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Problem statement

Parameter space of n dimensions represented by vector x

Given an “arbitrary” target probability density function
(pdf), q(x), draw a set of samples {x,} from it

Only requirement typically is that, given X, one be able to
evaluate Cq(x), where C Is an unknown constant

— MCMC algorithms do not typically require knowledge of the
normalization constant of the target pdf; from now on the
multiplicative constant C will not be made explicit

Although focus here Is on continuous variables, MCMC
can be applied to discrete variables as well
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Uses of MCMC

Permits evaluation of the expectation values of functions
of X, e.g.,

(f00) = (x) q(x) dx = (1K) =, f(x,)
— typical use is to calculate mean (x) and variance {(x - {(x))?)

Also useful for evaluating integrals, such as the partition
function for properly normalizing the pdf

Dynamic display of sequences provides visualization of
uncertainties in model and range of model variations

Automatic marginalization; when considering any subset
of parameters of an MCMC sequence, the remaining
parameters are marginalized over

July, 2000 MaxEnt and Bayesian Workshop 4



Markov Chain Monte Carlo

Generates sequence of random samples from an
arbitrary probability density function

* Metropolis algorithm: Probability(x;, x,)

— draw trial step from X accepted step
: i * rejected step
symmetric pdf, I.e.,
t(A X) = t(-A X)
— accept or reject trial step

— simple and generally
applicable

— relies only on calculation
of target pdf for any x
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Metropolis algorithm

 Select initial parameter vector X,

* [terate as follows: at iteration number k
(1) create new trial position x* = x, + AX,
where AXx Is randomly chosen from t(AX)
(2) calculate ratio r = q(x*)/q(x,)
(3) accept trial position, i.e. set X, ,,; = X*
If r > 1 or with probability r, if r<1
otherwise stay put, X,,; = X,

* Requires only computation of g(x)
» Creates Markov chain since X, , depends only on X,
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Choice of trial distribution

* Loose requirements on trial distribution t()
— stationary; independent of position

» Often used functions include
— n-D Gaussian, isotropic and uncorrelated
— n-D Cauchy, isotropic and uncorrelated

e Choose width to “optimize” MCMC efficiency
— rule of thumb: aim for acceptance fraction of about 25%
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Experiments with the Metropolis algorithm

« Target distribution q(x) Is n dimensional Gaussian
— uncorrelated, univariate (isotropic with unit variance)
— most generic case

 Trial distribution t(Ax) is n dimensional Gaussian
— uncorrelated, equivariate; various widths
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MCMC sequences for 2D Gaussian

— results of running Metropolis
with ratios of width of trial to
target of 0.25, 1, and 4

— when trial pdf is much smaller
than target pdf, movement across

target pdf is slow

— when trial width same as target,
samples seem to sample target

pdf better

— when trial much larger than
target, trials stay put for long
periods, but jumps are large

e This example from Hanson and

Cunningham (SPIE, 1998)
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MCMC sequences for 2D Gaussian

— results of running Metropolis with Z 025
ratios of width of trial to target of 0.25, £ o |
1,and 4 >

— display accumulated 2D distribution g 2 0 2 4
for 1000 trials i .

— viewed this way, it is difficult to see o 2 L
difference between top two images j 0|

— when trial pdf much larger than target, )
fewer splats, but further apart SRR

2 4

Variable 1
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MCMC - autocorrelation and efficiency

— In MCMC sequence, subsequent parameter values are usually
correlated

— Degree of correlation quantified by autocorrelation function:
1 oy .
p(l) = KZ y()y(@i-1)
=1
where y(x) Is the sequence and | is lag
— For Markov chain, expect exponential
p(1) =exp[ L]
— Sampling efficiency Is
P=14 2y p] =
o1 1+24

— In other words, 77" iterates required to achieve one statistically
Independent sample
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Autocorrelation for 2D Gaussian

— plot confirms that the b
autocorrelation drops P ﬂ-ﬂﬁl';-;;_ B
slowly when the trial o8-\ T o
width is much smaller W\ JRRE ]
than the target width; L\,
MCMC efficiency is poor ™% 1 >~ ;
— best efficiency is when o — :
trial about same size as D2 o o o prE— 5
target (for 2D) -

Normalized autocovariance for
various widths of trial pdf
relative to target: 0.25,1,and 4
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Efficiency as function of width of trial pdf

— for univariate Gaussians, 1000
with 1 to 64 dimensions |
— efficiency as function of ,0_0; ,.-;_-:j;ilﬂm---. 2
width of trial : T h :
distributions

— boxes are predictions of
optimal efficiency from
diffusion theory
[A. Gelman, et al., 1996]

— efficiency drops
reciprocally with number
of dimensions

Efficiency (%)
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Efficiency as function of acceptance fraction

— for univariate Gaussians, with

1 to 64 dimensions

— efficiency as function of

acceptance fraction

— best efficiency Is achieved
when about 25% of trials are

Efficiency (%)

accepted for a moderate

number of dimensions
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Efficiency of Metropolis algorithm

* Results of experimental study agree with predictions
from diffusion theory (A. Gelman et al., 1996)

e Optimum choice for width of Gaussian trial distribution
occurs for acceptance fraction of about 25% (but Is a
weak function of number of dimensions)

o Optimal statistical efficiency: n ~ 0.3/n
— for simplest case of uncorrelated, equivariate Gaussian
— correlation and variable variance generally decreases efficiency
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Further considerations

e When target distribution g(x) not

q(x)

Isotropic -~
D

— difficult to accommodate with
Isotropic t(AX)

efficiency

— desirable to vary width of different
t(x) to approximately match q(x)

— recovers efficiency of univariate
case

* When g(x) has correlations
— t(x) should match shape of g(x)

— each parameter can have different ~ __ —————
TS

July, 2000 MaxEnt and Bayesian Workshop

-
.5_ —
_— e =

16



MCMC - Issues

|dentification of convergence to target pdf
— 1S sequence in thermodynamic equilibrium with target pdf?
— validity of estimated properties of parameters (covariance)

Burn In

— at beginning of sequence, may need to run MCMC for
awhile to achieve convergence to target pdf

Use of multiple sequences
— different starting values can help confirm convergence
— natural choice when using computers with multiple CPUs

Accuracy of estimated properties of parameters
— related to efficiency, described above

Optimization of efficiency of MCMC
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MCMC - Multiple runs

— Multiple runs starting with different random number seed confirm
MCMC sequences have converged to the target pdf

\y

First MCMC Second, independent
sequence MCMC sequence

Examples of multiple MCMC runs from my talk on the analysis of Rossi data
(http://public.lanl.gov/kmh/talks/maxent00a.pdf)
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Annealing

 Introduction of fictitious temperature

— define functional ¢(x) as minus-logarithm of target probability
¢(x) = - log(a(x))

— scale ¢ by an inverse “temperature” to form new pdf
q'(x, T) = exp[- T ¢(X)]

— g'(x, T) is flatter than q(x) for T > 1 (called annealing)

« Uses of annealing (also called tempering)
— allows MCMC to move between multiple peaks in q(x)
— simulated annealing optimization algorithm (takes lim T — 0)
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Annealing to handle multiple peaks

— Example - target distribution is three narrow, well separated peaks
— For original distribution (T = 1), an MCMC run of 10000 steps
rarely moves between peaks

— At temperature T = 100 (right), MCMC moves easily between

peaks and through surrounding regions
— from M-D Wu and W. J. Fitzgerald, Maximum Entropy and Bayesian Methods (1996)
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Other MCMC algorithms

e Gibbs

— vary only one component of x at a time

— draw new value of x; from conditional q(Xj| X; X,... Xj_; Xjq--- )
o Metropolis-Hastings

— allows use of nonsymmetric trial functions, t(Ax; X,), suitably

chosen to improve efficiency

— use r = [t(AX; X,) G(x* )]/ [t-A%; X*) q(X, )]

e Langevin technique

— uses gradient* of minus-log-prob to shift trial function towards
regions of higher probability

— uses Metropolis-Hastings

* adjoint differentiation affords efficient gradient calculation
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Hamiltonian hybrid algorithm

« Hamiltonian hybrid algorithm
— called hybrid because it alternates Gibbs & Metropolis steps
— assoclate with each parameter x; a momentum p;
— define a Hamiltonian
H=o(x) + £ p/(2m;) ; where ¢ =-log (q (x))
— new pdf:
q'(x, p) = exp(- H(x, p)) = q(x) exp(-Z pi*/(2 m;))
— can easily move long distances in (X, p) space at constant H
using Hamiltonian dynamics, so Metropolis step is very efficient

— uses gradient™ of ¢ (minus-log-prob)
— Gibbs step in p for constant X is easy
— efficiency may be better than Metropolis for large dimensions

* adjoint differentiation affords efficient gradient calculation
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Hamiltonian hybrid algorithm

P

—
k+2 r \

k+1 :

k.

Typical trajectories:
red path - Gibbs sample from momentum distribution
green path - trajectory with constant H, follow by Metropolis
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Conclusions

« MCMC provides good tool for exploring the posterior
and hence for drawing inferences about models and
parameters

e For valid results, care must be taken to

— verify convergence of the sequence
— exclude early part of sequence, before convergence reached
— be wary of multiple peaks that need to be sampled

* For good efficiency, care must be taken to

— adjust the size and shape of the trial distribution; rule of
thumb is to aim for 25% trial acceptance for 5 <n <100

A lot of research iIs happening - don’t worry, be patient
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