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A note on Gauss—Hermite quadrature
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SUMMARY

For Gauss-Hermite quadrature, we consider a systematic method for transforming the variable
of integration so that the integrand is sampled in an appropriate region. The effectiveness of the
quadrature then depends on the ratio of the integrand to some Gaussian density being a smooth
function, well approximated by a low-order polynomial. It is pointed out that, in this approach,
order one Gauss—Hermite quadrature becomes the Laplace approximation. Thus the quadrature
as implemented here can be thought of as a higher-order Laplace approximation.

Some key words: Asymptotic approximation; Bayesian inference; Generalized linear mixed models; Integrated
likelihood; Measurement errors in covariables; Numerical integration.

1. INTRODUCTION

Gauss—-Hermite quadrature is often used for numerical integration in statistics, because of its
relation to Gaussian densities, but it seems that there is often inadequate thought given to its
implementation. Such quadrature is defined in terms of integrals of the form

r £(x) exp (= x2) dx. (1)

In many statistical applications a Gaussian density is an explicit factor of the integrand. Of course
a linear transformation can then be made so that this factor takes the form exp (—x?2), and this
seems often to be the approach taken (SERC, 1989; Crouch & Spiegelman, 1990). When a Gaussian
density is not a factor in the integrand the integral is sometimes put into the form (1) by dividing
and multiplying the original integrand by exp (—x?) (Davies & Rabinowitz, 1975, Ch. 2), or by
some other Gaussian density.

In Gauss-Hermite quadrature the integral (1) is approximated by

J f(x)exp (—x?) dx= .Zl wif (x:), (2)
where the nodes x; are zeros of the mth order Hermite polynomial and the w; are suitably corre-
sponding weights; see for example, Davis & Rabinowitz (1975, Ch. 2). Tables of (x;, w;) for m =
1,2,...,10,12, 16, 20 are given by Abramowitz & Stegun (1972, p. 924). The x; are symmetric
about zero, ranging when m = 20, for example, from —5-3875 to 5-3875. Thus, without further
considerations, the function f(x) is sampled at points irrespective of the range where it is ‘interes-
ting’. As indicated above, the f(x) used here is usually not the original integrand.

Clearly, for good results some transformation must ordinarily be made, in order that the original
integrand be sampled in a reasonable range. The possible transformation mentioned above, simply
to put an integrand with a Gaussian density factor into form (1), is not at all directed towards
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this aim. This is indeed confusing, and thus we consider here a systematic way to apply Gauss—
Hermite quadrature to integrals of the form

J g(1) dt, (3)
where g(t) > 0. One needs to consider at the outset the class of functions g(¢) for which the Gauss—
Hermite quadrature is suitable. As we shall see, the requirement for effective results is that the
ratio of g(t) to some Gaussian curve be a moderately smooth function. This arises frequently, for
example when g(t) is a likelihood function, the product of a likelihood function and a Gaussian
density, and the product of several likelihood functions, etc. We assume in the following that g(t)
has such characteristics, and in particular, that it is unimodal.

2. GAUSS—HERMITE QUADRATURE

The goal is a transformation on ¢ so that the integrand g(t) will be sampled in a suitable range.
One can think of this in various ways, but we find the following the clearest. First, one can trivially
re-express Gauss—Hermite quadrature (1) as for integrals of form

j_ F@O)¢(t; p, 0) dt, (4)

where ¢(t; 4, o) is an arbitrary Gaussian density (Naylor & Smith, 1982). The sampling nodes are
then at t; = u + 2% 0x;, and the weights are modified to w; /\/n. We will then choose x4 and ¢ so that
g(¢) will be sampled in an appropriate region. In particular, we take i to be the mode of g(t), and
¢ =1/,/j, where
5 s
j=—>zlogg(®

t=4

This gives a Gaussian density ¢(¢; 4, ) having the same logarithmic derivatives to second order,
at the mode, as the integrand g(t). Define

0
"= 5 1.9 ©
so that one can write
Jm g(t)di = J WO 4 6)d. (6)

If we now apply Gauss—Hermite quadrature in the form (4) using ¢(¢; 4, 6), the function h(t), and
hence g(t), will be sampled in the relevant range, giving

m

Jm g(t)dt=Y % h(A + 2% 6x,)

- i=1
=2%¢ Y wig(p+2%éx)), (7
i=1
where w¥ = w; exp (x?).

To consider the effectiveness of the Gauss—Hermite quadrature as implemented here, suppose
that h(¢) in (5) has an expansion of the form

h(t) = h(f) {1 + i et -m"}. (8)
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The coefficients ¢; and c, are zero due to the choice of ¢(z; 1, ). In the integral (6) the odd terms
involving c;, cs, . . . are annihilated. Each increase by one in the order of the quadrature picks up
exactly the contribution to the integral of one additional even term. That is the m-order Gauss—
Hermite quadrature would be exact if terms in (8) beyond ¢, +1) Were zero.

It should be noted, however, that these statements would also be true if ¢(¢; i, §) in (5) and (6)
were replaced by exp (— t?), that is if the quadrature were done in the naive way without the
transformation. But then for low-order quadrature to be effective, h(z) would have to be well
approximated by a low-order polynomial in a rather global sense, that is over a typically wide
region including both the range of the standard sampling points and the relevant range regarding
the integrand g(t). In the approach taken above, it is only necessary that h(t), as defined by (5),
be well approximated by a low-order polynomial in the relevant region for g(t), since this is also
where the sampling nodes are taken.

Thus, simply put, the m-order Gauss—Hermite quadrature as implemented by (7) will be highly
effective if the ratio of g(t) to the Gaussian density ¢(¢; i, ) can be approximated well by a
polynomial of order 2m + 1, in the region where g(t) is substantial. Some other reasons for the
effectiveness of (7) in many applications will be given in § 4 and the Appendix.

3. RELATION TO LAPLACE APPROXIMATION
When (7) is applied with only one node the result is

f_ g(t) dt==h(p) = (2n)* Gg(p), 9

which is the Laplace approximation to the integral (De Bruijn, 1961, p. 60; Barndorfi-Nielsen &
Cox, 1989, p. 59). Thus, the m-order Gauss—Hermite quadrature as implemented in (7) can be
thought of alternatively as the form of ‘m-order Laplace approximation’. Indeed, computation of
a few low-order quadratures in this way may often be preferable, in applied work, to use of the
standard asymptotic error term for the Laplace approximation. As discussed above for the general
case, the Laplace approximation would be exact if the even coefficients ¢4, ¢, . . . in the expansion
(8) were zero. It often performs even better than that might suggest, perhaps because in approximat-
ing, rather than expanding, h(t) in form (8) there is substantial latitude in choosing the coefficients c;.

The asymptotic accuracy of Laplace approximations for Bayesian inference was studied by
Tierney & Kadane (1986). Wong & Li (1992) considered improvements to Laplace approximations
for statistical applications by incorporating a higher order correction term. Their method involves
calculations of third and fourth derivatives of the integrand g(t). The Gauss—Hermite quadrature
(7) involves derivatives of g(¢) only to second order, replacing in essence the use of higher derivatives
by sampling of the function g(t).

4. RATIOS OF INTEGRALS
Statistical applications often involve a parametric family of integrals

I(B) = J &(t; p) dt,
where the function I(f) need only be approximated up to a constant of proportionality. In such
cases all that matters about the accuracy of quadrature or Laplace approximation is that the
relative error varies slowly with S.

For example, in generalized linear models with random effects and in models with random errors
in covariables, the likelihood function is often defined by

L(p)= r L& Byp(o) b, (10)
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where L(t; ) is a likelihood function in either of its arguments, and p(t) is a probability density
function, often taken as Gaussian. For the case of generalized linear models with random effects,
Liu & Pierce (1993) found that the Laplace approximation is often virtually exact.

This same issue also arises in Bayesian inference when the integral of interest defines a functional
of the posterior density. For example, if g(t) is only proportional to a posterior density, then the
posterior mean for a parametric function a(t) would be computed numerically as

.[00 a(t)g(t)dt/ on g() dt.

Tierney & Kadane (1986) investigated the improved error rate for the ratio of Laplace approxi-
mations to two integrals, when a(t) is positive.

5. EXAMPLES

There are many practical settings in the literature that require very few nodes for (7) to work
extremely well. For example, in problems considered by Liu & Pierce (1993) the Laplace approxi-
mation is extremely good. From the viewpoint of this paper, this means that the ‘rescaling’ of ¢
works so well that only the order 1 Gauss—Hermite quadrature is needed.

Example 1. We consider the logistic regression model for binary data where the explanatory
variable is measured with error. The data consist of n independent pairs (Y;, Z;) where Y; is a binary
response variable, and Z; is a measurement of the unobserved explanatory variable x;. Suppose
that (i) pr(Y; = 1|x;) = logit ~*(Bo + B1x;), (ii) the distribution of Z; given x; is Gaussian, and (iii) the
marginal distribution of x; is Gaussian. Assuming the parameters involved in (i) and (iii) are
known, the likelihood L(f,, f,) is given by the product of integrals of form

j_ L(Bo, B1; yil x)p(x]|z;) dx.

Here

log L(Bo, B1; y1x) = y(Bo + B1x) —log (1 + efo™F1¥)

is the log likelihood function when x is known, and p(x|z), the conditional density for X given
Z =z, is a Gaussian density. For illustration, we generated a data set of n binary observations with
parameters f,= —5, f; =01, E(X) =60, var (X) =100 and var (Z| X = x) = 50. The interest here
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Fig. 1. Profile likelihoods for f; in Example 1.
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is in computing the profile likelihood function for f,, and we compare the Laplace approximation
to use of the Gauss—Hermite quadrature (7). The sample size n was taken as 300. Note that the
quadratures are applied for each binary observation. The accuracy of the Laplace approximation
seen here does not decrease for small n, for example n = 10; on the contrary adequacy of dealing
with the measurement error becomes more critical as n increases, which is the reason for choosing
n = 300. The profile likelihood for f, is calculated by evaluating L(S,, 8;) on a fine grid for (S, B1)
and then maximizing with respect to S, for each fixed B;. In Fig.1 we see that the Laplace
approximation to the profile likelihood function is very accurate, indistinguishable from the Gauss—
Hermite quadrature (7) with 9 nodes.

Example 2. This example provides a setting where the Laplace approximation does not work
so well and therefore the Gauss—Hermite quadrature is needed. It differs from Example 1 in that
X as well as Z| X = x are log-normal. To apply the Gauss—Hermite quadrature, define the likelihood
function as the product of integrals with respect to u =log (x). The underlying integrals are of the
form

f_ L(B; y|u)p(u|z) du,

where

L(B; y|u) = y(Bo + B1€) —log {1 + exp (o + B1€")},

and p(u|z) is a Gaussian density. The main difference from the previous example is that x =¢* is
used in the likelihood function in the integrand. A data set was simulated by considering parameter
values similar to those of Carroll, Gail & Lubin (1993), and again n= 300. We chose f,= —3,
B1=05;1log (Z)| X = x as being Gaussian with mean log (x) and variance 0-25; and log (X) as being
Gaussian with mean —0-5 and variance 1. Figure 2 demonstrates the convergence to the likelihood
for B, as the number of nodes increases from 1 to 10, 12, 16 and 20. The solid curve is the Laplace
approximation. In this example the parameter f, is taken as fixed at the maximum likelihood
estimator, in order not to confuse inadequacies of the quadrature with computation of the profile
likelihood.
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Fig. 2. Likelihoods for #; in Example 2.
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APPENDIX
Asymptotic behaviour of Gauss—Hermite quadrature
The standard asymptotic analysis of the Laplace approximation considers integrals of form

f exp {nl(¢)} dt (11)
as n— oo, where I(t) is a unimodal function. (De Bruijn, 1961, p. 63; Barndorff-Nielsen & Cox,
1989, p. 59). Here we consider the asymptotic behaviour of the Gauss—Hermite quadrature (7) for
integral (11). The first 2m + 1 terms in (8) are picked up exactly by m-order Gauss—Hermite
quadrature (7) and thus the error is of the same order as the integral of the term involving ¢+ 1)-
Let 2 be the mode of I(t) and I(1) = (d/dt)*I(f). Define n(t) such that h(t) = h(#)n(t). Then

A 2
n(t) = exp (nl(t) —nl(f) + g [ﬁ} ) (12)

B

= O(n[2(m + 1)/3])

The coefficient ¢y, 1y in (8) is

1 d2(m+1)
Com+1) = 2m+ 1)} {dtz(mn) (1)
One can show that

d2(m+ 1)

d2m+D n(t)

t=j

where notation [r] indicates the largest integer not exceeding r; the proof for this can be obtained
from the authors. The integral involving c¢,,+ 1) is proportional to

{ _nl(ﬁ)} —(m+1)c2(m+ 1)»

and thus the error of the Gauss—Hermite quadrature (7) is of order O(n~"3*1) For m=1, we
obtain the standard result that the error of the Laplace approximation is of order O(n~?') (Tierney
& Kadane, 1986, Barndorff-Nielsen & Cox, 1989, p. 59).

REFERENCES

ABRAMOWITZ, M. & STEGUN, I. (Eds) (1972). Handbook of Mathematical Functions. New York: Dover.

BARNDORFF-NIELSEN, O. E. & Cox, D. R. (1989). Asymptotic Techniques for Use in Statistics. London:
Chapman and Hall.

CARROLL, R. J., GalL, M. H. & LuBIN, J. H. (1993). Case-control studies with errors in covariates. J. Am.
Statist. Assoc. 88, 185-99.

CroucH, E. A. C. & SPIEGELMAN, D. (1990). The evaluation of integrals of the form [ f(t)exp (—t?) dt:
application to logistic normal models. J. Am. Statist. Assoc. 85, 464-9.

Dauvis, P. J. & RABINOWITZ, P. (1975). Methods of Numerical Integration. New York: Academic Press.

DE BrUDN, N. G. (1961). Asymptotic Methods in Analysis. New York: Dover.

Liu, Q. & PiERCE, D. A. (1993). Heterogeneity in Mantel-Haenszel-type models. Biometrika 80, 543-56.

NAYLOR, J. C. & SmitH, A. F. M. (1982). Applications of a method for the efficient computation of posterior
distributions. Appl. Statist. 31, 214-25.

SERC (1989). EGRET Users’ Manual. Seattle: Statistics and Epidemiology Research Corporation.

TIERNEY, L. & KADANE, J. B. (1986). Accurate approximations for posterior moments and marginal densities.
J. Am. Statist. Assoc. 81, 82—6.

WoNG, H. W. & L1, B. (1992). Laplace expansion for posterior densities of nonlinear functions of parameters.
Biometrika 79, 393-8.

[Received August 1993 ]



	Article Contents
	p.[624]
	p.625
	p.626
	p.627
	p.628
	p.629

	Issue Table of Contents
	Biometrika, Vol. 81, No. 3 (Aug., 1994), pp. 425-631
	Front Matter
	Ideal Spatial Adaptation by Wavelet Shrinkage [pp.425-455]
	Weighted Finite Population Sampling to Maximize Entropy [pp.457-469]
	A Class of Pattern-Mixture Models for Normal Incomplete Data [pp.471-483]
	Stable and Invariant Adjusted Directed Likelihoods [pp.485-499]
	A Partly Parametric Additive Risk Model [pp.501-514]
	Proportional Hazards Tests and Diagnostics Based on Weighted Residuals [pp.515-526]
	A Kernel Method for Incorporating Information on Disease Progression in the Analysis of Survival [pp.527-539]
	On Gibbs Sampling for State Space Models [pp.541-553]
	A Fast Algorithm for the Exact Likelihood of Stationary and Partially Nonstationary Vector Autoregressive-Moving Average Processes [pp.555-565]
	Estimation from Quasi Life Tables [pp.567-577]
	Miscellanea
	Local Divergence and Association [pp.579-584]
	A Note on Nonregular Likelihood Functions in Heteroscedastic Regression Models [pp.585-587]
	The Continuous Multivariate Location-Scale Model Revisited: A Tale of Robustness [pp.588-594]
	Power of the Scan Statistic in Detecting a Changed Segment in a Bernoulli Sequence [pp.595-601]
	The Jackknife Estimate of a Kaplan-Meier Integral [pp.602-606]
	Efficient Computation of Subset Selection Probabilities with Application to Cox Regression [pp.607-611]
	Estimation of Interclass Correlation Under Circular Covariance [pp.612-617]
	Maximum Likelihood for Interval Censored Data: Consistency and Computation [pp.618-623]
	A Note on Gauss-Hermite Quadrature [pp.624-629]

	Amendments and Corrections: Nonparametric Bayesian Bioassay with Prior Constraints on the Shape of the Potency Curve [p.631]
	Amendments and Corrections: The Explained Variation in Proportional Hazards Regression [p.631]
	Back Matter



