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Some Basic Concepts of Compositional Geometry1

R. Tolosana-Delgado,2 N. Otero,3 and V. Pawlowsky-Glahn2

KEY WORDS: closed data, compositions, geochemistry, spurious correlation, ternary diagram.

The object of this short note is to give a synthetic overview of basic concepts
of compositional geometry, which are necessary to follow the different analysis
presented in subsequent papers in this issue of Mathematical Geology. To put them
in a proper context, and to understand how to compute and operate with them, it
is convenient to introduce them with simple examples. Let us take the major ion
content of a groundwater sample and assume one observation has, among others,
a content of Na+ = 26.17 ppm, Ca2+ = 75.83 ppm, and Mg2+ = 9.22 ppm. To
represent these values in a ternary diagram (or three-part simplex in a general
terminology), we have to normalize or constrain them:

[Na+, Ca2+, Mg2+] = 100

26.17 + 75.83 + 9.22
[26.17, 75.83, 9.22]

= [23.5, 68.2, 8.3]%.

We call this the closure operation, C [·], and write

[Na+, Ca2+, Mg2+] = C [26.17, 75.83, 9.22] = [23.5, 68.2, 8.3]%. (1)

After closure, the three parts sum to a constant κ , in this case κ = 100. This
approach takes [26.17, 75.83, 9.22] ppm and [23.5, 68.2, 8.3]% as equivalent nu-
merical representations of the three-part composition [Na+, Ca2+, Mg2+], because
the relative content of the ions in the sample is the same, independent of the units
used. This is important, as our approach is based on the assumption that we are
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only interested in the relative weight of each component, or that this is the only
information we have. [Na+, Ca2+, Mg2+] can be viewed as a composition of three
parts, or as a subcomposition (or closed subvector) of the whole composition of
major ion content of the groundwater sample concerned.

Consider now the bulk major oxide composition of a sediment sample
[Al2O3, CaO + Na2O, K2O] = [63.8, 22.7, 13.5]%. Assume that the material is
exposed to weathering, i.e. altered and removed, and that, after a certain period
of time, only half of the Al2O3 content is left over. Similarly, only a proportion
of 0.17 of CaO + Na2O and 0.33 of K2O remain at the site. After the process has
taken place, the composition of the sample is

[Al2O3, CaO + Na2O, K2O]p = C [63.8 × 0.5, 22.7 × 0.17, 13.5 × 0.33]

= C [31.9, 3.86, 4.45]

= [79.3, 9.6, 11.1]%.

This operation models the change in a composition. This fundamental operation
is known as perturbation (Aitchison, 2003) and is denoted with ⊕. We write

[Al2O3, CaO + Na2O, K2O]p = [63.8, 22.7, 13.5] ⊕ [0.5, 0.17, 0.33]

= [79.3, 9.6, 11.1]%. (2)

In this example, we have used two compositions expressed in different units, per-
centages and proportions, but the result is independent from it, because it is scale
independent. Perturbation is a usual operation in geology: parts are first separately
scaled and then closed. It is very useful to better visualize data sets in ternary dia-
grams (von Eynatten, Pawlowsky-Glahn, and Egozcue, 2002; Pawlowsky-Glahn
and Buccianti, 2002).

Moreover, assume that the process is cyclic, and that we are interested in
knowing which is the composition after three cycles. The answer is rather simple:
we repeat the perturbation operation as many times as necessary. It results in

[Al2O3, CaO + Na2O, K2O]3p

= [63.8, 22.7, 13.5] ⊕ [0.5, 0.17, 0.33] ⊕ [0.5, 0.17, 0.33] ⊕ [0.5, 0.17, 0.33]

= [63.8, 22.7, 13.5] ⊕ [0.53, 0.173, 0.333] = [93.04, 1.30, 5.66].

As can be observed, the percentage of Al2O3—the less affected major oxide—
increases after three cycles, while the other two decrease. The operation of applying
the same perturbation several times is known as powering or power transformation
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(Aitchison, 2003). It is usually denoted either by � or by ⊗,

[0.5, 0.17, 0.33] ⊕ [0.5, 0.17, 0.33] ⊕ [0.5, 0.17, 0.33] = 3 � [0.5, 0.17, 0.33],
(3)

leading to

[Al2O3, CaO + Na2O, K2O]3p = [63.8, 22.7, 13.5] ⊕ (3 � [0.5, 0.17, 0.33])

= [93.04, 1.30, 5.66].

Note that we can set a generic counter for the number of cycles,

[Al2O3, CaO + Na2O, K2O]3p = [63.8, 22.7, 13.5] ⊕ [α � [0.5, 0.17, 0.33]] ,

(4)

and then, we can answer questions like: How was the composition one cycle
before we took the first measurement? How will it look like after three and a
half cycles? The answer can be obtained by setting α = −1, respectively α = 3.5,
and we readily observe that we have modelled a compositional process, as α can
be any real number. For further examples see von Eynatten, Barceló-Vidal, and
Pawlowsky-Glahn (2003), and Signorelli and others (1998).

Equation (4) represents a compositional process, but how shall we proceed
when we do not know which one was the perturbing vector? Such a situation
is encountered when we have an initial unaltered rock, z0 = [Al2O3, CaO +
Na2O, K2O]0 = [0.603, 0.298, 0.099], and the final weathered result, zf =
[Al2O3, CaO + Na2O, K2O]f = [0.955, 0.003, 0.041]. The answer is again sim-
ple: take the vector of compositional differences,

δ = zf � z0 = zf ⊕ (−1 � z0), (5)

to obtain

δ = [0.955, 0.003, 0.041] ⊕ (−1) � [0.603, 0.298, 0.099]

= [0.955, 0.003, 0.041] ⊕ [1/0.603, 1/0.298, 1/0.099]

= C
[

0.955

0.603
,

0.003

0.298
,

0.041

0.099

]

= C [1.585, 0.011, 0.417] = [0.787, 0.005, 0.207],

and then we can write

zf = z0 ⊕ (1 � δ) = [0.603, 0.298, 0.099] ⊕ [0.787, 0.005, 0.207].
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Note that we handle the operations ⊕,� and � in the simplex formally like we do
with the standard vector operations +,− and × in multidimensional real space,
which makes it quite easy to work with them.

Perturbation and powering are mathematically very interesting, as they define
on the simplex a vector space structure, with perturbation as a commutative or
Abelian group operation and powering as the external product. In this context,
Equation (4) is the equation of a line, which justifies to call it a compositional
linear process or a compositional linear trend.

Adding to perturbation and powering an inner product, we will have a real
Euclidean space structure for the simplex (Billheimer, Guttorp, and Fagan, 2001;
Pawlowsky-Glahn and Egozcue, 2001, 2002; Aitchison and others, 2002). This
might sound rather complicated, but its meaning is simple. An inner product
induces a measure of distance and a norm, and then we are able to do geometry
in the simplex: lines, angles, circles, ellipses, and any geometric element we
can think about will be at our disposal. Although mathematically equivalent,
to avoid confusion with the usual Euclidean geometry in real space, we talk
about the Aitchison geometry of the simplex. Inner products are associated with
angles, and are needed to compute orthogonal projections. We use them implicitly
when we determine e.g. principal components, which are known as log-contrasts
(Aitchison, 2003) in a compositional framework. An account of the relationship
between perturbation, log-contrasts and Singular Value Decomposition can be
found in Aitchison and others (2002).

Formally, we are working with a set of points in the strictly positive orthant
of D-dimensional real space, which we call the D-part simplex,

SD =
{

x = [x1, x2, . . . , xD]; xi > 0;
D∑

i=1

xi = κ

}
,

which has two operations defined, perturbation,

x ⊕ y = [x1, x2, . . . , xD] ⊕ [y1, y2, . . . , yD] = C [x1y1, x2y2, . . . , xDyD] ,

and powering,

α � [x1, x2, . . . , xD] = C
[
xα

1 , xα
2 , . . . , xα

D

]
,

as well as an inner product,

〈x, y〉a =
D∑

i=1

ln
xi

g(x)
ln

yi

g(y)
, (6)

where g(x) = (
∏D

j=1 xj )1/D = D

√∏D
j=1 xj stands for the geometric mean.
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For illustration on how to compute the inner product (6), consider two three-
part compositions

x1 = [0.787, 0.005, 0.207] and x2 = [0.5, 0.17, 0.33] ,

both closed to 1. First we need to compute the geometric means,

g(x1) = 3
√

0.787 × 0.005 × 0.207 = 0.095

and

g(x2) = 3
√

0.5 × 0.17 × 0.33 = 0.304 ,

then the log-quotients

[
ln

0.787

0.095
, ln

0.005

0.095
, ln

0.207

0.095

]
= [2.111,−2.888, 0.777]

and

[
ln

0.5

0.304
, ln

0.17

0.304
, ln

0.33

0.304

]
= [0.498,−0.581, 0.083] ,

and finally the inner product

〈x1, x2〉a = 2.111 × 0.498 + (−2.888) × (−0.581) + 0.777 × 0.083 = 2.794.

If we consider x1 and x2 as two vectors in the three-part simplex S3, this means
that they are not orthogonal, as in that case their inner product should be zero.

The inner product (6) induces a distance in the simplex, which is useful to
evaluate the difference or distance between two composition. Recall that distances
are also essential to understand variability within a data set, or to use techniques
like cluster analysis. The Aitchison distance

da(x, y) =
√√√√ D∑

i=1

(
ln

xi

g(x)
− ln

yi

g(y)

)2

. (7)

has nice properties: it takes into account the relative nature of the informa-
tion we are using, and it is compatible with the basic operations of perturba-
tion and powering, something that is not accomplished by many other distances
(Martı́n-Fernández, Barceló-Vidal, and Pawlowsky-Glahn, 1998). To compute



678 Tolosana-Delgado, Otero, and Pawlowsky-Glahn

the distance between z0 and zf considered in Equation (5) we compute first the
geometric means

g(z0) = 3
√

0.603 × 0.298 × 0.099 = 0.261 ,

g(zf) = 3
√

0.955 × 0.003 × 0.041 = 0.050 ,

substitute in Equation (7),

d2(zf, z0) =
(

ln
0603

0.261
− ln

0.955

0.050

)2

+
(

ln
0.298

0.261
− ln

0.003

0.050

)2

+
(

ln
0.099

0.261
− ln

0.041

0.050

)2

= (0.836 − 2.947)2 + (0.132 − 2.756)2 + (−0.968 + 0.191)2

= 13.402,

to obtain, after taking the square root,

d(zf, z0) = 3.661

which, in this case, can be understood as a measure of the degree of alteration.
But not only geometric elements can be used with an Euclidean space struc-

ture: using the idea of coordinates with respect to an orthonormal basis, which
exist for any Euclidean space, we have also integrals and derivatives in the sim-
plex and thus, the whole battery of statistical methods, developed within the
usual framework of multidimensional real space, can be transferred to the simplex
(Pawlowsky-Glahn, 2003). We simply apply them to the coordinates. Working with
coefficients with respect to an orthonormal basis is also more comfortable, as we
can operate directly with the standard operations. Egozcue and others (2003) give
such a basis. The coefficients for a D-part composition x are D − 1 and are given
by

ci =
(

1√
i(i + 1)

ln
x1 · · · xi

xi
i+1

)
, i = 1, 2, . . . ,D − 1. (8)

Thus, for the three-part composition {Al2O3, CaO + Na2O, K2O} = [63.8, 22.7,

13.5], these coefficients are

c1 = 1√
2

ln
Al2O3

CaO + Na2O
= 1√

2
ln

63.8

22.7
= 0.731
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and

c2 = 1√
6

ln
Al2O3(CaO + Na2O)

K2O2
= 1√

6
ln

63.8 × 22.7

13.52
= 0.846 .

In the same basis, the compositional process (4), written in terms of coordinates,
is given by two log-linear equations,

1√
2

ln
Al2O3

CaO + Na2O
= 1√

2
ln

63.8

22.7
+ α

1√
2

ln
0.5

0.17

1√
6

ln
Al2O3(CaO + Na2O)

K2O2
= 1√

6
ln

63.8 × 22.7

13.52
+ α

1√
6

ln
0.5 × 0.17

0.332
, (9)

or, equivalently,

ln(Al2O3) − ln(CaO + Na2O) =
√

2(0.731 + α 0.763)

ln(Al2O3) + ln(CaO + Na2O) − 2 ln(K2O) =
√

6(0.846 + α(−0, 101)).

Note that the representation in coordinates appears as a transformation of a three-
part simplex into a two-dimensional real space. To be precise, this is a morphism
which assigns coordinates to each composition. Its main property is that it trans-
lates inner products and distances in the Aitchison geometry into inner products
and distances in the ordinary real space of coordinates.

As can be seen in (9), these equations involve several log-ratios, that come
from the coordinate expressions. These kind of log-linear equations appear in
many instances in compositional data analysis, specially when we use techniques
like Principal Component Analysis or Factor Analysis. Examples can be found in
the subsequent articles in this issue.

To conclude this short note, recall that it is well known, from early work
by Pearson (1897) and Chayes (1960), that compositional data present what they
called the spurious correlation effect. Actually, it means that standard statistical
methods applied to raw compositional data might lead to inconsistent results and
that, when results seem to be reasonable, we cannot be sure if they are really the
best we can get out of our data. A way out to this problem is given by the above
log-ratio approach, initiated by John Aitchison back in the 1980s.

REFERENCES

Aitchison, J., 2003, The statistical analysis of compositional data: (Reprint) Blackburn Press, Caldwell,
NJ, 416 p.
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