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1 Introduction

Ver Moran’s spatial autocorrelation in www.scholar.google.com

Moran’s I is the most popular statistic to test for the presence of spatial autocor-

relation and to evaluate its strength in maps partitioned in geographical areas (REFS

????). Consider a region divided in n areas and let yi be a random variable measured

in area i, with i = 1, . . . , n. Moran’s I is given by

I =
n∑
ij wij

∑
ij wij(yi − y)(yj − y)∑

i(yi − y)2
(1)

where the value wij is the weight assigned to areas i and j, and y =
∑

i yi/m. Usu-

ally, wij will reflect the geographical distance between areas i and j, being defined,

for example, as wij = 1 if the areas are adjacent and i 6= j, and by wij = 0, other-

wise. However, weights can be more general depending, for example, on functions of

distances between the areas (e.g., ???). Moran’s I usually ranges between −1 and 1

(be more precise???), with large positive values indicating neighborhood similarity of

the rates and values close to zero indicating absence of spatial autocorrelation.

Its distribution under the null hypothesis (which ONE???) is well studied....

However, despite its popularity, Moran’s I lacks a more ??? well defined model

??? there is not a model for ???? there is no parameter AND LIKELIHOOD model

associated with this statistic. Why to have one is good?
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IN this paper, ...

2 Moran’s I as an estimator of a parameter

2.1 The SAR model

A well known spatial model is the simultaneous autoregression (SAR) model proposed

by (REFS???). Consider a finite grid with n sites or areas indexed by i = 1, . . . , n and

with associated random variables yi. Then, the SAR model is a set of n simultaneous

equations for the yi random variables:

yi = µi + ρ
∑

j 6=i

wij(yj − µj) + εi , (2)

where ε1, . . . , εn are independent normal random variables with mean zero and vari-

ance λi.

The weights wij reflect the spatial structure of the sites such that a pair of sites

close to each other has more weight than a pair of sites farther apart. One of the

most common choices for wij, and the one we follow here, is to let W be a n × n

binary matrix with elements wij = 1 if i and j share boundaries in a map and wij = 0,

otherwise. We define also wii = 0 for all i. If i and j are neighbors, we denote it by

i ∼ j.

If I − ρ W is invertible then

y ∼ Nn

(
µ, (I − ρW )−1 Λ (I −W t)−1

)
(3)

where Λ is a diagonal matrix with element ii equal to λi and µ is the n-dim vector

with the means µi.

2.2 The pairwise interaction model

The set of n simultaneous stochastic equations (2) relate each area i at the same time

with all its neighbors. Rather than that, consider a set of
∑

ij wij = 1tW1 simul-

taneous equations, each one connecting a observation yi with one of its neighboring
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areas:

yi = µi + ρ(yj − µj) + εij (4)

if wij = 1.

The set of random variables εij can not be independent. To see this, imagine that

ρ ≈ 1 and µi = 0 for all i. If i ∼ j, j ∼ k, and k ∼ i, and if we know the value of

εij = yi − ρyj ≈ yi − yj

and also of

εjk = yj − ρyk ≈ yj − yk

then we can make a pretty good guess about the value of

εik = yi − ρyk ≈ yi − yj − (yj − yk) = εij − εjk

However, the set of pairwise equations (4) suggests the proposal of a probability

distribution for the vector y of the form

f(y) = exp

(
− 1

2σ2

∑
i∼j

ε2
ij

)

= exp

(
− 1

2σ2

∑
i∼j

(yi − µi − ρ(yj − µj))
2

)
(5)

(6)

We assume for now that µi = 0 for all i. To find what the probability distribution

f(y) is, we write

∑
i∼j

(yi − ρyj)
2 = (1 + ρ2)

∑
i∼j

y2
i − 2ρ

∑
i∼j

yiyj

= (1 + ρ2)

[∑
i

niy
2
i −

2ρ

1 + ρ2

∑
i∼j

yiyj

]

= (1 + ρ2)

[∑
i,j

Aijyiyj

]

= (1 + ρ2) ytQy

where

Q = In− 2ρ

1 + ρ2
W .
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The vector n is a n-dim vector with i-th element equal to the number ni of neighbors

of area i.

Therefore, if Q is invertible, (5) must be a normal distribution density with preci-

sion matrix (1+ρ2) Q. For all ρ ∈ (−1, 1), this is true since Q is diagonally dominant

in this case. In fact, we have

Qii = ni > ni
2 ρ

1 + ρ2
=

∑
j

wij
2 ρ

1 + ρ2
=

∑

j 6=i

Qij

2.3 Conditional independence and ρ

Since Q is a sparse matrix, properties of conditional independence follows immedi-

ately. That is, off-diagonal zeros of the matrix W identifies the pairs of areas that

are conditionally independent given the values of all the other areas. This is in sharp

contrast with the SAR model which has a more complicated conditional distribution

structure. To compare the two models, let λi = σ2 for all i. Then, precision matrix

is the inverse of the covariance matrix of (3) and it is given by:

2.4 Properties of the distribution

MRF, find MLE, find moments, find MQ, find score. Find the determinant.

2.5 Cor(yi, yj) and ρ

Depends on the graph structure? Is there a maximum over the pairs of neighbors? A

minimum? An average?

2.6 Properties of I as an estimator

Is it EMV? Is it unbiased? Consistent? Asymptotically normal?
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