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Summary. This paper is motivated by the use of data 

from the British Household Panel Survey (BHPS) to 

study attitudes to gender roles and their relation to 

demographic and economic variables. Such household 

surveys often use a complex sampling design to select 

the sample to be followed up over time. It is well 

known that complex sampling schemes may inflate the 

variances of estimators, especially as a result of 

clustering. The design effect measures the inflation of 

the sampling variance of an estimator as a result of the 

use of a complex sampling scheme. There is some 

empirical evidence that this impact may be less the 

more complex the analysis and this may sometimes be 

used to justify ignoring the complex sampling scheme 

in analysis. The aim of this paper is to show that design 

effects for longitudinal analyses can be greater than for 

corresponding cross-sectional analyses, implying that 

more caution is required before ignoring the complex 

design in standard error estimation. A possible 

theoretical explanation is provided. 
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1. Introduction 
 

This paper develops methodology for the analysis of 

complex survey data (Skinner, Holt and Smith, 1989) 

to address longitudinal aspects of regression analyses 

of British Household Panel Survey (BHPS) data on 

attitudes to gender roles and their relation to 

demographic and economic variables. The general 

question of interest in this paper is: is the impact of the 

complex sampling design on variance estimation for 

analyses of these longitudinal data greater or less than 

for corresponding cross-sectional analyses? Kish and 

Frankel (1974) presented empirical work which 

suggested that the impacts of complex designs on 

variances are reduced for more complex analytical 

statistics and so one might conjecture that the impact 

on longitudinal analyses might also be reduced. We 

shall provide evidence in the opposite direction that, at 

least for the specific analyses considered, the impact on 

longitudinal analyses tends to be greater. Given that an 

impact does exist, the second question addressed is 

how to undertake variance estimation. We shall focus 

in the paper on the clustering impact of the sampling 

design by adopting survey sampling variance 

estimation procedures (Skinner et al, 1989). 
 

When asking how an analysis should take account of 

complex sampling, it is natural first to ask whether the 

parameters of interest should depend on the design, via 

the population structure underlying the sampling 

(Skinner et al., 1989). In this paper we shall assume 

this is not the case, since the primary sampling units in 

the BHPS are postcode sectors, determined by the 

needs of the British postal system and assumed here 

not to be relevant to the definition of parameters of 

scientific interest. A second question which might be 

asked is how the sampling impacts on point estimation, 

e.g. via the use of sampling weights. We shall refer to 

this question briefly, but we shall largely suppose that 

point estimation is unaffected by the design.  Our main 

focus will be on the impact of the design on variance 

estimation. 
 

The impact on variance estimation will be measured 

here by the ‘misspecification effect’, denoted meff 

(Skinner, 1989a), which is the variance of a point 

estimator divided by the expectation of the variance 

estimator. This is a measure of relative bias of the 

variance estimator, analogous to the ‘design effect’ or 

deff of Kish (1965), which measures the impact of a 

design on a variance, defined as the variance of the 

point estimator under the given design divided by its 

variance under simple random sampling with the same 

sample size. In the application in this paper, estimated 

meffs  may be treated as equivalent to estimated deffs 

when the variance estimator ignores the complex 

design. 
 

One reason for studying meffs for variance 

estimators which ignore the design is that analysts of 

longitudinal survey data face many difficult 

methodological challenges and they may be tempted to 

view the impact of complex sampling on standard 

errors as a relatively minor issue which, if ignored, is 

unlikely to lead to misleading inferences. Indeed, in 

cases where the survey documentation indicates that 

the design effect of the mean of the analyst’s outcome 

variable of interest is not much larger than one, the 

analyst might justify ignoring the design when 

estimating standard errors by appealing to the 

observation of Kish and Frankel (1974, p.13) that 

“design effects for complex statistics tend to be less 

than those for means of the same variables”. 
 

The paper is motivated by a regression analysis of 

five waves of BHPS data, based upon work of 

Berrington (2002) and described in Section 2. After a 

description of models and estimation methods in 

Section 3, the paper proceeds in Section 4 to provide 

evidence that meffs for longitudinal analyses can be 

greater than for corresponding cross-sectional analyses, 

implying that more caution is required before ignoring 

the complex design in standard error estimation.  
 

We ignore the effects of stratification and weighting 

in the empirical work in section 4 in order to isolate the 



source of potential misspecification effects and to 

avoid introducing the more complex weighting issues 

arising with multilevel models (Pfeffermann et al., 

1998). We make brief remarks on these effects in the 

concluding discussion in Section 5. 

 

2 The motivating application to BHPS data  
 

Recent decades have witnessed major changes in the 

roles of men and women in the family in many 

countries. Social scientists are interested in the relation 

between changing attitudes to gender roles and changes 

in behaviour, such as parenthood and labour force 

participation (e.g. Morgan and Waite, 1987; Fan and 

Marini, 2000). A variety of forms of statistical analysis 

are used to provide evidence about these relationships. 

In this paper we consider a longitudinal regression 

analysis, based upon a model considered by Berrington 

(2002), with a measure of gender role attitude as the 

dependent variable. We also consider some simpler 

versions of this analysis to facilitate understanding of 

the methodological issues outlined in Section 1. The 

models will be set out formally in Section 3. 
 

The data come from waves 1, 3, 5, 7 and 9 (collected 

in 1991, 1993, 1995, 1997, and 1999 respectively) of 

the BHPS, when respondents were asked whether they 

‘strongly agreed’, ‘agreed’, ‘neither agreed nor 

disagreed’, ‘disagreed’ or ‘strongly disagreed’ with a 

series of statements concerning the family, women’s 

roles, and work out of the household. Responses were 

scored from 1 to 5.  Factor analysis was used to assess 

which statements could be combined into a gender role 

attitude measure. The attitude score considered here is 

the total score for six selected statements. Higher 

scores signify more egalitarian gender role attitudes. 

Berrington (2002) provides further discussion of this 

variable.  
 

Covariates for the regression analysis were selected 

on the basis of discussion in Berrington (2002) but 

reduced in number to facilitate a focus on the 

methodological issues of interest. The covariate of 

primary scientific interest is economic activity, which 

distinguishes in particular between women who are at 

home looking after children (denoted ‘family care’) 

and women following other forms of activity in 

relation to the labour market. Variables reflecting age 

and education are also included since these have often 

been found to be strongly related to gender role 

attitudes (e.g. Fan and Marini, 2000). All these 

covariates may change values between waves. A year 

variable is also included. This may reflect both 

historical change and the general ageing of the women 

in the sample.  
 

The BHPS is a household panel survey of individuals 

in private domiciles in Great Britain (Taylor et al., 

2001). Given the interest in whether women’s primary 

labour market activity is ‘caring for a family’, we 

define our study population as women aged 16-39 in 

1991. This results in a subset of data on n = 1340 

women. This subset consists of those women in the 

eligible age range for whom full interview outcomes 

(complete records) were obtained in all the five waves. 

We comment further on the treatment of nonresponse 

in section 3. 

The initial (wave one) sample of the BHPS in 1991 

was selected by a stratified multistage design in which 

households had approximately equal probabilities of 

inclusion. As primary sampling units (PSUs), 250 

postcode sectors were selected, with replacement and 

with probability of selection proportional to size using 

a systematic procedure. Addresses were selected as 

secondary sampling units, with the adoption of an 

analogous systematic procedure. In addresses with up 

to 3 households present, all households were included, 

and in those with more than 3 households, a random 

selection procedure, using a Kish grid, was used for the 

selection of 3 households. Then, all resident household 

members aged 16 or over were selected. All adults 

selected at wave one, were followed from wave two 

and beyond. A consequence of this design is that 

inclusion probabilities of adults vary little. The impact 

of weighting is considered briefly in section 5. The 

1340 women represented in the data are spread fairly 

evenly across the 250 postcode sectors. The small 

average sample size of around five per postcode sector 

combined with the relatively low intra-postcode sector 

correlation for the attitude variable of interest leads to 

relatively small impacts of the design, as measured by 

meffs. Since our aims are methodological ones, to 

compare meffs for different analyses, we have chosen 

to group the postcode sectors into 47 geographically 

contiguous clusters, to create sharper comparisons, less 

blurred by sampling errors which can be appreciable in 

variance estimation. The meffs in the tables we present 

therefore tend to be greater than they are for the actual 

design. The latter results tend to follow similar 

patterns, although the patterns are less clear-cut as a 

result of sampling error.  

 

3.  Regression model and inference procedures 
 

Let 
ity  denote the value of the attitude score for 

woman i at wave t (coded t = 1, … , T = 5 to 

correspond to 1991, 1993, …,1999) and let 

1( ,..., ) 'i i iTy y y=  be the vector of repeated measures.  

We consider linear models of the following form to 

represent the expectation of 
i

y  given the values of 

covariates: 

( )i iE y x β= ,    (1) 

where 
1( ',..., ') 'i i iTx x x= , 

it
x  is a 1×q vector of 

specified values of covariates for woman i at wave t,  

β  is the q×1 vector of regression coefficients and the 

expectation is with respect to a superpopulation model 

(Goldstein, 2003, p. 164). A more sophisticated 

analysis might include a measurement error model for 

attitudes (e.g. Fan and Marini, 2000), with each of the 

five-point responses to the six statements treated as 

ordinal variables. Here, we adopt a simpler approach, 

treating the aggregate score 
ity  and the associated 

coefficient vector β  as scientifically interesting, with 

the measurement error included in the error term of the 

model. 
 



We consider estimation of β  based on data from the 

‘longitudinal sample’, 
Ts , i.e. the sample for which 

observations are available for each of 1,...,t T= . We 

did not attempt to use data observed only at a subset of 

the five waves, partly for simplicity but also because 

our primary interest is clustering and we did not wish 

differences in clustering effects over time to be 

confounded with differences in incomplete data effects. 

A concern with the use of the longitudinal sample Ts  

is that the underlying attrition process may lead to 

biased estimation of β . One possible way of 

attempting to correct for this potential biasing effect is 

via the use of longitudinal survey weights, 

,iTw i s∈ (Lepkowski, 1986).  

The most general estimator of β  we consider is 

1

1 1ˆ ' '
T T

iT i i iT i i
i s i s

w x V x w x V yβ

−

− −

∈ ∈

 
= ∑ ∑ 
 

,  (2) 

where V is a ‘working’ variance matrix of 
iy  (Diggle et 

al. 2002, p.70), taken as the exchangeable variance 

matrix with diagonal elements 2σ  and off-diagonal 

elements 2ρ̂σ , and ρ̂  is an estimator of the intra-

individual correlation, obtained by iterating between 

generalised least squares estimation of β  and survey-

weighted moment-based estimation of the intra-

individual correlation (Liang and Zeger, 1986; Shah et 

al., 1997). Note that 2σ  cancels out in (2) and hence 

does not need to be estimated for β̂ . 
 

This variance matrix, V, would arise if 
ity  obeyed 

the multilevel (mixed linear) model:  

 
it it i ity x u vβ= + + ,   (3) 

with independent random effects 
iu  and 

itv  with 

variances 2 2

uσ ρσ=  and 2 2(1 )vσ ρ σ= −  respectively. 

We find that this model provides a first approximation 

to the variance structure for the regression models 

fitted in section 4.  For illustration, we find ρ̂ = 0.59 in 

the most elaborate regression model implying a fairly 

substantial between-woman component in the attitude 

scores unexplained by the chosen covariates. It is not 

necessary, however, for the error structure to follow the 

specific model in (3) exactly for β̂  to be consistent.  
 

To estimate the covariance matrix of β̂  allowing for 

the complex sampling design, we may use the 

linearization estimator (Skinner, 1989b, p.78): 
1 1

-1 2 -1ˆ( ) 'V /( 1) ( ) 'V
T T

iT i i h h ha h iT i i

i s h a i s

v w x x n n z z w x xβ

− −

∈ ∈

    
= − −    

    
∑ ∑ ∑ ∑

,     

    (4) 

where h denotes stratum, a denotes area (primary 

sampling unit, PSU),  
hn  is the number of PSUs in 

stratum h,  
1

'iha iT i i
z w x V e

−= ∑ , /ah ha h
z z n= ∑  and 

ˆ
i i i

e y x β= − . Note that this variance estimator requires 

use of the stratum and primary sampling unit 

identifiers. See Lavange et al. (1996) and Lavange et 

al. (2001) for applications of a similar approach to 

allowing for complex sampling designs in regression 

analyses of repeated measures data from different 

longitudinal studies.  

In order to assess the impact of the complex design 

on variance estimation, we also consider a linearization 

variance estimator which ignores the complex design, 

denoted 
0

ˆ( )v β , given by expression (4) where the 

PSUs become the same as women so that 
ha

z  is 

replaced by 1'
iT i i

w x V e
−  and there is only a single 

stratum so that 
h

n n=  is the overall sample size and 

the term 
h

z  disappears. Ignoring the weights and the 

term /( 1)n n − , this is the ‘robust’ variance estimator 

presented by Liang and Zeger (1986) as consistent 

when (1) holds, but where the working variance matrix, 

V, may not reflect the true variance structure. See also 

Diggle et al. (2002, section 4.6). 
 

Following Skinner (1989a, p.24), we refer to 

0
ˆ ˆ( ) / ( )

k k
v vβ β , the ratio of these two variance 

estimators for the th
k  element of β̂ , as an estimated 

misspecification effect and denote it meff. This ratio 

may be viewed as an estimator of the misspecification 

effect, defined as 
0

ˆ ˆvar( ) / [ ( ]
k k

E vβ β , on the 

assumption that ˆ( )v β  is a consistent estimator of 

ˆvar( )β . This quantity is a measure of the relative bias 

of the ‘incorrectly specified’ variance estimator 
0

ˆ( )kv β  

as an estimator of ˆvar( )kβ . This concept is closely 

related to that of the design effect of Kish (1965) which 

is more relevant to the choice of design than to the 

choice of standard error estimator.  
 

In general, meffs will reflect the impact of weighting, 

clustering and stratification. In order to disentangle 

these effects, we shall first in section 4 only consider 

the impact of clustering. We thus treat the weights as 

constant and ignore stratification.  

 

4.  Misspecification effects: the impact of ignoring 

clustering in longitudinal analyses 
 

In this section we explore the impact of ignoring 

clustering in standard error estimation for various 

longitudinal analyses. To provide theoretical 

motivation for the kind of impact we may expect, 

consider converting the two-level model in (3) into a 

simple three-level model (Goldstein, 2003) as: 

ait ait a ai aity x u vβ η= + + + ,     (5) 

where an additional subscript a has been added to 

denote area (cluster) and an additional random term 
a

η  

with variance 2

η
σ  represents the area effect (assumed 

independent of 
aiu  and 

ait
v ). We now let 2

uσ  and 2

vσ  

denote the variances of 
aiu  and 

ait
v  respectively. Let us 

use this model to consider first the expected nature of 

misspecification effects in the case of cross-sectional 

analyses, where t is kept fixed as t=1 . In this case, if 

we suppose for simplicity that 1aitx ≡  and β  is the 

mean of 
aity  in (5) and that there is a common sample 



size m per cluster, the misspecification effect is 

approximately equal to 1 ( 1)m τ+ − , where 

2 2 2 2/( )u vη ητ σ σ σ σ= + +  is the intracluster correlation 

(Skinner, 1989b, p. 38). If the sample sizes per cluster 

are unequal a common approximation is to replace m in 

this formula by m , the average sample size per 

cluster.  
 

Turning to the longitudinal case, where again 1aitx ≡  

and now β  is a longitudinal mean of 
aity  for t=1,…,T , 

the same theory for misspecification effects will apply, 

but where τ is now the intracluster correlation for 
aη  

and 
ai aitu v+  averaged over the waves., i.e. 

2 2 2 2/( / )u v Tη ητ σ σ σ σ= + + . Hence, under this model, 

the misspecification effect increases as T increases, if 

02 >vσ .  
 

Let us now compare this expected theoretical pattern 

with the empirical findings. Using data from just the 

first wave and setting 1aitx ≡ , the meff for this cross-

sectional mean is given in Table 1 as about 1.5. This 

value is plausible since the average sample size per 

cluster is 1340 / 47 29m = ≈ and using the 1 ( 1)m τ+ −  

formula, the implied value of τ is about 0.02 and such 

a small value is in line with other estimated values of 

τ  found for attitudinal variables in British surveys 

(Lynn and Lievesley, 1991, App. D).  
 

To assess the impact of the longitudinal aspect of the 

data, we re-estimate the meff using data for waves 

1,…,t for t=2, 3, … 5. Table 1 suggests a tendency for 

the meff to increase with the number of waves, as 

anticipated from the theoretical reasoning. These meffs 

are certainly subject to sampling error and there 

appears to be some genuine variation in 

misspecification effects for cross-sectional estimates at 

different waves but this variation does not appear to be 

sufficient to explain this trend. 
 

To pursue the theoretical rationale for this finding 

further, note that  model (5) is likely to be an 

oversimplification because the area effects are likely to 

display some variation over time, in which case we 

write 
atη  rather than 

aη . In this case, τ  becomes 

var( ) /[var( ) var( )]a a a au vτ η η= + + , where 

/a att Tη η=∑  and ( ) /a a ai aitt
u v u v T+ = +∑ .  Now, 

it seems plausible that the  average level of egalitarian 

attitudes in an area will vary less from year to year than 

the attitude scores of individual women, since the latter 

will be affected both by measurement error and 

genuine changes in attitudes, so that var( )aη  may be 

expected to decline more slowly with T than 

var( )a au v+ . We may therefore expect τ , and 

consequently the meff, to increase as T increases, as we 

observe in Table 1. 
 

We next elaborate the analysis by including indicator 

variables for economic activity as covariates. The 

resulting regression model has an intercept term and 

four covariates representing contrasts between women 

who are employed full-time and women in other 

categories of economic activity. The meffs are 

presented in Table 2. The intercept term is a domain 

mean and standard theory for a meff of a mean in a 

domain cutting across clusters (Skinner, 1989b, p.60) 

suggests that it will be somewhat less than the meff for 

the mean in the whole sample, as indeed is observed 

with the meff for the cross-section domain mean of 

1.13 in Table 2 being less than the value 1.51 in Table 

1. As before, there is some evidence in Table 2 of 

tendency for the meff to increase, from 1.13 with one 

wave to 1.50 with five waves, albeit with lower values 

of the meffs than in Table 1. The meffs for the contrasts 

in Table 2 vary in size, some greater than and some 

less than one. These meffs may be viewed as a 

combination of the traditional variance inflating effect 

of clustering in surveys together with the familiar 

variance reducing effect of blocking in an experiment. 

The main feature of these results of interest here is that 

there is again no tendency for the meffs to converge to 

one as the number of waves increases. If there is a 

trend, it is in the opposite direction. For the contrast of 

particular scientific interest, that between women who 

are full-time employed and those who are ‘at home 

caring for a family’, the meff is consistently well below 

one. 
 

We next elaborate the model further by including, as 

additional covariates, age group, year and 

qualifications. The results for meffs are given in Table 

3. The meffs for the economic activity covariates again 

vary, some being above one and some below one. 

There is again some evidence of a tendency for these 

meffs to diverge away from one as the number of 

waves increases. A comparison of Tables 1 and 3 

confirms the observation of Kish and Frankel (1974) 

that meffs for regression coefficients tend not to be 

greater than meffs for the means of the dependent 

variable. 

 

5. Discussion 
 

We have presented some theoretical arguments and 

empirical evidence that the impact of ignoring 

clustering in standard error estimation for certain 

longitudinal analyses can tend to be larger than for 

corresponding cross-sectional analyses. The 

implication is that it is, in general, at least as important 

to allow for clustering in standard error estimation for 

longitudinal analyses as for cross-sectional analyses. 

Thus, the expectation from the finding of Kish and 

Frankel (1974) that complex sampling has less of an 

impact on variances for more complex analytical 

statistics was not borne out in this case.  
 

The longitudinal analyses considered in this paper 

are of a certain kind and we should emphasise that the 

patterns observed for meffs in these kinds of analyses 

may well not extend to other kinds of longitudinal 

analyses.  To speculate about the class of models and 

estimators for which the patterns observed in this paper 

might apply, we conjecture that increased meffs for 

longitudinal analyses will arise when the longitudinal 

design enables temporal ‘random’ variation in 

individual responses to be extracted from between-



person differences and hence to reduce the component 

of standard errors due to these differences, but provides 

less ‘explanation’ of between cluster differences, so 

that the relative importance of this component of 

standard errors becomes greater.  
 

The empirical work presented in this paper has also 

been restricted to the impact of clustering. We have 

undertaken corresponding work allowing for weighting 

and stratification and found broadly similar findings. 

Stratification tends to have a smaller effect than 

clustering. The sample selection probabilities in the 

BHPS do not vary greatly and the impact of weighting 

by the reciprocals of these probabilities on both point 

and variance estimates tends not to be large. There is 

rather greater variation among the longitudinal 

weights, iTw , which are provided with BHPS data for 

analyses of sets of individuals who have responded at 

each wave up to and including a given year, T. The 

impact of these weights on point and variance 

estimates is somewhat greater. As T increases and 

further attrition occurs, the weights, iTw , tend to 

become more variable and lead to greater inflation of 

variances. This tends to compound the effect we have 

described of meffs increasing with T. 
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Table 1 – Estimates of Longitudinal Means 
 point 

estimate 
s.e. meffs 

Waves 1-9  1-9  1 1,3 1,3,5 1-7 1-9 

 19.83 0.12 1.51 1.50 1.68 1.81 1.84 

 

 

Table 2 – Estimates by Economic Activity 

 β̂  s.e. meffs 

Waves 1-9  1-9  1 1,3 1,3,5 1-7 1-9 

        

Intercept 20.58 0.11 1.13 1.01 1.09 1.38 1.50 

        

Contrasts for        

PT employed -1.03 0.10 0.93 0.91 0.93 1.00 0.89 

Other inactive -0.80 0.15 0.60 0.96 0.68 0.76 0.81 

FT student 0.41 0.24 1.10 1.32 1.14 1.48 1.44 

Family care -2.18 0.10 0.72 0.49 0.58 0.66 0.60 

 
Note:  intercept is mean for women full-time employed 

contrasts are for other categories of economic activity 

relative to full-time employed 

 

 

 

Table 3 – Estimates of Regression Coefficients 
 β̂  s.e. meffs 

Waves 1-9  1-9  1 1,3 1,3,5 1-7 1-9 

        

Intercept 20.20 0.30 0.95 0.87 0.87 1.04 1.07 

        

Year, t -0.04 0.01 - 0.86 0.69 0.59 0.96 

        

Age Group        

16-21 0.00 -      

22-27 -0.71 0.25 1.22 1.37 1.44 1.73 1.64 

28-33 -0.89 0.27 1.38 1.40 1.46 1.68 1.59 

34+ -1.03 0.27 0.94 1.10 1.13 1.26 1.34 

        

Econ. Activity        

FT employed 0.00 -      

PT employed -0.93 0.10 0.97 0.95 0.96 1.06 0.91 

Other inactive -0.75 0.15 0.60 0.96 0.68 0.77 0.81 

FT student 0.17 0.24 0.93 1.32 1.23 1.39 1.32 

Family care -2.09 0.10 0.77 0.59 0.70 0.78 0.67 

        

Qualification        

Degree 0.00 -      

QF -0.52 0.21 0.77 0.64 0.75 0.87 0.85 

A-level -0.61 0.24 0.98 0.87 0.94 0.94 1.01 

O-level -0.44 0.20 0.62 0.62 0.59 0.69 0.73 

Other -1.16 0.22 0.83 0.83 0.78 0.80 0.82 

 

 


