method of moments 
is difficult to prove. 

4.2.2 Obtaining the Consistent Estimator 

In practice, unfortunately, there may be several solutions to the estimating function 
(4.4). The same holds true for semivariogram estimates based on ML and REML (Warnes 
and Ripley 1987) and method of moments. In the case of composite likelihood, we show 
that, in fact, the global minimum of the negative log-composite likelihood (4.2) is the 
consistent estimator. This is in the spirit of Wald (1949). Although similar results may 
be proved for ML and REML, the distinct feature of the results for CL is that it is 
robust against misspecification of the joint or bivariate marginal distributions. We will 
not produce all the mathematical details of the proof here, but only give the following 
key inequality. 

Following Li (1997), the proof can be completed under proper rate of decay for the 
correlations. Assuming all expectations exist, the key idea behind Wald's proof is the 
fact that 

E [-log-likelihood(Y, 3)] > E[-log-likelihood(Y, 3o)] 

if 0o is the true parameter for data vector Y. Li (1997) (see also Li 1996) showed 
that if a similar inequality holds true for any objective function, consistency follows. 
The objective function corresponding to the estimating function (4.4) is the negative 
log-composite likelihood given in (4.2). 

Notice that 

Eo (Z(Si _( Z(Sj))2 + log (-y(dij;?) -y7(dij d ) + log (-y(dij;Q) 

Thus, to prove E [-log CL(Q)] > E [-log CL(40)], we need to prove that 

-y(dij,; (0 ) (dij); 0) ( i ) .YdJ;o +logQy7(dij;40)) ? + log (-ydj;0) 

or, equivalently, 

lg7(dij; 0) , y 1 (dij; 00) lo 
(dij; 00) 

> 
y(dij; 0) 

The proof follows by noticing that log(x) > 1 - -, for all x > 0, with equality when 
x 

x = 1, which occurs only when q5 = q50, the true parameter. 



18 F. C. CURRIERO AND S. LELE 

We again emphasize here that this result holds under the less stringent condition on 

the model, E(Z(si) - Z(sj)) = 2-y(dij; 4). The marginal distribution of the contrasts 

vij need not be Gaussian. It is also easy to see that the result does not depend on 

the stationarity or isotropy assumption. We do, however, need ergodicity and law of 

large number to hold, as is needed with method of moments, maximum likelihood, and 

restricted maximum likelihood. 

4.2.3 Distance Weighting 

The estimating function (4.4) is written in the form of a weighted sum of zero 

unbiased component estimating functions with weights, 

d4-y(dij; ) 

-y(dij; +) 

which represents the information content in each of these components (Godambe and 

Kale 1991). Note that if the distance between locations si, sj is large, d y(dij; 4), and 

hence the corresponding weight, are close to zero provided -y(dij; 4) has an asymptote 

as dij - oc. Thus, these estimating functions automatically down weight those pairs 

of observations that are far apart, or equivalently that are not informative about the 

semivariogram parameter (ML and REML estimating functions down weight similarly). 

This weighting scheme is not a simple function of the distance. It is a function of the 

information content of the component estimating function, in contrast to the method of 

moments weighting scheme. 

Also note, the composite likelihood constructed in (4.1) considers the product of 

all pairwise contrasts. Clearly this formulation can be restricted to consider only those 

pairs that are within a given distance range, as is commonly suggested with method of 

moments estimation. It is not evident that the ML and REML objective functions share 

this flexibility. All our composite likelihood analyses that follow, however, are based on 

the full composite shown in (4.1). 

Remark 1. Note the objective function shown in (4.2) is different than the objective 

function described by Cressie (1991, p. 96, eq. 2.6.12) for approximating the WLS MM 

solution. It is easy to see that a straightforward application of Cressie's equation leads 

to a nonzero unbiased estimating function and hence to inconsistent estimators. See also 

Barry et al. (1998) 

4.3 SUMMARY COMPARISONS 

In this section we review the merits of the composite likelihood approach to semivari- 

ogram estimation, stressing that it combines many positive features of existing techniques 

based on method of moments, maximum likelihood, and restricted maximum likelihood. 

For convenience, the following points are summarized in Table 1. 
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Table 1. Summary comparisons of the method of moments (MM), maximum likelihood (ML), re- 
stricted maximum likelihood (REML), and composite likelihood (CL) approaches to semi- 
variogram estimation 

Semivariogram estimation 
Pros and cons MM ML REML CL 

Method does not require V V 
strong dist. assumptions 

Optimization does not V V 
require matrix inversion 

Method does not require V V V 
distance binning 

Objective fitting of V V V 
geometric anisotropy 

Similar to method of moments and in contrast to maximum likelihood and restricted 
maximum likelihood: 

* The composite likelihood approach does not require the correct specification of 
either the joint or marginal distribution of the process. Only the model for the 
semivariogram needs to be specified correctly, a form of consistency robustness. 

* The composite likelihood approach is computationally substantially simpler, re- 
quiring no matrix inversions. 

Similar to maximum likelihood and restricted maximum likelihood and in contrast 
to method of moments: 

* The composite likelihood approach does not require specification of distance lags 
and lag tolerances. 

* The composite likelihood approach provides an objective procedure for estima- 
tion in the presence of geometric anisotropy, eliminating the need to determine 
the rotation and stretching parameters, which is commonly based on graphical 
procedures. 

In addition, based on the results in previous section, it can be seen that composite 
likelihood behaves in a manner similar to a likelihood function. One can use CL ratio to 
test for the presence of geometric anisotropy. Let -y (IIA(si - sj) jj; 4, A(O, A)) represent 
a chosen semivariogram model where the matrix of geometric anisotropy is parameterized 
as 

A (, A A0i CosO0 sinO 1 
0 1 [-sinO cosO J 

0 and A represent the rotation and stretching parameters, respectively. Note that isotropic 
spatial dependence corresponds to A = 1 and is invariant with respect to rotation, so 
take 0 = 0 in such situations. Let H1 hypothesize isotropic spatial dependence, charac- 
terized by -y (11 A(si - sj) 11; 1, A(O, 1)), and let H2 hypothesize geometric anisotropy, 
characterized by -y (IIA(si- Si) II; ?2, A(0, A)). The vectors fr1 and O2 represent the 
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same parameters as ?, but under the different models hypothesized by H1 and H2. Now 

consider the composite likelihood ratio 

CL1 (I1, A(O,1); V) 
A=- 

CL2 (2, A(0, A); V 

where V represents the vector of contrasts vij = (Z(si - Z(sj)), ?1 and 02 represent the 

CL estimates obtained by minimizing (4.2) and (4.3), respectively, and CLI (.) and CL2 (.) 

denote the corresponding minimized values. The sampling distribution of -2 log A under 

HI can be obtained with parametric bootstrap (Dennis and Taper 1994) and used to test 
for the presence of geometric anisotropy. 

Furthermore, the composite likelihood approach can be made robust against out- 

liers and influential observations using ideas presented in Lindsay (1994). It can also be 

adapted to account for biases incurred by preferential type sampling strategies, such as 

the size-biased designs discussed in Patil and Rao (1978). Extending the use of composite 
likelihood semivariogram estimation to these areas and other possible applications are 

currently being developed. It is also easy to observe that the composite likelihood proce- 

dure can be extended to discrete data situations (e.g., Heagerty and Lele 1998) provided 

var(Z(si) - Z(sj)) can be properly specified. 

5. PREDICTIVE PERFORMANCE COMPARISONS 

Here we use the ordinary kriging model to study the predictive performance of 

composite likelihood semivariogram estimation using isotropic and geometric anisotropic 
simulated data. The exponential semivariogram model, parameterized as 

7(Si, sj; A(O, A), ,2, p) - c2 (1 - pIIA(si-sj) ,l) (5.1) 

was used as the true model of spatial dependence. The matrix of geometric anisotropy 

was parameterized as 

A I [ CosO0 sinO 1 
A = [ o 1 ] [-sinO cosO (5.2) 

Simulation experiments were conducted using an 8 x 8 regular grid with 1 unit inter- 

val spacing and two 15 x 15 grids obtained by halving the grid spacings to .5 (infill 
asymptotics) and doubling the grid spacing to 2 (increasing domain asymptotics). Let 

Si = {Sl,...,Snl} 

represent these locations, where nl = 64 for the 8 x 8 grid and nl = 225 for the 
15 x 15 grids. Data were simulated at these locations using the LU decomposition of the 

covariance matrix (Ripley 1987) under different variogram parameter combinations. We 
considered geometric anisotropy parameters 0 = (O0, 30?, 60?) and A = (1, 2, 3). Note 
that isotropic spatial dependence corresponds to A = 1 and is invariant with respect to 
rotation. The parameter p was varied to represent relatively weak, moderate, and strong 
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levels of spatial dependence. Because p is spatial scale dependent, this was accomplished 
by setting the distance (effective range) at which values become approximately uncor- 
related to be .20, .50, and .80 times the maximum distance over the domain SI. Thus, 
p = (.22, .54, .68) for the 8 x 8 grid and 15 x 15 infill grid, and p = (.47, .74, .83) 
for the 15 x 15 increasing domain grid. The variance parameter cr2 was fixed at 1. 

After specifying the set of sample locations SI, an additional set of 25 locations 
were randomly selected throughout the domain. These locations, denoted by the set 

S2 = {Snl+l,* Sn1+25. 

represent locations for which kriged predictions were generated. The simulated values at 
these locations, however, played no role in estimating semivariogram parameters. They 
were taken to represent "true" values used for evaluating predictive performance. 

Let Z1 = {z(sI), ., z(snI)} and Z2 = {Z(SnI+1), * * *, Z(Snl+25)} represent the 
simulated data at the sampled SI and unsampled S2 locations, respectively. Semi- 
variogram parameters were estimated by minimizing the corresponding negative log- 
composite likelihood, omitting the 0 and A parameters for isotropic cases. In addition for 
isotropic data, parameters were also estimated via a more traditional approach by using 
the WLS procedure of Cressie (1985) to fit the exponential semivariogram model (5.1) 
by the method of moments estimator given in (3.1). No attempt was made to automate 
a procedure based on method of moments for the geometric anisotropic data. Also, note 
Zimmerman and Zimmerman (1991) concluded that, for purposes of kriging isotropic 
Gaussian data, little is sacrificed by using the simpler, more popular WLS MM approach 
to semivariogram estimation as opposed to ML or REML. Thus, in interest of brevity, we 
decided not to include predictions based on ML or REML estimates in our simulations. 

Root mean squared error (RMSEP) in predictions 

RMSEP 
= {2 

E7 

(Z 
- 

1/2 
where z* (.) represents the ordinary kriged prediction based on an estimated variogram, 
were generated for each simulated analysis. We also considered a RMSEP value based on 
the specified variogram parameters used to simulate the data. Averaging these RMSEP's 
over many simulations provides a Monte Carlo estimate of the true prediction error at 

S2. 
The following algorithm summarizes the simulations. 

Step 1. Select a grid type Si and prediction locations S2, geometric anisotropy parameters 
0 and A, and spatial dependence level p (weak, moderate, strong). 

Step 2. Simulate the data sets ZI and Z2. 
Step 3. Based on Z1 estimate the semivariogram parameters using the composite like- 

lihood approach. For isotropic data (A = 1), also estimate semivariogram parameters 
using the traditional WLS MM approach. 

Step 4. Calculate RMSEP statistics based on the composite likelihood estimated semi- 
variogram, on a semivariogram estimated using the traditional WLS approach for 
isotropic cases, and a semivariogram using the parameter values specified in Step 1. 
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Weak Moderate Strong 
I I II I I I I I I ! I I 

15 x 15 , o ........... . ...........0 ......... . .........-..............--o......-.... 

I I I I I I I 1- T I I 

0.98 1.00 1.02 0.98 1.00 1.02 0.98 1.00 1.02 

Figure 1. Boxplot distributional summaries for the isotropic simulations displayed according to level of spatial 
dependence (weak, moderate, strong) and grid type (8x 8, 15x 15a infill, 15x 15b increasing domain). The 
consistency of CL estimators is already evident from the reduction in variance for the increasing domain case. 

For isotropic spatial dependence, generate a prediction efficiency ratio by dividing the 
RMSEP statistics from the traditional WLS MM approach to that from the composite 
likelihood approach. 

Step 5. Repeat Steps 2 through 4 500 times for each grid type, anisotropy, and dependence 
level combination specified in Step 1. 

All computations were performed with S-plus (MathSoft Inc. 1995). For the isotropic 
cases, functions from S-plus Spatial Stats (Kalunzy, Vega, Cardoso, and Shelly 1996) 
were used for method of moments semivariogram estimation combined with SAS proce- 
dure NLIN (SAS Institute 1990) for the WLS fit of (5.1). Composite likelihood estimates 
were based on the nonlinear multivariable minimization routine (nlminb) supplied by 
S-plus. Parameter starting values were set at p = .1, c2 = var(Zi), 0 = 0?, and A = 1. 
To avoid numerical difficulties, we restricted o2 > .01 and .01 < p < .99. 

Figure 1 displays distributional summaries for the prediction efficiency ratios from 
the various isotropy simulations. All these distributions are concentrated about 1.00, 
indicating practically no difference in prediction between the composite likelihood and 
WLS MM semivariogram estimation. This conjecture is demonstrated analytically in Lele 
(1997) and, based on these simulations, appears to be supported more with the larger 
sample size and stronger levels of spatial dependence. The distributions for the 8 x 8 grid 
were trimmed up to 10% so the graphical comparisons across the different grids could 
be made on the same scale without loss of visual appeal. 

Table 2 contains the results for the geometric anisotropy simulations. The values 
listed in the table are the estimated composite likelihood prediction errors divided by the 
estimated true prediction errors. These prediction errors were obtained by averaging the 
RMSEP values over each respective set of 500 simulations. The composite likelihood 
prediction error was always within 10% of the true prediction error for the 8 x 8 grid. 
There does not appear to be any noticeable effect due to the level of spatial dependence, 
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Table 2. Estimated composite likelihood prediction errors relative to the estimated true prediction 
errors for simulations from the 8x 8 grid, 15x 15a infill grid, and 15x 15b increasing 
domain grid. All values have been rounded to two decimal place accuracy. 

Geometric anisotropy 

Grid Spatial 0_=0_ 09=30 _ 0_=60_ 

Type Dependence A=2 A=3 A=2 A=3 A=2 A=3 

Weak 1.05 1.06 1.06 1.06 1.05 1.05 
8x8 Moderate 1.07 1.09 1.06 1.08 1.05 1.09 

Strong 1.07 1.10 1.05 1.07 1.06 1.09 

Weak 1.02 1.05 1.02 1.02 1.04 1.05 
15x 15a Moderate 1.03 1.03 1.03 1.03 1.04 1.12 

Strong 1.04 1.04 1.05 1.05 1.05 1.11 

Weak 1.03 1.05 1.02 1.02 1.04 1.08 
15x 15b Moderate 1.03 1.04 1.03 1.04 1.05 1.10 

Strong 1.04 1.04 1.04 1.04 1.05 1.12 

and larger differences seem to occur with more severe anisotropy (A = 3). The relative 
difference in prediction errors for the most part drops to within 5% for the 15 x 15 
infill and 15 x 15 increasing domain grids. Some exceptions for the 15 x 15 grids were 
observed for the 0 = 600, A = 3 simulations. 

6. A RE-ANALYSIS OF IRON-ORE RESIDUALS 

Previously, Cressie (1985, 1986) analyzed % Fe2O3 measurements collected from 
an ore deposit in Australia. The goal of the analysis was prediction of % Fe2O3 levels 
at unsampled locations within the deposit. Two key components in applying kriging to 
spatial data are the characterizations of trend and dependence. For the iron-ore data, 
Cressie (1986) used median polish to estimate the trend, revealing spatially dependent 
residuals. The original data can be found in Cressie (1986). The detrended iron-ore 
residuals are shown here in Figure 2. Cressie (1986) determined that these iron-ore 
residuals exhibited a geometric anisotropy which was accounted for by doubling the 
scale in the north-south direction and modeled using a spherical semivariogram. 

Let {z(sI ), . . ., z(s 112) } represent the detrended iron ore residuals shown in Figure 
2. We considered the following exponential semivariogram model 

w h (sc , si; Aw(i , A), co, po2, p) = Co + (i2 -pIIA(Si-Sj)1I) (6.1) 

which is consistent with that proposed in Zimmerman and Zimmerman (1991), who also 
used the residuals in Figure 2 to demonstrate common variogram estimation procedures 
available at that time. The matrix of geometric anisotropy was parameterized as in (5.2). 
For pragmatic reasons we rescaled the original data locations to a 1 meter x 1 meter 

grid so that possible strong levels of spatial dependence were within our working pa- 
rameter space p E [.01, .99]. It is unclear whether previous authors analyzing this same 
data performed similar rescaling. Consequently, since p is spatial scale dependent, the 
actual CL estimated value of p can not be accurately compared to estimates obtained 
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2.14 -3.90 1.29 0.73 -2.60 0.62 -0.62 -6.46 

N 0.40 0.66 1.45 -1.01 -0.04 1.48 0.04 -1.50 -8.28 -7.45 

0.58 5.04 -0.27 4.17 0.04 4.26 1.72 1.78 0.00 -2.47 -0.10 -0.80 -1.62 -3.02 -5.34 

-0.18 2.61 -1.42 2.52 1.99 -3.99 3.87 1.63 2.15 0.18 3.05 -2.15 -1.28 -0.18 

0.18 -0.66 -0.67 -5.73 1.54 0.66 -4.28 -1.12 0.00 -4.57 1.40 0.00 1.28 0.18 

-1.43 -2.48 -0;78 -2.22 0.27 1.71 -3.42 -6.90 -0.04 1.12 2.04 0.07 2.64 1.24 2.82 -2.08 0.00 

1.43 2.48 -1.52 2.84 -4.37 -0.73 0.74 -4.74 -7.38 1.78 -1.60 0.33 0.00 0.00 -5.02 1.88 5.26 

-0.90 2.66 1.05 -3.21 -0.04 -0.62 0.04 -1.40 -0.18 1.15 -1.98 4.32 5.90 5.60 

2.60 -0.07 0.00 

Figure 2. Iron-ore median polished residuals. Grid spacings are 50 meters by 50 meters. 

from the other studies. However, and more importantly, the fitted semivariograms and 
corresponding predictive performances can be accurately compared. 

Table 3 contains composite likelihood parameter estimates obtained by minimizing 
(4.3) using -yQ) as defined above in (6.1). Also included are estimates using various other 
procedures obtained from Zimmerman and Zimmerman (1991) who, following the advice 
in Cressie (1986), predetermined that A(O, A) = A(900, 2). The composite likelihood 
approach yielded estimates of geometric anisotropy (0 = 89.9940, A = 2.270) similar 
to those found in Cressie (1986). To graphically gauge the fit of these semivariogram 
estimates, we display in Figure 3 the fitted semivariogram models based on CL, WLS 
MM, and REML. Each estimated isotropic semivariogram is plotted through the moment 
estimator (3.1) after first deforming the sampling space by 0 and A to account for the 
geometric anisotropy. Note the composite likelihood fitted semivariogram model is shown 
separately since the plotted moment estimator differs slightly from that for the WLS MM 
and REML approachs due to the different estimates of geometric anisotropy. 

Predictive performance of the various estimated semivariogram models were evalu- 

Table 3. Composite likelihood (CL) semivariogram parameter estimates for the iron-ore residuals. 
Also included are estimates using other procedures obtained from Zimmerman and Zimmer- 
man (1991); WLS with the moment semivariogram estimator, WLS with the robust semivar- 
iogram estimator of Cressie (1985), MLE, REML, and generalized MIVQ of Kitanidis (1983). 
The 0 and A parameters for these other procedures were estimated a priori and fixed at 
900 and 2, respectively. 

Parameter estimates 

Method p ac2 Co 0 A 

WLS MME .703 3.618 4.888 900 2 
WLS Robust .770 2.783 5.098 900 2 
MLE .700 3.090 5.147 900 2 
REML .895 6.382 5.336 900 2 
GMIVQ .866 3.734 5.630 900 2 
CL A(9,A) .571 3.801 4.193 89.9940 2.270 
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ated using the cross-validation statistics 

(1 1121/ 

112Vz2(i)- 
Z i (si))/oTi (Si)}2 

112 } / 

CV1 = ~~1 Zi E Z(Si) _ Z* i (Si)) /0f_i (Si) }2 

=11 

CV2 = { ~~~112 1 (iS)ZiS)/2fiS)2 

CV3 j j (zi (Si)-(z) Si2- 

10 (a) 

8 0 

y 6 

4 

2- 
\LS MME 

..- ; - REML 

10- (b) ..___ 

81 1 

10 0~~~~~~~~~~~~~ 
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0~ ~ ~~~ o 6 

0 2 4 6 8 10 

Distance 

Figure 3. Fitted semivariogram models for the iron-ore residuals from (a) WLS with MME and REML, and (b) 
composite likelihood using A(9, A). The semivariogram estimates were based on the moment estimator after 

first deforming the sampling space according to 0 and A in Table 2. 
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Table 4. Cross-validation kriging results for the iron-ore residuals using the semivariogram estimates 
listed in Table 2. Included are the results from the estimated spherical model suggested in 
Cressie (1986). Also listed is the negative log-composite likelihood (CL) evaluated at the 
corresponding set of parameter estimates. A value using estimates from Cressie (1986) is 
not applicable (NA) for comparison since a different semivariogram model was used. 

Source CL CV1 CV2 CV3 

Cressie NA -.000659 1.009542 2.596724 
WLS MME 18979.17 -.000507 1.004833 2.632716 
WLS Robust 18989.40 -.000499 1.033206 2.625841 
MLE 18975.39 -.000448 1.001081 2.633959 
REML 19045.87 -.000704 .999227 2.603348 
GMIVQ 18987.39 -.000556 1.001254 2.615581 
CL A(9, A) 18973.45 -.000348 1.015207 2.656975 

where z* i(si) and 2 i denotes, respectively, the kriged prediction and kriged prediction 
variance at location si using the iron-ore residuals with observation z(si) deleted. The 
results are listed in Table 4. By construction CV1 and CV2 should be close to 0 and 
1, respectively, and small values of CV3 are preferred. Performance of the composite 
likelihood approach is similar to those based on the other methods. Also listed in Table 4 
are the negative log-composite likelihood (CL) values obtained by evaluating (4.3) using 
the model in (6.1) and corresponding parameter estimates in Table 2. Not surprisingly, 
the composite likelihood parameter estimates obtained by minimizing (4.3) yielded the 
smallest CL value. A spherical semivariogram model was used in Cressie (1986) and 
thus is not applicable for comparison with the other CL values based on the exponential 
semivariogram. 

Remark 2. Similar to other semivariogram model fitting routines, the composite 
likelihood approach exhibited some sensitivity to starting values when used with the iron- 
ore residuals. When parameter estimates vary with starting values, one can use the moment 
semivariogram estimator (3.1), after proper deformation, along with the estimated model 
to gauge the fit. Cross-validation results can also be used to help evaluate performance. 
These techniques were applied with various sets of starting values when analyzing the iron- 
ore residuals. Although semivariogram parameter estimates varied with starting values, 
the cross-validation prediction statistics were reasonably stable. Alternatively, although 
not impelmented here, the minimax approach suggested in Li (1996, 1997) may provide a 
way to choose a particular solution. 

7. DISCUSSION 

This article presented the composite likelihood approach to semivariogram estima- 
tion as an approximate likelihood based method combining many positive features of 
existing techniques based on method of moments, maximum likelihood, and restricted 
maximum likelihood. The main advantages of composite likelihood semivariogram esti- 
mation are that the procedure is objective, eliminating the distance or distance/direction 
binning often required for method of moments estimation in the isotropic and geomet- 
ric anisotropic situations; it is computationally feasible, requiring no matrix inversions; 
and the procedure is statistically sensible, leading to consistent estimators without strong 
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distributional assumptions. Predictions based on composite likelihood estimators worked 
very well under the isotropy and geometric anisotropy conditions we considered. The 
composite likelihood approach is also very flexible. Extensions to geometric anisotropy 
in three dimensions is straightforward, whereas the graphical procedures based on the 
moment estimator become even more subjective and questionable. In addition to the re- 
marks in Section 4.3, the application of composite likelihood to universal and intrinsic 
random function kriging (Cressie 1991) and Cox point processes (Cox and Isham 1980) 
are currently being explored. 
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