
Time Series Forecasting using Boosting Techniques With
Correlation Coefficient

Luzia Vidal de Souza
Aurora T. Pozo

Anselmo Chaves Neto
Joel M. C. da Rosa

Abstract

Time series forecasting has been widely used to support decisions. In this context, a
highly accurate prediction is essential to ensure the quality of the decisions. Ensembles
of machines currently receive a lot of attention; they combine predictions from different
forecasting techniques as a procedure to improve the accuracy. This paper explores Genetic
Programming (GP) and Boosting technique to obtain an ensemble of regressors and pro-
poses a new formula for the final hypothesis. This new formula is based on the correlation
coefficient instead of the geometric median used traditionally by the boosting algorithms.
To validate this method, we carried experiments using real, financial and artificial series
generated by Monte Carlo Simulation. The mean squared error (MSE) has been used to
compare the accuracy of the proposed method against another ones, the t-test and ANOVA
test were used too. The results obtained by using this new methodology was compared with
the results obtained from GP, GPBoost and the traditional statistical methodology (ARMA).
The results show advantages in the use of the proposed technique;

1 Introduction

An essential element for many management decisions is an accurate forecasting. There
are several methods and techniques to forecast time series that include traditional fore-
casting techniques with theoretical foundations in statistics. These methods present some
obstacles and complexities to overcome one of the most important ones is the difficulty to
select the model that can provide the best adjustment for a specific dataset usually many
attempts have to be done until the best model can be obtained. Considering this sce-
nario, different machine learning techniques have been recently used in this problem, such
as Artificial Neural Network (ANN), Evolutionary Computation (EC), in particular, Ge-
netic Programming (GP), which that is considered a promising approach to forecast noisy
complex series [1]. This paper extends previous works found in the literature and presents
results of experiments that explore GP associated with Boosting algorithm. The Boosting
algorithm was proposed and developed by Freund and Schapire [2]. According to Allwein,
Schapire and Singer [3], boosting is a method of finding a highly accurate hypothesis by
combining many ”weak” hypotheses, each of which is only moderately accurate. Paris et
al. [4] proposed to use the Boosting algorithm with the GP as a weak learning. This paper
presents this algorithm, called Boosting using Correlation Coefficient (BCC) and describes

1

results of different experiments. To evaluate the BCC algorithm, we conducted three groups
of experiments. In the first group, we explore the BCC for some real time series forecasting,
using Genetic Programming (GP) as base learner, the mean squared error (MSE) has been
used to compare the accuracy of the proposed method against the results obtained by GP,
GPBoost and the traditional statistical methodology (ARMA). One reason to explore GP
is because it has been recently explored to forecast noisy complex series [1] with promising
results. The second group of time series explored in this work is the financial series, beside
the forecast a trend analysis is done and finally the third group of time series used is a
widespread Monte Carlo simulation covering the entire ARMA parametric space.

2 Genetic Programming

Genetic Programming is an Evolutionary Computation technique in which the individu-
als are computational programs. This theory was developed by John Koza[5], based on the
idea of Genetic Algorithms presented by John Holland[6]. Nowadays, GP is acknowledged
as an effective research paradigm in Artificial Intelligence and Machine Learning [1,6,7],
and has been found in the most diverse areas of knowledge, such as: digital circuits, data
mining, molecular biology, optimization tasks and many others. In nature, those individuals
that better adapt to the environment that surrounds them have a greater chance to survive.
They pass their genetic characteristics to their descendents, who will suffer modifications
to better adapt to the environment. After many generations, this population reaches a
natural evolution in Genetic Programming (GP), the evolutionary algorithm operates over
a population of programs that have different forms and sizes. The initial population must
have enough diversity, that is, the individuals must have most of the characteristics that
are necessary to solve the problem, because characteristics that do not exist in the initial
population will probably not appear during the evolutionary process. The evolutionary
process is guided by a fitness function that measures the individual’s ability to solve the
problem. Those individuals that better solve the problem will receive a better fitness value
and consequently, will have a better chance to be selected for the next generation. The
choice of this function depends on the domain of the problem. A good choice is essential
to provide good results. Once the individuals are selected, it is time to apply the genetic
operators. These are: Reproduction - an individual is replicated to the next generation,
with no modification in its structure; Crossover - two programs are recombined to generate
two offsprings and Mutation - a new sub-tree replaces a randomly selected part of a pro-
gram[5]. This process is repeated until a satisfactory solution or a stop criterion is reached.
The GP Algorithm’s pseudo-code is given bellow:

1. Randomly create an initial population
2. Repeat until a good solution or a stop criterion is reached

(a) Evaluate of each program by means of the fitness function

(b) Select a subgroup of individuals onto apply the genetic operators

(c) Apply the genetic operators

(d) Replace the current population by this new population

3. End

2

3 Boosting

Boosting is a way of combining many weak classifiers to produce a powerful ”committee”.
Boosting works by sequentially applying a classification algorithm to reweighted versions
of training data, and taking a weighted majority vote of the ensemble of classifiers thus
produced. Each time, the weights are computed according to the error (or loss) on each
example in the learning algorithm. Initially, all the weights are equals, but on each round,
those weights of the misclassified examples are increased so that the weak learner is forced
to focus hard on these examples in the training set. In this way, the learning algorithm
is manipulated to look closer at examples with bad predictions. For many classification
algorithms, this simple strategy results in dramatic improvements in their performance.
Paris [4] used the GPBoost that was based in Iba’s proposal [9] and realized through some
experiments that it was clear that the combination of these two algorithms produced good
results. The GPBoost algorithm is showed in Figure 1. First of all, the weight distribution
Dt is initialized in Step 1 and the boosting iterations start (Step 2) by calling each time
the GP algorithm. After the GP’s complete execution, the best individual ft in the run
is chosen and the weight distribution of Dt is computed according to the loss function
for each example. To calculate the loss function some alternatives can be used such as
the exponential showed in Equation 2. This loss function is also used to calculate the
confidence of ft (Equation 3). In each iteration of the boosting algorithm, the GP is
execute with a fitness function that considers the weights of each example. The fitness
function has been defined as the absolute errors weighted sum (See Equation 1). However,
the fitness function can be defined according to the current problem. When the Boosting
algorithm is finished, Step 3, the output must be computed as a combination of the different
generated hypotheses. This can be done in different forms. To evaluate the final hypothesis
F , T functions ft will be combined. The expression for the output used by Paris [4] is
the geometric median weighted by confidence coefficient. These values are sorted and the
geometric median (See Equation 4) is taken to be F (x), the final expression.

4 Boosting using Correlation Coefficients

After having been carried through the study of the Boosting Algorithms, it is possible
to remark that these algorithms have been sufficiently explored in classification problems.
The traditional form of obtaining the Output Function of a Boosting algorithm is to use
some kind of weighted combination of the outputs of the different boosting iterations.
The weighted combination are always based on the loss function (or the confidence) of
the different functions ft such as standard median, geometric median, arithmetic median
and arithmetic RMS-based median. Paris[4] reported no significant differences between the
different forms of outputs. However, the loss function is one of the possible information that
can be used to obtain these weights. The proposal is to use the correlation coefficient for
updating the weights, it has been observed that it has direct influence on the minimization
of the loss function. The same coefficient can also be used in the final combination of the
predictors. The correlation coefficient is a metric function that measures the association
degree between two variables. The method BCC is based on this metric and the algorithm
is showed at Figure 2.

3

Given: (x1, y1), . . . (xm, ym),Y ∈ R
Initialize D1(i) = 1/m For t = 1 . . . T :

• Train base learner using distribution Dt

• Get base hypothesis ht : X → R
• Evaluate Loss Function

Li(t) = 1− exp

(
|ht(xi)− yi|

maxi=1,...,m|ht(xi)− yi|

)
(1)

• Compute βt =
L̄t

1− L̄t

• Update:

Dt+1(i) =
Dt(i)1−Li

Zt
(2)

Zt is a normalization factor
Output the final classifier (geometric median of ht())

F (x) = min{y ∈ R :
∑

ht(x)≤y

log

(
1

βt

)
≥ 1

2

T∑
t=1

log

(
1

βt

)
} (3)

Figure 1. Boosting in Regression Problems

Given: (x1, y1), . . . (xm, ym),Y ∈ R Initialize D1(i) = 1/m For t = 1 . . . T :

• Train base learner using distribution Dt

• Get base hypothesis ht : X → R
• Evaluate Loss Function

Li(t) = 1− exp

(
|ht(xi)− yi|

maxi=1,...,m|ht(xi)− yi|

)
(4)

• Update:

Dt+1(i) =
ρ(ht(x), y)Dt(i)1−Li

Zt
(5)

ρt = ρ(ht(x), y) is the Pearson Correlation Coefficient between ht(x) and y evaluated
in the training sample. Zt is a normalization factor

Output the final classifier

F (x) =

T∑
t=1

ρtht(x)∑T

t=1
ρt

(6)

Figure 2. Boosting with Correlation Coefficient

4

5 Time Series Forecasting

In this section, we compare the GPs performance with GP using traditional Boosting and
the new Boosting algorithm (BCC) using as base learner a GP algorithm. The results are
also compared with the Box and Jenkins[10] traditional statistical methodology. We also
present the main steps followed to configure the GP algorithm, GPBoost, BCC and Box and
Jenkins methodology. Three experiments have been carried out: one exploring benchmark
time series, another one is about financial time series including a trade analysis and the last
one is a widespread Monte Carlo simulation covering the entire ARMA parametric space.

5.1 Forecasting using Box & Jenkins Methodology

In order to allow a comparison with traditional methods, we used the ARMA(p,q) (Au-
toRegressive Moving Average) models, where p and q are the autoregressive and moving
average order parameters. The best model for each data set was selected using the AIC
criterion, with p and q varying between 0 and 4. These models were adjusted using the free
statistical software R [14], and the predictions values were evaluated for each test dataset.
The ARMA model can be represented by the equation:

Zt = δ + φ1Zt−1 + . . . φpZt−p + θ1at−1 + . . . + θqat−q + at (7)

where δ is a constant term, φi are the autoregressive parameters and θi are the moving
average parameters, at is white noise and Zt is the time series value at time t.

5.2 Configuration of the GP, GPBoost and BCC

To apply these algorithms, we used the Lil-GP 1.0 [11] free software implemented accord-
ing to Koza’s GP[5]. For each problem to be solved by the tool, it is necessary to provide
configuration files, standard GP parameters, functions and variables to be used for discov-
ering the models input and output files (training set) and to specify the fitness function
evaluation. The parameters used to configure the GP tool are presented in Table 1. The
fitness function was defined to be the RMSE (Root Mean Square Error) (see equation 6).
The RMSE is very used to measure the accuracy of forecasting methods. The terminal set
used is composed by Zt−1, Zt−2, Zt−3, Zt−4, the four lagged variables are used to estimate
Zt. Additionaly, the value for a constant term is randomly selected.

RMSE =

√∑m
i=1(Zi − Ẑi)2

m
∗Di(i) ∗m (8)

5.3 Academic and Benchmark Time Series

The data sets used in this section are from Morettin [12], found at (http://www.ime.usp.br/pam/ST.html)
and three financial time series found in (http://www.economatica.com). Each data set was
divided into two other data sets: the training and testing ones. The training set contains
90% of the data series and the remaining 10% is used as test set, Table describes the data
sets. Furthermore, for each dataset, ten models of each algorithm (GP, GPBoost, BCC)
were obtained using a different random initial seed for each training set. After that, each
generated model is used to forecast the values in the test set.

5

Table 1. Academic Benchmark Time Series
Real Time Series Series Number of Examples

Atmosphere 365
Beverages 187

Consumption 154
Fortaleza 149

ICV 126
IPI 187

Lavras 384
Sunspots 176

Djiad 1100
Ibovespa 1100
Nasdaq 1100

5.4 Results

To evaluate the performance of the different methods, we used of the mean square error
(MSE) average, defined in Equation 9 obtained by using the 10 initial seeds over the test
set. For ARMA process, we have only one prediction and then the value of m is one. These
results are summarized in Table 3.

MSE =
∑m

i=1(Zi − Ẑi)2

m
(9)

5.5 Monte Carlo Simulation

In order to exhaustively evaluate this new method, a Monte Carlo Simulation have
been accomplished, in which we simulated artificial time series that belong to the entire
spectrum of the structures AR(1), MA(1), AR(2), MA(2) and ARMA(1,1). To create this
series we have used the free statistical software R, that can be founded at (http://www.r-
project.org/). The parameters have been varied in its respective parametric spaces and a
noise component has been added. The noise has normal distribution with mean zero and
standard deviation one. The dataset included 214.000 series distributed for each structure
as showed in the Table 7.

Table 2. Monte Carlo Simulation
Structures parameters series

AR(1) 19 9.500
AR(2) 90 45.000
MA(1) 19 9.500
MA(2) 200 100.000

ARMA(1,1) 100 50.000

The same methods used in academic series were applied to these artificial time series.

6

5.6 Evaluation Metrics

In our approach we have considered the MSE as a comparison measure because it is
an accepted metric used by the statistical community. However, it is not always an easy
task to know when an algorithm presents better results from another only based on this
metric. In order to analyze the relative performance of the algorithms more precisely, one
statistics technique, ANOVA [13], is used to test if there is significant difference between the
algorithms. Once the ANOVA test shows that there is a significant difference between two
methods then Tukey-Kramer test [13] is applied to verify which the algorithms is significant
better than the others.

5.7 Results

Table 8 presents the MSE in the foreseen values for all the algorithms, Table 9, shows the
Anova test for AR(1) and AR(2) structures, Table 10 shows the results of the Anova test
for MA(1) and MA(2) structures and finally the Table 11 shows the results of the ANOVA
test for ARMA(1,1). In the Tables the symbol X is used to denote no statistical difference
between the methods. For the structures AR(1) and ARMA(1,1) in 74% of the cases the
method BCC is significant better than the other at 99% confidence level; on the other hand,
for the structures AR(2) in 94% of the cases the method BCC is significant better than the
other at 99% confidence level; following for the MA(1) structures in 87% of the cases the
method BCC is significant better than the other at 99% confidence level; finally, for the
structures MA(2) in 54% of the cases the method BCC is significant better than the other
at 99% confidence level. Concluding, in almost all the cases the method BCC is the best,
when the method is not the best, there no statistical difference between the methods.

Table 3. Genetic Programming Parameters
Parameters Value

Population size 4000
Population initialization method full

Number of generations 250
Selection method best

Initial depth 2-10
Maximum depth limit 10

Maximum number of nodes 50
Crossover rate 0.7

Reproduction rate 0.2
Mutation rate 0.1

We observe that in all the cases the BCC methodology was better then the another
analyzed methods, because using this BCC the returns are positive bringing positive returns
to the investor.

7

Table 4. MSE Average values test sets
Series GP GP-Boost ARMA BCC

Atmosp. 38,08 36,72 38,98 7,59
Bever. 245,65 231,76 308,25 62,59

Consum 236,15 140,52 137,76 60,86
Fortal.. 423083,18 400212,40 445690,37 209855,37

ICV 554,11 573,53 661026,97 42614,53
IPI 130,99 124,45 624,96 17,05

Lavras 13788,93 8249,27 5335,99 4623,50
Suns. 320,85 318,76 902,70 329,10
Djiad 0,00 0,00 0,05 0,00
Iboves. 0,00 0,00 0,26 0,00
Nasdaq 0,00 0,00 0,06 0,00

6 Conclusion

This paper explores Boosting technique to obtain an ensemble of regressors and proposes
a new formula for updating the weights and for the final hypothesis. Differently from other
approaches found in the literature, in this paper, we investigate the use of the correlation
metrics as a factor besides the error metric. This new approach, called Boosting using
Correlation Coefficients (BCC) has been empirically sucessfully when trying to improve
the results of other methods. To evaluate the new BCC algorithm, we conducted three
groups of experiments. We have also explored the BCC for time series forecasting, using
Genetic Programming (GP) as base learner, in the first group of the experiments it was
used academic series, to the second group of the experiments was used financial series and
a trading analysis was madecomparing the methods GP, GPBoost, ARMA and the BCC
method. The third group of the experiments a widespread Monte Carlo simulation was
made. In the Monte Carlo Simulation, series were generated in the entire parametric space
for the main ARMA structures: AR(1), AR(2), MA(1) MA(2) and ARMA(1,1). From
all these experiments we can conclude that in almost all the cases the method BCC is
the best and when the method is not the best, there is no statistical difference between
the methods compared. We conclude that the algorithm proposed (BCC) is very advan-
tageous time series forecasting. These results encourage us to conduct future experiments
to explore the BCC algorithm with other base learners. We intend to better evaluate the
proposed approach and to explore meta-learning to select the best algorithm according to
the characteristics of the data sets.

8

Table 5. MSE in Foreseen values
AR(1) AR(2) MA(1) MA(2) ARMA(1,1)

ARMA 2,3702 4,3479 2,3150 3,0335 1,7917
GP 1,0567 1,3176 5,6063 2,2456 1,8133

GPBoost 1,0118 1,1906 1,1318 2,0985 1,1327
BCC 0,9282 1,0997 1,0781 1,9234 1,1087

ARMA 2,3527 4,1828 1,8223 2,7355 2,0809
GP 1,9907 1,5090 1,6281 2,1690 1,2657

GPBoost 1,1842 1,3537 1,1394 2,0773 1,1427
BCC 1,0924 1,2563 1,0260 1,8843 1,0553

ARMA 2,0450 4,0820 1,8098 2,6617 2,2494
GP 1,0470 1,3674 1,1456 3,2616 1,3300

GPBoost 1,0311 1,1733 1,0935 2,0698 1,1277
BCC 0,9583 1,4734 0,9838 1,9117 1,0897

ARMA 2,1817 4,1294 1,9132 2,6473 2,3892
GP 1,3314 1,4605 1,2253 3,0242 1,6402

GPBoost 1,2955 1,2963 1,1898 2,0711 1,1417
BCC 1,2194 1,5489 1,0972 1,9318 1,0871

ARMA 2,0486 4,2354 1,7691 2,6666 2,4768
GP 1,5099 1,6394 1,2392 2,1816 1,3522

GPBoost 1,3779 1,4485 1,1130 2,0828 1,1416
BCC 1,2547 1,4844 1,0077 1,8970 1,0806

ARMA 1,9550 4,5942 1,8326 2,6444 2,5734
GP 1,4487 1,5345 1,1601 2,3654 1,2922

GPBoost 1,2907 1,3558 1,1285 2,0613 1,1399
BCC 1,4669 1,3466 1,0123 1,9397 1,1006

ARMA 1,6495 4,5034 1,8526 2,6580 2,6567
GP 2,2842 1,6545 1,2233 2,3011 1,6019

GPBoost 1,1341 1,1711 1,1996 2,0800 1,1467
BCC 1,0966 1,2458 1,0695 1,9264 1,2413

ARMA 1,4880 4,7462 1,8323 2,6514 2,6738
GP 2,0030 1,7681 1,2425 3,1361 1,2913

GPBoost 0,9834 1,3549 1,1424 2,0581 1,1375
BCC 0,9053 1,4738 1,0188 4,4017 1,0651

ARMA 1,2274 3,6964 1,7596 2,6497 2,7013
GP 0,8461 5,0540 1,3345 2,7877 1,3619

GPBoost 0,8106 1,2776 1,1668 2,2478 1,1386
BCC 0,7475 1,5608 1,0914 2,6743 1,0664

ARMA 1,4540 3,6346 1,8127 2,6596 2,7278
GP 1,1212 1,4859 1,4670 3,0190 1,3692

GPBoost 1,1029 1,2636 1,1852 2,0717 1,1365
BCC 1,3978 1,2616 1,0703 2,4415 1,4385

ARMA 1,6769 3,3792 1,8306 2,6673 2,7513
GP 1,4171 2,4862 1,1538 2,5006 10,2940

GPBoost 1,3755 1,2689 1,1349 2,0858 1,1417
BCC 1,2677 1,2078 1,0377 2,4169 1,1677

ARMA 1,2946 3,4343 1,8601 2,6690 2,7759
GP 1,0576 1,5164 1,2334 2,7557 1,8779

GPBoost 1,0276 1,3071 1,1368 2,0776 1,1450
BCC 0,9326 1,2561 1,0224 2,5989 1,1471

ARMA 1,3387 3,3868 1,7664 2,6551 2,7658
GP 1,1235 2,2805 1,2059 2,7182 6,5438

GPBoost 1,0967 1,2308 1,0886 2,0734 1,2860
BCC 1,0049 1,1477 1,0428 2,1184 1,2057

ARMA 1,2239 3,5028 1,7232 2,6740 2,8048
GP 1,0304 1,5118 1,1609 2,7705 1,3648

GPBoost 1,0237 1,2823 1,1196 2,1262 1,1386
BCC 0,9286 1,8203 1,0069 1,9977 1,0578

ARMA 1,7268 3,4916 1,7436 2,6571 2,8316
GP 1,7379 1,6753 1,1366 2,5503 3,4325

GPBoost 1,5064 1,4174 1,0936 2,0637 1,1398
BCC 1,5922 1,4630 0,9879 2,0916 1,0977

9

Table 6. p-values ANOVA for AR(1) and AR(2)
Forec. p-value Best Forec. p-value Best
e136 0,0758955 BCC e136 2,52E-12 BCC
e137 1,46E-07 X e137 2,67E-11 BCC
e138 6,71E-10 BCC e138 4,89E-11 BCC
e139 1,57E-08 X e139 2,90E-09 BCC
e140 3,63E-13 X e140 1,89E-08 BCC
e141 1,14E-14 X e141 1,34E-09 BCC
e142 2,60E-06 X e142 1,08E-06 BCC
e143 6,88E-15 X e143 3,50E-05 BCC
e144 1,38E-14 X e144 0,064436 X
e145 2,81E-08 X e145 9,88E-15 BCC
e146 0,1778037 X e146 1,62E-06 BCC
e147 1,25E-06 X e147 1,04E-13 BCC
e148 0,3044825 X e148 2,93E-05 BCC
e149 4,36E-14 X e149 7,70E-06 BCC
e150 0,0209229 X e150 7,08E-12 BCC

Table 7. p-values ANOVA MA(1) and MA(2)
Forec. p-value best Force. p-value best
e137 0,098902 X e137 6,04E-11 BCC
e138 0,0004836 X e138 0,004464 BCC
e139 0,0002593 BCC e139 0,070179 X
e140 0,0008891 BCC e140 9,51E-09 BCC
e141 0,0008415 BCC e141 2,55E-06 BCC
e142 0,0014546 BCC e142 1,05E-06 BCC
e143 9,27E-05 BCC e143 0,533148 X
e144 0,0090384 BCC e144 0,669801 X
e145 0,0075967 BCC e145 0,341698 X
e146 0,0004726 BCC e146 0,287049 X
e147 0,0010775 BCC e147 0,465983 X
e148 0,0012959 BCC e148 0,022435 X
e149 0,0009356 BCC e149 0,000156 BCC
e150 0,0016053 BCC e150 0,037747 X

10

Table 8. p-values ANOVA ARMA(1,1)
Forec. p-value best
e136 0,0758955 X
e137 1,46E-07 BCC
e138 6,71E-10 BCC
e139 1,57E-08 BCC
e140 3,63E-13 BCC
e141 1,14E-14 BCC
e142 2,60E-06 BCC
e143 6,88E-15 BCC
e144 1,38E-14 BCC
e145 2,81E-08 BCC
e146 0,1778037 X
e147 1,25E-06 BCC
e148 0,3044825 X
e149 4,36E-14 BCC
e150 0,0209229 X

Table 9. Financial return in 110 days
BCC ARMA PG GPBoost

Djiad 2,0% 0,5% -1,0% -3,5%
Ibovd 16,9% -1,7% -8,7% -6,9%

Nasdaq 7,3% -5,9% -8,8% -3,7%

Table 10. Financial annualized returns
BCC ARMA PG GPBoost

Djiad 4,6% 1,0% -2,3%-8,0%
Ibovd 76,6% -3,9% -19,9% -15,7%

Nasdaq 16,7% -13,5% -20,2% -8,5%

11

