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SUMMARY

For the standard regression setup, conventional tree models partition the predictor space into
regions where the variable of interest Y , can be approximated by a constant. A treed model
extends this idea by allowing a functional relationship between Y and the predictors within each
region. As opposed to using a single model to describe the global variation of the response,
treed models allow for local modeling across the predictor space. In this paper, we consider
treed versions of generalized linear models (GLMs) and propose a Bayesian approach to finding
and fitting such models. The potential of this approach is illustrated with a treed Poisson
regression.
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1. INTRODUCTION

Consider the standard regression setup where Y a variable of interest, and X1, . . . , Xp

a set of potential explanatory variables or predictors, are vectors of n observations.
Suppose it is of interest to estimate the conditional distribution of Y |X where X =
(X1, . . . , Xp). A standard modeling approach is to express this conditional distribution
as a member of a single parametric family of models. If such an approach is inadequate,
a better alternative may be to partition the predictor space so that within each subset
of the partition, the parametric model accurately describes the conditional distribution
of the response. Such an alternative can be accomplished by using a treed model.

A treed model is composed of two parts - a recursive partitioning of the predictor
space using a tree structure and a distinct model for Y |X associated with each subset of
the partition. The binary tree T used as a recursive partition is inspired by earlier work
(e.g. Morgan and Sonquist 1963, Hawkins and Kass 1982, Breiman, Friedman, Olshen,
and Stone 1984, Quinlan 1986 and Clark and Pregibon 1990). An important distinction
is that this earlier work assumes that within each subset of the partition, E(Y |X) is
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constant. We shall refer to models making this assumption as “conventional trees”.
For the second component of the treed model, the subset models considered are all
generalized linear models (Nelder and Wedderburn 1972, McCullagh and Nelder 1989,
and Dey, Ghosh and Mallick 2000). To fit the two components of the treed GLM, we
consider a Bayesian approach. This entails the formulation of prior on the space of trees
and on the parameters of the subset models. Efficient Metropolis-Hastings algorithms,
obtained using Laplace approximations, are then used to stochastically search for high
probability models.

The results in this paper extend the results of Chipman, George and McCulloch
(1998, 2002) (hereafter CGM 1998 and CGM 2002) and Denison, Mallick and Smith
(1998), (hereafter DMS 1998). Both CGM 1998 and DMS 1998 developed similar
Bayesian approaches to conventional trees, the special case of treed models where
E(Y |X) is constant within each subset of the partition. CGM 2002 extended this
Bayesian approach to treed regression models where Y |X follows a normal linear model
within the partition subsets.

The idea of treed models is not new. The simplest way to fit such models is to
construct a conventional tree, and afterwards replace the piecewise constant model for
E(Y |X) with a richer parametric model. This approach is taken by Quinlan (1992) and
Torgo (1997). A shortcoming of such approaches is that the partition is not optimized
for the final parametric model. Partitioning the predictor space so that the response is
as homogeneous as possible within each node makes linear models less likely to be useful.
A better approach would be to grow the tree using a splitting criterion that reflects the
model used in each partition. Several papers have suggested such a strategy: Karalic̆
(1992) for multiple regression models, Alexander and Grimshaw (1996) for simple linear
regression models, and Chaudhuri, Huang, Loh and Yao (1994) for multiple polynomial
regression models. This was extended to incorporate GLMs by Chaudhuri, Lo, Loh,
and Yang (1995), and overdispersed treed logistic regressions by Ahn and Chen (1997).
Treed models also bear some resemblance to hierarchical mixtures of experts models
(Jordan and Jacobs 1994), in which a soft decision rule based on a linear combination
of predictors is used in each interior node, and a logistic regression is performed in each
terminal node. Further discussion of precedents appears in CGM 2002.

What distinguishes our work from these earlier papers is the Bayesian approach.
Rather than use ad hoc penalty criteria for ranking models, the posterior distribution
coherently ranks the models by using a likelihood to extract the information provided
by the data. Rather than use an ad hoc greedy algorithm to find a model, which can
be especially challenging with a treed model, our MCMC algorithm uses the posterior
information to guide the stochastic search. Simulation studies in CGM 1998 illustrated
that for Bayesian CART, our stochastic search found better trees than a greedy search.
CGM 1999 further showed that this MCMC algorithm can find a wider variety of trees
than a bootstrapped greedy grow/prune algorithm. Lutsko and Kuijpers (1994) consid-
ered a MCMC-like approach using simulated annealing, and also found improvements.

Although the formulation of our methods is entirely model based, in many ways
it resembles a machine learning algorithm in the spirit of what Breiman (2001) calls
“algorithmic modeling”. Our formulation can be construed as an algorithm for discov-
ering structure that is controlled by hyper parameters that can be treated as tuning
constants. An advantage of the Bayesian formulation is that it provides natural in-
trepretability of the hyperparameters thereby facilitating their calibration. It is inter-
esting that Breiman distinguishes between two separate cultures of statistics, a culture
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that treats data as realizations from a model and a culture that gives primacy to out-of-
sample prediction for algorithmic construction. We have used a throughly model-based
approach to construct algorithms that provide excellent out-of-sample predictions.

2. TREED GENERALIZED LINEAR MODELS

2.1 The General Model

For the purpose of modeling the relationship between a variable of interest Y and a
p× 1 vector of predictor variables X, a treed model is a specification of the conditional
distribution of Y |X. Such a model consists of two components - a binary tree T that
partitions the domain of X, denoted X , and a parametric model for Y associated with
each subset of the partition.

The tree T partitions X as follows. Each interior node of the tree is associated with
a single predictor splitting rule that assigns each (X,Y ) observation to one of its two
child nodes. For ordered predictors, the assignment is determined by whether or not
the predictor is less than a fixed value. For categorical predictors, the assignment is
determined by whether or not the predictor belongs to a particular subset of the possible
categories. By successive assignments, beginning with the root node, T assigns each
(X,Y ) observation to one of the b terminal nodes, thereby partitioning the predictor
space X into b disjoint sets.

The treed model then associates a parametric model for the distribution of Y |X
with each of the terminal nodes of T . More precisely, for X values that are assigned to
the ith terminal node of T , the conditional distribution of Y is given by a parametric
model Y |X ∼ p(y |X, θi) indexed by θi. Letting Θ = (θ1, . . . , θb), a treed model is
then fully specified by the pair (Θ, T ). By treating the observed data as realizations
from a treed model, we can then compute the posterior distribution over (Θ, T ). This
parametric modeling sets the stage for a Bayesian analysis. In contrast, early tree
formulations were essentially proposed as data analysis tools rather than models.

CGM 1998 and DMS 1998 proposed Bayesian approaches to finding and fitting
conventional trees. In contrast to treed models, conventional trees use terminal node
distributions for Y |X that are not functions of X. For example, with a continuous
response, a conventional tree would assume Y |X ∼ N(µi, σ

2
i ) for X values assigned to

the ith terminal node of T . Such models correspond to step functions for the expected
value of Y |X, and may require large trees to approximate an underlying distribution
Y |X whose mean is continuously changing in X. By using a richer structure at the
terminal nodes, treed models can transfer structure from the tree to the terminal nodes.
When such structure exists, smaller and hence more interpretable trees may be used to
describe the distributions for Y |X.

Finally, we should point out that although we use the one symbol “X” for notational
simplicity, one can decide to restrict attention to one subset of the components of X for
the splitting rules in T and to a different subset for the terminal node models p(y |X, θ).
These subsets need not be disjoint.

2.2. Terminal Node GLMs

Each tree T induces a partition T1, . . . , Tb of the predictor space X , where Ti is the
subset of X corresponding to the ith terminal node of T . Note that

⋃

Ti = X and
Ti
⋂

Ti′ = ∅ for i 6= i′. For a given T , specification of the terminal node models for
Y is facilitated by using a double indexing scheme where (xij , yij) denotes each of the
j = 1, . . . , ni observations of (X,Y ) assigned to Ti. All the data assigned to Ti is
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denoted xi = (xi1, . . . , xini) and yi = (yi1, . . . , yini), and the entire data set is denoted
x = (x1, . . . , xb) and y = (y1, . . . , yb). The overall sample size is denoted n =

∑

ni.
This indexing scheme is conditional on T , and will be different for trees that induce a
different partition of X . Finally, in order to accommodate an intercept term in all of
the terminal node models below, we shall assume throughout that the first component
variable in every xij is identically equal to 1.

Perhaps the most natural and tractable case of a treed model is the treed regression
model, CGM 2002, which is obtained by associating an independent normal linear model
with each terminal node subset Ti. Using the notation above, this can be expressed as

Yij |x,Θ, T ∼ N(xTijβi, σ
2
i ) (1)

with all Yij conditionally independent given (x,Θ, T ). Here, βi is an unknown p × 1
vector of regression coefficients and θi = (βi, σ

2
i ). Under this model both the mean

E(Yij |x,Θ, T ) and the variance V ar(Yij |x,Θ, T ) functions can change across the ter-
minal node subsets Ti.

In this paper, we consider generalized linear models (GLMs) as the terminal node
models. For a given T , such models are of the form

p(yij |x,Θ, T ) = exp
{

φ−1
i [yijηij − ψ(ηij)] + c(yij , φi)

}

. (2)

where for some strictly increasing function h(·),

ηij = h(xTijβi), (3)

j = 1, . . . , ni and i = 1, . . . , b. We will also assume throughout that all the Yij are
conditionally independent given (x,Θ, T ). Here, θi = βi or θi = (βi, φi) according to
whether the dispersion parameter φi is treated as known.

Letting µij ≡ E(Yij |x,Θ, T ) denote the conditional mean of Yij , µij is related to

xTijβi by g(µij) = xTijβi, where g(·) is called the link function. Because µij = ψ′(ηij), the

link function is implicitly determined by the relationship between ηij and x
T
ijβi. Indeed,

h(·) = ψ′−1(g−1(·)) in (3). When g−1 = ψ′ so that ηij = xTijβi, g is called the canonical

link function. Note that the variance of Yij , σ
2
ij ≡ V ar(Yij |x,Θ, T ) = φiψ

′′(ηij) depends
on ηij and φi.

The normal linear model (1) is the special case of (2) where g is the identity trans-
form so that µij = xTijβi, σ

2
ij = φi and ψ(ηij) = η2

ij/2. Other exponential family

distributions for Y are easily subsumed by (2). When Yij are 0-1 random variables
with means µij = πij , the logistic regression model is obtained with the logit trans-

formation g(πij) = log[πij/(1 − πij)] = xTijβi, φi ≡ 1 and ψ(ηij) = log(1 + exp(ηij)).
In this case, the Yij are conditionally independent Bernoulli random variables with

means πij = g−1(xTijβi) = exp(xTijβi)/(1 + exp(xTijβi)). When Yij are counts with
mean µij = λij , the Poisson regression model is obtained with the log transformation

g(λij) = log λij = xTijβi, φi ≡ 1 and ψ(ηij) = exp(ηij). In this case, the Yij are condition-

ally independent Poisson random variables with means λij = g−1(xTijβi) = exp(xTijβi).

In each of these cases, g is a canonical link and ηij = xTijβi.
The assumption that dispersion is fixed at φi ≡ 1 in some GLMs can render such

models inadequate for data that exhibits greater dispersion. One solution might be to
simply consider an overdispersed version of such models where φi > 1. Another popular
possibility is to go outside the GLM family by using mixture model elaborations such as
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the beta-binomial or the gamma-Poisson. Other useful alternatives have been proposed
by Efron (1986), Jorgensen (1987) and Gelfand and Dalal (1990).

3. PRIOR SPECIFICATIONS FOR TREED GLMS

Since a treed model is identified by (Θ, T ), a Bayesian analysis of the problem proceeds
by specifying a prior probability distribution p(Θ, T ). This is most easily accomplished
by specifying a prior p(T ) on the tree space, a conditional prior p(Θ |T ) on the param-
eter space, and then combining them via p(Θ, T ) = p(Θ |T )p(T ).

3.1. Specification of p(T )

For p(T ), we recommend the specification proposed in CGM 1998 for conventional
trees. This prior is implicitly defined by a tree-generating stochastic process that grows
trees from a single-node tree by randomly splitting terminal nodes. A tree’s propensity
to grow under this process is controlled by a two-parameter node splitting probability
P (node splits |depth = d) = α(1 + d)−γ , where the root node has depth 0. The
parameter α is a base probability of growing a tree by splitting a current terminal node
and γ determines the rate at which the propensity to split diminishes as the tree gets
larger. The specification of (α, γ) can be guided by the marginal prior distribution
on the number of terminal nodes (the tree size), which can be easily simulated. For
example, using such marginals, (α, γ) can be chosen to express the belief that reasonably
small trees should yield adequate fits to the data. The tree prior p(T ) is completed by
specifying a prior on the splitting rules assigned to intermediate nodes. We use a prior
that is uniform on available variables at a particular node, and within a given variable,
uniform on all possible splits for that variable.

3.2. Specification of p(Θ |T )

Turning to the specification of p(Θ |T ), we note that while p(T ) above is sufficiently
general for all treed model problems, the specification of p(Θ |T ) will necessarily be
tailored to the particular form of the model p(y |x, θ) under consideration. However,
some aspects of the p(Θ |T ) specification should be generally considered. When rea-
sonable, an assumption of iid components of Θ reduces the choice to that of a single
prior p(θ) for θ1, . . . , θb. However, even with this simplification, the specification of
p(θ) can be difficult and crucial. In particular, a key consideration is to avoid conflict
between p(Θ |T ) and the likelihood information from the data. On the one hand, if
we make p(θ) too tight (i.e. with very small spread around the prior mean) the prior
may be too informative and overwhelm the information in the data corresponding to
a terminal node. On the other hand, if p(θ) is too diffuse (spread out), p(Θ |T ) will
be even more so, particularly for large values of b (large trees) given our iid model
for the θi. Excessively diffuse prior priors can “wash out” the likelihood in the sense
of the Bartlett-Lindley paradox, Bartlett (1957), pushing the posterior of T towards
concentration on very small trees. Such a relationship between tree size and dispersion
of the θ prior is illustrated in Table 1 of Section 5.1.

For simplicity, we shall assume θi = βi throughout, treating the dispersion param-
eter φi as known and to be used as a tuning parameter in applications. More elaborate
techniques, such as those mentioned at the end of Section 2, would be required to deal
with unknown φi. Instead we take φi = φ and investigate the effect of various fixed φ
values. This strategy is illustrated in Section 5.1 where φi is seen to be very influential
in the modeling process, playing a similar role to the residual variance in least squares
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regression.
For the prior on the βis, we consider the simple choice that they are iid multivariate

normal conditionally on T ,

β1, . . . , βb |T iid ∼ Np(β̄, A
−1). (4)

This further reduces the specification problem to the choice of values for the hyperpa-
rameters β̄ and the p×p inverse covariance matrix A. We recommended such a normal
prior for treed normal regression models in CGM 2002 because of the relative trans-
parency for hyperparameter selection and because it was conjugate, yielding an exact
closed form expression for p(y |T ). Although (4) will not be conjugate for other GLMs,
it does allow for relatively straightforward use of an effective Laplace approximation of
p(y |T ) as will be seen in Section 4.1.

We use information about the distribution of the transformed mean, g(µij), to guide
the choice of hyperparameter values for β̄ and A. To simplify notation, we restrict
attention here to canonical link models where g(µij) = xTijβi = ηij . Suppose, for the
moment, that plausible values were available for ηmin, η, ηmax, the minimum, central,
and maximum values for the ηij . Automatic choices for such values are discussed at
the end of the section.

To further simplify hyperparameter values selection, we also standardize the last
(p − 1) components of xij to each have mean 0 and range 1. (Recall that the first
component of xij is always 1 so that an intercept term is included in every terminal
node model).

We are now ready to consider the choice of β̄. To get started, it may be useful to
consider this choice under the assumption that a tree is not needed, and a single GLM
model is appropriate for the complete data. In this case, a natural default choice is
β̄ = (η, 0, . . . , 0)T . This choice guards against an unreasonable value for the intercept
while incorporating the neutral value 0 for the remaining components of β, indicating
indifference between positive and negative values. Note that standardization of the
predictors to have mean 0 decouples the global relationship between the intercept and
the other coefficients. However, given T , the mean values of predictors will generally
not be 0 within subsets of the partition.

Turning to the choice of A, we make the simplifying reduction that A = diag(
1/σ2

0, 1/σ
2
β, . . . , 1/σ

2
β) where σ0 is the prior standard deviation of the intercept, and σβ

is the prior standard deviation of the other regression coefficients. This reduces the
specification to the choice of two scalars, σ0 and σβ. As noted above, the choice of
these hyperparameters is crucial. Essentially, the challenge is to choose σ0 and σβ large
enough to accommodate all plausible values of β, but no larger than that. For choosing
σ0, suppose that all slope coefficients except the intercept were zero. Then we would
want σ0 such that 6σ0 ≈ ηmax−ηmin ≡ ∆, corresponding to the belief that a substantial
mass of the normal prior lies within η±3σ0. With this in mind, we treat σ0 as a tuning
parameter and consider various values around ∆/6 as default choices to be explored.

For choosing σβ, note that by standardizing the range of the predictors to have
range 1, a full range increase in a predictor with a regression coefficient equal to ∆
would lead to full range increase in g(µij) = xTijβi when all the other predictors re-
mained unchanged. However, such reasoning is not completely satisfying in at least
two ways. First, for a given tree T , the predictor observations will generally no longer
be standardized within each subset of the partition (although they would have a range
less than 1, and a mean between -1 and 1). Second, the presence of multicollinearity can
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necessitate substantially larger coefficient values. However, if severe multicollinearity is
present we can usually shrink coefficients towards zero without appreciable damage to
the fit. In fact, such shrinkage often stabilizes calculations and even improves predic-
tions. Given these considerations, we also treat σβ as a tuning parameter and consider
various values around ∆/6 as default choices to be explored. Generally, smaller σβ val-
ues will result in estimated coefficients that are shrunk, and trees with fewer terminal
nodes.

We conclude this section with a brief discussion of automatic choices of ηmin, η̄
and ηmax. In the absence of prior information, a natural automatic choice for η is
η = g(y) where y is the overall mean of the yij values. Choice of ηmin and ηmax is more
challenging. We have found it reasonable to fit a single GLM to the data and to use
the minimum and maximum of the MLEs η̂ij to estimate ηmin and ηmax respectively. A
potential drawback is that if the single GLM severely underfits the data, then the range
of η̂ij may be too small, yielding too tight a prior on β. Despite this drawback, using
predictions from a GLM model is certainly superior to using the range of the observed
yij , which can lead to unrealistic bounds. For example with Poisson regression, an
observed count yij = 0 would yield ηmin = log(0) = −∞. Finally, we note that genuine
prior information may well exist in many applications. For example, in modeling of
insurance claim counts, actuaries have a good idea of the lowest and highest possible
accident rates among all rating groups. Such information might be used exclusively, or
combined with automatic choices.

4. POSTERIOR COMPUTATION AND EXPLORATION

Given a set of training data, a Bayesian analysis would ideally proceed by computing
the entire posterior distribution p(Θ, T | y, x). Unfortunately, in problems such as this,
the size of the model space is so large that exhaustive calculation of the posterior is
simply not feasible. However, posterior information can still be obtained by using a
combination of analytical simplification or approximation together with MCMC sam-
pling from the posterior. For example, the general strategy used in CGM 1998, 2002 was
to first eliminate Θ by obtaining a closed form expression for the marginal likelihood

p(y |x, T ) =

∫

p(y |x,Θ, T )p(Θ |T )dΘ, (5)

and then to use a Metropolis-Hasting (MH) algorithm to simulate a Markov chain
sample from p(T | y, x) ∝ p(y |x, T )p(T ). Because the Markov chain simulation tends
to gravitate towards higher posterior probability trees, it can effectively be used as a
stochastic search algorithm.

CGM 1998, 2002 were able to analytically perform the integration in (5) because
conjugate priors were used. However, for GLMs (2) other than the normal linear
model, analytical integration is unavailable with the normal prior (4). Instead, we use
a Laplace approximation described below to obtain p̃(y |x, T ) ≈ p(y |x, T ), and then
apply an MH algorithm to simulate a Markov chain sample from

p̃(T | y, x) ∝ p̃(y |x, T )p(T ).

A similar strategy in the context of model averaging of survival models was successfully
used by Raftery, Madigan and Volinsky (1996).
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4.1. Laplace Approximation of p(y |x, T )

For our treed GLMs, we express the integral in (5) as

p(y |x, T ) =
b
∏

i=1

∫

L(βi |xi, yi, T )p(βi |T )dβi (6)

where L(βi |xi, yi, T ) =
∏ni

j=1 p(yij |xij , βi, T ) is the likelihood of βi from (2) and (3).

(Recall that we treat φi as known). To approximate p(y |x, T ), it thus suffices to approx-
imate each of the integrals in (6), and for this purpose we use a Laplace approximation,
see Tierney and Kadane (1986).

Let L(βi) ≡ log[L(βi |xi, yi, T )p(βi |T )] denote the log posterior of βi (up to a
norming constant). For notational convenience, we suppress the dependence on xi, yi, T
in L(βi). Using a quadratic approximation of L(βi) around the posterior mode β∗i , each
of the integrals in (6) can be approximated as

∫

L(βi |xi, yi, T )p(βi |T )dβi =

∫

exp{L(βi)}dβi

≈

∫

exp

{

L(β∗i )−
1

2
(βi − β

∗
i )
T (−L′′(β∗i ))(βi − β

∗
i )

}

dβi

= exp{L(β∗i )} (2π)
p/2 | − L′′(β∗i )|

−1/2

(7)
where L′′(β∗i ) is the p× p matrix of second derivatives of L evaluated at β∗

i .
Now, under our normal prior βi ∼ N(β̄, A−1) in (4), the log posterior L can be

conveniently expressed, (up to a norming constant), as

L(βi) ≡ l(βi)−
1

2
(βi − β̄)

TA(βi − β̄) (8)

where l(βi) ≡ logL(βi |xi, yi, T ) denotes the log likelihood of βi. It also follows that

L′(βi) = l′(βi)−A(βi − β̄) (9)

and
L′′(βi) = l′′(βi)−A. (10)

Using (8) and (10), the Laplace approximation (7) with the normal prior on βi can be
expressed, (up to a norming constant), as

∫

L(βi |xi, yi, T )p(βi |T )dβi ≈ exp{L(β∗i )} (2π)
p/2 | − l′′(β∗i ) +A|−1/2

=
|A|1/2

| − l′′(β∗i ) +A|1/2
exp

{

l(β∗i )−
1

2
(β∗i − β̄)

TA(β∗i − β̄)

}

. (11)

This approximation depends on the data through β∗
i , l(β

∗
i ) and l

′′(β∗i ).
From (2) and (3), the general form for the log likelihood for each terminal node

GLM is

l(βi) = φ−1
i

ni
∑

j=1

[

yijh(x
T
ijβi)− ψ(h(x

T
ijβi))

]

.
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The first and second derivatives of l(βi) are

l′(βi) = φ−1
i

ni
∑

j=1

[

[yij − ψ
′(h(xTijβi))]h

′(xTijβi)
]

xij

and

l′′(βi) = φ−1
i

ni
∑

j=1

[

[yij − ψ
′(h(xTijβi))]h

′′(xTijβi)− ψ
′′(h(xTijβi))(h

′(xTijβi))
2
]

xijx
T
ij

Special cases of l, l′ and l′′ are easily obtained for particular models based on
ψ(·), h(·) and φi. For example, in the logistic regression setting where ψ(η) = log(1 +
exp(η)), h(x) = x and φi ≡ 1, we obtain l(βi) =

∑ni
j=1 [yijηij − log(1 + exp(ηij))],

l′(βi) =
∑ni

j=1 [yij − πij ] ηijxij , and l′′(βi) =
∑ni

j=1−xijx
T
ijπij(1 − πij), since ψ

′(η) =

eη/(1+eη) = π, ψ′′(η) = eη/(1+eη)2, h′(x) ≡ 1 and h′′(x) ≡ 0. In the Poisson regression
setting where ψ(η) = eη, h(x) = x and φi ≡ 1, we obtain l(βi) =

∑ni
j=1 [yijηij − λij ],

l′(βi) =
∑ni

j=1[yij − λij ]ηijxij , and l′′(βi) =
∑ni

j=1−λij xijx
T
ij , since ψ

′(η) = ψ′′(η) =

eη = λ, h′(x) ≡ 1 and h′′(x) ≡ 0.
Finally, to compute (11) for each i using these expressions, the posterior mode β∗

i
is needed. To find β∗i , we use a simple Newton-Raphson algorithm

β(k+1) = β(k) − (L′′(β(k)))−1(L′(β(k)))

where L′ and L′′ are obtained from (9) and (10).
One implementation detail is worth noting. Throughout this section, norming con-

stants have been omitted for the sake of clarity. These constants can actually affect
the posterior probability, since each terminal node GLM will have its own norming
constants, and the number of terminal nodes varies across trees. All norming constants
are retained in our program code except where they are known to cancel.

4.2. Markov Chain Monte Carlo Posterior Exploration

We use MCMC to stochastically search for high posterior trees T by using the fol-
lowing Metropolis-Hastings algorithm which simulates a Markov chain T 0, T 1, T 2, . . .
with limiting distribution p̃(T | y, x) ∝ p̃(y |x, T )p(T ), where p̃(y |x, T ) is the Laplace
approximation to p(y |x, T ) proposed above. Starting with an initial tree T 0, this
algorithm iteratively simulates the transitions from T i to T i+1 by the two steps:

1. Generate a candidate value T ∗ with probability distribution q(T i, T ∗).
2. Set T i+1 = T ∗ with probability

α(T i, T ∗) = min

{

q(T ∗, T i)

q(T i, T ∗)

p̃(y |x, T ∗)p(T ∗)

p̃(y |x, T i)p(T i)
, 1

}

. (12)

Otherwise, set T i+1 = T i.

In (12), q(T, T ∗) is the kernel which generates T ∗ from T by randomly choosing
among four steps: GROW, PRUNE, CHANGE, and SWAP. Details of these steps are
given in CGM 1998, 2002. Although these moves better explore the posterior than a
greedy grow/prune algorithm, the chain may get trapped in local maxima. Multiple
restarts may be employed to efficiently explore the posterior on trees. See CGM 1998,
2002 for additional details.
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5. AN APPLICATION

5.1 A Wave Soldering Experiment

To illustrate and assess our Bayesian treed GLM approach, we applied it to the Pois-
son regression dataset solder2, which is available in S and is described in Chapter
1 of Chambers and Hastie (1992). These data were originally collected by Comizzoli,
Landwehr, and Sinclair (1990) as part of an experiment to investigate a wave soldering
procedure for mounting electrical components on circuit boards. The response, skips,
is a visual count of the number of skips in solder applied to a circuit board. In 623 of
the 750 observations, skips had a value 0. The mean and maximum value of skips
were 1.19 and 32, respectively. The five categorical predictors are:

• Opening (S/M/L): amount of clearance around the mounting pad;
• Solder (Thick/Thin): amount of solder;
• Mask (5 levels): type and thickness of the material used for the solder mask;
• PadType (10 levels): the geometry and size of the mounting pad; and
• Panel (1/2/3): each board was divided into three panels, with three runs on a

board.

We began by fitting two Poisson regressions with log link functions. The first
model contained indicator variables for all main effects, while the second (suggested in
Chambers and Hastie 1992) contained main effects plus the three two-way interactions
Opening:Solder, Opening:Mask and Mask:Solder. The mean deviance for the first
model was 1.52 with 731 df and the mean deviance for the second was 1.24 with 719
df. Mean deviances greater than 1 suggest either lack of fit or overdispersion.

As an alternative to these Poisson GLMs, we proceeded to consider a treed Poisson
GLM, and elected to consider all predictors in both the splitting rules of interior nodes
and in the terminal node GLMs. As described in Section 3.2, we set the prior mean of
the intercept to be β̂0 = g(ȳ) = log(ȳ) and set the prior means of the slope components
of β equal to 0. To gauge the choices for the hyperparameters σ0 and σβ, we fitted the
main effects Poisson regression mentioned above and found the range of predicted values
of η̂ij = log µ̂ij to be ∆ = 17.8. This suggests σ0 = σβ = ∆/6 ≈ 3. We considered
two settings for the prior standard deviation in a neighborhood of 3, namely slopes
σβ = 2, 4. The prior standard deviation of the intercept σ0 was fixed at 4. A value of
4 was used instead of 3 because it was felt that additional dispersion in the intercept
was less likely to have an impact on the treed model. Because of the overdispersion
we observed in the Poisson GLMs, it seemed reasonable to consider that the dispersion
parameter φ would exceed 1 (no overdispersion) and be no more than 3. With this in
mind, we treated φ as a tuning parameter and considered three settings φ = 1.5, 2, 3.
As will be seen below, varying this dispersion parameter φ plays an important role in
the analysis. The modeling procedure was run separately for the six combinations of
σβ and φ.

The MH search was run with tree prior parameters α = 0.25 and γ = 2, giving prior
mass of approximately (0.75,0.22,0.03) on trees with 1, 2, and ≥ 3 terminal nodes,
respectively. We set the Markov transition kernel q(T i, T ∗) to randomly choose one
of the four steps with probabilities P(GROW) = P(PRUNE)= 0.1 and P(CHANGE)
= P(SWAP)= 0.4. For each estimation, one chain with 2500 steps was used, taking
approximately 11 minutes to execute on a PentiumIII/1GHz computer. Although many
trees are visited by the MH algorithm, the “best” tree is determined as follows: The
most frequently visited tree size is identified, and then for this size we choose the tree
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with the highest log integrated likelihood. While the alternative of ranking trees by log
posterior probabilities may seem appealing, it suffers from the dilution phenomenon
discussed in CGM 1998.

We also considered a conventional tree with constant means at terminal nodes, fit
with a Poisson likelihood via greedy search and cross-validation. Compared to our treed
Poisson regressions, this conventional model relies much more on the tree structure to
explain the variation of the response skips. This tree was fit to the data with the
rpart implementation (Therneau and Atkinson 1997) in Splus and R. Sensitivity to
overdispersion is not a substantial issue when cross-validation is used to determine tree
complexity. For this reason, we did not consider different parameter settings of the
rpart procedure.

To compare the different modeling methods, as well as the various tuning param-
eter choices, we used a repeated 10-fold cross-validation. Within each 10-fold cross-
validation, each data point is predicted out-of-sample once (i.e., in 9/10 of the cases
it will be used for training and 1/10 for testing). Five different replications of 10-fold
cross-validation were carried out. All methods were compared with the same five repli-
cations, thereby removing blocked effects. For the rpart tree, two cross-validations
are in fact being performed: cross-validation internal to the rpart code is determining
an appropriate tree size, and our cross-validation algorithm is assessing out-of-sample
performance.

Figure 1 compares the performance of the different methods using mean and median
deviance contributions, where the deviance contribution from observed response yi with
out-of-sample prediction µ̂i given by di = 2 [(µ̂i − yi) + yi(log yi − log µ̂i)]. The log
posterior could have also been used as a performance measure, but due to comparisons
with likelihood based methods (glm, rpart), we used deviance measures instead.
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Figure 1. Comparison of two GLMs (main effects models and main effects with three two-way
interactions), rpart (conventional tree with Poisson data) and six treed models (with various
parameter settings).
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We see in Figure 1 that the best performers in terms of mean deviance are treed
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models with φ = 2 or φ = 3. However, the distribution of the di’s turned out to be
very long-tailed, with a few influential large values. For this reason we also considered
the median deviance. For this measure, we see an even more substantial difference, as
well as reduced variability in the values across the five simulations.

An understanding of the relationship between tree size and the parameters φ and
σβ may be useful in interpreting Figure 1. Table 1 shows the mean size of the “best”
tree reported in the 50 runs (5 permutations × 10 folds) for each of the six (φ, σβ)
settings considered. As overdispersion increases, the tree size decreases, since the log
posterior is divided by the factor φ. Increasing σβ also makes smaller trees more likely.
Evidently, a tree of 4 or more nodes is overfitting, and a tree with 2 nodes may be
slightly underfitting (as can be seen from the median deviance contribution).

Table 1. Mean size of tree across 10 folds of cross-validation, and 5 permutations of data.
Note that this “mean” is not across the posterior, since only one tree is reported for each of the
50 runs.

φ σβ mean tree size

1.5 2 4.94
1.5 4 4.54
2.0 2 3.18
2.0 4 3.04
3.0 2 2.44
3.0 4 2.00

From the cross-validation results, it appeared that reasonably good and robust
performance was obtained with the settings φ = 2, σβ = 2. We thus ran our treed
model search algorithm using all the data with these settings. From a run of 2500 steps,
we selected a “best” tree, which is given in Figure 2. This tree splits first on Opening,
and subsequently on PadType in one node. Since the GLM with interactions involving
Opening was an improvement over the main effects GLM, it is not surprising that this
variable was split upon. Note however, that not all interactions with Opening are fit
by this tree, since two categories (Opening = middle, large) are kept together. The
subsequent split on PadType is suggestive of a three-way interaction between Opening,

PadType and other variables.
In each terminal node a separate Poisson regression model is fit to the data. The

degrees of freedom used by each model varies from one node to the next because some
predictors are constant within nodes. This is obvious for variables used as splitting
rules, such as Opening in Node 1, and the experimental design also eliminates some
categorical variable levels in some of the terminal nodes.

The coefficients of the GLMs in each node are plotted in Figure 3. Although the
actual degrees of freedom used in each node varies, the informative prior makes it
possible to calculate posterior means for all 19 regression coefficients, even when some
predictors are constant in terminal nodes. This somewhat restricts interpretation of
this plot, since within a node, some estimates are aliased with others. We can see
however, that the effect of solder thickness is large when the opening is small and near
zero otherwise, an interaction noted in the original analysis. We see also that in Node
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Opening

Small Medium,Large

PadType

L4,L6,L8
L9,W4

D4,D6,D7
L7,W9

Node 1
 n= 210 

mean= 2.681 
 used df = 15

Node 2
 n= 270 

mean= 0.389 
 used df = 12

Node 3
 n= 270 

mean= 0.822 
 used df = 12

Figure 2. The best tree found with φ = 2, σβ = 2.

3 (Openings=Med/Large, PadType=D4,D6,D7,L7,W9) coefficients for L7 and W9 are
especially large. Mean numbers of skips and sample sizes for a partitioning of the
data into four groups are given in Table 2.
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Figure 3. Posterior mean regression coefficients for the best tree (tree given in Figure 2).
Coefficients for each node are joined with a line, and the numeric plotting symbols correspond
to the node numbers given in Figure 2.

The table indicates a very low rate of skips for PadType = L7,W9 and M or L levels
of Opening. Evidently the split on PadType was chosen because of quite different mean
levels, but within nodes 2 and 3, there are also differences by PadType. The differing
coefficients in nodes 2 and 3 for Mask suggest that this may be a secondary reason for
the choice of this particular split.
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Table 2. Summaries of the response for subsets of the data indicated by particular values of
the predictors

Group mean skips n

Opening = S 2.6810 210
Opening = M,L, PadType = L7 0.0185 54
Opening = M,L, PadType = W9 0.0000 54

Opening = M,L, PadType 6= L7,W9 0.7546 432

total 1.1867 750

5.2. Simulation Study of the Null Case

A potential criticism of any flexible model is that it finds complicated structure when
there is none. In the solder2 example, out-of-sample validation indicates that complex
structure actually is present. But how will the Bayesian search for treed models perform
when the true model is a single GLM?

To study this null case, we simulated data from a single GLM, using the same
predictor values as in the solder2 dataset. Response values were simulated using
regression coefficients similar to the MLEs from a single GLM fit to the original data.
An overdispersion component was incorporated into some of the simulated data sets by
adding a random effect to ηij before generating the observed response. We generated
60 data sets, 20 with no overdispersion, 20 with moderate overdispersion and 20 with
severe overdispersion. For each of these data sets, we ran our procedure with the same
settings as in the previous section, except with four settings of φ = 1, D/2, D, 2D where
D was the observed mean deviance of a Poisson GLM fit to the data. We considered
these choices of φ to explore the effect of calibrating φ to the data.

In the interest of brevity, we give but a precis of our findings, which were very
favorable. First of all, we were most interested to see how often our approach incorrectly
partitioned the data by using a tree with more than one node. For data simulated from
a single GLM with no overdispersion, the selected trees had a mean size of just over 1
for φ = 1, D, 2D. With moderate overdispersion, average tree size was smallest at just
over 1 when φ = 2D and around 2 when φ = D. With severe overdispersion, average
tree size was smallest, between 2 and 3, when φ = 2D. In terms of fit to the data, our
treed models were very competitive with a single GLM fit to the data, usually achieving
a similar value for out-of-sample deviance. It is interesting to note that in most cases
when the tree size was larger than 1, the treed model fits were not dramatically worse
than those of a single GLM. Overfitting only became a problem when excessively small
φ values were used.
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