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Mapping soil pollution by spatial analysis and fuzzy classification
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Abstract Spatial analysis and fuzzy classification tech-

niques were used to estimate the spatial distributions of

heavy metals in soil. The work was applied to soils in a

coastal region that is characterized by intense urban

occupation and large numbers of different industries.

Concentrations of heavy metals were determined using

geostatistical techniques and classes of risk were defined

using fuzzy classification. The resulting prediction map-

pings identify the locations of high concentrations of Pb,

Zn, Ni, and Cu in topsoils of the study area. The maps

show that areas of high pollution of Ni and Cu are located

at the northeast, where there is a predominance of indus-

trial and agricultural activities; Pb and Zn also occur in

high concentrations in the northeast, but the maps also

show significant concentrations of Pb and Zn in other areas,

mainly in the central and southeastern parts, where there

are urban leisure activities and trade centers. Maps were

also prepared showing levels of pollution risk. These maps

show that (1) Cu presents a large pollution risk in the

north–northwest, midwest, and southeast sectors, (2) Pb

represents a moderate risk in most areas, (3) Zn generally

exhibits low risk, and (4) Ni represents either low risk or no

risk in the studied area. This study shows that combining

geostatistics with fuzzy theory can provide results that

offer insight into risk assessment for environmental

pollution.
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Introduction

Soil contamination poses an increasing threat to human

health and environmental quality (Lourenço and Landim

2005). Although soil often acts as a filter, purifying and

immobilizing many of the impurities deposited in it, its

capacity is limited, so soil can be negatively affected by the

cumulative effects of atmospheric pollutants, agrochemi-

cals and fertilizers, industrial and domestic solid residues,

and toxic and radioactive materials (Moreira-Nodermann

1987). Among soil and environmental pollutants, heavy

metals have received considerable attention over the last

few decades (Franssen et al. 1977). Metals, in particular

lead, nickel, zinc, and copper, constitute a significant

potential threat to human health. The environmental per-

sistence of metals in concert with their intensive use by

modern society has, over the years, created a concentration

of metals in the biosphere. Thus, there is a great chance of

exposure to toxic metals both in and out of the workplace,

and several metals are known to be human carcinogens,

including arsenic, chromium, and nickel. Further, many

toxic effects of metals, including carcinogenicity, can be

modified by concurrent exposure to other metals (Tang

et al. 1999; Winneke et al. 2002; Stein et al. 2002; Yang

et al. 2003; Rocha et al. 2003; Dias et al. 2006).

Since soil properties present a continuum in their spatial

variations, it is difficult to categorize soil samples without
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introducing errors or over-simplifications. Therefore, class

boundaries are usually chosen arbitrarily by imposing (1)

an uncertainty about the accuracy of the critical threshold

or range used to specify membership in a certain class and

(2) an uncertainty about the quality of the input maps.

Nevertheless, with crisp classifications, values close to

class boundaries can fall into different classes, even though

their uncertainties are the same within the range of the

standard measurement or interpolation error; consequently,

the resulting classifications can be erroneous. Moreover, in

analyses that involve a succession of steps, the problems

resulting from misclassification of soil units may be

amplified (Dobermann and Oberthür 1997).

Prediction mappings of samples are often based on

geostatistical methods, which calculate unbiased estimates

at unsampled locations. This approach is increasingly used

to characterize spatial variability of soil properties (Van

Meirvenne and Goovaerts 2001; Webster and Oliver 2001;

Lin et al. 2001; Romic and Romic 2003; McGraph et al.

2004). However, it remains difficult to define transition

classes between polluted and unpolluted soil areas. As an

alternative, fuzzy logic methods can be used to estimate the

degree of membership in each class, thereby treating

transition areas more realistically and eliminating impre-

cise and subjective concepts that are present in variables of

the physical environment (Feng et al. 2006).

Fuzzy logic is an artificial intelligence method and, as its

name indicates, it is based on soft, fuzzy values rather than

crisp ones. Specifically, transitions between two numbers

or sets of numbers are gradual, ranging from 1 to 0: unity

indicates a total degree of membership while zero indicates

no degree of membership (Zadeh 1965).

The first application of fuzzy sets and logic to envi-

ronmental sciences was in land evaluation (Chang and

Burrough 1987). Subsequently, the approach has been

extended to many other applications. For example, at the

Lacombe Experimental Farm in Alberta, fuzzy and Bool-

ean sets were combined to generate maps of clay content in

C horizon of the soil, interpolated by ordinary kriging.

Both approaches were used to estimate soil pollution. In

drainage net studies, a fuzzy approach was used as an

alternative procedure for classifying abrupt transition data

such as single pollution spots (Burrough 1992). Another

reported application is the acquiring and representing of

knowledge on soil–landscape relationships and applying

that knowledge to digital soil mapping (Feng et al. 2006;

Amini et al. 2005; Burrough and Mcdonell 2004; Cattle

et al. 2002).

The aim of this work is to present the spatial distribu-

tions of and pollution risks from heavy metals in soils of

the southern coastal region of the State of São Paulo,

Brazil. For that, data were interpolated using ordinary

kriging and prediction mappings of polluted areas were

generated. A fuzzy approach was used to classify interpo-

lated values into four levels of soil pollution risk: high risk,

moderate risk, low risk, and unpolluted areas.

Materials and methods

Chemicals and reagents

All reagents used were of high-purity grade unless other-

wise stated. Diluted acids and bases were prepared by

diluting 30% hydrochloric acid (Suprapur, Merck AG,

Darmstadt, Germany), 65% nitric acid (p.a. Merck AG;

prepurified by sub-boiling distillation), and sodium

hydroxide-monohydrate (Suprapur, Merck AG) with high-

purity water (Millipore-Q system, Millipore GmbH,

Eschborn, Germany). For metal determinations and their

calibrations, synthetic standards were used (ICP multi-

element standard solution IV, Merck AG).

Study area and sampling of soils

The research was conducted in the southern coastal region

of the State of São Paulo, Brazil (Fig. 1). The study area

covers about 572 km2 and includes industrial, urban, and

uncultivated lands (forest). Industrial activities are con-

centrated close to the rivers around Cubatão city in the

northeast area; they include a large petroleum refinery and

various chemical activities. Small factories are concen-

trated in the central area of the port region. Urban areas are

concentrated mainly along the seacoast from southwest to

southeast. Forest areas, with different types of vegetation,

are concentrated in the northwest. There are several

wastewater treatment plants in the region with high risks of

pollution originating from sewage sludge and related

compounds.

The parent rock materials are mainly recent terraces,

recent alluvial deposits, and undifferentiated terraces (all of

quaternary age) found in the southwest and southern part of

the region. In the northwest there are Precambrian moun-

tain rocks. The average annual rainfall is 1,200 mm and the

average annual temperature in the region is 25.5�C.

Sampling and preparation of soils

To generate prediction mappings of heavy metals in the

whole region, a random unaligned sampling strategy was

used to collect 123 soil samples from different locations in

the study area. The sampling locations were separated by

distances ranging from 95 to 650 m (Fig. 1). All soil

samples were taken from a depth of 0–20 cm, as

recommended by the soil reference book from the São

Paulo State Basic Sanitation and Technology Company
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(CETESB 2001). Gravels, coarse organic matter, and

plant–root residues were removed. Samples were thor-

oughly mixed and ground to pass a 2-mm sieve for analysis

(Alloway 2001).

Soil characterization

Soil pH was measured using a pH meter with a glass

electrode. The proportion of organic material in the sam-

ples was determined by calcination for 4 h at 650�C. The

results showed about 5% (m/m) organic matter present in

different samples. Cation exchange capacity (CEC) was

measured for K, Ca, Mg, and H ? Al (CETESB 2001).

Available phosphorus (AP) and available potassium (AK)

were extracted using HF–HNO3–HClO4–HCl and then

measured by inductively coupled plasma mass spectrome-

try (ICP-MS).

To determine total metal concentrations, dried and

ground soil samples were conventionally decomposed by

aqua regia according to a standardized procedure (Alloway

2001). For this purpose, a weighed amount (approximately

2.00 g) of pre-dried soil sample was mixed with 21 mL of

30% HCl (Suprapur) and 7 mL of 65% HNO3 (Suprapur)

in a highly pre-purified quartz vessel (200 mL). The solu-

tion was heated first to 100�C and then to 120�C, where

it was cautiously and largely evaporated. Subsequently,

remainders of the sample were digested by an additional

20 mL of concentrated HNO3 under reflux for 3 h. Finally,

the digested samples were diluted with high-purity water

to a final volume of 100 mL. Small soil remainders

(approximately 5%) still undigested were removed by fil-

tration. Metal determinations were usually carried out with

1/10 dilutions of the digestion solutions. The standard

deviation of soil digestion by aqua regia (shown in Table 2

for a number of metals) was assessed from five replicates.

Metal determinations were performed by ICP-OES. The

chemical blanks, assessed by means of two aqua regia

digestion runs without any sample, were subtracted from

these results.

Multi-element determinations in acid extracts were

preferably carried out by simultaneous ICP-OES (spec-

trometer: TJA IRIS AP, Thermo Jarrell Ash, Franklin, MA,

Fig. 1 The studied area of

the present work, with the

sampling locations
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USA) according to routine recommendations of the man-

ufacturer. To achieve low detection limits, relatively large

sample volumes of up to 8 mL, each, were nebulized

(Meinhard nebulizer) and long integration times of 30 s

(three measurements) were used.

Geostatistics analysis

Geostatistics analysis methods are based upon the assump-

tion that spatial variations in any continuous attribute are

often too irregular to be modeled by a simple, smooth

mathematical function. Instead the variation can be better

described by a stochastic surface, known as a regionalized

variable. Such variables apply to environmental properties

such as soil types, variations in atmospheric pressure, ele-

vation above sea level, and distributions of continuous

demographic indicators. Geostatistical interpolation is

known as kriging. The procedure is similar to that used in

weighted moving average interpolation, except that the

weights are derived from a geostatistical analysis of the data

rather than from a general, and possibly inappropriate,

model. The ‘true’ value ẑðX0Þ is given by

ẑðX0Þ ¼
Xn

i¼1

ki � zðxiÞ ð1Þ

with
Pn

i¼1 ki ¼ 1: The weights ki are chosen so that (1) the

estimate ẑðX0Þ is unbiased and (2) the estimation variance

re
2 is less than that given by any other linear combination of

the observed values.

The minimum variance of ẑðX0Þ � zðX0Þ½ �; the predic-

tion error, or ‘kriging variance’ is given by

r̂e
i ¼

Xn

i¼1

ki cðxi; x0Þ þ / ð2Þ

and is obtained when

Xn

i¼1

kicðxi; xjÞ þ / ¼ cðxj; x0Þ for all j: ð3Þ

The quantity c(xi, xj) is the semivariance of z between

the sampling points xi and xj; c(xi, x0) is the semivariance

between the sampling point xi and the unvisited point x0.

Both quantities are obtained from the fitted variogram. The

quantity / is a Lagrange multiplier required for the

minimization. This method is known as ordinary kriging

and is well described by many authors (Landim 2003; Olea

1999; Burrough et al. 1997; Goovaerts 1997; Isaaks and

Srivastava 1989; Journel and Huijbregts 1978). In the

present study, variogram models were used to analyze

spatial patterns and ordinary kriging was used for mapping

predictions of the concentrations of four heavy metals: Ni,

Zn, Pb, and Cu.

Fuzzy classification

Fuzzy classification is a technique that operates on contin-

uous classes with the purpose of reducing a complex system,

represented by some sets of data, into explicitly defined

classes. In using fuzzy set theory, observation data are

grouped and individuals are assigned continuous class

membership values instead of exactly defined (crisp) ones

(McBratney et al. 1992; Burrough 1992). A membership

value of 1 is assigned to individuals that exactly match

strictly defined classes; individuals that do not match the

strictly defined classes receive membership values depend-

ing on their degree of closeness to class centroids (or class

means). Fuzzy classification based on the Semantic Import

model (SI) is the common technique that has been used in

various soil and environmental studies. In this approach,

class limits are specified by experience or by conventionally

imposed definitions before individuals are allocated on the

basis of how close they match the requirements of the classes

(Franssen et al. 1977; Feng et al. 2006; Burrough 1992;

Burrough and Mcdonell 2004; Amini et al. 2005; McBratney

et al. 1992; Odeh et al. 1992; Van Gaans and Burrough 1993;

De Gruijter et al. 1997). In the present study, fuzzy classifi-

cation was performed on the results of prediction mapping

based on geostatistical methods. Heavy metal concentrations

were grouped into four classes of pollution risk according to

guide values (GV) and kriging standard deviations (KSD).

To obtain the assigned continuous class membership

values, a set of linear models was used to describe the

a priori membership function (MF). The basic form of such

a function is given by

uðxÞ ¼

x�a
b�a if a� x � b

1 if b\ x � c
x�d
c�d if c\ x � d

8
><

>:
ð4Þ

which has a general symmetrical shape. The parameters a,

b, c, and d are such that [a, d] defines the support interval,

[a, b] and [c, d] the boundaries, and [b, c] the core, as

shown in Fig. 2.

Other variants of the MF are asymmetric types, which

define the beginning and the ending member subsets of left

and right curves defined by the following trapezoidal

function:

uðxÞ ¼
1 if 0� x� a

x� b

a� b
if a\x� b

8
<

: ð5Þ

and

uðxÞ ¼
x� c

d � c
if c� x� d

1 if x [ d

8
<

: : ð6Þ
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To classify results from the ordinary kriging interpola-

tion process for each element, four levels of soil pollution

risk were constructed: high risk, moderate risk, low risk,

and unpolluted areas. These were based on the legally

defined limit levels for each element. The MF for each of

the four F sets (MFF) was defined by values for a, b, c, and

d. The idea underlying the choice of such values is as

follows. Given a value m resulting from the interpolation

process and having an intrinsic error KSD, its real value,

according to statistical conditions, lies between m - KSD

and m ? KSD with a certain degree of confidence. If the

interval [m - KSD, m ? KSD] belongs to the core of MFF,

then m can be characterized by complete and full mem-

bership in the set F. However, if [m - KSD, m ? KSD] is

in the boundary area, then the membership of m is given by

/(m). Further, if [m - KSD, m ? KSD] is outside the sup-

port interval, then the membership of m is set to 0. Con-

sequently, if Li and Ls define the inferior and superior limits

of a class F, then it follows that

a ¼ Li�KSD ð7Þ
b ¼ Li�KSD ð8Þ
c ¼ LS�KSD ð9Þ
d ¼ LS�KSD ð10Þ

For each class, Li and Ls are defined based on guide values

(GV) that characterize them.

After the parameters for the four MFF are defined,

all points from the interpolated maps are given four

membership values, one for each defined class. To generate

a classification map, the maximum fuzzy operator was

used, and the classified values were linearly mapped to

different ranges on an 8-bit grayscale image (Jiang and

Eastman 2000).

Results

Guide values were used to quantify concentrations of

heavy metals in soil (CETESB 2001). Table 1 shows levels

of specific chemical elements, defining the maximum,

alert, and critical values allowed for heavy metals in soil.

Those levels constitute the universe of ‘‘soil pollution’’ in

this study. For example, 13 mg kg-1 is the maximum

acceptable concentration for Ni, values between 13 and

30 mg kg-1 are classified as alert concentrations, and

values greater than 30 mg kg-1 are critical concentrations

of Ni for agricultural, urban, and industrial areas.

In this study, any data that were more than three stan-

dard deviations from the average were considered excep-

tional (Liu et al. 2006; Shi et al. 2007). Those data were

replaced with the maximum or minimum values within

[A - 3s, A ? 3s] in the raw data set. Here A denotes the

average value for each heavy metal and s is the standard

deviation (SD). This was necessary to implement linear

geostatistics (McGraph et al. 2004; Landim 2003; Grin-

garten and Deutsch 2001; Zhang and Selinus 1998; Zhang

et al. 1995; Isaaks and Srivastava 1989).

The representative statistical summary of the available

data sets for soil attributes is in Table 2. Note that the

kurtosis (1.79–3.50) and skewness (1.47–5.82) for Ni, Zn,

Pb, and Cu were high. This suggests the presence of out-

liers and non-normal distributions, which can impair the

variogram structure and kriging results. Therefore, raw

data sets were logarithmically transformed before per-

forming geostatistical analysis, resulting in reduced values

for the kurtosis (-0.45 to 0.17) and skewness (0.08–1.04)

of Ni, Zn, Pb, and Cu. The transformed data sets passed the

log-normal test.

The coefficients of variation (CV) for Cu, Zn, and Ni

were 65.22, 55.33, and 50.32%, respectively. These were

Fig. 2 Form of a linear membership function (MF) where /(x) gives

the membership value, with [a, d] being the support interval, [a, b]

and [c, d] the boundaries, and [b, c] the core

Table 1 Guideline values for

levels of heavy metals in soil

(mg kg-1)

São Paulo State Basic Sanitation

and Technology Company

(CETESB 2001)

Soil

attributes

Maximum

acceptable value

Alert Critical value

Agricultural Domestic Industrial

Ni 13 30 50 200 300

Zn 60 300 500 1,000 1,500

Pb 17 100 200 350 1,200

Cu 35 60 100 500 700
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higher than those for Pb, suggesting that Cu, Zn, and Ni

had greater variations among the soil samples; such high

variations could possibly be influenced by extrinsic factors,

such as human activities. Values for soil pH, organic matter

(OM), and CEC are also shown in Table 2.

Table 3 shows the semivariogram parameters for the

soil samples that were logarithmically transformed. The

range values of semivariograms for Ni and Pb were similar

and around 900 m; these were much greater than those for

Zn and Cu (around 600 m). All of the Nug/Sill ratios for

the four metals were less than 0.36 and R2 was between

0.30 and 0.85.

The experimental semivariograms for the heavy metals

in soil are compared with the fitted models in Fig. 3. The

results showed that soil containing Ni, Zn, Pb, and Cu were

best fit with the exponential model.

The ordinary kriging technique was used here to predict

attribute values at unsampled points in the study area.

Figure 4 presents the spatial patterns generated from the

semivariograms for the four heavy metals in the studied

area. The spatial distribution maps showed similar geo-

graphical trends, especially for Ni (Fig. 4a), Pb (Fig. 4c),

and Cu (Fig. 4d), with higher concentrations in the north-

east and decreasing presence toward the southwest. How-

ever, Zn (Fig. 4b) showed an inverse trend with higher

concentrations in the southwest and decreasing presence

toward the northeast.

To assess pollution risks, the fuzzy classification

approach described in ‘‘Materials and methods’’ was used

to compare the guide values in Table 1 with estimates of

soil pollutant content obtained by ordinary kriging. The

value for the KSD of Ni was 1.09 mg kg-1, that for Zn was

16.73 mg kg-1, that for Pb was 19.86 mg kg-1, and Cu

had 20.11 mg kg-1. The resulting MFs for these heavy

metals are shown in Fig. 5.

After each pixel from the spatial distribution maps was

fuzzy classified, 8-bit grayscale images were generated in

such a way that unpolluted values were mapped to

the interval [0, 65], low risk to [66, 127], moderate risk to

[128, 191], and high risk to [192, 255]. For example, if a

certain pixel has membership values of 0.2 for the unpol-

luted class, 0.9 for the low-risk class, 0 for the moderate-

risk class, and 0 for the high-risk class, then the maximum

fuzzy operator selects 0.9 (the low-risk class), and in the

output image the value 121 is assigned to that pixel

(Fig. 6).

Discussion

Spatial variability can be theoretically estimated by the

ratio Nug/Sill in geostatistical studies, and the result may

be used as a criterion for measuring the spatial dependence

of regional variables. The results in Table 2 show spa-

tial dependence between 0.32 and 0.36. These values

Table 2 Basic statistical values obtained from the data

Soil attributes Interval Mean SD K S CV (%) Guide valuea Alertb [Alertc

Ni (mg/kg) 0.71–69 15.18 8.81 3.50 2.22 50.32 64 54 5

Log Ni 1.05–1.66 1.18 0.14 0.17 1.03 – – – –

Zn (mg/kg) 19–587 150.1 113.1 1.79 1.47 55.33 19 89 15

Log Zn 1.27–2.68 2.06 0.30 -0.45 0.08

Pb (mg/kg) 10–935 93.17 102.6 3.22 5.24 18.05 04 92 27

Log Pb 1.01–1.66 1.83 0.30 0.25 1.04

Cu (mg/kg) 6–684 48.87 87.39 3.26 5.82 65.22 63 19 41

Log Cu 0.77–2.49 1.46 0.35 0.35 0.77 – – – –

pH 3.91–4.62 4.22 0.30 -1.22 0.22 7 – – –

OM (%) 0.32–16.13 4.99 6.78 1.73 1.39 – – – –

CEC (meq/100 cm3) 4.60–19.85 11.74 6.92 -2.90 0.08 – – – –

SD standard deviation, K kurtosis, S skewness, CV coefficient of variation
a Unpolluted
b Polluted
c Very polluted

Table 3 Semivariogram models of heavy metals and their

parameters

Soil

attributes

Model C0 C ? C0 C0/
C ? C0

Range

(m)

R2

Ni Exponential 0.22 0.0155 0.354 900 0.30

Zn Exponential 0.32 0.90 0.355 600 0.85

Pb Exponential 0.345 0.96 0.359 900 0.72

Cu Exponential 0.30 0.91 0.329 640 0.81

C0 nugget variance, C structural variance, (C ? C0) sill variance
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characterized moderate spatial dependence between con-

centrations of heavy metals in soil. This is a feature present

in areas under anthropic and industrial influence (Chang

et al. 1998; Chien et al. 1997; Cambardella et al. 1994).

As to contributions of anthropic processes in the studied

area, we analyzed correlations between heavy metal vari-

ables and soil properties (OM, CEC, AP, AK, and pH)

using a significance level of 5%. Significant positive cor-

relations were found between Ni and Pb (r = 0.625),

between Ni and Cu (r = 0.682), and between Cu and Pb

(r = 0.608). The correlations for these three heavy metals

are related to the geographical distributions in the study

area, indicating a trend of spatial concentrations increasing

from southeast to northwest (Fig. 4a, c, d). However, cor-

relations of Zn with the other heavy metals were weaker,

with values below r = 0.35. In Fig. 4b the geographical

distribution of Zn shows an inverse trend, with values

increasing from northwest to southeast.

Among heavy metals and some soil properties, corre-

lation measures were all positive. For instance, values for

pH were between 0.192 and 0.554. For Cu and AP the

value of r = 0.196 was obtained and with Pb a value of

r = 0.252. The heavy metal correlations in soil and soil

properties suggest that there are locations in which

anthropic factors cause significant changes in environ-

mental characteristics (Liu et al. 2006; Carnelo et al. 1997;

Yang et al. 1995).

The mean and maximum contents of Ni, Zn, Pb, and Cu

in Table 2 were considered high compared to the corre-

sponding guide values suggested by maximum levels of

concentration (São Paulo State Basic Sanitation 2001).

Thus, these four elements exhibit a risk for environmental

pollution and pose a possible threat to human health. Of the

123 samples, the following numbers of samples had con-

centrations exceeding the maximum levels set by the guide

values: 55 for Ni, 89 for Zn, 92 for Pb, and 19 for Cu.

These results suggest that some cultivated lands in the

study area are polluted. In addition, the following numbers

of samples had concentrations that exceeded the minimum

critical values: 5 for Ni, 15 for Zn, 27 for Pb, and 41 for Cu.

These results suggest that some industrial and urbane areas

are polluted. These conclusions match results from risk

assessment. In this study, the tested soils were taken mainly

from plains and valleys in the studied area. The parent

Fig. 3 Experimental

semivariograms for heavy

metals in soil compared with

fitted models: a Ni, b Zn,

c Pb, and d Cu
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materials were recent terraces, recent alluvial deposits, and

undifferentiated terraces (all of quaternary age), with

characteristics of being easily enriched by heavy metals.

In recent years, rapid industrialization in the study area

has led to more township enterprises, such as cement

production, a chemical-petroleum industry, and factories

for fertilizers, plaster, paper, and steel. Most of these

industries are located in the northwest-southwest section

(Fig. 1). These industries would inevitably present poten-

tial risks from heavy metal pollution. Based on the similar

Fig. 4 Spatial distribution maps generated by ordinary kriging for heavy metals in soil: a Ni, b Zn, c Pb, and d Cu

Fig. 5 Membership functions: a Ni, b Zn, c Pb, and d Cu
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geographical distribution between Pb and Cu risk and the

township enterprises, especially cement and petroleum-

chemical plants, it could be extrapolated that pollution

discharge from industrial production might partially con-

tribute to Ni and Zn pollution. These findings should be

taken into account in decision making related to adjust-

ments in the industrial infrastructure.

Using (1) Fuzzy classification to stratify geochemical

data into four classes, from unpolluted to highly polluted,

(2) legally prescribed guide values, and (3) KSD (Fig. 5),

we have produced maps that clearly indicate the pollution

risk levels of chemical elements (Fig. 6). The maps show

that the presence of Cu and Pb are associated with older

urban areas and areas of dense traffic. The concentrations

of Ni are randomly distributed and are low throughout the

entire sampled area, except in the southeastern section.

Concentrations of Zn are intermediate in urban areas and

decrease toward the edges of those areas. The presence of

these four elements is obviously associated with anthro-

pogenic activity. This is supported by the fact that the

highest concentrations of the four elements occur at the

port and at oil refineries, steelworks, and fertilizer plants.

This work demonstrates that fuzzy classification meth-

ods can be successfully combined with geostatistical

methods to analyze data. Since the results represent the

most likely membership of a certain sampled point into one

of four risk classes, we have a certain degree of confidence

that a sampled point has been classified correctly. Never-

theless, the samples were point data and some form of

interpolation was necessary to produce continuous spatial

maps. Although data interpolation always casts some doubt

on the results, the general trends in the original data are

preserved. Consequently, this type of mapping can be used

to help optimize public health policies for urban areas.
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Company. Relatório de estabelecimento de valores orientadores
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