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JACK KNIFING FOR SEMIVARIOGRAM VALIDATION (1)
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ABSTRACT

The semivariogram function fitting is the most important aspect of geostatistics and because of this the 
model chosen must be validated. Jack knifing may be one the most efficient ways for this validation purpose. The 
objective of this study was to show the use of the jack knifing technique to validate geostatistical hypothesis and 
semivariogram models. For that purpose, topographical heights data obtained from six distinct field scales and 
sampling densities were analyzed. Because the topographical data showed very strong trend for all fields as it was 
verified by the absence of a sill in the experimental semivariograms, the trend was removed with a trend surface 
fitted by minimum square deviation. Semivariogram models were fitted with different techniques and the results 
of the jack knifing with them were compared. The jack knifing parameters analyzed were the intercept, slope and 
correlation coefficient between measured and estimated values, and the mean and variance of the errors calculated 
by the difference between measured and estimated values, divided by the square root of the estimation variances. 
The ideal numbers of neighbors used in each estimation was also studied using the jack knifing procedure. The jack 
knifing results were useful in the judgment of the adequate models fitted independent of the scale and sampling 
densities. It was concluded that the manual fitted semivariogram models produced better jack knifing parameters 
because the user has the freedom to choose a better fit in distinct regions of the semivariogram. 
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RESUMO

JACK KNIFING PARA VALIDAÇÃO DE SEMIVARIOGRAMAS

A função de ajuste do semivariograma é o aspecto mais importante da geoestatística, por esse motivo, o 
modelo escolhido deve ser validado. Jack knifing pode ser um dos métodos mais eficientes para esta finalidade. O 
objetivo deste estudo foi mostrar o uso da técnica jack knifing para validar modelos de hipótese geoestatística e de 
semivariograma. Para essa finalidade, foram analisados dados topográficos de seis campos de escalas distintas e de 
diferentes densidades de amostragem. Devido aos dados topográficos selecionados terem apresentado tendência 
em todos os campos, fato verificado pela ausência de patamar no semivariograma, a tendência foi removida através 
do ajuste de uma superfície de tendência pelo método dos quadrados mínimos. Os modelos de semivariograma 
foram ajustados por diferentes técnicas e validados pela comparação dos resultados do jack knifing. Os parâmetros 
de Jack knifing analisados foram a interseção, o coeficiente angular e o coeficiente de correlação para a regressão 
linear entre valores estimados e medidos, e a média e a variância dos erros calculados pela diferença entre valores 
medidos e estimados divididos pela raiz quadrada da variância da estimativa. Os resultados do jack knifing foram 
úteis no julgamento adequado dos modelos ajustados aos semivariogramas, independentemente da escala e da 
densidade de amostragem. Conclui-se que os modelos de semivariograma ajustados manualmente resultaram em 
melhores parâmetros de jack knifing devido à liberdade de escolha, por parte do usuário, do melhor ajuste em 
regiões distintas do semivariograma.
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1. INTRODUCTION

Soil variability has always existed and if not 
taken into account when field work is involved, there is 
a risk to make wrong conclusions out of the data. If the 
soil variability is somewhat organized in the space and 
spatial dependence can be determined, the data must 
be analyzed using geostatistics. In this condition, it is 
possible to estimate values for the unsampled locations 
without bias and with minimum variance through the 
kriging interpolation technique. On the other hand, 
in order to make appropriate use of geostatistics, it is 
necessary assume that the measured data correspond 
to one realization of a continuous random function 
which exists in every point in the field (Vieira et al., 
1983). For this reason, it is necessary that the data 
fit into some stationarity hypothesis (Vieira, 2000). 
Besides, the experimental semivariogram calculated 
will be a series of discrete data pairs of distances and 
semivariances to which a continuous mathematical 
function must be fitted. For this reason, it is commonly 
said that semivariogram function fitting is the most 
important aspect of geostatistics (McBratney and 
WeBster, 1986) and the model chosen must be validated. 
Methods for fitting a model to the semivariogram are 
well documented in the literature (Wollenhaupt et al., 
1997; GotWay, 1991; lee, 1994; carValho and Vieira, 
2004). Jack knifing may be one the most efficient ways 
for this validation purpose (Vieira et al., 1983). Through 
this technique, a measured value is temporarily taken 
out of the data set, and then it is estimated using the 
semivariogram model fitted. Simultaneously with 
the estimated value, the estimation variance is also 
calculated in the kriging procedure. This procedure is 
successively repeated for every measured value and at 
the end it is possible to calculate errors using measured, 
estimated and estimation variance values whose values 
must remain within some specified statistical limits. 
This technique is also known as a cross validation or 
“leave-one-out” and has been used in some different 
applications (schechtMan and WanG, 2004; Fortes 
et al., 2004; Zhu et al., 2008, Mello et al., 2008, pires 
and strieder, 2006). The objective of this study was to 
show the use of the jack knifing technique to validate 
geostatistical hypothesis and semivariogram models.

2. MATERIAL AND METHODS

Data

The following data sets used were: 1) A square field 
of 90m on each side named FIELD 1 sampled on a 2m grid 
with a total of 2500 points; 2) A triangular field named 
FIELD 2 of 110m by 220m, sampled on a 10m square grid, 
with a total of 164 points; 3) An approximately rectangular 
field named FIELD 3 measuring 90x250m, sampled 
on trapezoidal grid of 5m, with a total of 383 points; 4) 
An approximately rectangular field named FIELD 4, 
measuring 120x160m sampled on a 10m square grid with 
302 data points; 5) An approximately rectangular field 
named FIELD 5, of approximately 35ha, sampled on a 
50m square grid in a total of 146 data points; 6) A circular 
field named FIELD 6 of 77ha sampled on a square grid of 
50m, at every one of the 322 points.

A summary about the six fields with grid 
information is shown in table 1. Topography was chosen 
as a data set to be analyzed because its form is easily 
verified in the field and its surface does not change with 
time allowing for the field validation of the results if 
necessary. These specific fields were chosen because 
they represent a very wide range of scales (from 0.81 
to 77 hectares), of grid sampling spacing (from 2 to 50 
m), of number of values (from 2500 to 146 values) and 
consequently of number of samples per hectare (from 
3086.42 to 4.17). Because the topographical data showed 
very strong trend for all fields as it was verified by the 
absence of a sill in the experimental semivariograms, 
the trend was removed with a trend surface fitted by 
the minimum square deviation, according to Vieira 
(2000). The degree of the trend surface used in each case 
is listed in the last column of table 1. 

Detrending 

The trend removal technique used is described 
in Vieira (2000). The presence of a trend is detected 
when the semivariogram does not have a stable sill. 
This condition violates the intrinsic hypothesis as it 
represents a field for which the mean value depends 
on the spatial position. The simplest trend removal 
consists in fitting a three dimensional surface to the data 

Table 1. Area, grid, number, number of sample (N ha-1) and trend removed to sampling sites field 1 until 6
Site Area Grid Number Nha-1 Trend

Ha m
Field 1 0.81 2 2500 3086.42 Parabolic
Field 2 1.21 10 164 135.54 Parabolic
Field 3 2.25 5 383 170.22 Cubic
Field 4 3.50 10 302 100.67 Parabolic
Field 5 35.00 50 146 4.17 Parabolic
Field 6 77.00 50 322 4.18 Linear
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by the least squares and subtracting its values from the 
originals. For a parabolic trend surface, the equation is 

 (1)

where Z*(x,y) is the estimated trend surface, X 
and Y are the coordinate positions and A0, A1, A2, A4, 
A4 and A5 are the regression parameters determined by 
the least squares method. This surface is then subtracted 
from the originals generating a new variable which may 
be called Residuals.

 (2)

The criteria for the choice of the degree for the 
detrending surface is the simplest surface that will 
produce a semivariogram with a stable sill. Thus, if a 
linear surface solves the starionarity problem producing 
a semivariogram with a sill, there no need to look for 
any other degree of a surface.

Semivariogram

The semivariogram is, by definition:

 (3)

And can be estimated by: 

 (4)

where N(h) is the number of pairs of measured 
values Z(xi), Z(xi+h), separated by a vector h (Journel 
and huiJBreGts, 1978). The graph of γ*(h) versus the 
corresponding values of h, called semivariogram, is a 
function of the vector h, and therefore it depends on both 
magnitude and direction of h. When the semivariogram 
is the same for all directions it is called isotropic. Many 
variables show anisotropic semivariograms depending 
on the dimensions of the field and of the nature of 
the variability. There are ways of transforming an 
anisotropic semivariogram (Journel and huiJBreGts, 
1978; BurGess and WeBster, 1980) in order to reflect the 
variability in different directions. Jack knifing procedure 
can also be used to verify the distance range over which 
a semivariogram can be used before anisotropic effects 
may affect the results (Vieira, 2000).

Models

Experimental semivariograms contain a set of 
discrete data points of distance and semivariance. A 
model must be fit to the experimental data with the 
objective of having semivariances available for every 
distance needed (GotWay, 1991). In order to be used to 
properly describe the spatial variability of any variable, 

one of the requirements on the model is that the function 
used must be conditional positive definite (McBratney 
and WeBster, 1986). This condition will guarantee that 
the variances calculated will be positive. The main 
models which satisfy that condition and are adequate 
for use in geostatistical calculations are the spherical, the 
exponential and the Gaussian. On the equations bellow, 
C0, C1, and a represent the nugget effect, the structural 
variance and the range, respectively.

For the spherical model, usually symbolized as 
Sph(C0, C1, a), the equation is:

 (5)

The exponential model, symbolized as Exp(C0, 
C1, a), the equation is: 

 (6)

The gaussian model, symbolized as Gau(C0, C1, 
a), the equation is:

 (7)

With the parameters fitted to the semivariogram the 
dependence ratio (DR) can be calculated (ZiMBack, 2001)

 (8)

The dependence ratio (DR) represents the 
proportion of the semivariance which is structured. 
The smallest the DR value the weakest is the spatial 
dependence.

Jack knifing

Estimating the semivariogram and associated 
parameters (nugget effect, range and sill) from a set of field 
measurements using the traditional estimator is a difficult 
task (shaFer and VarlJen, 1990). In order to verify if the 
semivariogram model adequately describes the spatial 
variability, there is a validation technique commonly 
known as jack knifing. This is a process of estimating 
known values by temporarily taking them out of the data 
set. The value taken out of the data set is estimated using the 
semivariogram model fitted, and a series of neighborhood 
sizes, generating an estimated value and an estimation 
variance. The process is then repeated for each measured 
value and at the end, there will be a set of measured, 
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estimated and estimation variances through which it is 
possible to calculate error parameters whose values must 
be within some statistically known limits. More details 
about the process can be found in Journel and huiJBreGts 
(1978). There are some reports in the literature with some 
applications of the cross validation technique but using 
only the one-to-one graph of measured versus estimated 
values (Fortes et al., 2004; Mello et al., 2005; Mello et al., 
2008). In this paper, six different jack knifing parameters 
are examined as criteria for judging the performance of 
semivariogram models, neighborhood of estimation and 
geostatistical hypothesis. All the estimations were made 
using ordinary kriging interpolation technique.

The one-to-one Measured vs Estimated values

Using the N measured values, Z(xi), and the N 
values estimated through the jack knifing procedure, 
Z*(xi), it is possible to make the graph known as the one-
to-one and to calculate the linear regression between 
measured and estimated values. The regression will be:

 (9)

Where a is the intercept, b is the slope and r2 is the 
coefficient of determination between Z*(xi) and Z(xi).

Thus, if the estimation, Z*(xi), is identical to the 
measured, Z(xi), for every one of the N points, then a is 
zero (0), b and r2 are equal to one (1.0), and the graph of 
Z(xi) vs Z*(xi) would be a series of points on the one-to-
one line. As the value of a depart from zero (0) to positive 
values, it is an indication that the estimator Z*(xi) is over 
estimating small values of Z(xi) and under estimating 
large values. As the value of a gets negative the reverse 
happens. This way, the quality of the estimation may 
be assessed judging these parameters. The examination 
of the one-to-one scatter plot of measured versus 
estimated values is an important aid in judging the 
estimation performance but it only makes sense for the 
best selection of the other parameters (Vieira et al., 1983). 
Therefore, it is an useful technique but it needs the other 
parameters before a decision on neighborhood size and 
semivariogram parameters ca be made.

The reduced error

Remembering that through the kriging estimation 
of values, Z*(xi), there is always a value of the estimation 
variance, σ2

k(xi), corresponding to the uncertainty of the 
estimation process (Vieira et al., 1983), then it is possible 
to define the reduced error as:

 (10)

The division by the square root of the 
estimation variance causes the reduced error, RE(xi), 

to be dimensionless which is a convenient situation for 
comparison between different variables. 

The unbiasedness condition of kriging estimation 
requires that:

 (11)

The minimum variance condition requires that:

 (12)

These properties make this kind of error 
assessment a very valuable and easy to use tool for 
validation of geostatistical procedures. Because these 
errors have fixed reference values of 0 (zero) and 1 (one), 
respectively, and are dimensionless, their judgment and 
interpretation is much easier and allows comparison 
with other variables expressed in different units.

The root mean square error (RMSE)

Another very powerful parameter of the jack 
knifing technique is the RMSE which can be calculated 
using

2
 (13)

The disadvantage of this kind of error is that 
it does not have any standard to be compared with. 
Therefore the best results of the jack knifing technique 
will be obtained when the RMSE is minimum.

3. RESULTS AND DISCUSSION

A summary about the data and the places from 
where they were sampled is shown in table 1, where it 
can be seen that the areas sampled range from 0.81 ha 
to 77 ha, and the sampling densities range from 3086 to 
4.18 samples ha-1. Therefore, the areas sampled represent 
a very large range of field dimensions and topographic 
conditions, and for these reasons we hope that the results 
are adequate to evaluate the performance of the proposed 
method of validation. All the data sets presented very 
strong trends which had to be removed in order to satisfy 
the intrinsic hypothesis. The trend was removed by 
fitting with least square method a tri dimensional surface 
and subtracting it from the original data as described for 
Vieira et al. (2002). Last column in Table 1 identifies the 
kind of trend surface used to remove the trend of each of 
the data sets. The criteria used in the de trending process 
is to use the surface with the smallest degree that does 
the job of removing the trend. Thus, if the linear surface 
produces residuals whose semivariogram has a clear sill 
then there no need to try the parabolic surface because 
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the linear already did it. As shown in the last column of 
table 1, from the six fields studied, for one a cubic trend 
surface was used, for four the parabolic surface and for 
one the linear surface.

The parameters for the models fitted to 
the semivariograms are shown in Table 2 and the 
corresponding graphs of the semivariograms are shown 
in Figure 1 with the models fitted. It can be seen that 

Table 2. Parameters of the models fitted to the semivariograms, nugget effect (Co, structural variance (C1), range (a), coefficient of 
determination (r2), sum of squares deviation weighed (SQDP) and dependence ratio (DR%) to sampling sites field 1 until 6

Variable Model C0 C1 a r2 SQDP DR (%)
Field 1 Spherical 0.00 38.93 14.53 0.9682 0.9553 100.00
Field 2 Gaussian 4.96 221.88 47.16 0.7400 727.68 97.81
Field 3 Exponential 0.00 0.02 25.19 0.9244 7.63E-07 97.66
Field 4 Spherical 0.02 0.29 50.67 0.8672 3.37E-04 92.13
Field 5 Spherical 0.01 0.06 300.00 0.7571 8.15E-05 90.38
Field 6 Gaussian 0.02 7.17 410.77 0.9723 0.0911 99.68
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Figure 1. Semivariograms for topographic elevations in different sites (field 1 until 6.). Sph stands for Sherical, Exp stands for exponential, 

Gau stands Gaussian. The numbers in parenthesis correspond to the parameters C0, C1 and a defined in equations (5), (6) and (7).
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all semivariograms fit the intrinsic hypothesis (they all 
have a very well defined sill) and that the worst fitting 
found was for field 2, with r2 = 0.7400. Otherwise, in 
general, the models fit quite well the experimental 
semivariograms. The dependence ratio shown in the 
last column of Table 2 indicates the very high degree 
of continuity that the residuals for the topographical 
data has. From semivariograms for the six fields, three 
of them were fitted to the spherical model, two to 
Gaussian and one to exponential model. Notice that the 
r2 values for the models fitted to the semivariograms 
(Table 2) are the lowest for field 2 and field 5 caused 
by the dispersion of values around the sill. Not much 

importance should be given to this fact as the main 
portion of the semivariogram is the short distance 
(McBratney and WeBster, 1986). On the other hand, all 
semivariograms are very well fitted to their respective 
models for the distances smaller than the range.

The results of jack knifing for the five parameters 
(a, b, and r2 for the regression 1:1, mean and variance of the 
reduced errors) used is shown in figure 2. The intercept 
values (Figure 2a) indicate that the semivariograms for all 
six surfaces produced good regression between measured 
and estimated values, as all of them, except for field 2 
with four neighbors, approach a zero intercept. The slope 
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Figure 2. Results of jack knifing [intercept, slope, correlation coefficient, mean error, variance and root mean square error (RMSE)] 

for the six data fields.
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Table 3. Parameter of models fitted (solver, wrong, sill1 and sill2) for jack knifing comparison, nugget effect (Co), structural 
variance (C1), range (a) and sum of squares deviation weighed (SQDP)

Model C0 C1 a SQDP
Solver 0.025 0.292 50.67 0.000337
Wrong 0.200 0.050 50.67 0.090506
Sill 1 0.040 0.300 50.67 0.000796
Sill 2 0.000 0.294 50.67 0.000934

Table 4. Jack knifing parameters for Field 1, using 20 neighbors
Parameter Result

Number of neighbors 20
Intercept 0.0014

Slope 0.8661
r 0.9384

Mean error 0.0006
Variance 0.7661
Distance 9

of the regression line between measured and estimated 
values (Figure 2b) approaches the ideal situation (a=1) for 
any neighborhood above 16 neighbors for all data sets. 
Field 4 was the only one for which this parameter was 
separated from the others and the cause for this has not 
been identified. The coefficients of determination (Figure 
2c) showed a wide spread of values. In general, the 
values for this parameter approach the ideal value of 1.0, 
except for fields 3 and 5 which presented values around 
0.7. The mean error (Figure 2d), except for field 6, are 
grouped around the ideal value of 0 (zero). The reason 
for the departure of the mean value for the reduced errors 
for field 6 is not known at this point. However, for 16 
neighbors, all fields have a value of mean error very close 
to 0 (zero). The variance of the reduced errors (Figure 
2e) should ideally approach the value of 1.0. In general 
all fields present values below 1.0 for the variance of the 
reduced errors, except for field 2 which presented values 
much above that level. Figure 2f shows a graph of the 
Root Mean Square Error (RMSE) between the measured 
and the estimated values. This parameter, although very 
robust, its values are somewhat arbitrary because it does 
not have any standards or ideal value to be compared 
with. An overall examination of the values of all 
parameters together shows that most of them approach 
the ideal values if a neighborhood of 16 values is used as 
it has been indicated by Vieira et al. (1983). The square 
grid sampling may the explanation for this apparent 
coincidence around 16 neighbors for all of the data sets. 

In order to investigate further the jackknifing 
potential for the validation of semivariogram models, 
four different models were fitted to the semivariogram 
for field 5 by different methods. The parameters fitted 
are shown in table 3 and on graph on figure 3. The four 
models were named Solver, Wrong, Sill 1 and Sill 2. The 
model Solver was fitted using the Solver technique in 
Excel to maximize the coefficient of determination. The 

model called Wrong was purposely fitted with a wrong 
nugget effect value. The models Sill 1 and Sill 2 were fitted 
by trial and error by manually placing the sill value in 
different positions in order to provide information about 
the effect of the proper choice of the sill value on the jack 
knifing parameters. The results from the jack knifing for 
these models are shown in figure 4. The results indicate 
that if one single model had to be chosen it should be 
the model identified as Sill 2 with 16 neighbors as all 
the jack knifing parameters approach the ideal values 
with this choice. It can be clearly seen that the model 
identified as “wrong” had a very poor performance for 
all the jack knifing parameters. The above discussion 
illustrates the idea of using the jack knifing technique 
for fine tuning the semivariogram model fitting.

Because the data from field 1 was the one with the 
highest number (2500) and it was also the smallest field 
(highest density of samples, see Table 1) one set of jack 
knifing was calculated for this data set with 20 neighbors. 
The jack knifing parameters are shown in table 4. Except 
for the variance of the errors, all other parameters are 
very close to the ideal values. A graph with the measured 
versus estimated values for this calculation is plotted in 
figure 5 where it can be seen that there was a very good 
agreement between measured and estimated values.

4. CONCLUSION

The technique shown in this work allowed to 
conclude that jack knifing may be a very helpful aid in the 
choice of the parameter models for the semivariogram. 
It is also possible to use jack knifing procedure for fine 
tuning the parameters fitted by running a sensitivity 
analysis with the jack knifing parameters. The jack 
knifing procedure was proven to discriminate very well 
between a representative model of the variability and a 
model which is not correct. The jack knifing procedure 
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Figure 3. Models fitted to semivariogram of topographic data from FIELD 2.
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Figure 4. Results of jack knifing [intercept, slope, correlation coefficient, mean error, variance and root mean square error (RMSE)] 
corresponding to residuals of parabolic trend of topographical heights for field 2.
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R 2  = 0.9384
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Figure 5. One-to-one graph for measured versus estimated values of elevation parabolic residuals for field 1 with jack knifing 
using 20 neighbors.

proposed in this paper also helps in identifying the 
best neighborhood size for the kriging interpolation. 
It does not seem possible to pick one single jack 
knifing parameter for this analysis as a judgment of all 
parameters seems to be a more secure decision tool.
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