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W
cathcr derivatives debuted iti
the mid '9()s when dereu;iila-

of the etiergy and LttilicN'
industries started in the U.S.

Growing competition and uncertainty in
demand prompted energ\' and utility conipa-
tiies to seek tor effective hedging tools tt) sta-
bilize earnings. Price hedging alone was no
longer adequate; a combitied framework of
price and volumetric risk matiagenient was
called for. Since weather conditions are among
the key factors determining the demand ot
energy, managing volumetric risk is tanta-
nioutit to managing weather risk. Specifically,
for the electricity and natural gas sectors, tem-
perature is ttiL' key factor affecting the demand.
According to the Weather Risk Management
Association (WRMA), die total notional value
ot OTC. weather contracts was around S4 bil-
lion by 2001; 80% of the contracts or 90% of
the notional value were for temperature deriv-
atives. Meantime, trading ot temperature deriv-
atives on the Chicago Mercantile Exchange
(CME) has also been on the rise. Currently, the
CME lists temperature futures for 15 U.S. cities
and 5 European cities. The total number of
contracts traded in 2003 was 14,234.

The second imptirtant category of wea-
ther deri\'atives is arguably precipitation con-
tracts. In contrast to temperature derivatives,
the developtnent of the precipitation deriva-
tives market is still it) its infancy. According to
the WRMA, deals based on rain and snow
made up around 3'X> of the global weather
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market in the winter of 2000. The current
proportion is not much higlier judging by the
sparsity of new contracts coming out.

The slow growth by no means reflects a
lack of interest or demand. In fact, end-users
such as farmers and hydroelectric power
producers are very keen on precipitation con-
tracts. The ditFiculty is in tinding the coun-
terparty who is willing or able to provide a
reasonable quote. The hesitation on the part
of financial institutions is in turn due to the
difficulty and challenge in properly modeling
precipitation. Modeling precipitation and
valuing related derivative contracts are indeed
a frontier in the field of weather derivatives.

This article makes an earnest attempt to
fill this importatit gap in the literature and the
industry. We propose, calibrate, and compare
three precipitation models: a gamma distribu-
tion, a mixture of exponentials, and kernel den-
sity. Based on the data for Chicago Midway
Airport (l95()-2()()3), we find that the latter
two models dominate the first model in terms
of fit. In the retnainder of the article, we first
discuss the application of precipitatioti contracts
by describing several deals; we then delineate the
modeling, calibration, and related issues; and
finally, we summarize and conclude the article.

APPLICATION OF
PRECIPITATION CONTRACTS

Precipitation, be it rain or snow, exerts
a significant impact on the revenue ot many
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businesses. Farming is .in obvious cxatnple. I)roiiu;ht ov
flood can both adversely afFect the crop yield. Operators
of certain outdoor recreational services (e.g.. golf and
skiing) have much to dread about excess prccipitatioti or
tlie lack ot it. Hydroelectric generators are very keen ot)
the accumulative precipitation over any given time period.
Lack of precipitatioti means a low water level in reser-
voirs, which in turn means a shortage of power supply.
The reduced power output tiot only leads to a loss of rev-
enue, sotiietitnes it also tneatis pitrchasing power at utifa-
vorable prices trom other generators in order to make up
the supply shortage. Below, we describe three deals, two
of which involve hydroelectric power generators.

Case i: Southern Hydro Partnership versus Credit
Lyonnais Rouse Derivatives (Source: Alî TEmis, http://
www.artemis.bm/index.hnn). Southerti Hydro Partners
(SHP) is a hydroelectric power generator iti South East
Australia, with rnost of its facilities located iti Victoria
and New South Wales. With raintall levels beitig signifi-
cantly below the historical average for several years, the
company decided to enter into a precipitation cotitract
with Credit Lyonnais Rouse Derivatives (subsequently
becoming Calyon in May 2004) in 2003. SHP s primary
goal was to stabilize cashflows Aud revetiue. The precip-
itation contract was for a three-year period. To save
hedging cost, the contract was structured as a collar
whereby SHP would receive paytnents trotn Calyoti
should the rainfall be lower than a specified threshold
level., and pay Calyon should the rainflill be above a cer-
tain level.

Case 2: Sacramento Municipa! Utility District versus
Aquila (Source: Hiiriwiiinciiidl Fiiiiiiia\ October 2001).
Sacratnento Municipal Utility District (SMUD) is Amer-
ica's sixth largest community-owtied electric utility iti
terms of customers served. The utility generates half of
its electricity and buys the rest. The generated portioti is
primarily trotii hydroelectric and cogeneration power
plants. In September 2001), SMUD etiteird into a five-
year precipitation contract with Aquila (an energy trading
firm based in Kansas Cit '̂) to protect against low rainflill
levels. Similar to the deal in C'ase 1. the coTitract was struc-
tured as a collar whereby Aquila would pay SMUD antui-
ally up to $20 million when the water How through the
hydro plants is below a certain amount, while SMUD
would pay Acjuila $2(1 million in years when precipitation
is abundant. To further reduce the cost of hedging, the
payments to Aquila was capped at $50 milhon.

Case 3: Golf Course Operator versus Societe Generate
SA (Source: Bloomberg News and C l̂ommentary, littp://

www.bloomberg.coin/news/index.html). Mr. Dieter
Worms operates a golf course. Gut Apeldor Cold Club,
in Hennstedt wliicli is about 100 kilometers north of
Hamburg in Cermany. Tiie business suffered in 2001
\\ hen the weather was mainly wet. In the subsequent year,
Mr. Worms entered into a derivative contract with Societe
Generale SA. the third largest bank in France. The deal
covered the period h'om May to September, within which
Mr. Worms would receive compensation should the total
number ot raitiy days go beyond 50. Specifically, once the
number ot days with rainfall ot more than a millimeter
passed 50, Societe Generale SA would pay Mr. Worms tor
every wet day.

Finally, the Swedish Meteorological and Hydrolog-
ical Institute and Energy-Koch Trading have teamed up
to launch a Nordic Precipitation Index. This index is
basecH on 17 stations, 9 in Norway, and 8 in Sweden. Con-
cerned companies in the Nordic region can enter into
contracts based on this index tor their risk management.'

PRECIPITATION MODELING
AND CONTRACT VALUATIONS

Modeling Daily Precipitations

As pointed out by Dischel [2000], in contrast to the
modeling of temperature, modeling precipitation presents
several challenges.-̂  The first challenge is the accurate mea-
surement ot precipitation. Most techniques involve phys-
ically collecting raindrops and measure the precipitation
amount accordingly. Factors such as local wind can afFect
the collection accuracy Secondly, spatial correlation is an
elusive measure. Unlike temperature which is highly cor-
related across nearby regions, raintall can be very local-
ized. A tremendous basis risk is present tor any
precipitation contracts when the measurement site (usu-
ally government operated) is far away from the site in
question. The third challenge is in selecting a proper dis-
tribution to describe the precipitation data. Again, unlike
temperature which can adequately be described by a
simple distribution such as Gaussian, the statistical prop-
erty ot precipitation is tar more complex and a more
sophisticated distribution is called tor.

Notwithstanding, some authors have attempted to
model precipitation statistically. For instance, Saiiso and
Ciueuni |I999| proposed a model for tropical rainfall at a
single location tbr a fixed period (e.g., 10 days). The
amount ot rainfall is modeled as a tratisformed normal
variable with dyiiatiiic parameters, while the event of rain
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or dry is modeled by truncating the same normal vari-
able-—negative draws h-om the normal distribution cor-
respond to dry days. SanscS and Guenni |2000] later
extended dieir model to a multi-site setting. Wilks 1199S[,
on the other hand, proposed a multi-site model tor daily
precipitation using a combination of two-state Markov
process (for the rainfall occurrence) and a mixed expo-
nential distribntion (for the precipitation amount). He
found that the mixture ot exponential distributions offered
a much better fit than the commonly used gamma dis-
tribution (e.g., Katz [1977[; Richardson and Wright
11984]; and Wilks [1989]).

In the following, we propose a single-site model in
a spirit similar to Wilks 11998|. For comparison purposes,
we examine three approaches of modeling the
precipitation; a gamma distribution, a mixture of expo-
nentials, and kernel density.

Let X^ be a binary variable that takes a value ot I if
It rams on day f and 0 otherwise. X is an n-th order Markov
chain if X̂  is independent of X̂ _̂ , tor all h > ii. For
simplicity, we will consider only tirst order Markov chains,
i.e., /; = 1. Let p be the probability that day / is wet. Then
for the first order Markov chain, we have

where i/n and q^^^ are the one-step transition probabilities.
Conditional on X̂  = I (i.e., a wet day), the amount

of rainfall Y can be modeled as a random variable that fol-
lows a particular distribntion.' When V̂  follows a gamma
distrihuticMi, the probability density function is

. / « _ ( > • ' ) -

where a and b are distribution parameters which can be
estimated using the maximum likelihood method. When
Y^ follows a mixture of two exponential distributions,
the probability density function and cumulative den-
sity function are

1- a
(3)

(4)

respectively. The parameters a, p, , and (5-, can also be
estimated using the maximum likelihood method.

Seasonalities can easily be built into the framework.
Ft)r instance, we can allow the one-step transition proba-
bility c], I tt) vary with the time of the year as follows;

f | .sin
2m

365 t\,. cos 365

where f is time, »/; is a small integer to be set by the user,
and (-||, i'l̂ , and r-,̂  ( / = 1, 2 m) are parameters to be
estimated.

The seasonal feature for the conditional daily pre-
cipitation amounts can be handled in a similar manner.
Specifically, the mean conditional precipitation for day /
can be modeled as

Y, = -—
365 ,, cos( 0]

365
where in serves the same purpose as in (5), and (/,,, d. ,

and (/-,. ( I — 1,2, . . . . in) are parameters to be estimated.

Model Calibration, Estimation,
and Comparisons

If the transition probabilities are constant, then the
maximum likelihood estimate for q,^^ (ty,,) is the ratio of
(a) the total number of raining days where the previous
day is dry (wet) and (h) the number of dry (wet) days. To
estimate seasonal transition probabilities as defined in
Equation (5), we estimate the parameters using the
following linear regression model for those days where
the previous day rains;

,(1) -
365 365

where /(]) — 1 if day ! rains and 0 otherwise. The term
£ IS the regression error. The conditional probability' q^^.
can be estimated in the same way. In general, the larger
the number nu the richer the seasonalit)' pattern the model
can capture. However, a larger in will also reduce the
estimation accuracy. Based on our experiences, we usually
set m — 5. Exhibit 1 shows the estimated transition
probability i/,̂ , and q^, for Chicago Midway Airport using
data from 195(1 to 2003.
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Similarly, the mean conditional precipitation amount
can also be estimated using linear regression fk)m Equation
(6). The result for Chicago Midway is shown in Exhibit 2.

Next, we need to estimate the conditional distribu-
tion of the precipitation amount. To dampen the season-
ality effect, we normalize the precipitation amount Y^ by
the seasonal mean V'̂  in Equation (6). The parameter esti-
mates for the mixed exponential distribution are presented
in Exhibit 3. {Note; precipitation is measured in inches
throughout the article.)

The parameter estimates tor the gamma distribu-
tion are shown in Exhibit 4.

To see how good the fits are, we make the following
observation: Let Fbe the true probabihty distribution of
y /Y and .W be the standard normal distribution: then
O"'(F{yyy^)) will be a standard normal random variable.
IfF is a good estimated of F, then Z = 0-\F{Y/Y^)
should be very close to a standard normal variable too.

We tested the above for both the gamma and the
mixture of two exponential distributions. For sanity
check, we also used kernel density estimate ot the dis-

tribution F. As expected, the kernel density estimate
from the data set did pass the Kolmogorov-Smirnov test
for normality. On the other hand, tor both the gamma
and the mixed exponential distributions, the sample Ẑ
failed the Kolmogorov-Smirnov test. However, they are
not far from normal as shown by the first four moments
of Ẑ  in Exhibit 5. Note that the numbers outside (inside)
the parentheses are for the condition where it was dry
(wet) the day before.

A casual examination of the first four moments
suggests that the mixture ot exponentials provides a slightly
better fit than the gamma distribution. This is consistent
with previous findings (e.g., Wilks [1998|). Kernel density'
is in turn superior to the exponential mixture.

A Valuation Example

For precipitation derivatives, since the underlying is
not traded, the non-arbitrage option pricing theory devel-
oped in the financial markets is not applicable. Pricing is
typically a result of risk-return analysis. In other words.

E X H I B I T 1
Seasonality in Transition Probabilities

-Conditional on Raining the Day Batore

- Conditional on not Rglning ttia Day Bet

0.55

0.50

100 150 200 250 300 350

0.25

0.20
50 400

Sample period: 1950-2003, Lociukm: Chkaga Mid\^'uy Airpori.
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E X H I B I T 2
Seasonality in Conditional Precipitation

0.60 1

•—Conditional an Raining Ihe Day Betore

• - - Conditional on not Rainning Ihe Day Baton

0.10
0 50 100 150 200 250

Day of Year

Sample period: }VS0-200i, Loiiiiion: Chicago Midntn' Airport.

300 350 400

E X H I B I T 3

Previous day's state

Dry

Rain

a

0.447

0.429

0.295

0.249

A
1.573

1.563

mean

1.001

1.000

Stdev

1.345

1.358

E X H I B I T 4

Previous day's state

Dry

Rain

a

0.720

0.682

b

1.390

1.465

Mean

1.001

1.000

Stdev

1.391

1.465
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price equals the sum ot expected payout plus a risk pre-
mium. Therefore, the key in valuation is the accurate pro-
jection ot the payout distribution.

The daily precipitation model we have presented
can be used to value most ot tlie precipitation contracts.
Since closed-tbrm solutions are ditFicult to derive due
to the complexity ot the model, we resort to Monte
C l̂arlo simulations.

Let's consider a one-inch put option on the cumu-
lative rainfall for the month of March at C^hicago Midway
Airport. We simulate 1 (),()()() daily precipitations using
each ofthe three first-order seasonal Markov cliain models
estimated in the last section. From that we can derive the
simulated cumulative precipitation for the month ot
March. Note that all the sinuilation paths start with a
rainy day on Oeceniber 31 and end on March 31. The
snow amount is converted to raintall equivalent.

Exhibit 6 presents the precipitation results for the
month of March from the historical simulation (of the
last 54 years) and the model-based simulation. The last
column ofthe table sliows the value ofthe option (defined
by the mean value ot the payotl).

From the table we can see that all three models under-

estimate the value of tlie put option relative to the historical
average. Most ofthe undervaluation is attributed to the
underestimation ot the standard deviation ot the cumulative
precipitation tor the month of March. We tind that this is
true tor almost all the months. This bias can be corrected
by using a higher order Markov chain such as those discussed
in Dubrovsky, Buchtele, and Zalud |2l)(l4].

Consistent with otir estimation results, the perfor-
mance ot the exponential mixture and kernel density is
superior to that ofthe gamma distribution, and kernel
density is the best. This is not surprismg in that the
kernel density approach is non-parametric and there-
fore is the most faithful to the data. Oi course, every
benetlt conies with a cost.

SUMMARY AND CONCLUSION

As the overall market for weather derivatives grows,
contracts on precipitation are gradnally making their way
into the scene. However, compared vvith temperature
derivatives, the market share of precipitation derivatives
IS very minimal. The slow growth is not due to a lack of
interest or demand. In tact, end-users such as farmers and

E X H I B I T 5

Distribution

Gamma

Mixture of Exp.

Kernel Density

Mean

-0.025 (-0.251)

0.0128(0.009)

-0.001 (-0.003)

Standard Dev.

0.986(0.985)

0.963 (0.970)

0.996(0.998)

Skewness

0.677 (0.652)

0.306 (0.290)

0.017(0.005)

Kurtosis

3.290(3.180)

2.861 (2.870)

3.163(3.186)

E X H I B I T 6

Distribution

History

Gamma

Mixture of Exp.

Kernel Density

Mean

2.664

2.574

2.629

2.629

Standard Dev.

1.352

1.154

1.272

1.298

Skewness

0.255

0.683

0.779

0.8559

Kurtosis

2.034

3.603

3.704

3.971

Put Value

0.027

0.016

0.020

0.021
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hydroelectric power producers are very keen on precip-

itation contracts. The key culprit is the difficulty aiici chal-

lenge in properly niodeling precipitation. When Hnancial

institutitins do not have a good handle on modeling, they

hesitate to provide Ljuotes. So far, there isn't any literature

on the valuation of precipitation derivatives.

The current article fills this important gap in the

literature and the industry. We propose, calibrate, and

compare three precipitation models: a gamma distribution,

a mixture of e.xponentials, and kernel densit)'. Our analyses

show that the latter two models dominate the tirst.

Undoubtedly, many issues are still pending and fur-

ther research is required. For instance, spatial correlation

may be \'ery important for certain contracts. If the con-

tract site and the measurement site are far away, it is imper-

ative that a proper gauge of correlation be in place.

Anotlier issue is the modeling of extreme events: pro-

longed period of draught or sudden, severe flood.

Although most contracts concern cumulative precipita-

tions over a particular period, the same amount of cumu-

lative precipitation can have quite different consequences.

For instance, a three-inch precipitation over a month can

either occur evenly throughout or in tbe form ot a down-

piHir m 30 minutes. This will have quite different conse-

quences for a farmer. Future research needs to focus on

such important issues.

ENDNOTES

C'ao and Wei L;r.itfflilly ackno\vledjj;c the hii.iiici.il support
from the Social Sciences and Humanities Research Council of
Canada. The views expressed here are solely the authors' and
are not those of the XL Weather & Energy Inc..

'See http://www.entergy'koch.eu.coin/biisinessgroups/
SMI II_INDEX.pdf for details.

"Several authors have proposed various valuation models
for temperature derivative. Examples include Brody et al. |2()O2|,
Cnupbell and Diebold |2()03|. Cao and Wei |2lHKI[, and Cao
and Wei |2O(l41. Tlie list of challenges was from Dischel [2()ll(l|.

^We model precipitation as a year-rouiui \.u iable. S
f'.ill is converted to rainfall equivaleiit.

REFERENCES

iy. n.(; . .J. Syr()ke, and M. Zervt^s. "DyTianiic Pricing ot
Weather I )erivativcs." QiiaiillhUm- l-mam: 2 {2m2). p\x 189-1W.

Campbell, S.. Mid F.X. Diebold. "Weather Forecasting for Weather
derivatives." NIJER Workint; l'aper No. WlOMl, 2003.

Cao, M.. and J. Wei. "Pricing the Weather." Rish. May 2(n)()
pp. 67-711.

. "Weather Derivatives Valuation and Market Price of
Weather Risk." Joiirihil of I'liliiivs M,irkrl<. fortlicoming, 2(H)4.

Hiscliel, 13. "Seeding a l*-ain Market." Euvrnviuicutal h'
September 21)011. pp. 2-4.

Dubravsky M., [. Liucbtele, and Z. Zaliid. "High-Frequency
and Low-Freqnency Variability in Stoeliastic Daily Weather
Clcnerator and Its Effect on Agricultunil and Hydrologic Mod-
elinLj." Cliiiuuic CluiHi^c, Vol. 63, Nos. 1-2 (2004), pp. 145-179.

Katz, R.W. "I'recipitations as a Chain-Dependent Process."

Joiinuil ot Applied MvrcoivloiiY, '*̂ ' {''"^77), pp. 671-676.

Richardson, C.W., and D.A. Wright. "WGEN: A Model for
Generating Daily Weather Variables." U.S. Department of Agri-
culture, Agricultural Research Service, Ali.S-S, iyS4.

Sanso, 13., and L. Ciuenni. "A Stochastic Mode! for Tropical
Rainfall at a Single Location." Joiiriidl of Hyiiroh\<iy, 214
pp. 64-73.

. "A Non-stationary Multi-site Model for Rainfall."/ciin
iiH-nuUi Slaiisiiail Assoiiiitioii. 9 5 (2(H)()), p p . | | ) 6 4 - I ( I S 9 .

Wilks, D.S. "C~onditioning Stochastic Daily Precipitation Models
on Total Monthly Precipitation." IVatir Rcfoiiircs lifscaali. 23
(19S'.)).pp. 1429-1439.

. "Multisite Generalization of a Daily Stochastic Precipi-
t,ition Generation Made]'' Joiinid! of I iydroloi^y, 210 (199S), pp.
178-191

7(1 onhr rcprlins oj ihl,^ artidc, please ioiil<Kl Ajaiii Miilik' ai

ainalik(a}j\joiiYuah.(oui or 212-224-3205.

FAII 2U Ti it JOURNAL OF iNVhsiMtNis 99




