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April, 2007

Abstract

In this paper we use Markov chain Monte Carlo (MCMC) methods in

order to estimate and compare stochastic production frontier models from a

Bayesian perspective. We consider a number of competing models in terms

of different production functions and the distribution of the asymetric error

term. All MCMC simulations are done using the package JAGS (Just Another

Gibbs Sampler), a clone of the classic BUGS package which works closely with

the R package where all the statistical computations and graphics are done.
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1 Introduction

In stochastic production frontier models it is usually assumed that the error term

is composed of a random error (v) capturing statistical noise and a one-sided non-

negative error (u). For N firms observed, the model can be expressed as

yi = f(xi,β) + vi − ui, i = 1, . . . , N

where yi is the logarithm of an output, xi is a vector of the logarithms of inputs

including an intercept and possibly crossproducts, β is the vector of coefficients and

vi are independent and identically distributed N(0, σ2
v) error terms and assumed

to be independent of the non-negative random variable ui. Thus, the total error

term ǫi = vi − ui has an asymmetric distribution which can be obtained as

p(ǫ) =

∫

∞

0

p(u)pN(ǫ+ u|0, σ2
v)du.

where pN(·|µ, σ2) stands for the N(µ, σ2) density function. Technical efficiency

of the i-th firm is measured by ri = exp(−ui) and ui is assigned a non-negative

asymmetric distribution so that ri ∈ (0, 1).

In practice, there is also a great deal of uncertainty with respect to both the

production function f(·) and the distribution of ui. In particular, a number of

choices for the distribution of ui have been proposed in the literature. For exam-

ple, in their pioneering work in this area Meeusen and van der Broeck (1977) and

Aigner, Lowell, and Schmidt (1977) used exponential and half-Normal distribu-

tions respectively. Later proposals include a N(ξ, λ) truncated to ui > 0 allowing

both mean and variance to be estimated (Stevenson 1980), Gamma distributions

(Greene 1990, Koop, Steel, and Osiewalski 1995) and Log-Normal distributions

(Migon and Medrano 2004).

Each of these choices can induce very different behaviours in the distribution

of the technical efficiencies ri and more recently Griffin and Steel (2004) proposed

a Generalized Gamma distribution for ui. In this case, its density function is given

by

p(ui|c, φ, λ) =
cλφ

Γ(φ)
ucφ−1

i exp(−λuc
i), φ > 0, λ > 0 (1)
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and it is easy to see that most of the aforementioned proposals are simpler cases of

this three-parameter family (except the truncated and half-Normal). So, we have

a Gamma distribution when c = 1, an Exponential distribution when c = φ = 1,

and a Log-Normal distribution as a limiting case. Also, a Weibull distribution is

obtained when φ = 1.

Production Functions

Suppose that we want to relate values of a product (output) Q produced with 2

factors (inputs): capital (K) and Labour (L). Let y = log(Q), x1 = log(K) and

x2 = log(L). Two commonly used production functions are, the Cobb-Douglas

which is linear in the logarithms of the inputs, i.e.

y = β0 + β1x1 + β2x2,

where β0 ∈ R, β1 > 0 and β2 > 0, and the Translog which includes squares and

cross-products,

y = β0 + β1x1 + β2x2 +
1

2
β3x

2
1 +

1

2
β4x

2
2 + β5x1x2

where β0 ∈ R and βi > 0, i = 1, . . . , 5. So, of course the Cobb-Douglas is a special

case of the Translog function for β3 = β4 = β5 = 0. More recently, Migon and

Medrano (2004) investigated two other types of production function namely the

Constant Elasticity of Substitution (CES) which is non-linear in the inputs

y = β0 + v log( [(1 − δ)K−ρ + δL−ρ]−1/ρ)

where 0 < δ < 1, −∞ < v < ∞ and ρ > −1, and the Generalized Production

Function (GPF), first proposed by Zellner and Revankar (1970), where

z = y + λ exp(y) = β0 + β1x1 + β2x2

where β0 ∈ R, λ > 0, β1 > 0 and β2 > 0.

In this paper, we focus on the comparison of these production functions and

distributions of the efficiency term. We adopt a Bayesian approach and use Markov
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Chain Monte Carlo (MCMC) simulation to estimate parameters and compare mod-

els. The MCMC sampling is done using the package JAGS (Just Another Gibbs

Sampler, Plummer 2003) which was originally developed as a clone of the classic

BUGS package. JAGS was written in C++ and is designed to work closely with the

R package where all statistical computations and graphics are done. This package

is open source and freely available and can be downloaded from the website

http://www-fis.iarc.fr/~martyn/software/jags/.

A compiled version for Windows users is also available from this website.

We provide a set of R functions to build the required files and analyse the

output using the functionality from the R package coda. So, the user can choose

the production function and the distribution of the efficiency term, as well as

provide data, prior parameters and starting values for the MCMC chains. The

main idea is that JAGS can be used as a sampling device in R and the user does not

need to know the BUGS syntax (as when using the WinBUGS package). However, the

model specification, prior distributions and initial values are written in external

files so that they can indeed be modified by the user. Initial values which are not

explicitly set by the user are automatically set by JAGS. All R functions used in

this paper are available from the author at http://leg.ufpr.br/~ehlers/SPF

The rest of the paper is organized as follows. In Section 2 the model classes

which can be fitted are described in more details. In Section 3 a short overview

on MCMC-based model comparison issues is given. Empirical results are provided

in Section 4 and we give a short description of the implementation using R. We

close the paper in Section 5 with a general discussion on possible extensions of the

models adopted and some possibilities for future work.

2 Bayesian Models

Stochastic frontier models have been analysed from a Bayesian viewpoint by many

authors recently, especially using MCMC methods for estimation. See for example
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Koop, Steel, and Osiewalski (1995), Fernandez, Osiewalski, and J. (1997), Osiewal-

ski and Steel (1998) and (Migon and Medrano 2004).

For the Cobb-Douglas, Translog and CES production functions the likelihood

function is given by

p(y|θ) =
n

∏

i=1

pN(yi|f(xi1, xi2, θ) − ui, σ
2)

where θ contains the parameters defining the production functions and pN(y|µ, σ2)

denotes the normal probability density function with mean µ and variance σ2.

However, for the generalized production function we need to compute the Jacobian

of the transformation from Z to Y , so the likelihood function is now given by

p(y|θ) =
n

∏

i=1

pN(zi|f(xi1, xi2, θ) − ui, σ
2)

∣

∣

∣

∣

dzi

dyi

∣

∣

∣

∣

. (2)

We also need to specify prior distributions for the parameters in θ and of course

this depends on which production function is used. Whatever the production func-

tion these parameters are all assumed to be a priori independent. The intercept

is assigned an unrestricted normal prior around zero, i.e. β0 ∼ N(0, σ2
β) while the

other coefficients are constrained to be positive as we want to exclude production

frontiers in which more inputs lead to less output. In this paper we assign priors

βj ∼ N(0, σ2
β) truncated to βj > 0. Finally, for a CES production function we

assign priors v ∼ N(0, σ2
v), ρ ∼ N(0, σ2

ρ) truncated to ρ > −1 and δ ∼ Be(a, b)

where Be(a, b) stands for a Beta distribution. Also, σ−2 ∼ Ga(a, b) where Ga(a, b)

stands for a Gamma distribution with mean a/b and variance a/b2.

In this paper, a number of choices for the distribution of the inefficiency terms

is also to be compared. These are listed below, together with the associated hy-

perpriors.

1. Assuming that ui ∼ Exp(λ) then assigning a prior λ ∼ Exp(− log r∗) implies

that the prior median efficiency equals r∗. van den Broeck et al. (1994) show

that this leads to a proper but relatively non-informative prior on the firm

efficiencies.
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2. Assuming a half-normal distribution, i.e. ui ∼ N(0, λ) truncated to ui > 0

then we assign a prior λ−1 ∼ Ga(1, 1/37.5). van den Broeck et al. (1994)

show that this leads to a prior median efficiency of approximately 0.875 with

a reasonable spread.

3. When a truncated normal distribution is assumed, i.e. ui ∼ N(ξ, λ) trun-

cated to ui > 0 and we include a prior ξ ∼ N(0, σ2
ξ ) and use the same prior

for λ as above.

4. Assuming that ui ∼ Ga(φ, λ), Griffin and Steel (2004) propose a prior on

φ and λ which extends the informative prior for an exponential inefficiency

distribution. Assigning φ−1 ∼ Ga(d1, d1 + 1) implies that φ has a prior

mode at one. So this prior is centred around an exponential prior with d1

controlling the variability of φ. Griffin and Steel (2004) suggest taking d1 = 3

and this is the value adopted here. We also take λ|φ ∼ Ga(φ,− log r∗) where

r∗ is the prior median inefficiency.

5. When a log-normal distribution is assigned for the ui we consider a sub-

family with location parameter equal to zero and the scale parameter can be

chosen to make the prior relatively vague. So, ui ∼ LN(0, ψ2) and we assign

a hyperprior ψ−2 ∼ Ga(a, b).

6. Assigning a Generalized Gamma distribution for the ui the parameters c, φ

and λ in (1) are specified here following the development in Griffin and Steel

(2004). We take λ|c, φ ∼ Ga(φ, (− log r∗)c) and assume prior independence

between c and ψ = φc assigning priors

ψ−1 ∼ Ga(d1, d1 + 1) and c−1 ∼ Ga(d2, d2 + 1).

This prior is again centred over the exponential case (mode at φ = c = 1)

but allows considerable deviations from the exponential if we choose d1 and

d2 not too large. We take d1 = d2 = 3 here.
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7. Finally, assuming that ui ∼Weibull(c, λ) we adapt the development in item

(6) with φ = 1 and assign λ|c ∼ Exp((− log r∗)c) and c−1 ∼ Ga(d2, d2 + 1)

which is centred over the exponential case. We take d2 = 3 here.

The R code implemented allows the user to specify values for the hyperparameters

σ2
β , σ2

v , σ
2
ρ, a, b, d1, d2 and r∗.

Ranking the Firms

Samples of the firm-specific efficiency terms (e−ui) are immediately generated by

the sampler. In practice, the investigator is often more interested in the ranks

of these terms and their posterior distributions are also readily available from

the MCMC output. In the jth iteration, values of exp(−u
(j)
i ), i = 1, . . . , N are

generated and by ordering these values then the position of the ith value in the

ordered set is the rank of the ith firm (a high rank corresponds to high efficiency).

After convergence we have a sample of ranks for each firm which can be summarized

to provide an estimate of the mean or median rank for each firm plus a 100(1-α)%

credible interval which captures the uncertainty associated with the rank position

of each firm. Computationally, it is faster to obtain this last sample using R

commands on the sampled values of exp(−ui).

3 Comparing Models

In order to compare and select the most appropriate model among those considered

here we use the Deviance Information Criterion (DIC), where lower values indicate

a good model fit relative to the number of parameters in the model (for full details

see Spiegelhalter et al. 2002). Denoting the competing models by M1,M2, . . .

and the vector of parameters under model Mi by ξi the criterion is defined as

DIC(Mi) = Di + pi where Di = −2 log(p(y | ξi,Mi)) is the deviance, measuring

model fit, and Di is the posterior mean of Di. The penalizing term pi measures

model complexity and is given by Di −D(ξ̄i) where ξ̄i is the posterior mean of ξi.
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Routine application of DIC for model determination has become standard prac-

tice in Bayesian applied work as it is easily computed during the simulation of the

Markov chains. In this work we include an R function for the computation of DIC

and the user can compare models on the basis of this criterion. However, it could

be misleading just to report the model with the lowest DIC as it is difficult to say

what would constitute an important difference between DIC values. Also, the DIC

is subject to Monte Carlo sampling error since it is a function of stochastically sim-

ulated quantities. This might cast some doubt whether an improvement in model

fit is substantial. One way around this problem, is to use DIC weights obtained by

subtracting from each DIC the value associated with the “best” model and then

setting

wi ∝ exp(−∆DIC(Mi)/2)

where ∆DIC(Mi) denotes the transformed DIC value for model i. The weights are

then normalized to sum to 1 over the models under consideration. This approach

was first suggested in Burnham and Anderson (1998) Section 4.2 for the Akaike’s

Information Criterion (AIC) where the differences are interpreted as the strength

of evidence. The approach can be extended to be used with the DIC which, as

pointed out in Spiegelhalter et al. (2002), can be viewed as a Bayesian analogue

of AIC.

4 Empirical Results

In this section we analyse 123 cross-sectional data from the US electric industry

in 1970. The data was originally analysed by Christensen and Greene (1976) and

subsequently by Greene (1990) and Griffin and Steel (2007). Here, the produc-

tion function relates the output produced to labour and capital corrected by their

respective factor prices. The data can be obtained at

http://econ.queensu.ca/jae/1998-v13.2/zellner-ryu/data.zr.
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For each model a total of 100 000 iterations were run, and the first half was

discarded as burn-in. This was intended to be a conservative burn-in as the di-

agnostics of Raftery and Lewis (1992) indicated that convergence has actually oc-

curred earlier. After the burn-in period the simulated values of every 5th iteration

were kept for posterior analysis. So, parameter estimates and model comparison

were based on approximate samples of size 10 000 from the posterior distributions.

The diagnostics of Geweke (1992) and an analysis of the behavior of the chains

along the iterations did not indicate lack of convergence. From this sample several

characteristics of the posterior distribution may be estimated, and the main inter-

est here is to provide estimates of the mean and median rank for the firms plus

100(1-α)% credible intervals.(d1 = d2 = 3, r∗ = 0.80)

In Table 1 the computed values of Di, D(ξ̄i), the penalizing terms pi the DIC

and the DIC weights for each model are presented. The last column shows their

associated rankings. We can see that the most adequate model is the one that uses

the generalized production function and a truncated normal distribution for the

inefficiency terms. We note however that model comparison is much easier in the

transformed scale of the DIC weights. We can see that the weight for the second

best model (Constant Elasticity of Substitution + truncated normal inefficiencies)

is less than half the weight for the most adequate model. Another subset of models

(GPF + lognormal, CES + lognormal and Cobb-Douglas + truncated normal)

received small weights 0.07121, 0.06074 and 0.05449. All other models receive very

small weights. It is also worth noting that, within each production function, the

truncated normal distribution for the inefficiencies is always selected.

A feature of interest is the ability of each model to classify the firms, in par-

ticular to differenciate between the more efficient firms from the less efficient ones.

In terms of MCMC simulations this is accomplished by comparing the posterior

distributions of the efficiency terms for the best and worst firms. Figure 1 shows

the posterior distributions of the ranks associated with the efficiency measures of

the best firm (left column) and the worst firm (right column) using the truncated

normal distribution considering the four production functions. As we can see, the
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truncated normal frontier model differentiates pretty well the more efficient from

the less efficient firms.

Table 1 about here

Figure 1 about here

In Appendix A we show the JAGS commands used to estimate the selected

model (generalized production function and a truncated normal distribution for

the inefficiency terms). This is for illustration purposes only since the user does not

need to know the JAGS commands syntax. We note that we center the regressors

around their sample averages in order to improve convergence. The intercept is

set back to its original scale in the end. Also, we have to use the so called zeros

trick in which artificial data with all values equal to zero are assigned a Poisson

distribution with mean given by − log(p(y|θ)) where p(y|θ) is given in (2). This

trick is also commonly used by WinBUGS users.

5 Discussion

In this work we adopted a Bayesian approach to estimate and compare stochastic

production frontier models The method was illustrated with a real data example.

Estimates of the posterior distribution were obtained via MCMC methods where

inference is based on an approximate sample from the posterior distribution.

A set of production functions and distributions for the inefficiency terms which

might be of potential influence on the ranking of the firms were compared via DIC.

We provide the R code which builds the required files to run the JAGS package

and to analyse the output using the functionality from the R package coda. It is

worth noting that the user is not required to know the BUGS syntax to run these

R functions. The code was implemented for cross-sectional data but can be easily

extended for analysing more complicated models, e.g. balanced and unbalanced

panel data, inclusion of covariates in the inefficiency distributions and models

with time-varying inefficiencies. Also, the symmetric term (vi) could be assigned

9



a a Student-t distribution with unknown degrees of freedom in other to robustify

the model. Care should be exercised when specifying a prior distribution for the

number of degrees of freedom (Migon, Rosa, and Fonseca 2005 derived a reference

prior for this parameter).

Finally, an area still to be explored in more depth in the literature is model

comparison and selection via trans-dimensional MCMC algorithms (e.g. reversible

jump MCMC). Surely the only sensible approach is to calculate posterior model

probabilities and there is still considerable room for more research in this area. All

these extensions are currently being investigated by the author.
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Table 1: Di, D(ξ̄i), penalizing terms (pi), DIC values, computed DIC normalised weights

and rank for each model obtained based on 10 000 simulations.

Prod Function inefficiency Di D(ξ̄i) pi DIC weight rank

Cobb-Douglas exp −19.5609 −28.3636 8.8027 −10.7581 0.00044 23

Cobb-Douglas tnorm −30.9996 −41.6037 10.6041 −20.3956 0.05449 5

Cobb-Douglas halfnorm −19.0528 −27.2502 8.1974 −10.8554 0.00046 22

Cobb-Douglas gamma −19.8941 −28.6195 8.7254 −11.1687 0.00054 21

Cobb-Douglas gen.gamma −20.2863 −28.6803 8.3940 −11.8924 0.00078 19

Cobb-Douglas weibull −18.6541 −26.1266 7.4726 −11.1815 0.00054 20

Cobb-Douglas lognorm −27.6661 −37.6017 9.9355 −17.7306 0.01437 6

Translog exp −15.0361 −23.8715 8.8353 −6.2008 0.00005 25

Translog tnorm −23.9300 −33.2167 9.2867 −14.6432 0.00307 7

Translog halfnorm −12.8873 −20.6193 7.7320 −5.1554 0.00003 27

Translog gamma −15.1713 −23.7525 8.5812 −6.5900 0.00005 24

Translog gen.gamma −13.8555 −21.7858 7.9303 −5.9252 0.00004 26

Translog weibull −12.8305 −20.5585 7.7280 −5.1025 0.00003 28

Translog lognorm −22.0603 −31.4122 9.3519 −12.7084 0.00117 13

CES exp −19.5195 −26.4384 6.9190 −12.6005 0.00111 15

CES tnorm −31.2346 −39.2628 8.0282 −23.2065 0.22216 2

CES halfnorm −19.5870 −25.8898 6.3028 −13.2842 0.00156 11

CES gamma −20.2690 −26.6339 6.3649 −13.9041 0.00212 8

CES gen.gamma −20.1451 −26.8770 6.7319 −13.4132 0.00166 10

CES weibull −18.8055 −24.9562 6.1507 −12.6548 0.00114 14

CES lognorm −28.1078 −35.6027 7.4949 −20.6130 0.06074 4

GPF exp −19.9535 −27.9918 8.0382 −11.9153 0.00078 18

GPF tnorm −33.4537 −41.8647 8.4110 −25.0428 0.55643 1

GPF halfnorm −20.0239 −27.4804 7.4566 −12.5673 0.00109 16

GPF gamma −20.9083 −28.9271 8.0188 −12.8895 0.00128 12

GPF gen.gamma −20.8332 −28.1687 7.3355 −13.4978 0.00173 9

GPF weibull −19.6832 −27.0591 7.3759 −12.3073 0.00095 17

GPF lognorm −28.8473 −36.7637 7.9164 −20.9309 0.07121 3
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Figure 1: Posterior distributions of the ranks of the best firm (left column) and the

worst firm (right column) for a truncated normal inefficiency term considering the four

production functions.
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A JAGS commands

JAGS commands used for the model with a generalized production function and a

truncated normal distribution for the inefficiency terms.

data {

for (i in 1:N) {

zeros[i] <- 0

X[i,1] <- Xreg[i,1]-xbar[1]

X[i,2] <- Xreg[i,2]-xbar[2]

}

xbar[1] <- mean(Xreg[,1])

xbar[2] <- mean(Xreg[,2])

}

model {

for(i in 1:N) {

zeros[i] ~ dpois(p[i])

p[i] <- -0.5*log(tau/(2*3.141593))

+0.5*tau*pow(y[i]+gamma*exp(y[i])-mu[i],2)

-log(1+gamma*exp(y[i]))+10000

mu[i] <- alpha0 +inprod(beta[],X[i,]) - u[i]

}

beta[1] ~ dnorm(0.0,0.001)T(0,)

beta[2] ~ dnorm(0.0,0.001)T(0,)

alpha0 ~ dnorm(0.0,0.001)

gamma ~ dgamma(0.1,0.01)

tau ~ dgamma(0.01,0.01)

sigma2 <- 1/tau

for (i in 1:N) {

u[i] ~ dnorm(zeta,invlambda)T(0,)

eff[i] <- exp(-u[i])

}

invlambda ~ dgamma(1,1/37.5)

zeta ~ dnorm(0.0, 1E-3)T(0,)

lambda <- 1/invlambda

alpha <- alpha0-inprod(beta[],xbar[])}
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