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Abstract

Height/diameter models are used in forest inventories and in stand projection systems mainly because height measurements

are expensive and time-consuming. Mixed models have been frequently employed in H/D modelling assuming that model

parameters can vary among stands. Using mixed models, the prediction of the random effects requires at least one additional

measurement in the stand. In the present paper, we advocate the idea that empirical predictors for the random stand effects of a

mixed model can be obtained using geostatistics when spatial correlation is present. Using the proposed methodology we

obtained site-specific height/diameter curves without additional measurements. The case study was carried out in pure maritime

pine stands of central Spain. Height/diameter measurements were available from the Second Spanish National Forest Inventory.

Final predictions of random stand effects were obtained by kriging. Cokriging was also used for random stand effect prediction,

using as a secondary attribute the stand density.

# 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Tree-height measurements are expensive and time-

consuming and often they are performed only on a

small portion of sampled trees. The development of a

relationship between total tree height and diameter at

breast height (DBH) is considered crucial in forest

inventories as well as in stand projection systems since

it provides height predictions using an easily measured

predictor variable such as DBH.

The construction of height/diameter (H/D) models

is sometimes performed using mixed effect models,

assuming that parameters of the model can vary

randomly across stands. The localisation of the H/D

curve has been made with the use of other stand

variables (Lappi, 1991, 1997) or according to the site

or region where the curve is going to be used (Fulton,

1999; Huang et al., 2000). These approaches to H/D

modelling are based on the assumption that site con-

ditions and previous silvicultural practices influence

the relationship between total tree height and DBH.

In the models that use stand variables for prediction,

there does not seem to be a single or universal variable

to explain variation in stand-specific parameters, since

these depend on the investigator’s intuition, model
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specification, site productivity (Fulton, 1999), and

thinning regime (Zhang et al., 1997). Fang et al.

(1998), for example, used percentiles of the diameter

distribution; Zakrzewski and Bella (1988) found that

the quadratic mean diameter and height are the best

explanatory variables, while Parresol (1992) used the

basal area per hectare.

A more appealing approach for H/D modelling is

the one presented by Huang et al. (2000) since their

method does not require additional stand measure-

ments for prediction. However, prior to the construc-

tion of this type of model, one needs to classify the

study area into ecologically homogeneous areas and

then specify a unique set of parameters for each of the

areas.

Alternatively it can be assumed that H/D parameters

vary continuously in space. Intuitively this assumption

can be reasonable for forest stands, since site produc-

tivity is generally continuous in space while silvicul-

tural activities are applied in spatially homogeneous

areas. Geostatistics can offer an alternative approach

for H/D parameter prediction if the above assumption

of spatial continuity can be considered reasonable.

The theory of regionalised variables and kriging offer

the theoretical background over which unbiased pre-

dictions can be made by minimising and quantifying

the prediction error (Matheron, 1963; Journel and

Huijbregts, 1978).

In the geostatistical framework the presence of

spatial correlation makes possible the prediction of

a variable of interest at locations where no secondary

measurements are available. On the other hand, cokri-

ging, as a generalisation of the usual kriging system of

equations, can account for secondary information

when this is available. Depending on the nature of

the secondary attribute, various cokriging alternative

formulations have been proposed (Goovaerts, 1997).

In the present paper we propose a geostatistical

approach for the estimation of stand-specific para-

meters of H/D models. Predictions are made by both

kriging and cokriging using, in the second case, the

stand density as a secondary attribute.

2. Data

The Second National Forest Inventory of Spain

(NFI-2) provided the data for this study. Inventory

plots were distributed systematically over Spain, on

the nodes of a regular grid of 1 km in size. Plots were

circular of various radius (the minimum measured

diameter varied with the radius of the plot), therefore

the inclusion of a tree in the sample was a function

of its DBH and its distance from the centre of the

plot.

The area of study is located in central Spain (Sego-

via province) where natural stands of maritime pine

(Pinus pinaster Ait.) are grown on a very poor soil that

consists mainly of dunes. The maritime pine stands of

this area have traditionally been dedicated to resin

production, therefore, silviculture had to be adapted to

an increasing demand of stems to be tapped.

The plots included in the analysis (250 plots) are

located in pure, even-aged, natural maritime pine

stands (Fig. 1). We used only untapped trees for

constructing the H/D model: resin tapping results in

a strong deformation of diameter in the height of face,

so measurements are not representative of the real

diameter at breast height. On the other hand, it is likely

that tapping reduces height growth, so there is no way

to construct a unique H/D prediction system for both

tapped and untapped trees.

3. Statistical analysis

3.1. Model specification

Our data are based on a sample of multiple tree

measurements (DBH, total height) taken from dif-

ferent plots. This nested structure calls for a mixed

modelling approach that allows the simultaneous

estimation of fixed and random effects. This type

of H/D model has been fitted to longitudinal data

from re-measured plots (Hokka, 1997; Lappi, 1997)

as well as to cross-sectional data obtained simulta-

neously from different plots (Jayaraman and Lappi,

2001).

The basic model used in this study is the two-

parameter exponential equation:

H � 1:3 ¼ a eb=d (1)

where H is the total height (m) and d the diameter at

breast height (cm). The two parameters (a, b) control

the asymptotic height and the inflexion point of the

model, respectively.
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3.2. Nonlinear mixed modelling

The general expression for a nonlinear mixed

effects model can be written as (Lindstrom and Bates,

1990)

yij ¼ f ðUi; xijÞ þ eij (2)

where yij is the jth response on the plot i (i ¼ 1 to s), xij

the jth measurement of predictor variable x on plot i

(j ¼ 1 to ni), Ui is a parameter vector which can vary

from plot to plot, f a nonlinear function of the predictor

vector and the parameter vector, and eij a noise term. In

a vectorial form

yi ¼ f ðUi; xiÞ þ ei (3)

where yi is the ith plot’s entire response ½yi1;
yi2; . . . ; yij; . . . ; yini�T, xi the ith plot’s predictor vector

½xi1; xi2; . . . ; xij; . . . ; xini�T and ei ¼ ½ei1; ei2; . . . ;
eij; . . . ; eini�T the vector of the residual terms.

Letting Ui vary from plot to plot (Davidian and

Giltinan, 1995):

Ui ¼ Aikþ Bibi (4)

where k is a vector of fixed effects, common for the

complete population, bi a vector of random effects
associated with the ith plot, andAi andBi are design
matrices for the fixed and random parameters,
which are usually matrices containing only zeroes
and ones as well as fixed and random effect cov-
ariates.

The basic assumptions for the nonlinear mixed

effect model are the following:

bi � Nð0;DÞ (5)

ei � Nð0;Riðk; bi; qÞÞ (6)

where D is the covariance matrix for the random

effects (common for all the plots), which defines

between-plot variation, Ri(k, bi, q) is the within-plot

Fig. 1. Location of inventory plots. Co-ordinates are UTM (zone-30). Three transects and two inventory plots were randomly selected, in

order to predict the H/D curves.
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variance–covariance matrix, which defines the
within-plot structure, and q is a vector of within-
plot covariance parameters.

The main objective of the analysis in nonlinear

mixed models is to estimate k, D and q. Inference
over these parameters is based on the maximisation
of the marginal likelihood function (Palmer et al.,
1991; Vonesh and Chinchilli, 1997):Ys

i¼1

Z
pðyijxi; k; q; biÞpðbi;DÞ dbi (7)

The first term of this equation is the conditional

density of yi given bi, while the second term refers
to the density of bi. The integral of their product is
termed the marginal distribution of yi.

The maximisation of this expression requires

numerical integration of the random effects, which

is difficult because bi enters in the model in a nonlinear

fashion. Several approximations have been developed

in order to deal with this problem, including methods

such as the adaptive Gaussian quadrature (Pinheiro

and Bates, 1995), which tries to numerically solve the

integral. This method is available in the SAS proce-

dure NLMIXED (SAS Institute, 2000). Most com-

monly used methods are those based on a linear

approximation to the marginal likelihood function

by expanding it with a first-order Taylor series to

be linear on bi. This expansion can be either at a
value of bi ¼ 0 (Sheiner and Beal, 1980) or about a
value b


i close to bi (Lindstrom and Bates, 1990),
defined as the EBLUP (empirical best linear
unbiased predictor). The last option is available
in the SAS macro NLINMIX.

Following Lindstrom and Bates (1990), after linear

expansion we can obtain the estimates D and Ri of D
and Ri, either by maximum likelihood or restricted
maximum likelihood, and also it is possible to
define yi by a given ‘‘pseudoresponse’’ ~yi vector,
which can be defined as a linear function over bi

and k:

yi ¼ f ðUi; xiÞ þ ei � ~yi ¼ Xi � kþ Zi � bi þ ~ei (8)

Eð~yijxiÞ ¼ Xi � k (9)

Vi ¼ Varð~yijxiÞ ¼ Ri þ Zi � D � ZT
i (10)

Zi ¼
@

@bi

f ðUi; xiÞ
����
bi¼b


i
;k

 !
� Bi (11)

Under this assumption, and following linear models

theory (Searle, 1971), we can obtain generalised least-

squares estimates of k and prediction for bi:

l̂ ¼
Xs

i¼1

XT
i � V�1

i � Xi

 !�1

�
Xs

i¼1

XT
i � V�1

i � ~yi (12)

b̂i ¼ D � ZT
i � V�1

i � ð~yi � Xi � l̂Þ (13)

where l̂ is the estimate for the vector of parameters for

the fixed effects k, and b̂i the empirical best linear

unbiased predictor (EBLUP) for the vector of para-

meters for the random effects on plot i, bi.

3.2.1. Parameter estimation

According to Fang and Bailey (2001), during the

construction of a mixed model one needs to determine:

1. Which of the parameters a and b in Model (1) are

going to be considered as mixed effects (both

random and fixed) or purely fixed.

2. The within-plot structure (variance–covariance

structure for explaining variability among trees

in a same plot) as well as the between-plot

variance–covariance matrix.

3. Which covariates to use for explaining among plot

variability.

3.2.1.1. Parameter effects. The determination of

which effects are going to vary randomly among

plots is very flexible (Gregoire et al., 1995).

Consideration of both parameters of Model (1) as

mixed led to problems of convergence. On the other

hand, a preliminary separate fit of Model (1) to each

plot using ordinary least-squares, showed that

parameter a was more variable than b, since

estimates for b show less overlap in confidence

interval across plots (Pinheiro and Bates, 1998).

From a biological perspective, this means that

between-plot variation is smaller in height–diameter

curve inflexion point than in asymptote.

As parameters with higher variability should be

preferred as mixed effects (Fang and Bailey, 2001),

we decided to consider b as a fixed parameter, allow-

ing parameter a to vary randomly from plot to plot.

Designing b as fixed does not mean this parameter is

truly constant across plots, but the true underlying

process is approximated reasonably regarding it as

fixed (Davidian and Giltinan, 1995), although it can be
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explained by including stand covariates in a second

stage. The general expression of Model (1) is then

given by

Hij � 1:3 ¼ ða þ viÞ eb=dij þ eij (14)

where a and b are fixed effects, vi is a random effect,

specific for each plot, dij the diameter at breast height

for the jth tree in the ith plot and eij the tree within-plot

level error.

3.2.1.2. Within-plot variance–covariance matrix.

Within a given sampling unit it is usual to find a

pattern of increasing error variance as a function of the

independent variable (DBH) (Huang et al., 2000). In

order to avoid the violation of the basic assumption of

constant variance of errors, we included a variance

function in the expression of the within-plot structure

(Lappi, 1997). We tested both the power and the

exponential models for this reason, using different

parameter values. Comparison among different mod-

els and different parameter values was done under the

criterion of smaller AIC (Akaike Information Criteria).

The smallest AIC value was obtained when using the

inverse of the power function over the diameter with the

parameter value equal to 0.5.

The expression for the within-plot variance–covar-

iance matrix Ri(k, bi, q) is then given by

Riðk; bi; qÞ ¼ s2 � Gi (15)

where for a plot i with ni height–diameter measure-

ments, Gi is an ni  ni diagonal matrix, with compo-

nents 1=D0:5
j and s2 is a scaling factor for the error

dispersion (Gregoire et al., 1995), given by the value

of the residual variance of the model.

3.2.1.3. Between-plot variance–covariance matrix.

At this stage we defined the structure of the var-

iance–covariance matrix for the random effects D.

Using a single random effect vi, D is a 1  1

matrix, whose unique component is the variance for

the random effect.

3.2.1.4. Covariate modelling. A complementary way

to explain between-plot variability is to take fixed

effects as a function of explanatory variables at the

plot level (Hokka, 1997; Fang and Bailey, 2001). A

preliminary least-squares fit for each plot showed a

high linear dependence between parameter b and plot

density (stems/ha):

b ¼ b þ cN (16)

where N is the density of the plot and b and c are fixed

effects.

After including stand density, final expression for

the nonlinear Model (1) is

Hij � 1:3 ¼ ða þ viÞ eðbþcNiÞ=dij þ eij (17)

where a, b and c are fixed effects, vi is a random effect

for plot i, dij the diameter at breast height for the jth

tree in the ith plot and eij the tree within-plot level

error.

In order to estimate the fixed effects as well as the

components of the variance–covariance matrices for

between- and within-plot variation we used SAS

macro-NLINMIX. Values for the EBLUPs of the

random effect were also predicted for each plot. Since

some elements of the parameter vector were taken as

fixed, maximisation of the marginal likelihood func-

tion was achieved using the linearisation approach

(Davidian and Giltinan, 1995), with a first-order Tay-

lor series expansion about the estimates of the random

parameter, and maximum likelihood for variance

components estimation.

The results of the fit using SAS macro NLINMIX

are shown in Table 1. Apart from the usual parameter

estimations and their standard errors we present the

estimate of the unique element of the between-plot

variance–covariance matrix D as well as the scaling

factor for the error dispersion (s2) of the within-plot

variance–covariance matrix Ri.

3.3. Geostatistical prediction

Prediction at unsampled locations using Model (17)

requires knowledge of the stand density, as well as

Table 1

Parameter estimates and fit statistics for the fixed and random

effects of Model (17)

Effect Estimate Standard error t-Value Pr > |t|

a 16.3536 0.2835 57.69 <0.0001

b �17.8424 0.4906 �36.37 <0.0001

c 0.0044 0.0009 4.56 <0.0001

Variance, vi 8.1985

s2 residual 0.2638
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knowledge of the EBLUP for the random effect vi. We

assume that stand density can be easily obtained from

aerial photography or satellite imagery. To predict vi is

more complex, since at least one additional measure-

ment is required at the specific location. If no addi-

tional measurements are available we have to consider

vi is equal to zero. Geostatistics can offer an alter-

native way of spatially predicting the required attri-

butes.

3.3.1. Variogram analysis

At the first stage of the geostatistical part of the

analysis we computed the experimental variograms

for the plot density and for the EBLUP of the random

effect vi of Model (17). We used the classical formula:

ĝðhÞ ¼ 1

2NðhÞ
XNðhÞ

a¼1

½zðuaÞ � zðua þ hÞ�2 (18)

where ĝðhÞ is the semivariance for distance h, NðhÞ the

number of pairs of data locations a vector h apart,
while zðuaÞ and zðua þ hÞ are measurements at
locations ua and ua þ h, respectively. For the geos-
tatistical calculations we used the spatial statistics

module of S-PLUS (1998).
The experimental variogram gives a measure of

spatial correlation of the studied attribute. Typically,

the semivariance values exhibit an ascending beha-

viour near the origin of the variogram and they usually

level off at larger distances (the sill of the variogram).

The semivariance value at distances close to zero is

called the nugget effect. The distance at which the

semivariance levels off is the range of the variogram

and it represents the separation distance at which two

samples can be considered to be spatially independent.

3.3.2. Anisotropy

A phenomenon is said to be anisotropic when its

pattern of spatial variability changes with direction.

Anisotropy can be detected by variogram maps (Isaaks

and Srivastava, 1989). A variogram map is a contour

map of the sample variogram surface. The directions

of maximum and minimum spatial continuity are

judged visually.

Once the main axes of anisotropy are identified, one

proceeds to modelling the directional variograms. The

construction of directional variogram models has to be

done in such a way that the posterior spatial prediction

can be realised: during kriging, anisotropy has to be

corrected by rotating the co-ordinate system clockwise

so as to identify the main axes of anisotropy and

linearly transforming the rotated co-ordinates accord-

ing to the anisotropic variogram model (Goovaerts,

1997). Once the anisotropic space is transformed to an

isotropic one, kriging is used for prediction, and

finally the transformed co-ordinates are back-trans-

formed to their actual values.

3.3.2.1. Random effect vi. Anisotropy was present in

the case of the EBLUP for the random effect vi, as

shown in the variogram map of Fig. 2a. The axes of

maximum and minimum spatial continuity lie at 1508
and 608, respectively. The directional variograms and

their respective models are presented in Fig. 2b and c.

The variograms used to model the experimental

counterparts are the following:

gðh60Þ ¼ 3:5 þ 3:2  SPHER3000ðh60Þ
þ 1:1  SPHER6000ðh60Þ (19)

gðh150Þ ¼ 3:5 þ 3:2  SPHER3000ðh150Þ
þ 1:1  SPHER11;000ðh150Þ (20)

Each directional variogram model is composed of

three structures:

� a nugget component equal to 3.5 for both direc-

tions;

� a short-range spherical model (SPHER) (Goo-

vaerts, 1997), with range equal to 3.000 m and a

partial sill equal to 3.2;

� a long-range model that presents different ranges

depending on the direction (6000 and 11,000 m for

directions of 608 and 1508, respectively) and partial

sill equal to 1.1.

3.3.2.2. Plot density. The variogram map for the plot

density (not presented) showed that the spatial

behaviour was isotropic. The omnidirectional

experimental variogram and its model are shown in

Fig. 3. Two apparent structures are present in this

variogram: a short-range structure, up to a distance of

2000 m approximately and a long-range one up to

18,000 m. The variogram model is composed of two

structures (also called nested structures):

gðhÞ ¼ 10;000 þ 5500  SPHER1600 þ 4500

 SPHER18;000 (21)

226 N. Nanos et al. / Forest Ecology and Management 195 (2004) 221–235



3.3.3. Kriging

In linear geostatistics the prediction at an

unsampled location z
ðuÞ is given using a linear

combination of the values of the variable at sampled

locations zðuaÞ, a ¼ 1; 2; . . . ; n, with n being the total

number of samples

z
ðuÞ ¼
XnðuÞ
a¼1

laðuÞzðuaÞ (22)

The kriging weights [laðuÞ] that minimise the error

variance are obtained with a method similar to that of

least-squares regression, under the condition that the

prediction is unbiased. This condition (frequently

called the universality condition) is satisfied by
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Fig. 2. Variogram map (a), omnidirectional experimental variogram (b) and directional experimental variograms and their respective models

(c) for the random effect vi of Model (17).
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constraining the weights [laðuÞ] to sum to unity. The

minimisation of the error variance under the univers-

ality constraint leads to the ordinary kriging system of

equations that can be written in matrix form (Journel

and Huijbregts, 1978):

Cabk ¼ c (23)

where

Cab ¼

Cðu1; u1Þ . . . . . . Cðu1; unÞ 1

. . . Cðu2; u2Þ . . . . . . 1

Cðun; u1Þ . . . . . . Cðun; unÞ 1

1 1 1 1 0

2
6664

3
7775

(24)

being C(ua, ub) the covariance4 for the pair ua, ub.

The vector k contains the unknown kriging weights

and the Lagrange multiplier m, while c is the vector of
covariances between the point where the prediction
is required (u) and the sampled plots (ua):

k ¼

l1

l2

..

.

ln

m

2
66666664

3
77777775
; c ¼

Cðu1; uÞ
Cðu2; uÞ

..

.

Cðun; uÞ
1

2
66666664

3
77777775

(25)

The solution of the kriging system provides the esti-

mation z
(u) as well as the kriging variance that is

usually used as a measure of the uncertainty of the

prediction.

3.3.4. Filtering systematic errors

Kriging is known to be an exact interpolator when

the nugget effect of the variogram can be attributed

to short-range variability. On the contrary, if part of

the nugget effect is interpreted as measurement (or

estimation) error, then this component of variability

should be filtered out since one is usually interested

in knowing the real value of the attribute at location

z(u) and not the value distorted by measurement

errors (Cressie, 1993).

In our case the estimation of the EBLUP vi

of Model (17) is distorted by two types of error:

a standard error of estimation and possible errors

of tree-height measurements. The plot density, as

an estimator of the true stand density, is also asso-

ciated with an estimation error. In order to filter out

this systematic error and obtain an error-free estima-

tion, the variance of the estimation error of both

variables (random effect and plot density) has to be

added to the diagonal terms of Cab. Kriging is no

longer an exact interpolator (Chilés and Delfiner,

1999).

We performed kriging on the nodes of

100 m  100 m grid, using a global search strategy,

since the experimental variograms do not indicate

deviations from stationarity. The kriged maps for

the random effect vi and for the stand density are

shown in Fig. 4.

3.3.5. The use of auxiliary variables

During this step of the analysis we investigated

the possibility of including a secondary variable

into the prediction of the random effect vi. The

variable chosen for this reason was the stand density,

which is already used in Model (17). The inclusion

of the stand density into the spatial prediction of vi

can be realised if spatial cross-correlation between

them is present in the data. This type of cross-

correlation is examined with the use of cross-vario-

grams.

3.3.5.1. Cross-variograms: inference and modelling.

Let Zf(x) denote a multivariate random function

indexed by the subscript f ¼ 1; 2; . . . ; p defined

over the domain D of R2 and sampled over a set of

Nf points (Nf > 0). In the simplest case where f ¼ 2

the cross-variogram between Z1 and Z2 is computed

using the formula

ĝ12ðhÞ ¼
1

2NðhÞ
XNðhÞ

a¼1

½z1ðuaÞ � z1ðua þ hÞ�½z2ðuaÞ

� z2ðua þ hÞ� (26)

where the symbols are as in (18), but with two vari-

ables implicated instead of one.

In the multivariate case one needs to infer

f ðf þ 1Þ=2 direct and cross-variograms. The difficulty

lies on the fact that these variograms cannot be

4 Under the assumption of stationarity, the kriging system can be

expressed in terms of semivariograms or covariances. Covariances

are preferred for reasons of computational efficiency (Goovaerts,

1997).
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inferred independently from one another, but as whole

must satisfy certain conditions that guarantee the

uniqueness and existence of a solution of the cokriging

system. The linear model of coregionalisation (LMC)

is used for this reason since it provides sufficient

flexibility while being a permissible model. The

LMC is a set of direct and cross-variogram models

whose coregionalisation matrices are positive definite

(Goovaerts, 1997).

Letting G(h) denote the matrix of all direct and

cross-variograms, the LMC is written in matrix

form

GðhÞ ¼
Xs

k¼1

BkgkðhÞ (27)

where Bk is the coregionalisation matrix for the kth

structure.

In this model all direct and cross-variograms must

be linear combinations of the same basic structures

(indexed by k). Its permissibility can be easily checked

by simply checking the positive definite condition for

each coregionalisation matrix.

For the construction of an LMC between vi and plot

density we assumed that the direct and cross-vario-

grams are isotropic. This assumption can be question-

able for the random effect vi, but it is useful in order to

keep the models as simple as possible. Both variables

were transformed to zero mean and unit variance prior

to the construction of direct and cross-variograms.

Using this transformation the cross-variogram is not

Fig. 4. Kriging maps for the random effect vi of Model (17) and for the stand density.
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altered by the differences of magnitude between vari-

ables.

The LMC is graphically displayed in Fig. 5. All

direct or cross-variograms are composed of three basic

structures namely a nugget component and two sphe-

rical variograms with ranges of 4000 and 18,000 m.

The LMC can be written in matrix form

g11ðhÞ g21ðhÞ
g12ðhÞ g22ðhÞ

 �

¼
0:75 0

0 0:45

 �
g0ðhÞ þ

0:35 �0:38

�0:38 0:1

 �

 SPHER4000ðhÞ þ
0 0

0 0:1

 �
 SPHER18;000ðhÞ

(28)

where g11ðhÞ and g22ðhÞ are the direct variograms for

random effect vi and plot density, respectively, g12ðhÞ
is their cross-variogram, g0ðhÞ the nugget component,

and SPHER the spherical variogram model (the sub-

script indicates the range of the model). It can be easily

checked that all three coregionalisation matrices are

positive definite, therefore the above coregionalisation

model is an admissible one.

3.3.5.2. Cokriging. Once a permissible model has

been constructed the cokriging estimator at an

unsampled location z
CKðuÞ is defined as an

optimum linear combination of all available data. In

the simplest case of two variables (f ¼ 2):

z
CKðuÞ ¼
Xn1ðuÞ

a1¼1

la1
ðuÞz1ðua1

Þ þ
Xn2ðuÞ

a2¼1

la2
ðuÞz2ðua2

Þ (29)

The weights of the primary variable [la1
ðuÞ] have to

sum to unity while for the secondary variable [la2
ðuÞ]

sum to zero. The minimisation of the error variance

using the same technique as in ordinary kriging, leads

to the ordinary cokriging system of equations, which

can be written in matrix form

CCK
ab k

CK ¼ cCK (30)

where

CCK
ab ¼

C11 C12 11 01

C21 C22 02 12

1T
1 0T

1 0 0

0T
1 1T

1 0 0

2
6664

3
7775;

kCK ¼

l1

l2

m1

m2

2
6664

3
7775; cCK ¼

c11

c21

1

0

2
6664

3
7775 (31)
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Fig. 5. Direct and cross-variograms for the linear model of

coregionalisation between random effect vi and plot density: (a)

direct variogram of the random effect vi of Model (17), (b) direct

variogram for plot density and (c) cross-(semi)variogram between

random effect and plot density. Variables were standardised to zero

mean and unit variance prior to the variogram computation.
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where C11(n1  n1) and C22(n2  n2) are the covar-
iance matrices for the primary and secondary vari-
able, respectively, and C12 and C21(n1  n2) the
cross-covariance matrix between primary and sec-
ondary variable. Systematic errors have to be fil-
tered out similarly to the ordinary kriging system of
equations, by adding the variance of the estimation
error to the diagonal terms of the covariance
matrices. The vector kCK contains the unknown
weights for primary and secondary data (l1, l2) and
the Lagrange multipliers (m1, m2) while cCK is the
vector of direct and cross-covariance between sam-
ple points and the point where the estimation is
required. Vectors 1 and 0 are the unit and null
vectors, respectively, of length nf.

The left-hand matrix CCK
ab of (30) is a symmetric

matrix with dimension ðn1 þ n2 þ 1Þ  ðn1 þ n2 þ 1Þ.
In our case study with 250 plots for each of the primary

and the secondary variable CCK
ab is a 501  501 matrix.

When dealing with large data sets it is convenient to

reduce the dimension of CCK
ab for reasons of computa-

tional efficiency and stability in the results. For this

reason we used a search strategy prior to the computa-

tion of the weights la1
ðuÞ and la2

ðuÞ by selecting the 20

nearest plots to the location where the estimation was

required.

3.4. Spatial prediction of H/D curves

Using the maps of Fig. 4 the prediction of the

site-specific H/D curve can be obtained for all loca-

tions within the study area. We have chosen arbi-

trarily three transects and two plots within the area

(Fig. 1) in order to predict and illustrate the H/D

curves.

In Fig. 6 we present the estimated (by kriging)

EBLUP for the random effect and stand density along

the transects 1–3 (Fig. 1). Additionally, we present a

third estimation which corresponds to the estimated

(by cokriging) random effect vi assuming that the

stand density at the location where the prediction

being made equal to 300 stems/ha.

The first transect, located in the western part of the

study area, has a length of 2500 m (Fig. 6a). The stand

density varies from 150 to 160 stems/ha and the

random effect vi from 1 to 2 (both predictions were

made by kriging). Under the assumption that stand

density equals 300 stems/ha the random effect vi of

Model (17) is substantially smaller than the value

predicted by kriging.

The second transect has a length of 8000 m and it

passes from eight locations that coincide exactly with

the spatial locations of the inventory plots. The kriging

estimation of stand density and random effect presents

some discontinuities when the location to be estimated

coincides with data locations (Fig. 6b). This is due to

the exactitude property of kriging, although in this

case the discontinuities are less pronounced than

usual, since part of the nugget variance was interpreted

as estimation error. The cokriging prediction for vi (if

stand density is assumed equal to 300 stems/ha) does

not always lie below the one given by kriging. Simi-

larly for transect 3 the effect of a higher density on the

random effect vi is positive or negative depending on

the location of the prediction (Fig. 6c).

Finally we present in Fig. 7 the predicted H/D

curves for plots 506 and 1202 (Fig. 1) assuming

different stand densities. The reduction of stand den-

sity to 160 stems/ha has different effects on the pre-

dicted curve, being positive for plot 506 and negative

for plot 1202.

4. Discussion

4.1. Variogram analysis for the random stand

effect and stand density

The range of spatial correlation for vi was equal to

6000 and 11,000 m for directions of 1508 and 608,
respectively. Therefore compartments of low and

high values for the random effect are of the same

magnitude. The variability of vi reflects the varia-

bility of the relationship between total tree height

and DBH and, intuitively, derives mainly from dif-

ferences in water availability, soil richness (Fulton,

1999) and the time and intensity of thinning (Zhang

et al., 1997).

On the other hand, the variogram analysis for the

stand density revealed the existence of two nested

structures. Stand density is a variable with a hypothe-

tical range of spatial correlation equal to the average

size of forest blocks (Mandallaz, 2000). In our study

area blocks have a size of 2000 m approximately,

therefore the range of the first nested structure

of Model (21) is in accordance with this data. The
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Fig. 6. Prediction of the random effect vi of Model (17) and of stand density along the three transects of Fig. 1. For the cokriging prediction of

vi it was assumed that the stand density at the location where the prediction was required was equal to 300 stems/ha.
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long-range structure observed in the same variogram

is possibly due to differences in silvicultural prac-

tices (forest units located far away have different

densities).

The large nugget effect in the raw variogram of both

the studied variables can be attributed, according to

Chilés and Delfiner (1999), to three causes:

� Structures with a range shorter than the smallest

inter-point distance (short-range variability).

� Estimation errors of random effects or stand den-

sity.

� Micro-structures that is a component with a range

shorter than the sampling support. In our case the

sampling support refers to the inventory plot, there-

fore micro-structures should be absent if one is

willing to assume that within an inventory plot

there could be only one H/D curve or that the stand

density is constant.

4.2. Geostatistical prediction

Frequently parameters of H/D models vary across

stands and when sufficient data are available it is

convenient to construct models for them in an attempt

to localise the model and give more accurate predic-

tions. H/D parameters are influenced by a great num-

ber of factors, the thinning regime and the site quality

being the most important ones (intuitively). The com-

bined action of these and many other (less important)

factors causes a large spatial continuity for random

stand effects, which in turn can be used for spatial

prediction.

H/D curves derived with the use of a random

coefficients model provide more accurate predictions

if random effects can be predicted. To do this, at least

one additional height measurement from a tree within

the stand is required (Lappi, 1997). Alternatively,

prediction of random stand effects can be done with

geostatistics without the necessity of additional mea-

surements. This property is particularly interesting

when dealing with large inventory areas (national

forest inventories, for example) since the only avail-

able data are that collected at inventory plots. How-

ever, geostatistical predictions are associated with a

certain scale of spatial variation and their use should

be restricted to the same scale at which data were

collected.

The ecoregion-based H/D models reported by Huang

et al. (2000) can predict the H/D curve at locations

where no secondary information is available, but their

construction is based on a prior classification of the

study area into ecoregions, something that is automa-

tically done when using a geostatistical approach.

The spatial prediction of H/D curves should be used

in conjunction with spatial models for other stand

attributes, such as the diameter distribution (Nanos

and Montero, 2002) or nontimber products (Nanos

et al., 2001), and integrated into a spatial model of

forest production. Spatial models can be particularly

interesting in our study area since the two main

products (resin and timber) are considered to be

incompatible (resin extraction diminishes the timber

quality); therefore their joint production should be

based on a spatially optimised forest plan.
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Fig. 7. Predicted H/D curves at plots 506 and 1202 (see Fig. 1) for

different stand densities. The first curve for each plot (correspond-

ing to 889 stems/ha for plot 506 and 746 stems/ha for plot 1202) is

the actual stand density.
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4.3. Prediction by cokriging

Traditionally, geostatistics have been applied in the

field of mining and the petroleum industry where the

secondary variables included in the cokriging systems

cannot be altered by the manager of the resource.

However, in forestry and in our case study especially,

the inclusion of the stand density as a secondary

variable may be needed for the prediction of the

primary variable (in this case the random effect vi)

when stand density decreases due to thinning. In that

case, cokriging could be used for predicting the pri-

mary variable in the future, rather than providing a

more reliable spatial estimation.

In that sense, the inclusion of the stand density in a

cokriging system does not necessarily require a denser

sampling of this attribute, as it is usually reported in

the geostatistical literature (see, for example Goo-

vaerts, 1997). In the present study the stand density

is measured at the same number of plots as the primary

variable (usually reported as the isotopic case), but

due to the above reasons this should not be interpreted

as a disadvantage. Cokriging will probably not

improve over kriging, but it can be used for predicting

random stand effects at future stages of the stand

development.

An interesting future step would be the prediction of

H/D curves in the space–time domain (Houllier and

Pierrat, 1992; Stein et al., 1998) when multiple mea-

surements per individual are available. The inclusion

of the time dimension into a spatio-temporal predic-

tion system will provide a new geostatistical growth-

and-yield modelling methodology. Geostatistical

modelling when incorporated into in a forest

growth-and-yield model will provide (theoretically)

some advantages:

� Geostatistical models are site-specific: future pre-

dictions will be made based on nearby observations

(nearby both in space and time) therefore no site-

index modelling will be necessary.

� The stochastic nature of geostatistics will give a

stochastic component to forest modelling: the

future projection of two stands located some dis-

tance apart and having the same site quality and

density does not have to be identical. It will prob-

ably be, but this will depend on the nearby stands,

their evolution, and dynamics.

5. Conclusions

In this analysis we tried to derive a method for

predicting spatially the height/diameter relationship.

The proposed modelling strategy combines mixed

models and geostatistical methodology. The analysis

can be divided into two steps: at the first stage a height/

diameter model is fitted to data of each plot, using

mixed models and letting some of the model para-

meters to vary across plots. At the second stage we

examined the spatial correlation of random stand

effects (variogram analysis) and we used the observed

correlation in order to localise the model and predict

random stand effects all over the study area (kriging).

Finally, we examined the spatial cross-correlation

between random stand effects and stand density and

we used this correlation in order to predict spatially the

random stand effects for different stand densities.

The advantage of the proposed methodology over

traditional prediction systems is that it is possible to

predict random stand effects of a height/diameter

model without additional stand measurements.
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