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Summary. A common problem in environmental epidemiology is the estimation and mapping of
spatial variation in disease risk. In this paper we analyse data from the Walsall District Health
Authority, UK, concerning the spatial distributions of cancer cases compared with controls sampled
from the population register. We formulate the risk estimation problem as a nonparametric binary
regression problem and consider two different methods of estimation. The ®rst uses a standard
kernel method with a cross-validation criterion for choosing the associated bandwidth parameter.
The second uses the framework of the generalized additive model (GAM) which has the advantage
that it can allow for additional explanatory variables, but is computationally more demanding. For the
Walsall data, we obtain similar results using either the kernel method with controls strati®ed by age
and sex to match the age±sex distribution of the cases or the GAM method with random controls but
incorporating age and sex as additional explanatory variables. For cancers of the lung or stomach,
the analysis shows highly statistically signi®cant spatial variation in risk. For the less common
cancers of the pancreas, the spatial variation in risk is not statistically signi®cant.

Keywords: Binary regression; Cross-validation; Epidemiology; Generalized additive models; Kernel
smoothing

1. Introduction

Suppose that in a geographical region A we are given the locations of all cases of a particular
disease. A natural question to ask is whether or not the disease risk varies spatially. If there is
some evidence of spatial variation, then knowledge of the characteristics of particular sub-
regions in which risk appears to be higher than average may lead to new hypotheses regarding
possible causal mechanisms for the disease. However, the locations of cases are not enough to
answer this question, since they will at least in part re¯ect the spatial distribution of the
population at risk in the region. A sensible approach is then to compare the spatial distri-
bution of the cases with that of a set of carefully selected controls from the population at risk.
Bithell (1990, 1992) and Kelsall and Diggle (1995a, b) approached this problem as one of
density ratio estimation. Lawson and Williams (1993) also described a method which they
called `extraction mapping' based on kernel regression. In this paper we consider the use of
nonparametric binary regression, which we ®nd to be more ¯exible than the density ratio
approach; using generalized additive model (GAM) methodology (Hastie and Tibshirani,
1990) we can estimate the e�ects of other covariates in addition to spatial location.

Consider the sets of points consisting of the locations of cases and controls as observations
from two Poisson processes I and II on the region A � R2, with intensities �1�x� and �2�x�
respectively. The log-risk function, apart from an additive constant, is

{Address for correspondence: Department of Mathematics and Statistics, Lancaster University, Lancaster, LA1
4YF, UK.
E-mail: julia.kelsall@lancaster.ac.uk

& 1998 Royal Statistical Society 0035±9254/98/47559

Appl. Statist. (1998)
47, Part 4, pp. 559^573



��x� � logf�1�x�=�2�x�g,
and we wish to investigate the spatial variation of ��x� on A.

This work was motivated by data consisting of the residential locations, age and sex of
individuals who died of one of various types of cancer in the region of the Walsall District
Health Authority between 1982 and 1992. Methods will be developed to investigate whether
there is any spatial variation in risk of cancers of the lung, stomach and pancreas over the
region.

In the next section we brie¯y review the density ratio estimation approach and introduce
our two methodsÐkernel binary regression and the GAM method. For each, we describe
how to choose the associated bandwidth or smoothing parameter, whose numerical value
determines the degree of smoothing to be applied to the data. Section 3 reports the results of
a small simulation study to compare the methods. In Section 4 we describe a Monte Carlo
method for assessing the uncertainty associated with the estimates; we obtain tolerance
contours which enable the identi®cation of areas of unusually high or low risk, and we
provide a global test of the null hypothesis of constant risk over the region. The methodology
is applied to the cancer mortality data of the Walsall District Health Authority in Section 5.
Section 6 brie¯y discusses the relative merits of the alternative methods.

2. Estimation methods

In practice, it is not possible to ensure complete ascertainment of cases in studies of this kind.
For example, in the cancer mortality data, some cases may have been missed owing to
inaccurate recording of the cause of death. For our risk estimates to be valid, we need to
assume that non-ascertainment of cases is spatially random, i.e. that the cases available for
analysis are an independent random sample from the totality of cases. We therefore suppose
that we observe unknown proportions q1 and q2 of those points which constitute partial
realizations of the two independent Poisson point processes I and II on the region A � R2.
Denote by xi, i � 1, . . ., n1, the n1 observed points from process I and by xi, i � n1 � 1,
. . . , n1 � n2, the n2 observed points from process II. We ®rst consider the density ratio
approach and then introduce the two binary regression alternatives.

2.1. Density ratio
We give a brief review of the density ratio approach of Kelsall and Diggle (1995a, b). Condi-
tionally on the values of n1 and n2, the data can be regarded as a pair of independent random
samples from probability distributions with densities f1�x� and f2�x� such that

fj�x� � �ÿ1j �j�x� with �j �
�
A

�j�x� dx,

for j � 1, 2. Letting r�x� be the log-ratio of densities, we ®nd that

r�x� � logf f1�x�=f2�x�g � ��x� ÿ c1,

where c1 � log��1=�2�.
An estimator for r�x� is thus

r̂h�x� � logf f̂1h�x�=f̂2h�x�g,
where f̂1h�x� and f̂2h�x� are kernel estimators of f1�x� and f2�x� respectively. We use a common
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bandwidth h for the numerator and denominator which eliminates the bias of r̂h�x� when
f1�x� � f2�x�. Thus,

f̂jh�x� � nj
ÿ1Pnj

i�1
Kh�xÿ xi�,

where Kh�u� � hÿ2 K�hÿ1u� and K is a radially symmetric kernel function. In what follows, we
use the standard bivariate normal kernel, K�u� � �2��ÿ1 exp �ÿ 1

2
kuk2 �.

A cross-validation method for choosing the bandwidth with the aim of minimizing� f r̂h�x� ÿ r�x�g2 dx was devised using Taylor series expansion arguments (Kelsall and Diggle,
1995a) and is based on the score

CV1�h� � ÿ
�
I

r̂h�x�2 dxÿ 2n1
ÿ1Pn1

i�1
r̂ÿih �xi�=f̂1ÿih �xi� � 2n2

ÿ1 Pn1�n2
i�n1�1

r̂ÿih �xi�=f̂2ÿih �xi�.

The superscript of ÿi denotes estimation using all the data except xi, usually called leave-one-
out estimation. We choose the value of h which minimizes CV1�h�. Edge-corrected versions of
the estimates must be used, and performing these edge corrections is a non-trivial operation.

2.2. Binary regression
Simpler cross-validation methods can be obtained by reformulating the problem as one of
binary regression. We attach binary labels y1, . . ., yn to the points x1, . . ., xn such that

yi �
1 if xi is from group I,

0 otherwise.

�
Conditional on the points xi, the yi are realizations of mutually independent Bernoulli ran-
dom variables Yi with P�Yi � 1jXi � x� � p�x�, where

p�x� � q1 �1�x�
q1 �1�x� � q2 �2�x�

.

It follows that

logitfp�x�g � ��x� � c2,

where c2 � log�q1=q2�.
Apart from an additive constant, both r�x� and logitf p�x�g are equal to ��x�. This

means that, from the point of view of estimating spatial variation in risk, we can approach
the problem either via nonparametric regression of the yi against the xi or via density ratio
estimation.

Overviews of nonparametric regression techniques can be found in HaÈ rdle (1990), Green
and Silverman (1994) and Wand and Jones (1995). These include kernel methods, smoothing
splines and local likelihood methods, among which local logistic regression (Fan et al., 1995) is
speci®cally intended for binary response variables. We here consider the simpler Nadaraya±
Watson kernel regression estimator, ®rst suggested in the binary setting by Copas (1983). This
estimates p�x� as

p̂h�x� �
Pn
i�1

Kh�xÿ xi� yi
�Pn

i�1
Kh�xÿ xi�,
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where the kernel function Kh�.� and bandwidth h are de®ned in Section 2.1. Using this
estimator, straightforward algebraic manipulation shows that

logitf p̂h�x�g � r̂h�x� � c3,

where c3 � log�n1=n2�. The kernel regression approach therefore leads to the same estimate of
��x� as the kernel density ratio approach, except for an additive constant. However, the new
approach suggests di�erent cross-validation methods for choosing h in practice.

2.3. Bandwidth selection
2.3.1. Likelihood cross-validation
This method of choosing a bandwidth is motivated by the maximum likelihood principle.
Considering the data in the binary regression framework, we can write the likelihood for the
probability function p�.� as

Lfp�.�g � Qn
i�1

p�xi�yif1ÿ p�xi�g1ÿyi .

If p�.� were speci®ed by a parametric model, then the maximum likelihood principle would
lead to estimating the parameters by maximizing Lfp�.�g. In the nonparametric setting, this
would lead to the unsatisfactory estimates p�xi� � 1 or p�xi� � 0 according to whether Yi � 1
or Yi � 0 respectively. However, we can use a cross-validatory version of the maximum
likelihood principle if we estimate p�.� to minimize

CV2�h� �
� Qn

i�1
p̂ÿih �xi�yif1ÿ p̂ÿih �xi�g1ÿyi

�ÿ1=n
�2:1�

with respect to h, where p̂ÿih �xi� is the leave-one-out estimate of p�x� evaluated at xi. In the
de®nition of CV2�h�, we raise the `likelihood' to the power of ÿ1=n to make the value of the
criterion less sensitive to the sample size n and to convert it to a minimization problem. This
form of cross-validation has also been suggested by Azzalini et al. (1989).

2.3.2. Least squares cross-validation
One of the standard ways of choosing a smoothing parameter in nonparametric regression is
to use least squares cross-validation. This is known to work e�ectively for non-binary data
(HaÈ rdle, 1990). The cross-validation function to be minimized is

CV3�h� � nÿ1
Pn
i�1
fyi ÿ p̂ÿih �xi�g2, �2:2�

where the yi are binary labels. As with the likelihood-based method we use a leave-one-out
procedure to avoid an interpolating solution.

2.3.3. Weighted least squares cross-validation
As we are dealing with binary responses Yi, we know that var�YijXi � xi� � p�xi� f1ÿ p�xi�g.
This makes an ordinary least squares criterion less natural than it would be for responses
with a constant variance and suggests instead a new cross-validation criterion. For the new
criterion, we obtain a preliminary choice of smoothing parameter, h0 say, by the ordinary
least squares cross-validation of the previous section, and we use this to estimate the variance
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function. We can then choose a bandwidth h which minimizes a weighted version of function
(2.2), with the inverse of the estimated variance as weights. This gives the criterion of
minimizing

CV4�h� � nÿ1
Pn
i�1

fyi ÿ p̂ÿih �xi�g2
p̂ÿih0
�xi�f1ÿ p̂ÿih0

�xi�g
. �2:3�

If we replaced h0 by h, the denominator would no longer simply give weights to the data
values as desired but would take an active role in the minimization of expression (2.3) and
bias the minimization towards unreasonably large values of h. This is connected with the
well-known analogous phenomenon for parametric regression models: for response variables
Yi with expectations �i��� and variances vi���, minimization of � fyi ÿ �i���g2=vi��� is equiv-
alent to using a biased estimating equation for � (see, for example, McCullagh (1983) and
Barry et al. (1997)).

2.4. Generalized additive models
A natural extension of the binary regression approach is to consider including covariate
terms in the regression. This leads us to the GAM approach (Hastie and Tibshirani, 1990).

A GAM can be thought of as a generalized linear model (GLM) (see McCullagh and
Nelder (1989)), which has been extended to include arbitrary smooth functions in addition to
linear terms in the linear predictor. In our context, we consider a binary response variable Y
with associated P�Y � 1� � p�x, u� depending on the explanatory variables u and spatial
location x. A GAM with a logit link function would then take the form

logitfp�x, u�g � u0� � g�x� �2:4�
where � � ��1, . . ., �r�, say, and the only assumption about g is that it is a smooth function
of x. GAMs are ®tted by an iteratively weighted additive model procedure that is an extended
version of the iteratively weighted least squares of GLMs. Following Hastie and Tibshirani
(1990), estimation for the semiparametric model (2.4) using kernel regression for data �yi, xi,
ui�, i � 1, . . ., n, proceeds according to the following algorithm.

(a) Set ĝ�x� � 0; set �̂ to be the maximum likelihood estimate on ®tting the GLM with

logitfp�x, u�g � u 0�.

(b) Set �̂i � u 0i�̂ � ĝ�xi� and p̂i � exp��̂i�=f1� exp��̂i�g.
(c) For i � 1, . . ., n, construct the adjusted dependent variable

zi � �̂i �
yi ÿ p̂i

p̂i�1ÿ p̂i�
and weights wi � p̂i�1ÿ p̂i�.

(d) Fit a weighted additive model of the form Z � u 0� � g�x� � �, using kernel regression
with weights wi as follows.
(i) Put si � zi ÿ u 0i�̂ and perform a weighted kernel regression of si on xi with weights

wi :

ĝ�x� �Pn
i�1

wi Kh�xÿ xi� Si

�Pn
i�1

wi Kh�xÿ xi�.
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(ii) Regress the zi ÿ ĝ�xi� on the ui-values by weighted least squares with weights wi to
obtain new estimates �̂.

(iii) Repeat steps (i) and (ii) until the estimates converge.
(e) Repeat steps (b)±(d) until the estimates converge.

A special case is when there are no covariates u, so that

logitfp�x�g � g�x�.
Although the major attraction of the GAM approach lies in its ability to incorporate co-
variate adjustments, the special case is of interest because its performance can be directly
compared with the density ratio and kernel regression approaches. Note that there is no
direct algebraic equivalence between the GAM estimate of p�x� and the corresponding kernel
estimate computed from the same data, although the underlying models are equivalent.

This method also requires a bandwidth to be chosen. The likelihood and least squares
methods of kernel regression are in principle applicable here, but in practice they are com-
putationally infeasible because of the large number of iterations involved. We shall therefore
use a form of weighted least squares cross-validation for the nonparametric regression step of
each iteration. At each smoothing step (i), we choose the value of h which minimizes

CV5�h� � nÿ1
Pn
i�1

wi fzi ÿ ĝÿi�xi�g2, �2:5�

where ĝÿi�xi� is the estimate of g�xi� constructed with bandwidth h using all except the data
pair �xi, zi�.

3. Simulations

In this section we use a small simulation study to compare one-dimensional versions of the
methods outlined in the previous section. For a more extensive simulation study see Kelsall
(1996). We consider ®ve methods for estimating ��x� up to a constant:

(a) density ratio estimation with the associated cross-validation method;
(b) binary kernel regression with the likelihood-based cross-validation method;
(c) binary kernel regression with the least squares cross-validation method;
(d) binary kernel regression with the weighted least squares cross-validation method;
(e) GAM regression with the associated weighted least squares cross-validation method.

For each simulation, we consider the interval I � �0, 1� and ®x the relative risk, expfr�x�g �
f1�x�=f2�x�, the control density f2�x� and the sample sizes n1 and n2. Without loss of generality,
assume that ��x� � r�x�. We generate two sets of points from densities f2�x� and

f1�x� � expfr�x�g f2�x�
of sizes n1 and n2, and obtain an estimate �̂�x� using each of the ®ve methods. A measure of
the error of this estimate is taken as a version of the integrated squared error (ISE),

ISE � min
c

� �
I

f �̂�x� � cÿ ��x�g2 dx
�
,

in which we minimize over c because ��x� is only estimated up to an additive constant. We use

expfr�x�g � 1� 0:75 sin�6�x�
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as the risk function, representing a highly ¯uctuating risk, and combine this with three
control densities:

(a) f2�x� � 1;
(b) f2�x� � 1� 0:7 cosf2��xÿ 0:5�g;
(c) f2�x� � 1� 0:8 cosf6��xÿ 0:5�g.

The ®rst of these represents a constant control intensity, which is highly unlikely to be found
in practice. The other two represent more likely ¯uctuating densities.

To automate this procedure, for each combination we calculate the cross-validation function
for 15 values of h, regularly spaced on a log-scale between 0.005 and 2, and choose the value
for h which gives the smallest cross-validation value. For the GAM method, the algorithm is
run for eight iterations since preliminary investigations indicate that these are enough for
convergence to be reached to su�cient accuracy. As material changes in the choice of h tend
to occur in the ®rst few iterations, a cross-validation step is performed in the ®rst four
iterations only and then the smoothing parameter is kept ®xed. For each combination of
density, risk and sample sizes, we simulate 50 sets of data and use all ®ve methods on each to
reduce the in¯uence of sampling variability on comparisons between the various methods.
The ISE results are summarized in the form of box plots and are shown in Fig. 1. The broken
line represents the ISE which would be attained by estimating the risk as constant, equivalent
to using an in®nite smoothing parameter. As we would hope, the methods usually perform
substantially better than this base-line.

Overall, the methods do not di�er much in their performance, except that the density ratio
cross-validation method is much worse than the others for unequal sample sizes. Since the
likelihood-based method is intuitively attractive and its performance is at least as good as the
other methods, we recommend its use in practice. The GAM method also performs well
although it is more computationally demanding; it is therefore our recommended method
when additional covariates are available. In Section 5 we compare the kernel regression
approach with the GAM method for the Walsall cancer data.

4. Signi®cance

Kelsall and Diggle (1995b) used Monte Carlo sampling to assess the statistical signi®cance of
their estimated risk surface. We follow the same basic approach, the main di�erence being
that in a global test of the null hypothesis of no spatial variation in risk we give greater weight
to areas with greater numbers of data points.

For each method we obtain an estimate �̂�x� which is logitf p̂h�x�g for the kernel binary
regression approach and ĝ�x� for the GAM. In each case we adjust �̂�x� by removing the
average surface level to give ŝ�x� with zero mean over the observed data locations,

ŝ�x� � �̂�x� ÿ nÿ1
Pn
i�1
�̂�xi�.

For large data sets the calculation of the mean surface level can be computationally demanding,
but the computations can be made more e�cient by de®ning a ®ne grid of values zk spanning
A such that the x- and y-co-ordinates are both equally spaced by r units, say. If we de®ne Nk

to be the number of xi which fall within r=2 of zk in either the x- or y-co-ordinate, then

ŝ�x� ' �̂�x� ÿ nÿ1
P
k

Nk �̂�zk�.
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Fig. 1. Box plots to show the log-ISEs of 50 simulations to compare estimation methods (f/g, density ratio cross-
validation; lik, likelihood cross-validation; lsq, least squares cross-validation; wlsq, weighted least squares cross-
validation; gam, GAM method) Ð a rapidly ¯uctuating risk function was used with different combinations of
denominator densities and sample sizes n1 and n2: (a) density 1, n1 � 300, n2 � 300; (b) density 1, n1 � 150,
n2 � 600; (c) density 2, n1 � 300, n2 � 300; (d) density 2, n1 � 150, n2 � 600; (e) density 3, n1 � 300, n2 � 300;
(f) density 3, n1 � 150, n2 � 600



We construct tolerance contours which indicate for each x whether ŝ�x� is consistent with
the null hypothesis H0: ��x� � c. We do this by generating new data that are consistent with
H0 but otherwise are similar in distribution to the original data, and we construct a new
estimate ŝ1�x�. We repeat this m times and construct a p-value surface which, for each x, gives
the proportion of values ŝi�x�, i � 1, . . ., m, which are less than the original estimate ŝ0�x�.
The 0.025 and 0.975 contours of this surface can be added to a grey scale map of ŝ0�x� as 95%
tolerance contours to indicate locations of unusually high or low risk.

We can also perform a Monte Carlo test (Barnard, 1963) for overall departure from
hypothesis H0 by using the statistics

tj � nÿ1
Pn
i�1

ŝj�xi�2

and calculating a p-value as p � �k� 1�=�m� 1� where k is the number of tj > t0.
The generation of data under hypothesis H0 depends on the method of estimation. For the

kernel regression approach, conditional on the locations of the combined cases and controls,
the probability that a given event represents a case will not depend on the spatial location. So
to generate data under H0 we combine the locations of the cases and controls, and randomly
label n1 of them as cases, and the remainder as controls.

When there are covariates we use the GAM approach and assume a model logitfp�x,
u�g � �0 � �1u� g�x�, say. Our procedure for generating data that are consistent with H0:
g�x� � 0 starts by ®tting the reduced model logitfp�x, u�g � �0 � �1u and calculating ®tted
probabilities pi. Conditioning on the numbers of cases and controls and on the locations and
covariate values for each individual, we sample n1 of the n1 � n2 individuals without replace-
ment according to probabilities proportional to pi, and we label them as cases. The probability
of labelling an individual as a case thus depends on all the covariates except for spatial
location.

5. The Walsall cancer data

The Walsall cancer mortality data were introduced in Section 1. We now use our method-
ology to investigate whether there is any spatial variation in risk of cancers of the lung,
stomach and pancreas of which there were 2015, 643 and 318 cases respectively. These case
data are supplemented by the locations of around three times as many controls, taken from
the population register of June 1994. There are two possible approaches for selecting
controls. The ®rst is to obtain controls by strati®ed random sampling, such that they have
approximately the same joint age and sex distribution as the cases; we then use the simpler
kernel regression method of estimation because the e�ects of covariates are accounted for in
the selection of controls. The second approach is to obtain a simple random sample of
controls and to take account of the covariates by modelling their e�ects within the GAM
estimation method. For each cancer we obtain strati®ed and random control groups of the
same size. These control group sizes are 5839, 2712 and 1083 for lung, stomach and pancreas
cancers respectively.

5.1. Kernel regression
The ®rst step in kernel regression is to choose an appropriate smoothing parameter. We can
theoretically derive the value of the likelihood cross-validation criterion (2.1) for in®nite h:
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CV2�1� � �n1 � n2 ÿ 1��n1 ÿ 1�ÿp�n2 ÿ 1�ÿq,
where p � n1=�n1 � n2� and q � 1ÿ p. For ease of interpretation, rede®ne the cross-validation
function to be

CV�h� � CV2�h�=CV2�1�,
since a value of h for which CV�h� < 1 is then identi®ed as a value which produces a `better'
estimate of relative risk than the null hypothesis of constant risk (equivalent to using an
in®nite smoothing parameter).

The likelihood cross-validation functions for the three sets of Walsall cancer data using the
strati®ed controls are shown in Fig. 2. The resulting minimizing bandwidths are 500 m, 800 m
and 1. The usefulness of the added line CV�h� � 1 becomes clear on the cross-validation
function for the pancreas cancer data, since without it we could easily be misled into believing
that the minimum occurred at h � 1100 m.

The resulting log-risk surfaces for the lung and stomach cancers are shown in Figs 3 and 4
respectively; in each case, a global test of constant risk based on 500 simulations gave a p-
value of 0.002. We also show a risk surface for the pancreas cancer data in Fig. 5 using the
value h � 1100 m since this corresponded to a local minimum of CV�h�, and also to con®rm
that the spatial variation in risk is not statistically signi®cant (p � 0:47), consistent with the
cross-validated h-value of 1. Note that we use base 2 logarithms so that an increase of 1 in
the log-risk surface from one location to another indicates a doubling of risk. This enables an
easier interpretation of the maps.

5.2. Generalized additive model with covariates
We now describe an analysis of the Walsall lung cancer data using the GAM method with
random controls and taking account of the age and sex covariates in the model. Assume the
model
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Fig. 2. Likelihood-based cross-validation functions for the Walsall District Health Authority lung (Ð),
stomach (..........) and pancreas (- - - -) cancer mortality data (the smoothing parameter units are metres)



logitfp�x, a, s�g � �0 � �1s� �2a� �3a2 � g�x�, �5:1�
where a represents age and s represents sex, s � 1 and s � 0 denoting males and females
respectively. The quadratic e�ect of age was assumed after simple exploratory analysis. When
®tting the model, at each iteration we chose from 15 values of h equally spaced on a log-scale
between 100 m and 4000 m. Initial �-parameter estimates were obtained by ®rst ®tting a
GLM without the g�x� term. GAM iterations were then continued until the choice of
smoothing parameter settled at one value, and two further iterations were then conducted.
Fig. 6 shows the resulting risk surface estimate for the lung cancer data with 95% tolerance
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Fig. 3. Logarithmic (base 2) estimated risk surface for lung cancer in the Walsall District Health Authority, with
approximate 95% tolerance contours (the test of non-constant risk gave a p-value of 0.002 (based on 500
simulations), and the value of the smoothing parameter was h � 500 (the units are metres); kernel regression with
a strati®ed control sample was used): Ð, 97.5% contours of the p-value surface; - - - -, 2.5% contours



contours. The parameter estimates for the age and sex covariates were �̂1 � 1:36 (standard
error 0.06), �̂2 � 0:51 (standard error 0.03) and �̂3 � ÿ0:0034 (standard error 0.0002),
corresponding to greater risk for males compared with that for women, and increasing up to
age 75 years. As expected, the risk surface estimate is very similar to that in Fig. 3 obtained
using the strati®ed control sample approach and kernel regression.

6. Discussion

We have demonstrated that the density ratio and binary kernel regression approaches give
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Fig. 4. Logarithmic (base 2) estimated risk surface for stomach cancer in the Walsall District Health Authority,
with approximate 95% tolerance contours (the test of non-constant risk gave a p-value of 0.002 (based on 500
simulations), and the value of the smoothing parameter was h � 800 (the units are metres); kernel regression with
a strati®ed control sample was used): Ð, 97.5% contours of the p-value surface; - - - -, 2.5% contours



the same risk surface estimate, but that the kernel regression method leads to a better
criterion for choosing the bandwidth in terms of minimizing the ISE of the ®nal estimate. The
GAM is a di�erent estimation procedure that allows explicit covariate adjustments, whereas
for the other methods the only way of dealing with covariates is by using strati®ed controls.
Constructing a strati®ed sample of controls can be much more di�cult than obtaining a
random sample, particularly when the number of covariates is large. The GAM method is
substantially more computer intensive, however, which will mean that the simpler kernel
regression method will sometimes be preferable.

The cross-validation criteria proposed for choosing smoothing parameter values are
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Fig. 5. Logarithmic (base 2) estimated risk surface for pancreas cancer in the Walsall District Health Authority,
with approximate 95% tolerance contours (the test of non-constant risk gave a p-value of 0.471 (based on 500
simulations), and the value of the smoothing parameter was h � 1100 (the units are metres); kernel regression
with a strati®ed control sample was used):Ð, 97.5% contours of the p-value surface; - - - -, 2.5% contours



intended as guides only. Ideally, plots of the cross-validation curves should be examined to
identify suitable values and to highlight local minima. This strategy was important in the
pancreas cancer application. If there is interest in local ¯uctuations in risk at a particular
scale, then a bandwidth value should be used that corresponds to that scale.

In the application of our methods, we found a highly signi®cant variation in risk for lung
cancer and stomach cancer, with increased risk in the west and central areas of the region.
For pancreas cancers, although not signi®cant, the same pattern of increased risk was
observed. By comparing these estimated risk surfaces with a map of social deprivation in
Walsall, we see a reasonably close correspondence. It is well known that lung cancer and
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Fig. 6. Logarithmic (base 2) estimated risk surface for lung cancer in the Walsall District Health Authority, with
approximate 95% tolerance contours (the test of non-constant risk gave a p-value of 0.005 (based on 200
simulations), and the value of the smoothing parameter was h � 632 (the units are metres); the GAM approach
with random controls was used, taking account of covariates in the parametric part of the model): Ð, 97.5%
contours of the p-value surface; - - - -, 2.5% contours



stomach cancer have higher prevalence in areas of high social deprivation (e.g. Elliott et al.
(1992)), probably as a by-product of association between social deprivation and known risk
factors such as smoking and eating habits. Our ®ndings are therefore not surprising, but they
highlight the ability of our methodology to detect genuine spatial trends in risk. If a measure
of deprivation over the region had been available, then it would have been sensible also to
include this as a covariate in the GAM to investigate whether there was any residual spatial
variation in cancer risk.

The origin of the controls should also be considered when interpreting the estimated risk
surfaces. For example, in theWalsall cancer application we assumed that the controls sampled
in June 1994 represent the population at risk from which the cancers of 1982±1992 arose.
Substantial changes in population structure over this period could lead to areas of estimated
high risk which in fact represent only shifts of the local population within the region.
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