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Problem statement 

• Parameter space of n dimensions represented by vector x
• Given an “arbitrary” target probability density function 

(pdf), q(x), draw a set of samples {xk} from it
• Only requirement typically is that, given x, one be able to 

evaluate Cq(x), where C is an unknown constant
– MCMC algorithms do not typically require knowledge of the 

normalization constant of the target pdf; from now on the 
multiplicative constant C will not be made explicit

• Although focus here is on continuous variables, MCMC 
can be applied to discrete variables as well
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Uses of MCMC 

• Permits evaluation of the expectation values of functions 
of x, e.g.,

〈 f(x)〉 = ∫ f(x) q(x) dx ≅ (1/K) Σk f(xk)
– typical use is to calculate mean 〈x〉 and variance 〈(x - 〈x〉)2〉

• Also useful for evaluating integrals, such as the partition 
function for properly normalizing the pdf

• Dynamic display of sequences provides visualization of 
uncertainties in model and range of model variations

• Automatic marginalization; when considering any subset 
of parameters of an MCMC sequence, the remaining 
parameters are marginalized over
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Markov Chain Monte Carlo

x2

Probability(x1, x2)
accepted step
rejected step

x1

• Metropolis algorithm:
– draw trial step from 

symmetric pdf, i.e.,  
t(Δ x) =  t(-Δ x)

– accept or reject trial step
– simple and generally 

applicable
– relies only on calculation 

of  target pdf for any x

Generates sequence of random samples from an 
arbitrary probability density function
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Metropolis algorithm
• Select initial parameter vector x0

• Iterate as follows:  at iteration number k
(1) create new trial position x* = xk + Δx ,

where Δx is randomly chosen from t(Δx)
(2) calculate ratio  r = q(x*)/q(xk)
(3) accept trial position, i.e. set  xk+1 = x* 

if r ≥ 1 or with probability r, if r < 1
otherwise stay put,  xk+1 = xk

• Requires only computation of q(x)
• Creates Markov chain since xk+1 depends only on xk
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Choice of trial distribution
• Loose requirements on trial distribution t()

– stationary; independent of position

• Often used functions include
– n-D Gaussian, isotropic and uncorrelated
– n-D Cauchy, isotropic and uncorrelated

• Choose width to “optimize” MCMC efficiency
– rule of thumb: aim for acceptance fraction of about 25%
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Experiments with the Metropolis algorithm
• Target distribution q(x) is n dimensional Gaussian

– uncorrelated, univariate (isotropic with unit variance)
– most generic case

• Trial distribution t(Δx) is n dimensional Gaussian
– uncorrelated, equivariate; various widths

target

trial

xk
xkxk
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MCMC sequences for 2D Gaussian
– results of running Metropolis 

with ratios of width of trial to 
target of 0.25, 1, and 4

– when trial pdf is much smaller 
than target pdf, movement across 
target pdf is slow

– when trial width same as target, 
samples seem to sample target 
pdf better

– when trial much larger than 
target, trials stay put for long 
periods, but jumps are large

• This example from Hanson and 
Cunningham (SPIE, 1998)
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MCMC sequences for 2D Gaussian
– results of running Metropolis with 

ratios of width of trial to target of 0.25, 
1, and 4

– display accumulated 2D distribution 
for 1000 trials

– viewed this way, it is difficult to see 
difference between top two images

– when trial pdf much larger than target, 
fewer splats, but further apart
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MCMC - autocorrelation and efficiency
– In MCMC sequence, subsequent parameter values are usually 

correlated 
– Degree of correlation quantified by autocorrelation function:

where y(x) is the sequence and l is lag
– For Markov chain, expect exponential 

– Sampling efficiency is

– In other words,       iterates required to achieve one statistically 
independent sample 
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Autocorrelation for 2D Gaussian

– plot confirms that the 
autocorrelation drops 
slowly when the trial 
width is much smaller 
than the target width; 
MCMC efficiency is poor

– best efficiency is when 
trial about same size as 
target (for 2D)

Normalized autocovariance for 
various widths of trial pdf

relative to target:  0.25, 1, and 4

1
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Efficiency as function of width of trial pdf
– for univariate Gaussians, 

with 1 to 64 dimensions
– efficiency as function of 

width of trial 
distributions

– boxes are predictions of 
optimal efficiency from 
diffusion theory
[A. Gelman, et al., 1996]

– efficiency drops 
reciprocally with number 
of dimensions 
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Efficiency as function of acceptance fraction
– for univariate Gaussians, with 

1 to 64 dimensions
– efficiency as function of 

acceptance fraction
– best efficiency is achieved 

when about 25% of trials are 
accepted for a moderate 
number of dimensions 

Acceptance fraction

64

1
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Efficiency of Metropolis algorithm
• Results of experimental study agree with predictions 

from diffusion theory (A. Gelman et al., 1996)
• Optimum choice for width of Gaussian trial distribution 

occurs for acceptance fraction of about 25% (but is a 
weak function of number of dimensions)

• Optimal statistical efficiency:  η ~ 0.3/n
– for simplest case of uncorrelated, equivariate Gaussian
– correlation and variable variance generally decreases efficiency
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Further considerations
• When target distribution q(x) not 

isotropic
– difficult to accommodate with 

isotropic t(Δx) 
– each parameter can have different 

efficiency
– desirable to vary width of different 

t(x) to approximately match q(x)
– recovers efficiency of univariate

case

• When q(x) has correlations
– t(x) should match shape of q(x) 

q(x)

t(Δx)
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MCMC - Issues
• Identification of convergence to target pdf

– is sequence in thermodynamic equilibrium with target pdf?
– validity of estimated properties of parameters (covariance)

• Burn in
– at beginning of sequence, may need to run MCMC for 

awhile to achieve convergence to target pdf

• Use of multiple sequences
– different starting values can help confirm convergence
– natural choice when using computers with multiple CPUs

• Accuracy of estimated properties of parameters
– related to efficiency, described above 

• Optimization of efficiency of MCMC
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MCMC - Multiple runs

First MCMC 
sequence

Second, independent 
MCMC sequence

Examples of multiple MCMC runs from my talk on the analysis of Rossi data
(http://public.lanl.gov/kmh/talks/maxent00a.pdf)

– Multiple runs starting with different random number seed confirm
MCMC sequences have converged to the target pdf
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Annealing
• Introduction of fictitious temperature

– define functional ϕ(x) as minus-logarithm of target probability 
ϕ(x) = - log(q(x))

– scale ϕ by an inverse “temperature” to form new pdf
q'(x, T) = exp[- T-1 ϕ(x)]

– q'(x, T) is flatter than q(x) for T > 1  (called annealing)

• Uses of annealing (also called tempering)
– allows MCMC to move between multiple peaks in q(x)
– simulated annealing optimization algorithm (takes lim T → 0)
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Annealing to handle multiple peaks 
– Example - target distribution is three narrow, well separated peaks 
– For original distribution (T = 1), an MCMC run of 10000 steps 

rarely moves  between peaks
– At temperature T = 100 (right), MCMC moves easily between 

peaks and through surrounding regions
– from M-D Wu and W. J. Fitzgerald, Maximum Entropy and Bayesian Methods (1996)

T = 1 T = 100
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Other MCMC algorithms
• Gibbs

– vary only one component of x at a time
– draw new value of xj from conditional q(xj| x1 x2... xj-1 xj+1... ) 

• Metropolis-Hastings 
– allows use of nonsymmetric trial functions, t(Δx; xk), suitably 

chosen to improve efficiency
– use r = [t(Δx; xk) q(x* )] / [t(-Δx; x*) q(xk )]

• Langevin technique 
– uses gradient* of minus-log-prob to shift trial function towards 

regions of higher probability
– uses Metropolis-Hastings 

* adjoint differentiation affords efficient gradient calculation
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• Hamiltonian hybrid algorithm
– called hybrid because it alternates Gibbs & Metropolis steps 
– associate with each parameter xi  a momentum pi

– define a Hamiltonian  
H = ϕ(x) + Σ pi

2/(2 mi)  ;  where ϕ = -log (q (x ))
– new pdf: 

q'(x, p) = exp(- H(x, p)) = q(x) exp(-Σ pi
2/(2 mi))

– can easily move long distances in (x, p) space at constant H
using Hamiltonian dynamics, so Metropolis step is very efficient

– uses gradient* of ϕ (minus-log-prob)
– Gibbs step in p for constant x is easy
– efficiency may be better than Metropolis for large dimensions

Hamiltonian hybrid algorithm

* adjoint differentiation affords efficient gradient calculation
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Hamiltonian hybrid algorithm

xi

pi

k

k+1

k+2

Typical trajectories:
red path - Gibbs sample from momentum distribution
green path - trajectory with constant H, follow by Metropolis
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Conclusions

• MCMC provides good tool for exploring the posterior 
and hence for drawing inferences about models and 
parameters

• For valid results, care must be taken to
– verify convergence of the sequence
– exclude early part of sequence, before convergence reached
– be wary of multiple peaks that need to be sampled

• For good efficiency, care must be taken to
– adjust the size and shape of the trial distribution; rule of 

thumb is to aim for 25% trial acceptance for  5 < n < 100

• A lot of research is happening - don’t worry, be patient
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