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Summary

The singular value decomposition and its interpretation as a linear biplot has proved to
be a powerful tool for analysing many forms of multivariate data. Here we adapt biplot
methodology to the speci¯c case of compositional data consisting of positive vectors each
of which is constrained to have unit sum. These relative variation biplots have properties
relating to special features of compositional data: the study of ratios, subcompositions
and models of compositional relationships. The methodology is demonstrated on a data
set consisting of six-part colour compositions in 22 abstract paintings, showing how the
singular value decomposition can achieve an accurate biplot of the colour ratios and how
possible models interrelating the colours can be diagnosed.
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1 Introduction

Compositional data (Aitchison, 1986) consist of vectors of positive values summing to

a unit, or in general to some ¯xed constant for all vectors. Such data arise in many

disciplines, for example, in geology as major oxide compositions of rocks, in sociology and

psychology as time budgets, that is parts of a time period allocated to various activities, in

politics as proportions of the electorate voting for di®erent political parties, and in genetics

as frequencies of genetic groups within populations. The biplot (Gabriel, 1971) is a method

which has been regularly applied to visualize the rows and columns of many di®erent

kinds of data matrices. In almost all cases, the original data values require transforming

in order to depict correctly the structures that are appropriate to the particular nature of

the data. Compositional data are also special in this respect and careful consideration of

the relationships between parts of a composition is required before we embark on applying

biplot methodology to such data.

As an example of compositional data we consider the data of Table 1, showing six-part

colour compositions in 22 paintings by an amateur abstract artist. In each painting the

artist uses black and white, the primary colours blue, red and yellow, and one further

colour, labelled \other", which varies from painting to painting. The data are the pro-

portions of surface area occupied by the six colours. For example, the ¯rst painting has

12.5% of the area in black, 24.3% in white, and so on. There is considerable variation

from painting to painting in these colour compositions and the challenge is to describe

the patterns of variability appropriately in simple terms while maintaining the unit sum

constraint. An important aspect is how to treat so-called subcompositions, for example if

the analysis is restricted to the three primary colours then the results should be consistent

with those obtained from the full composition.

Insert Table 1 about here

In Section 2 we de¯ne the linear biplot and brie°y summarize some known results

which will be relevant to its application to compositional data. In Section 3 we discuss
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what makes compositional data di®erent from interval- or ratio-scaled measurements and

how to transform such data in order to perform what we shall call a relative variation

biplot. In Section 4 we apply the relative variation biplot to the colour composition

data and discuss issues of interpretation and modelling. Section 5 concludes with a dis-

cussion and comparison with methods such as regular principal component analysis and

correspondence analysis.

2 Biplots

A biplot is a graphical display of the rows and columns of a rectangular n £ p data
matrix X, where the rows are often individuals or other sample units, and the columns

are variables. In almost all applications, biplot analysis starts with performing some

transformation onX, depending on the nature of the data, to obtain a transformed matrix

Z which is the one that is actually displayed. Examples of transformations are centring

with respect to variable means, normalization of variables, square root and logarithmic

transforms.

Suppose that the transformed data matrix Z has rank r. Then Z can be factorized as

the product:

Z = FGT ; (1)

where F is n£r and G p£r. The rows of F and the rows of G provide the coordinates of

n points for the rows and p points for the columns in an r-dimensional Euclidean space,

called the full space since it has as many dimensions as the rank of Z. This joint plot of

the two sets of points can be referred to as the exact biplot in the full space. There are

an in¯nite number of ways to choose F and G, and certain choices favour the display of

the rows, others the display of the columns. But for any particular choice the biplot in r

dimensions has the property that the scalar product between the i-th row point and j-th

column point with respect to the origin is equal to the (i; j)-th element zij of Z.

We are mainly interested in low-dimensional biplots of Z, especially in two dimensions,

and these can be conveniently achieved using the singular value decomposition (SVD) of

4



Z:

Z = U¡VT ; (2)

whereU andV are the matrices of left and right singular vectors, each with r orthonormal

columns, and ¡ is the diagonal matrix of positive singular values in decreasing order of

magnitude: °1 ¸ ¢ ¢ ¢ ¸ °r > 0. The Eckart-Young theorem (Eckart and Young, 1936)

states that if one calculates the n £ p matrix Ẑ using the ¯rst r¤ singular values and
corresponding singular vectors, for example for r¤ = 2:

Ẑ =
h
u1 u2

i " °1 0
0 °2

# h
v1 v2

i
T (3)

then Ẑ is the least-squares rank r¤ matrix approximation of Z, that is Ẑ minimizes the

¯t criterion kZ¡Yk2 = P
i

P
j(zij ¡ yij)2 over all possible matrices Y of rank r¤, where

k ¢ ¢ ¢ k denotes the Frobenius matrix norm. It is this approximate matrix Ẑ which is

biplotted in the lower r¤-dimensional space, called the reduced space. This biplot will

be as accurate as is the approximation of Ẑ to Z. The sum of squares of Z decomposes

into two parts: kZk2 = kẐk2 + kZ ¡ Ẑk2, where kẐk2 = °21 + ¢ ¢ ¢ °2r¤ and kZ ¡ Ẑk2 =
°2r¤+1+¢ ¢ ¢ °2r and goodness-of-¯t is measured by the proportion of explained sum of squares
(°21 + ¢ ¢ ¢ °2r¤)=(°21 + ¢ ¢ ¢ °2r ), usually expressed as a percentage.
The SVD also provides a decomposition which is a natural choice for the biplot. For

example, from (3) in two dimensions, Ẑ = FGT with

F =
h
°®1 u1 °®2 u2

i
G =

h
°1¡®1 v1 °1¡®2 v2

i
(4)

for some constant ®. The most common choices of ® are the values 1 or 0, when the

singular values are assigned entirely either to the left singular vectors of U or to the right

singular vectors of V respectively, or 0.5 when the square roots of the singular values are

split equally between left and right singular vectors. Each choice, while giving exactly

the same matrix approximation, will highlight a di®erent aspect of the data matrix. The

term \principal coordinates" refers to the singular vectors scaled by the singular values

(for example, F with ® = 1, or G with ® = 0), while \standard coordinates" are the

unscaled singular vectors (Greenacre, 1984).
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The most common biplot is of an individuals{by{variables data matrix X that has

been transformed by centring with respect to column means ¹xj:

zij = xij ¡ ¹xj : (5)

Optionally, if normalization of the variables is required, there can be a further division of

each column of the matrix by sj, the estimated standard deviation of the j-th variable:

zij = (xij ¡ ¹xj)=sj.
After calculating the SVD of Z, the coordinate matrices F and G are calculated as in

(4) using either (i) ® = 1, that is rows in principal coordinates and columns in standard

coordinates, called the form biplot, which favours the display of the individuals (see below),

or (ii) ® = 0, that is rows in standard coordinates and columns in principal coordinates,

called the covariance biplot, which favours the display of the variables (Greenacre and

Underhill, 1982). In either biplot we conventionally depict the variables by rays emanating

from the origin, since both their lengths and directions are important to the interpretation.

Clearly, the row and column solutions in each of these biplots di®er only by scale changes

along the horizontal and vertical axes of the display.

Insert Figure 1 about here

The covariance biplot is characterized by the least-squares approximation of the co-

variance matrix S = ZTZ=(n¡1) by GGT=(n¡1), the matrix of scalar products between
the row vectors of G=

q
(n¡ 1). Thus the lengths of the rays will approximate the stan-

dard deviations of the respective variables and angles between rays will have cosines which

estimate the intervariable correlations. Distances between row points in the full space are

measured in the Mahalanobis metric, using the inverse covariance matrix S¡1. Geomet-

rically this means that row points have been \sphered" to have the same variance in all

directions.

In the form biplot, it is the form matrix ZZT, or matrix of scalar products between

the rows of Z, that is approximated optimally by the corresponding form matrix FFT

of F. Thus the scalar products and squared norms (lengths) of the row vectors in the

6



full space are approximated optimally in the reduced space biplot, whereas now the rays

corresponding to the variables have been sphered.

Apart from these rules of interpretation summarized in Figure 1 (see, for example,

Gabriel, 1971, 1981; Greenacre and Underhill, 1982; Gower and Hand, 1996), there are

the lesser-known issues of calibration, approximation of di®erences and modelling that

are particularly relevant to our study of compositional biplots.

2.1 Calibration of biplots

The oblique axis through a ray is called the biplot axis of the corresponding variable.

Each zij is approximated by the scalar product between a row point and a column point

in the biplot, and this scalar product is equal to the projection of the row point onto the

biplot axis, multiplied by the length of the ray. It follows that the inverse of the length

of the ray gives the length of a unit along the biplot axis. For example, if the length of

ray A is equal to 5, according to the scale of the display, then 1/5=0.2 will be the length

of one unit along this axis, so that two individuals projecting at a distance of 0.2 apart

on this axis are predicted to be 0.2£5 = 1 unit apart on variable A. Knowledge of (i)

this unit length, (ii) the positive direction of the scale as indicated by the ray and (iii)

the fact that the mean is at the centre of the display, allows us to calibrate the biplot

axis in units of the original variable. For examples of calibration, see Gabriel and Odoro®

(1990), Greenacre (1993) and Gower and Hand (1996).

2.2 Di®erence axes

Any linear combination of rays in the biplot provides a vector which represents the corre-

sponding linear combination of the variables (Gabriel, 1978). In particular, the di®erence

between two variables can be indicated by the vector connecting the endpoints, or apexes,

of the two corresponding rays (Figure 2). These di®erence vectors are called links. Thus,

the di®erence between variables A and B is shown by the dashed link in Figure 2. Because

the link points towards variable A, the represented di®erence is variable A minus variable

B.
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Insert Figure 2 about here

The row points can be similarly projected onto an axis through a link to obtain

approximations of the di®erences for the individuals. The point of average di®erence on

this di®erence axis is given by the projection of the origin onto this axis. In the covariance

biplot the rays are optimal representations of the corresponding full-space columns, but

there is no explicit least-squares approximation by the links to the true di®erences, so

that error of estimation of the di®erences is not necessarily minimized. Di®erences will

be accurately represented and predicted when the ¯t is high, of course, but when it is low

di®erences are often represented much better with respect to radically di®erent dimensions

of the variable space. For a discussion of this topic and an explicit analysis of di®erences,

see Greenacre (2001).

The situation is di®erent for the relative variation biplot, however. As we shall explain

in Section 3, this biplot involves a row-centred data matrix, which gives the property that

links are optimal least-squares approximations of the true di®erences, explaining the same

percentage of variance as the rays do.

2.3 Diagnosis of simple models

Bradu and Gabriel (1978) give guidelines for diagnosing simple models from straight-line

patterns formed by subsets of row and/or column points in a two-dimensional biplot,

assuming that the biplot gives an excellent ¯t to the data (see also Gabriel (1981)). For

example, if in a biplot we observe that a subset I of row points lies in an approximate

straight line, and a subset J of column points also lies in a straight line which is perpen-

dicular to the line of row points, then the submatrix formed by the rows I and columns

J can be diagnosed to follow closely the simple additive model: zij = ¹+ ®i + ¯j. When

these straight lines are not perpendicular, a slightly more general model is indicated, and

slightly more general still when just one set of points, say the column points, falls on

a straight line. The beauty of such diagnostics is that it is easier to notice groups of

points lining up in a biplot than to undertake a study of all subsets of the points and all
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submatrices of the data.

We shall illustrate the types of model that can be diagnosed for compositional data

from straight-line patterns in the display.

3 Compositional data

By the very nature of the initial centring transformation (5), the biplots described above

apply to interval-scale variables, since the results are invariant with respect to additive

changes in the variables. If the data were ratio-scale measurements, that is if multiplicative

di®erences were important in the comparison of individuals, then the data should be

logarithmically transformed before centring. We now consider compositional data and

transformations which can be considered suitable to bring them onto an interval scale for

biplotting.

A compositional data matrix X has columns corresponding to the parts, or compo-

nents, of a p-part composition. A typical row vector of this matrix is [x1 : : : xp ] with

positive components subject to the unit-sum constraint x1 + ¢ ¢ ¢ + xp = 1. Although

standard statistical methodology, such as the calculation of covariances and correlations,

is commonly applied to compositional data, there is an extensive literature of the pitfalls

of such practice (see, for example, Aitchison 1986, chap. 3). Of particular importance in

the study of compositional data is the concept of a subcomposition, and the requirement

that any form of analysis should possess what is called subcompositional coherence. This

is best considered in terms of two scientists A and B, with A able to record all the p parts

of a composition and so arrive at the full composition [x1 : : : xp ], whereas B is aware of,

or can record, only some parts, say 1; : : : ; p¤, hence arriving at the subcomposition

[ s1 : : : sp¤ ] = [ x1 : : : xp¤ ]=(x1 + ¢ ¢ ¢+ xp¤) : (6)

Subcompositional coherence requires that any inference which scientist A makes about

the subcompositional parts 1; : : : ; p¤ from knowledge of the full composition should co-

incide with the corresponding inference made about these parts by scientist B from the
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subcomposition. Regular product-moment correlations and principal component anal-

ysis, based on the covariances calculated on the raw compositional data, do not have

subcompositional coherence (Aitchison 1986, Section 3.3).

Recognition that the study of compositions is concerned with relative and not absolute

magnitudes of the components has led to considering ratios of the components. From (6)

ratios are invariant under the formation of subcompositions: sj=sj0 = xj=xj0 . Notice that

these are ratios within the compositional data vector, that is across the columns of the

data matrix. When it comes to calculating scalar products and covariances for the biplot

it is necessary to consider on what scale these ratios themselves are, when compared across

individuals. Here we maintain that the ratios themselves are on a ratio scale. Hence it

is appropriate to take logarithms of the ratios and to consider di®erences between these

logratios from individual to individual. Several di®erent justi¯cations for the logratio

transformation may be found in Aitchison (1986, 2001). At ¯rst, this might seem unduly

complicated but di®erences in logratios are already commonplace in the calculation of the

log-odds in the loglinear model of categorical data and in logistic regression.

Aitchison (1986) shows that there are three equivalent ways of considering ratios within

a compositional vector: (1) the 1
2
p(p¡ 1) ratios xj=xj0 between pairs of components (we

assume j < j0 when selecting the pair), (2) the p ¡ 1 ratios xj=xp between the ¯rst
p¡ 1 components and the last one, and (3) the p ratios xj=g(x) between the components
and their geometric average g(x) = ( x1x2 ¢ ¢ ¢xp )1=p. On the logarithmic scale these are
the di®erences log(xj) ¡ log(xj0), log(xj) ¡ log(xp) and the deviations from the mean

log(xj) ¡ (1=p)Pj log(xj) respectively. The second option is the least interesting in the

present context, because it is not symmetric with respect to all the components, and

we do not discuss it further. We shall be primarily interested in the study of pairwise

logratios log(xj=xj0) = log(xj) ¡ log(xj0), but will need to refer to the centred logratios
log[(xj)=g(x)] as well.

Suppose that we denote the logarithms log(xij) of the compositional data matrix by

`ij and collect them in a matrix L(n£ p). Suppose that the dot subscripts in `i¢, `¢j and
`¢¢ denote the averages over the corresponding indices. Also de¯ne ¿i;jj0 = `i;j ¡ `ij0 as
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the general element of the n£ 1
2
p(p¡ 1) matrix T of all pairwise logratios, where j < j0.

Although our interest is chie°y in the matrix T of logratios, we shall now show that it

is possible to obtain all the results about T using a smaller matrix with only p columns

based on the centred logratios.

If we were to biplot the larger matrix T, we would centre T with respect to column

means ¿¢jj 0 = `¢j ¡ `¢j0, as in (5), to obtain a matrix Y: yi;jj0 = ¿i;jj 0 ¡ ¿¢jj0 . Suppose
that Y has SVD Y = AªBT, where B has 1

2
p(p ¡ 1) rows representing each logratio

(jj0) as a ray emanating from the origin. Notice that the corresponding \inverse" logratio

(j0j) would be the ray of the same length emanating from the origin and pointing in the

opposite direction. T has 1
2
p(p ¡ 1) columns, but its rank can be shown to be equal to

p¡ 1, hence it has 1
2
(p¡ 1)(p¡ 2) columns that are e®ectively redundant.

Considering now the analysis of the centred logratios, let Z be the n £ p matrix of
centred logratios `ij ¡ `i¢ centred with respect to column means z¢j = `¢j ¡ `¢¢. That is, Z
is the matrix of elements of L double-centred: zij = `ij ¡ `i¢ ¡ `¢j + `¢¢. Let Z have SVD
Z = U¡VT. Since Z is double-centred, its singular vectors in U and V are all centred,

and the rank of Z is equal to p¡ 1.
The SVDs of Y and of Z are directly related in the following way (see Appendix 1 for

a proof of these results):

1. The singular values of the two SVDs are related by a constant scaling factor: ª =q
p¡.

2. The left singular vectors are identical: A = U.

3. The right singular vectors B of Y are proportional to the corresponding di®erences

in the row vectors of V, speci¯cally bjj0;k = (vjk ¡ vj0k)=
q
p.

This result means that we need only perform the analysis of the smaller matrix Z,

from which all the results for the larger matrix Y may be obtained. We call the biplot of Z

the \relative variation biplot" because it represents variation in all the component ratios.

Important geometric consequences come from the equivalence of the SVDs of Y and Z.
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First, in the relative variation biplot we obtain rays representing the centred logratios. The

links between the apexes of the rays represent the pairwise logratios and can e®ectively

be transferred to the origin to obtain the solution which would have been obtained from

Y. This means that looking for straight-line patterns in the biplot can be widened to

include links which are parallel. Two parallel links of the same length, thus forming a

parallelogram, will be shown to have a very special property in the relative variation biplot.

Second, we can be assured that in the relative variation biplot, the pairwise logratios are

optimally displayed and with the same percentage explained variance as the display of the

centred logratios. This result is due to the row-centring of the log-compositional matrix L,

which assures that column links are optimal representations, just as the column-centring of

a regular individuals{by{variables matrix assures that the distances between individuals

are also optimally displayed.

We shall illustrate this novel result along with other features of the relative variation

biplot.

4 Results

Figures 3 and 4 show the relative variation biplots of the data in Table 1, ¯rst the form

biplot version and second the covariance biplot version. In the logratio covariance biplot

of Figure 4 the column points have been rescaled by the constant 1=
q
(n ¡ 1) = 1=

q
21

in order to bring the column solution onto the scale of logratio variance and covariance.

Insert Figures 3 and 4 about here

We collect below the properties of the relative variation biplots. The following notation

will be used when referring to features of the biplots: O refers to the origin of the displays;

i denotes the i-th row point in standard coordinates, I the i-th row point in principal

coordinates; similarly, j and J denote the j-th column point in standard and principal

coordinates, so that the form biplot displays the I's and j's while the covariance biplot

displays the i's and J 's; vectors such as rays and links are indicated by the endpoints, for
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example in the covariance biplot OJ is the ray to the j-th component apex and JJ 0 is the

link from the j-th to the j0-th apexes, representing the di®erence J 0 minus J; distances

between points are denoted by, for example, jOIj, jJJ 0j and jii0j.

Property 1. The row points and column points are both centred at the origin O. This

is a direct consequence of the double-centring transformation of the matrix. Thus the

average row point in the display is at the origin and the average column point as well.

Property 2. Distances jII 0j between row points in the form biplot are approximations
of the distances between the individuals, calculated either from the matrix of centred

logratios, or equivalently from the matrix of pairwise logratios. The dispersion along the

horizontal and vertical principal axes is quanti¯ed by the corresponding eigenvalues and

percentages of sum of squares explained: 90.0% and 8.2% respectively in this application,

giving an excellent overall ¯t of 98.2%.

Property 3. Distances jJJ 0j between column points in the covariance biplot are ap-
proximations of the standard deviation of the corresponding logratio. Thus the short link

between \black" and \other" indicates that the component ratio black/other is relatively

constant in the data, whereas the largest link, between \red" and \blue", indicates that

there is the most relative variation in these two colours across the paintings. The exact

standard deviations of all logratios are given in the upper triangle of Table 2 and those

estimated from the link lengths in the biplot in the lower triangle. The agreement is very

good because the biplot ¯ts the data so well. Notice that the estimated values are always

less than the exact values, since the approximation is \from below". The link lengths in

the full ¯ve-dimensional space are exactly the standard deviations, but are shorter when

projected onto the reduced space of the biplot.

Insert Table 2 about here

Property 4. Angle cosines between links in the covariance biplot estimate correlations

between logratios. Thus the fact that the links among blue, yellow and red lie perpen-

dicular to the links between white, other and black, indicates that logratios amongst the
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¯rst set have near zero correlations with those amongst the second set. To support this

claim, we show in Table 3 the relevant subset of the correlation matrix between logratios,

showing that the two sets can be considered independent of each other.

Amongst the colours blue, yellow and red of the ¯rst set the correlations between

logratios are seen to be high, as expected. Amongst those of the second set, black, white

and other, however, there are lower correlations, especially between log(white/other) and

log(other/black). This is due to the fact that \other" has a relatively large coordinate

on the third dimension which is not seen in the two-dimensional biplot. The black-other

link, although short and thus relatively unimportant to the interpretation, is not well

represented in the biplot. This fact can also be picked up on closer inspection of Table 2,

where the standard deviation of the black-other logratio is seen to be underestimated in

the biplot.

Insert Table 3 about here

Property 5. In either biplot column points lying in a straight line reveal logratios of

high correlation, and a model summarizing this interdependency can be deduced from the

relative lengths of their links. By inspection, the distance from red to yellow is roughly

2.5 times the distance from yellow to blue. Since all links can be transferred to the origin,

it follows that

log(red=yellow)¡ aveflog(red=yellow)g = 2:5[log(yellow=blue)¡ aveflog(yellow=blue)g]

where ave(¢ ¢ ¢) indicates the mean of the corresponding logratio across individuals. This
reduces to the constant logcontrast

2:5 log(blue) + log(red)¡ 3:5 log(yellow) = constant

where the constant is estimated by averaging the logcontrast over individuals. This diag-

noses a proportionality relationship between the colours as

red

yellow
/
Ã
yellow

blue

!2:5
:
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Figure 5 demonstrates this proportionality relationship while Figure 6 shows the relation-

ship in triangular coordinates between the three primary colours for the 3-part subcom-

position, showing an excellent ¯t to the data. Interestingly, this representation of primary

colours as vertices of a triangle is due to Goethe (1810), and is the earliest reference, to

our knowledge, to the triangular coordinate system. The same system was used indepen-

dently 50 years later by Maxwell (1860) to explain his theory of colours in terms of red,

green and blue.

Insert Figures 5 and 6 about here

In general, if three components A, B and C lie in an approximate straight line with

distances AB and BC equal to ¸ and ¹ respectively, then the constant logcontrast is of

the form ¹ log(A) + ¸ log(C)¡ (¸+ ¹) log(B) = constant, that is (A=B)¹ / (B=C)¸.

Property 6. In either biplot four column points A, B, C and D forming a parallelogram

reveal a simple constant logcontrast of the form

log(A) ¡ log(B) + log(C)¡ log(D) = constant:

In Figures 3 and 4 the colours black, red, white and blue lie approximately on a parallel-

ogram. We can transfer the links black-red and blue-white to the origin and thus obtain

the relationship

log(black=red)¡ aveflog(black=red)g = log(blue=white)¡ aveflog(blue=white)g

leading to the constant logcontrast

log(black)¡ log(red) + log(white)¡ log(blue) = constant

and thus the proportionality relationship (black=red) / (blue=white) or equivalently

(black=blue) / (red=white). This relationship can be demonstrated by plotting the ratio
of any two adjacent colours in the parallelogram against the ratio of the other two. Figure

7 shows black/red against blue/white and the relationship is strongly linear through the

origin, as diagnosed successfully by the parallelogram in the biplot.
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Insert Figure 7 about here

Property 7. If a subset I of the individuals (rows) and a subset J of the compo-

nents columns lie approximately on respective straight lines that are orthogonal, then

the compositional submatrix formed by the rows I and columns J has approximately

constant logratios amongst the components, that is the double-centred submatrix of

log(compositions) has near-zero entries. For example in both biplots, it is possible to

see a group of three row points in the lower left quadrant (rows 9, 21 and 15 respectively)

which are in a straight line orthogonal to the line de¯ned by the three column points

white-other-black. Table 4 shows the relevant submatrix of Table 1 and the three logra-

tios, which are con¯rmed to be fairly constant over the rows, with slightly more variability

in ratios involving \other" which has already been seen to be not poorly represented in

the two-dimensional biplot.

Insert Table 4 about here

This property of logratio constancy in submatrices of the data can be deduced directly

from the additive model mentioned in Section 2.3 or from the concept of biplot calibration,

illustrated by the next property.

Property 8. Either biplot can be calibrated in logratio units and thus in ratio units.

We are mostly interested in the links, so let us take the link from red to yellow as an

example and calibrate the biplot axis through this link in the covariance biplot. It will be

easier to illustrate the calibration in logratio units ¯rst, since this is linear on the biplot

axis.

From Table 2 the length of the yellow-red link will have length equal to 0.767. Thus

one unit on its logratio scale will have length equal to 1=0:767 = 1:304 and a 0.1 unit will

have length 0.1304. The mean value of log(yellow/red) is calculated from the data to be

1.073, which is the value corresponding to the origin of the display projected onto this

link. So in order to calibrate this axis on a scale of tenths (0.1) of a unit, we have to put

tic marks on the axis connecting red to yellow, at a distance 0.1304 apart, so that the
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scale increases towards the right and has the value 1.073 at the point where the origin

projects onto the biplot axis. Equivalently, we can transfer the link to the origin in which

case the origin will correspond to the average logratio.

The trigonometry needed to calculate the tic marks for a biplot axis through a link

or a ray is given in Appendix 2, and the result is illustrated in Figure 8, for logratios

log(yellow/red) and log(white/black). Because the white/black link is shorter than the

yellow/red one, a log(white/black) unit di®erence is longer and so the tic marks are more

spread out, which is another way of saying that the dispersion is less. Any row point

can now be projected onto these biplot axes and the corresponding value of the logratio

can be estimated. The estimates will be generally very good, because the quality of the

display is high (98.2%). A ray can be calibrated in exactly the same way, although the

interpretation of centred logratios is more complex than pairwise logratios.

Insert Figure 8 about here

Calibration gives the biplot a concrete interpretation in terms of the original data and

provides a new meaning to some of the properties already stated. For example, property

7 is obvious now since any points lying on a line perpendicular to a link project onto the

same value on its biplot axis and thus have constant estimated values of the corresponding

logratios.

We could similarly calibrate the form biplot, in fact this is the biplot of choice for

calibration. Since the column points are sphered, it is now the shape of the row points

which indicates the spread in a more visually obvious way, hence the term \form" biplot.

It is also possible to calibrate either biplot in units of ratios, not logratios. These

tic marks are now not equidistant on the biplot axis, but the scale is now closer to the

original data. Figure 9 shows the form biplot calibrated in ratio units, for the same colour

ratios as before.

Insert Figure 9 about here

Property 9. The whole compositional data matrix can be reconstructed approximately
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from either biplot, but we need to know the means of the centred logratios as well as the

geometric means of the rows to be able to \uncentre" the estimates obtained from the

biplot. As before we calibrate each ray representing the centred logratio of a colour, for

which we need to know the average centred logratio to be able to anchor the scale at the

origin. Then projecting each painting i onto each colour axis j we obtain the estimate of

the centred logratio log[xij=g(xi)], and with knowledge of the geometric mean g(xi) of the

row we can eventually arrive at an estimate of xij itself. The reconstructed data from the

two-dimensional biplot are given in Table 5, and are seen to be very close to the original

data, to be expected from the 98.2% explained variance in the biplot.

5 Discussion

The present approach is based on a certain choice of prerequisites which a method of com-

positional data analysis should reasonably be expected to satisfy. Most importantly, the

unit-sum constraint { or equivalently the fact that all compositional data vectors occupy

a simplex space { should be respected throughout the analysis, and all results should have

subcompositional coherence. It is clear from the above aspects of interpretation that the

fundamental elements of a relative variation biplot are the links, rather than the rays as

in the usual case of biplots. The complete set of links, specifying the relative variances,

determines the compositional covariance structure and provides direct information about

subcompositional variability and independence.

The relative variation biplot implies a certain metric, or distance function, between

sample points i and i0. As we have seen in Section 3, the squared distance can be de¯ned

either in terms of all 1
2
p(p ¡ 1) logratios, or { more parsimoniously { in terms of the p

centred logratios:

d2ii0 =
1

p

XX
j<j 0

Ã
log

xij
xij0

¡ log xi0j
xi0j 0

!2

=
X
j

Ã
log

xij
g(xi)

¡ log xi0j
g(xi0)

!2

This metric satis¯es the property that the distance between any two compositions must
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be at least as great as the distance between any corresponding subcompositions of the

compositions. For an account of how to determine an appropriate metric for compositional

vectors, see Aitchison (1992). A study of the drawbacks of other metrics in the simplex

space is reported by Mart¶³n-Fern¶andez et al (1998).

Attempts have been made, for example by Miesch et al (1966), David et al (1974),

Teil and Chemin¶ee (1975), to explore compositional variability through the use of sin-

gular value decompositions based on the raw or standardized compositional data. These

approaches do not recognize speci¯cally the compositional nature of the data and do not

have the property of subcompositional coherence. Reconstruction of compositional vec-

tors using biplots based on correspondence analysis (Benz¶ecri, 1973), for example, can

sometimes lead to estimated components that are negative, hence outside the simplex.

As far as identifying relationships between the components xj of a composition is con-

cerned, straight or parallel line patterns in the relative variation biplot indicate a particu-

lar class of models that can be written as a constant logcontrast:
P
j aj log(xj) = constant,

where
P
j aj = 0. Constant logcontrast relationships are important in many disciplines,

for example the Hardy-Weinberg equilibrium in population genetics (Hardy, 1908) is a

constant logcontrast in the gene frequencies, and various equilibrium equations in geo-

chemistry also reduce to constant logcontrasts (Krauskopf, 1979); see also Aitchison (1999)

for further discussion of logcontrast laws. It can be argued that constant logcontrasts do

not cover all compositional relationships of possible interest, but this is no di®erent from

the situation with the regular biplot in which only a certain class of models can be diag-

nosed from straight-line patterns in the display.

The biplot is a natural consequence of the singular value decomposition of a matrix.

To use standard singular value decomposition technology, de¯ned on conventional multi-

dimensional vector spaces, the compositional data are log-transformed and then double-

centred to ensure that component ratios are analyzed on a ratio scale. Even though the

initial log-transformation takes the data out of the simplex into unconstrained real vector

space, the compositional nature of the data vectors is respected throughout the analy-

sis. Aitchison et al. (2001) shows that exactly the same methodology can be described
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equivalently by a singular value decomposition which is de¯ned directly in terms of com-

positions in the constrained simplex space. The simplex is established as a vector space in

its own right using compositional group operators of addition and scalar multiplication.

The addition operation in this \stay-in-the-simplex", or simplicial , approach is called

perturbation, denoted by ©, and scalar multiplication is called powering , denoted by .
Without going into details about these operations, we can use them to reconstruct the

i-th row xi of the compositional data matrix in the following way, analogous to principal

component analysis:

xi = » © (s1ui1  ¯1)© ¢ ¢ ¢ (sruir  ¯ )

where » is the compositional centre of the data set, the sk's are positive \singular values",

the ¯ 's the \right singular vectors" which form a compositional basis in the simplex,

thus providing the \principal axes" of the data compositions, and skuik the \principal

coordinates" with respect to the simplicial basis. For our colour data, the ¯rst two

simplicial basis vectors turn out to be:

¯1 = [ 0:156 0:149 0:085 0:333 0:125 0:153 ]
T ¯2 = [ 0:088 0:312 0:170 0:173 0:155 0:103 ]

T:

The way to interpret these compositional basis vectors is { as before { to look at ratios

between their components. Thus the constancy of the black, white and other values (¯rst,

second and sixth) in ¯1 shows that this subcomposition is stable in the ¯rst simplicial

\dimension", while the constancy of blue, red and yellow (third, fourth and ¯fth values)

in ¯2 shows a similar stability of this subcomposition in the second dimension.

Finally, we have been using the classical form of the biplot, now often referred to as

the linear biplot since the de¯nition of nonlinear biplots by Gower and Harding (1988).

In nonlinear biplots the biplot axes are replaced by curved trajectories and can also be

calibrated. This richer but more complex biplot can possibly identify a wider class of

relationships, but its potential still needs to be fully explored.
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Appendix 1

Equivalence of logratio and centred logratio biplots

Here we prove the result stated in Section 3. Suppose that we collect the logarithms

`ij ´ log(xij) of the compositional data in the matrix L(n £ p). Then the matrix of all
logratios log(xij=xij0) = `ij ¡ `ij0 (for j < j0)is equal to LEp, where Ep is the p£ 1

2
p(p¡1)

di®erencing matrix with zeros in each column except for a 1 and -1 in two rows. The

matrix of centred logratios log[xij=(xi1 ¢ ¢ ¢xip)1=p] is equal to LCp, where Cp is the p£ p
idempotent centring matrix I ¡ (1=p)11T. Examples of the di®erencing and centring
matrices are, for p = 4:

E4 =

2664
1 1 1 0 0 0

¡1 0 0 1 1 0
0 ¡1 0 ¡1 0 1
0 0 ¡1 0 ¡1 ¡1

3775 C4 =

2664
3=4 ¡1=4 ¡1=4 ¡1=4

¡1=4 3=4 ¡1=4 ¡1=4
¡1=4 ¡1=4 3=4 ¡1=4
¡1=4 ¡1=4 ¡1=4 3=4

3775
Consider the matrix LCp of centred logratios ¯rst. A biplot of this matrix as described

in Section 2 would centre with respect to column means as in (5), that is premultiply by

Cn: Z = CnLCp, and then proceed as before with the SVD as in (2). The matrix Z is

thus the double-centred matrix of log(compositions), with elements zij = `ij¡`i¢¡`¢j+`¢¢
where the dot subscript indicates averaging over the corresponding index. Suppose that

Z has SVD Z = U¡VT. The fact that Z is double-centred implies that the elements of

each singular vector in U and V are centred: CnU =U and CpV = V.

Consider now the matrix LEp of pairwise logratios. This matrix, again centred with

respect to column means, gives Y = CnLEp and leads to a biplot which depicts the

individuals and each (j; j0) ratio pair (j < j0). Suppose Y has SVD Y = AªBT, where

B has 1
2
p(p¡ 1) rows.

These two biplots are directly related through the SVDs as follows. Firstly, the form

matrices of Z and Y are identical, apart from an overall scale factor

ZZT = CnLCpCpL
TCn = CnLCpL

TCn = U¡
2UT

YYT = CnLEpEp
TLTCn = pCnLCpL

TCn = U(p¡
2)UT
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since EpEp
T = pCp. Thus the singular values di®er by a constant scale factor of

q
p:

ª =
q
p¡ and the left singular vectors are identical in the two SVDs: A = U. On the

other hand, the scalar products of the columns, which provide the covariances in the two

biplots, have the following connection.

ZTZ = CpL
TCnLCp = V¡

2VT

Pre- and postmultiplying by Ep
T and Ep respectively and using the fact that the columns

of Ep are centred: CpEp = Ep, we obtain

YTY = Ep
TLTCnCnLEp = (Ep

TV)¡2(Ep
TV)T

that is, the right singular vectors of B are proportional to the corresponding di®erences

between rows of V. Since (Ep
TV)T(Ep

TV) = VTEpE
T
pV = VT(pCp)V = pVTV = pI it

follows that B = Ep
TV=

q
p and we verify again that ª =

q
p¡.

With the above notation it is easy to show that, in general, a matrix Y (column-

centred or not) has form matrix YYT, whereas the form matrix of its column di®erences

YEp is pYCpY
T. Thus the form matrices agree (up to the scale value p) if Y is row-

centred, but also if Y has constant row sums since row-centring would then just involve

subtracting a constant from every matrix element. Thus a regular principal component

analysis of a matrix of compositional data will also have the property that links are

optimal representations of the column di®erences.
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Appendix 2

Linear biplot calibration

Suppose that we want to calibrate the biplot axis which passes through two column points

A and B, with given coordinates (a1; a2) and (b1; b2) on the ¯rst two dimensions of the

biplot. Denote the projection of the origin of the biplot onto the biplot axis by the point

(o1; o2). Suppose that the mean di®erence in the values of B ¡ A (calculated from the

data) is equal to m.

Now the squared distance jABj2 is equal to d2 = (b1¡ a1)2+(b2¡ a2)2 and the length
of 1 unit on the biplot axis is thus s = 1=d. By simple trigonometry, the coordinates

(o1; o2) are equal to

o1 = [a1(b2 ¡ a2)2 ¡ a2(b1 ¡ a1)(b2 ¡ a2)]=d2

o2 = [a2(b1 ¡ a1)2 ¡ a1(b1 ¡ a1)(b2 ¡ a2)]=d2

and the tic mark for value t has coordinates (t1; t2):

t1 = o1 + s(t¡m)(b1 ¡ a1)=d = o1 + (t¡m)(b1 ¡ a1)=d2

t2 = o2 + s(t¡m)(b2 ¡ a2)=d = o2 + (t¡m)(b2 ¡ a2)=d2

As an example, for the red{yellow link in the covariance biplot of Figure 7, the

given values are the coordinates of the apexes, (a1; a2) = (¡0:612; 0:0284) and (b1; b2) =
(0:154; 0:0036), and the mean value of log(red/yellow), m = 1:073.

The link distance is equal to 0.767 and the unit distance on the biplot axis will thus

be 1=0:767 = 1:304 The origin projected onto the biplot axis, corresponding to the mean

value, has coordinates (o1; o2) = (0:0003; 0:0096) and the tic mark for the value 0.7, for

example, has coordinates:

t1 = 0:0003 + (0:7¡ 1:073)£ (0:154 + 0:612)=0:7672 = ¡0:486

t2 = 0:0096 + (0:7¡ 1:073)£ (0:0036¡ 0:0284)=0:7672 = 0:0243
The above formulae can be used to calibrate a ray as well by setting (a1; a2) = 0.
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Figure 1

Summary of interpretation of (a) covariance biplot, (b) form biplot.
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Figure 2

Biplot axes through rays and links.
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Figure 3

Relative variation biplot of colour composition data,

preserving distances between rows (paintings).
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Figure 4

Relative variation biplot of colour composition data,

preserving covariance structure between logratios.
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Figure 5

Relationship between colour ratios red/yellow and (yellow/blue)2:5,

showing proportionality relationship.
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Figure 6

Goethe's colour triangle, showing mixtures of primary colours in 22 paintings,

and model diagnosed by the relative variation biplot: (red/yellow)/(yellow/blue)2:5.
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Figure 7

Relationship between colour ratios black/red and blue/white,

showing proportionality relationship.
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Figure 8

Logratio covariance biplot of colour composition data, showing

linear calibration of logratios log(yellow/red) and log(white/black).
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Figure 9

Logratio covariance biplot of colour composition data, showing

nonlinear calibration of ratios yellow/red and white/black on

a logarithmic scale.
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Table 1

Colour composition data for 22 abstract paintings

Painting Black White Blue Red Yellow Other
1 0.125 0.243 0.153 0.031 0.181 0.266
2 0.143 0.224 0.111 0.051 0.159 0.313
3 0.147 0.231 0.058 0.129 0.133 0.303
4 0.164 0.209 0.120 0.047 0.178 0.282
5 0.197 0.151 0.132 0.033 0.188 0.299
6 0.157 0.256 0.072 0.116 0.153 0.246
7 0.153 0.232 0.101 0.062 0.170 0.282
8 0.115 0.249 0.176 0.025 0.176 0.259
9 0.178 0.167 0.048 0.143 0.118 0.347
10 0.164 0.183 0.158 0.027 0.186 0.281
11 0.175 0.211 0.070 0.104 0.157 0.283
12 0.168 0.192 0.120 0.044 0.171 0.305
13 0.155 0.251 0.091 0.085 0.161 0.257
14 0.126 0.273 0.045 0.156 0.131 0.269
15 0.199 0.170 0.080 0.076 0.158 0.318
16 0.163 0.196 0.107 0.054 0.144 0.335
17 0.136 0.185 0.162 0.020 0.193 0.304
18 0.184 0.152 0.110 0.039 0.165 0.350
19 0.169 0.207 0.111 0.057 0.156 0.300
20 0.146 0.240 0.141 0.038 0.184 0.250
21 0.200 0.172 0.059 0.120 0.136 0.313
22 0.135 0.225 0.217 0.019 0.187 0.217
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Table 2

Upper triangle: standard deviations
q
varflog(xi=xj)g of logratios.

Lower triangle: estimated values from link lengths in biplot of Figure 4.

black white blue red yellow other
black ¢ 0.308 0.504 0.616 0.225 0.130
white 0.302 ¢ 0.466 0.645 0.221 0.270
blue 0.501 0.463 ¢ 1.071 0.315 0.488
red 0.616 0.646 1.071 ¢ 0.767 0.628
yellow 0.218 0.214 0.305 0.767 ¢ 0.213
other 0.041 0.262 0.476 0.621 0.184 ¢
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Table 3

Submatrix of correlation matrix between selected logratios amongst two

sets of points following perpendicular straight-line patterns in Figure 4,

as well as another logratio, log(yellow/white), for comparison purposes.

Logratio red/ red/ yellow/ white/ other/ white/ yellow/
yellow blue blue other black black white

red/yellow 1.000 0.996 0.949 -0.048 -0.095 -0.082 0.654
red/blue 0.996 1.000 0.974 -0.074 -0.108 -0.110 0.616
yellow/blue 0.949 0.974 1.000 -0.133 -0.138 -0.175 0.502

white/other -0.048 -0.074 0.133 1.000 0.069 0.907 0.638
other/black -0.095 0.108 0.138 0.069 1.000 0.482 0.291
white/black -0.082 0.110 0.175 0.907 0.482 1.000 0.683

yellow/white 0.654 0.616 0.502 0.638 0.291 0.683 1.000
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Table 4

Submatrix of colour data, identi¯ed by perpendicular straight lines,

showing near-constant ratios across paintings

Painting Black White Other Black/White Other/White Other/Black
9 0.178 0.167 0.347 1.07 2.08 1.95
15 0.199 0.170 0.318 1.17 1.88 1.60
21 0.200 0.172 0.313 1.16 1.82 1.65
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Table 5

Reconstructed compositional data from two-dimensional calibrated biplot

(cf. original data in Table 1).

Painting Black White Blue Red Yellow Other
1 0.131 0.245 0.156 0.031 0.182 0.254
2 0.154 0.225 0.113 0.052 0.170 0.287
3 0.155 0.232 0.059 0.131 0.137 0.285
4 0.160 0.210 0.119 0.046 0.172 0.293
5 0.187 0.152 0.132 0.032 0.173 0.324
6 0.144 0.257 0.069 0.111 0.145 0.272
7 0.153 0.233 0.102 0.062 0.165 0.285
8 0.122 0.250 0.176 0.025 0.186 0.240
9 0.189 0.168 0.048 0.145 0.127 0.324
10 0.160 0.183 0.158 0.027 0.182 0.290
11 0.167 0.212 0.070 0.102 0.146 0.302
12 0.169 0.192 0.120 0.044 0.172 0.304
13 0.146 0.253 0.087 0.081 0.157 0.276
14 0.133 0.269 0.050 0.167 0.128 0.254
15 0.192 0.170 0.080 0.075 0.152 0.332
16 0.172 0.195 0.104 0.055 0.166 0.309
17 0.150 0.185 0.180 0.021 0.187 0.277
18 0.193 0.152 0.115 0.040 0.167 0.332
19 0.166 0.206 0.105 0.056 0.166 0.301
20 0.139 0.239 0.140 0.038 0.179 0.265
21 0.190 0.171 0.057 0.117 0.136 0.328
22 0.123 0.224 0.205 0.018 0.190 0.239
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