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Abstract: We use kriging to predict the mean and variance of a response y(x) when the
input factors x are subject to random variability. Uncertainty on these predictions is obtained
by considering fluctuations along one trajectory y of the process due to fluctuations of
x, and then averaging over the possible trajectories, conditionally on input-output data.
Possible applications include robust design engineering, where the data that are obtained
from prototypes in laboratory experiments, or from simulation codes, are used to construct
models for the responses of interest to the designer, but mass-production involves variability
of input factors around the specifications the designer will indicate.
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1. INTRODUCTION

Assume that, based on controlled, say laboratory, or
prototype, experiments, we construct a model of the
response y(x) of a system to input factors x ∈
IRd. Several objectives may be considered, such as y
should be maximized, y should be set equal to some
target T , a constraint y ≤ c should be satisfied, etc.,
that is, y may correspond either to an objective or a
constraint in a multi-objective optimization problem,
see for instance (Bates et al. 1999).

We consider the situation where the prediction η(x)
of y(x) at some unobserved x is obtained by krig-
ing (Krige 1951, Matheron 1963). The approach is
particularly attractive for computer experiments, see,
e.g., (Sacks et al. 1989a, Sacks et al. 1989b, Welch
et al. 1992), due to its flexibility and the possibil-
ity to predict model accuracy (or rather, inaccuracy)
from deterministic responses: roughly, the unknown
response y(x) is described as a mean value plus the

1 This work is part of the European project ‘TITOSIM’ (TIme TO
market reduction via Statistical Information Management), GRD1-
2000-25724

trajectory of a zero-mean stationary process, and sta-
tistical inference is made from observations of the
response at given (design) points x1, . . . ,xN . The
second-order characteristics of the process are esti-
mated from the data Y = [y(x1), . . . , y(xN )], and
maximum-likelihood can be used when the process is
Gaussian and its covariance is suitably parameterized.
The best linear unbiased predictor for the value of
y(x) at new inputs x is then constructed from Y,
together with the variance of y(x) due to model un-
certainty. Classical extensions concern the case where
observation errors are present (which corresponds to
physical, as opposed to computer, experiments) and
the mean value of the response is parameterized, with
possibly a Bayesian prior on these parameters. We
refer to the papers mentioned above and to (Stein
1999) for a more accurate introduction. The choice
of appropriate design points (x1, . . . ,xn) has received
little attention, see (Sacks and Schiller 1988, Shewry
and Wynn 1988), but Latin Hypercube designs are
generally adopted for their suitable space-filling prop-
erty (it is a most attractive feature of kriging to be
able to generate fairly accurate models from very



few data, see (Costa et al. 2000) for an application
in signal processing). In robust design problems, see
below, this is a definite advantage over the so-called
Taguchi method, see (Vuchkov and Boyadjieva 2001).
When the design points are generated sequentially,
the method to be used generally depends on the fi-
nal objective of the model, which may for instance
correspond to the optimization of the response, see
(Schonlau et al. 1998, Bates and Pronzato 2001).

In this paper, we focuss our attention on the following
robust design problem: in mass production, x cannot
be chosen accurately and must be considered as a
random variable 2 . We shall assume that its second-
order characteristics are known (for instance, it may be
normal with known mean and variance). This induces
variability on y(x), which we want to predict, again
in terms of mean and variance. Such predictions can
then be taken into account, for instance by choosing
the mean value for x such that the mean value of y(x)
is maximized and the variability of y(x) is minimized.
More complex situations can of course be consid-
ered, leading to various multi-objective optimization
problems. The crucial point here is that, starting from
a single response (which may be an objective or a
constraint in the original problem), we get two re-
sponses due to the variability of x in mass production:
the mean and the variance of y(x). Also, since the
model is constructed from a finite data sample Y,
both responses are uncertain, and their variances are
of interest.

Propagation of errors is standard for classical models,
such as polynomials, see (Vuchkov and Boyadjieva
2001). It is the aim of the paper to show that prop-
agation of errors is also feasible when the model is
obtained by kriging. The predictions of the mean and
variance of y(x) when x varies are constructed in
Section 2. Uncertainty due to estimation from a finite
data sample is considered in Section 3. Illustrative
examples are presented in Section 4. Throughout the
paper we restrict our attention to the case of computer
experiments, the extension to physical experiments
where observation errors are present does not raise
particular difficulties (only the covariance structure
must be modified, see, e.g., Costa et al. (2000)).

2. BAYESIAN KRIGING FOR PREDICTING
MEAN AND VARIANCE

We remind the construction of the predictor η(x),
using a Bayesian approach (Bayesian kriging), and
derive the joint posterior distribution of two responses
y(xa), y(xb). This is used later on to construct predic-
tions that take the variability of x into account.

2 In practise, it happens that some of the factors can still be
controlled during mass production, however, this does not modify
the methodology presented below.

2.1 Bayesian kriging

We model the observations by Yi = y(xi) =
β>r(xi) + Z(xi) with Zi = Z(xi) a zero mean
second order stationary stochastic process and β>r(x)
the deterministic part (which corresponds to universal
kriging). The realizations Zi, Zj are correlated, and
we define

V (Zi, Zj) = EZ{Z(xi)Z(xj)} . (1)

Since the process is assumed to be stationary, we write

V (Zi, Zj) = σ2

zC(xi − xj) .

An usual model for the covariance C(·) is

C(z) = C(θ, z) = exp

(

−
d
∑

i=1

θiz
2

i

)

, (2)

which gives a process Z(x) infinitely mean square
differentiable, see, e.g., (Stein 1999). Other models for
the covariance (Matérn class) yield exactly one, two or
m times mean square differentiability 3 .

We assume that the parameters β have a normal prior
N (µ, σ2Ω), and that the process Z is Gaussian and
independent of β. We denote by Y the N observations
Y1, Y2, . . . , YN and V, C the matrices defined by
[V]i,j = V (Zi, Zj), [C]i,j = C(xi − xj), i, j =
1, . . . , N .

The posterior distribution of β (conditional to Y) is
normal N (β̄,W), with

W = [R>V−1R + (σ2Ω)−1]−1 ,

β̄ = W[R>V−1Y + (σ2Ω)−1)µ] ,

where the i-th row of the matrix R equals r>(xi).

We want to predict two responses ya = y(xa), yb =
y(xb). The joint distribution π(Y, ya, yb|β) of Y, ya,
and yb conditional to β is normal N (β̃, Ṽ), with

β̃ =

(

R

Rab

)

β , Ṽ = σ2

(

C Γ

Γ> Σ

)

where

Rab =

(

r>(xa)

r>(xa)

)

Σ1,1 = Σ2,2 = 1, Σ1,2 = C(xa −xb), Γi,1 = C(xi −
xa), and Γi,2 = C(xi − xb), i = 1, . . . , N .

From this we can compute the conditional

π(ya, yb|β,Y) =
π(Y, ya, yb|β)

π(Y|β)

which is normal N (ỹ, σ2

zH) with

3 Note, however, that the analytic properties of the sample function,
that is of individual trajectories, are not necessarily related to mean
square properties. This is considered in (Cramér and Leadbetter
1967), Chapter 5.



ỹ(β) = Γ>C−1Y + U>β ,

H = Σ − Γ>C−1Γ ,

where
U> = [Rab − Γ>C−1R] .

The joint π(ya, yb|Y) is finally obtained by

π(ya, yb|Y) =

∫

π(ya, yb|β,Y)π(β|Y)dβ ,

which gives after some calculation the normal N (ηab,
σ2

zH + U>WU), with ηab = ỹ(β̄).

We return to non-Bayesian kriging by letting σ2 tend
to infinity (that is, using a non informative prior for β).
This gives

(ya, yb) ∼ N (ηab, σ
2

zP)

with

ηab = {Γ>C−1 + U>[R>C−1R]−1[R>C−1]}Y ,

P = Σ − Γ>C−1Γ + U>[R>C−1R]−1U .

Note that the values of σ2

z and the parameters θ that
appear in C(z), see e.g. (2), can be estimated from the
data, for instance by maximum likelihood when the
process is assumed to be Gaussian.

In what follows we shall only consider the case of
simple kriging, where β = β0 ∈ IR, R = 1N (the
N dimensional vector with all components equal to
1) and Rab = 12. Other situations could be treated
similarly. This gives

P1,1 = 1 − c>a C−1ca +
(1 − c>a γ)2

S
,

P2,2 = 1 − c>b C−1cb +
(1 − c>b γ)2

S
,

P1,2 = C(xa − xb) − c>a C−1cb

+
(1 − c>a γ)(1 − c>b γ)

S
,

where ca = (C(xa − x1), . . . , C(xa − xN ))>, cb =
(C(xb − x1), . . . , C(xb − xN ))>, γ = C−11N and
S =

∑N

i,j=1
[C−1]i,j . Note that P1,1 = P1,2 = 0

if xa = xi, the inputs used for the observation Yi,
i = 1, . . . , N .

When one is only interested into prediction at some
particular point x, only the first component of ηab has
to be considered, which corresponds to η(x), and the
(1, 1) component of P gives the uncertainty about this
prediction.

2.2 Models for mean and variance

We consider now x as a random variable, with Ex{·}
the expectation with respect to x, and denote

x̄ = Ex{x} , Σx = Ex{(x − x̄)(x − x̄)>} .

In a robust design problem, both x̄ and Σx may depend
on factors that have to be settled by the designer.

From the results above, η(x) can be considered as the
mean of y(x) conditional on Y, under a noninforma-
tive prior for β, that is,

Ey{y(x)|Y} = η(x) .

A naive approach for taking variability of x into
account is to use a Taylor series development of η(x)
at x̄:

η(x) = η(x̄) + (x − x̄)>
∂η(x)

∂x |x̄

+
1

2
(x − x̄)>

∂2η(x)

∂x∂x> |x̄
(x − x̄) + HOT

which gives

Ex{η(x)} = η(x̄) +
1

2
trace

[

∂2η(x)

∂x∂x> |x̄
Σx

]

+ HOT

and, denoting Varx the variance with respect to x,

Varx{η(x)} =
∂η(x)

∂x> |x̄
Σx

∂η(x)

∂x |x̄
+ HOT

However, a more careful analysis shows that this ap-
proach is inexact. Moreover, it does not permit to take
uncertainty on the prediction into account, that is, to
derive variance models for Ex{η(x)} and Varx{η(x)},
as it will be done in Section 3.

In fact, when x fluctuates, the true response, that is,
the trajectory, remains the same for different values of
x. We assume that the fourth derivative of C(·) at zero
exists and is finite and consider a process

y2(x) = y(x̄) + (x − x̄)>G(x̄)

+
1

2
(x − x̄)>H(x̄)(x − x̄) ,

with suitable means and covariances for the processes
G(·) and H(·), such that

yh,h′,h′′,h′′′(x) = y(x̄)

+
∑

i

(x − x̄)i

y(x̄ + hiei) − y(x̄)

hi

+
1

2

∑

i,j

(x − x̄)i(x − x̄)j

1

h′′′
j

[

y(x̄ + h′
iei) − y(x̄)

h′
i

−
y(x̄ + h′′

i ei − h′′′
j ej) − y(x̄ − h′′′

j ej)

h′′
i

]

tends to y2(x) in quadratic mean when h, h′, h′′, h′′′ →
0:

lim
h,h′,h′′,h′′′→0

Ey{[y2(x) − yh,h′,h′′,h′′′(x)]2} = 0 ,

see (Stein 1999), Chapter 2. This gives

Ex{y2(x)} = y(x̄) +
1

2
trace [H(x̄)Σx]



and

Varx{y2(x)} = G>(x̄)ΣxG(x̄) + HOT

where the higher order terms HOT will be neglected.
Next step is to consider expectation with respect to the
processes, that is, with respect to possible trajectories,
conditional on the observations. We get

Ey{Ex{y2(x)}|Y}

= η(x̄) +
1

2
trace [Ey{H(x̄)|Y}Σx]

= η(x̄) +
1

2
trace

[

∂2η(x)

∂x∂x> |x̄
Σx

]

(3)

for the prediction of the mean response over x. Note
that it is larger or smaller than the prediction at the
mean value x̄ depending on the sign of the second
order derivative of the predictor η(·) at this point.

For the expected variance, neglecting terms of order in
x higher than two, we consider

Ey{Varx{yh,h′(x)}|Y} =
∑

i,j

[Σx]i,j Ey

{

[y(x̄ + hiei) − y(x̄)]

hi

×
[y(x̄ + h′

jej) − y(x̄)]

h′
j

}

.

Using the results of Section 2.1 on the joint posterior
distribution of [y(x̄+hiei), y(x̄)], [y(x̄+h′

jej), y(x̄)]
and [y(x̄ + hiei), y(x̄ + h′

jej)], we get

lim
h→0,h′→0

Ey

{

[y(x̄ + hiei) − y(x̄)]

hi

×
[y(x̄ + h′

jej) − y(x̄)]

h′
j

}

=

∂η(x)

∂xi |x̄

∂η(x)

∂xj |x̄

− σ2

z

∂C(z)

∂zi∂zj |0

−σ2

z

∂c>(z)

∂zi |x̄

(

C−1 −
γγ>

S

)

∂c(z)

∂zj |x̄

,

where c(x) = (C(x − x1), . . . , C(x − xN ))>.

This gives the following prediction for the variance:

Ey{Varx{y2(x)}|Y} =
∂η(x)

∂x> |x̄
Σx

∂η(x)

∂x |x̄

−σ2

z trace
[

∂2C(z)

∂z∂z> |0
Σx

]

(4)

−σ2

z trace
[

∂c>(z)

∂z |x̄

(

C−1 −
γγ>

S

)

∂c(z)

∂z> |x̄
Σx

]

.

It tends to the value Varx{η(x)} ' ∂η(x)/∂x>
|x̄Σx

∂η(x)/∂x|x̄ of the prediction of the variance for
the deterministic model when σz tends to zero,
and, of course, it tends to zero when Σx tends to
zero. Note that the second term is usually positive,

whereas the third one is negative, so that situations
may exist where Ey{Varx{y2(x)}|Y} is smaller than
Varx{η(x)}.

3. MODEL UNCERTAINTY

Uncertainty on the true response due to the fact that
the data sample is finite induces uncertainty in the
predictions (3) and (4). Using the same approach as in
Section 2, we obtain after some (lengthy) calculations

Vary{Ex{y2(x)}|Y} =

σ2

z

[

1 − c>(x̄)C−1c(x̄) +
(1 − c>(x̄)γ)2

S

]

+
σ2

z

4

d
∑

i,j,k,l=1

[Σx]i,j [Σx]k,l

[

∂4C(z)

∂zi∂zj∂zk∂zl |0

−
∂2c>(z)

∂zi∂zj |x̄

(

C−1 −
γγ>

S

)

∂2c(z)

∂zk∂zk |x̄

]

+σ2

z

d
∑

i,j=1

[Σx]i,j

[

∂2C(z)

∂zi∂zj |0

−

(

c>(x̄)C−1 +
1 − c>(x̄)γ

S
γ>

)

∂2c(z)

∂zi∂zj |x̄

]

for the variance of the mean response. Note that it
tends to the variance of y(x̄) when Σx tends to zero.
Also, the second correcting term is negligible with
respect to the third when Σx is small.

Similarly, we get for the variance of the variance

Vary{Varx{y(x)}|Y} = 2σ4

z trace
({

Σx

[

∂2C(z)

∂z∂z> |0

+
∂c>(z)

∂z |x̄

(

C−1 −
γγ>

S

)

∂c(z)

∂z> |x̄

]}2
)

− 4σ2

z

∂η(x)

∂x> |x̄
Σx

[

∂2C(z)

∂z∂z> |0
+

∂c>(z)

∂z |x̄

×

(

C−1 −
γγ>

S

)

∂c(z)

∂z> |x̄

]

Σx

∂η(x)

∂x |x̄
.

Notice that we ignored the fact that in practise the
parameters θ and σ2

z in the covariance model, (2)
for instance, are estimated values. Taking uncertainty
on these estimates into account in the evaluation of
predictions is a challenging but difficult task.

4. EXAMPLES

Consider a one-dimensional process (x ∈ IR), with
zero mean and covariance exp(−0.2z2) (σz = 1). We
observe the responses at the design points 0, 2, 3, 4, 7
and 10. Figure 1 presents a typical realization of the
process (full line), with observed values Y indicated
by stars, and the associated predicted response (dashed
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Fig. 1. Typical realization of the process (full line), ob-
servations (stars), prediction (dashed lines) and
2σ confidence bounds (dotted lines)
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Fig. 2. Prediction η(x̄) (dashed line), observations
(stars), prediction Ey{Ex{y2(x)}|Y} (full line)
and 2σ confidence bounds (dash-dotted lines)

line) together with 2σ confidence bounds around this
prediction (dotted lines). Notice how the uncertainty
increases with the distance to observation points.

Assume now that x is normally distributed N (x̄, 0.01).

Figure 2 presents the evolution of the prediction η(x̄)
at x̄ (dashed line, as in Figure 1) and the predic-
tion of the mean response Ey{Ex{y2(x)}|Y} (full
line), together with 2σ confidence bounds obtained
from Vary{Ex{y2(x)}|Y} (dash-dotted lines), when
x̄ varies from 0 to 15.

A first observation is that averaging with respect to x
smoothes the prediction, compare Ey{Ex{y2(x)}|Y}
to η(x̄). Next, there is no clear relation between the
distance to observation points and uncertainty of the
prediction of the mean response: for instance, the un-
certainty is close to a local maximum at the observed
point x = 2, but close to local minimum at x = 3.

Figure 3 gives the evolution of the prediction of
the variance Ey{Varx{y2(x)}|Y} (full line) together
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Fig. 3. Prediction Ey{Varx{y2(x)}|Y} (full line) and
2σ confidence bounds (dash-dotted lines)

with 2σ confidence bounds obtained from Vary{Varx{
y2(x)}|Y} (dash-dotted lines) 4 .

Observe that the prediction of the variance tends to
be small when η(x) is close to a stationary point,
and to be large when the slope of η(x) is large. The
uncertainty on the variance tends to be small when the
variance itself is small. If, for instance, the purpose
were to maximize the expected response and minimize
the variance, the point x = 1 would be a good
compromise.
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