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This paper has two objectives: (1) to propose and implement a valuation
framework for temperature derivatives (a specific class of weather deriva-
tives); and (2) to study the significance of the market price of weather risk.
The objectives are accomplished by generalizing the Lucas model of 1978
to include the weather as another fundamental source of uncertainty in
the economy. Daily temperature is modeled by incorporating such key
properties as seasonal cycles and uneven variations throughout the year.
The temperature variable is related to the aggregate dividend or output
through both contemporaneous and lagged correlations, as corroborated
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1According to the Weather Risk Management Association (WRMA), a total of 3,937 weather deriva-
tive transactions were completed in the weather risk industry for the period from April 1, 2001, to
March 31, 2002. This represents a 43% increase from the previous year, which recorded a total of
2,759 transactions.

In the meantime, the trading volume of temperature derivatives listed on the Chicago
Merchantile Exchange has also grown rapidly. The total number of contracts traded was 4,165 in
2002 and 14,234 in 2003.

by the data. Numerical analysis shows that the market price of weather
risk is significant for temperature derivatives. © 2004 Wiley Periodicals,
Inc. Jrl Fut Mark 24:1065–1089, 2004

INTRODUCTION

It is estimated that about one-seventh of the U.S. economy is weather
sensitive (Challis, 1999; Hanley, 1999). Weather conditions directly
affect agricultural outputs and the demand for energy products, and indi-
rectly affect retail businesses. For instance, earnings of the power indus-
try depend on the retail prices and the sales quantities of electricity,
which in turn are affected by weather conditions. Until 1997, earnings
stabilization for utility firms was primarily achieved through price hedg-
ing mechanisms while volumetric risks were largely left unhedged.
However, increasing competition due to ongoing deregulations made it
necessary for companies to hedge the volumetric risk caused by unex-
pected weather conditions. Such needs have created a new class of deriv-
atives, weather derivatives. Since its inception in the late 1990s, the mar-
ket for weather derivatives has grown steadily. Among all the weather
derivative transactions, temperature-related deals are the most prevalent,
accounting for more than 80% of all transactions.1

Although the impetus of the weather derivatives market comes from
the power and energy sectors, weather derivatives can be and have been
used by other industries such as the retail business and the tourist indus-
try. For instance, the inventory level of winter coats at department stores
depends on the weather forecast for the coming winter and the eventual
sales depend on the actual weather condition (Agins & Kranhold, 1999).
To avoid loss of sales, contracts can be struck to hedge against unfavor-
able weather conditions.

Despite the rapid growth of the weather derivatives market, the
bid/ask spread is still large. There is not yet an effective pricing method
and some key valuation issues have not been addressed. For example,
insofar as weather variables are not tradeable, weather risk will
command a risk premium; it is therefore important to ask if the market
price of weather risk is a significant factor in valuations.
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2For a complete survery, see Hanley (1999).

This paper is aimed at filling the aforementioned gaps in the litera-
ture. Using an equilibrium valuation model for temperature derivatives,
the paper establishes whether the market price of temperature risk is
significant in the valuation of weather derivatives. Specifically, Lucas’
(1978) equilibrium asset-pricing model is extended so that the funda-
mental uncertainties in the economy are generated by the aggregate
dividend and a state variable representing the weather condition, i.e., the
temperature. The model is calibrated with temperature and consump-
tion data, and the market price of weather risk is then analyzed and
quantified.

It is found that the risk premium can represent a significant part of
the temperature derivative’s price evaluated with risk aversion and aggre-
gate dividend process parameters conforming to empirical reality. The
market price of weather risk is more pronounced in option prices than in
forward prices due to non-linearity in the option’s payoff. Discounting the
derivative’s payoff at the risk-free rate can therefore lead to significant
pricing errors. The only time for discounting at the risk-free rate to be a
valid approximation is when the correlation between the aggregate divi-
dend and the temperature is very low and/or the investor’s risk aversion is
low, none of which is supported by empirical evidence.

The paper proceeds as follows. The next section briefly describes
temperature derivatives. The section Valuation Framework and
Temperature Modeling lays out the modelling framework. Valuation for-
mulas for temperature derivatives and general discussions on the market
price of temperature risk are given in the section Valuing HDD/CDD
Derivatives. The Empirical Estimation section contains the estimation
results for the temperature process and the correlation between monthly
average temperature and consumption. The penultimate section quanti-
fies and analyzes the market price of risk via simulations. The last section
contains concluding remarks.

DESCRIPTION OF TEMPERATURE
DERIVATIVES

The underlying variables for weather contracts include temperature, rain-
fall, snowfall, and humidity, to name a few.2 However, the most commonly
contracted weather variable is temperature. Most contracts are written on
heating degree day (HDD) and cooling degree day (CDD). The daily HDD
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and CDD are calculated as max[65F � y, 0] and max[y � 65F, 0], respec-
tively, where y is the daily average temperature defined as the arithmetic
average of the daily maximum and minimum temperatures. For brevity,
the daily average temperature is referred to as daily temperature hereafter.
For a typical northern or midwest city in the United States, an HDD sea-
son includes winter months from November to March and the CDD
season (or summer season) includes months from May to September.
April and October are commonly referred to as the shoulder months.

Most contracts are written on the accumulation of HDD or CDD
over a calendar month or a season. There are four basic elements in a
contract: (i) the underlying variable: HDD or CDD; (ii) the accumula-
tion period; (iii) a specific weather station reporting daily temperatures
for a particular city; and (iv) the tick size: the dollar amount attached to
each HDD or CDD.

The fictitious example in Table I presents the typical elements of a
swap and an option. In the New York HDD swap, the tick size is set at
$5,000 per HDD. XYZ Co. agrees to pay ABC Co. a fixed rate of
1,000 HDD and in return for a floating rate, which is the actual accu-
mulated HDD during January, 2002. The realized HDD for January,
2002 is 956. Then the payoff for XYZ Co. at maturity is $5000 �

(956 � 1000) � �$220,000.
The Chicago CDD call option works in a similar fashion. A cap or

maximum payoff is typically specified for an option contract. For

TABLE I

Examples of HDD- and CDD-based Swap and Option

HDD swap CDD call option

Location La Guardia Airport, New York O’Hare Airport, Chicago
Buyer XYZ Co. (paying fixed rate) XYZ Co. (paying call premium)
Seller ABC Co. (paying floating rate) ABC Co.

Accumulation January 1–31, 2002 June 1–30, 2002
period

Tick size $5,000 per HDD $5,000 per CDD
Fixed rate 1,000 HDD
Strike level 190 CDD

Floating rate the actual HDD
for January, 2002 � 956 HDD

Settlement price the actual CDD 
for June, 2002 � 196 CDD

Payoffs at maturity (956 � 1000) � 5000 � �$220,000 (196 � 190) � 5000 � $30,000
for the buyer
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3The sample size is 7300 (� 365 � 20) since, for simplicity, we have omitted the observations for
February 29.

instance, the payoff function for a call on CDD with a cap is, min[cap,
tick � max(0, CDD � strike)]. For brevity, the cap is ignored in this study.

VALUATION FRAMEWORK AND
TEMPERATURE MODELING

The Basic Valuation Framework

Because temperature is not an asset, let alone tradable, the traditional no-
arbitrage, risk-neutral valuation cannot be applied to temperature deriva-
tives. To study the market price of risk attached to the temperature vari-
able, an extension of the Lucas (1978) pure-exchange economy is used.
Specifically, a discrete setting is adopted where the fundamental uncer-
tainties in the economy are driven by two state variables: the aggregate
dividend dt and the temperature Yt. Aggregate dividends can be viewed as
aggregate outputs. For a representative investor, the equilibrium condi-
tions imply that total consumption is equal to the aggregate dividend, and
the time t price of a contingent claim with a payoff qT at a future time T,
denoted by X(t, T), is

(1)

where Uc(�T, T) is the first derivative of the period-T utility function on
consumption, cT: U(cT, T). Contingent claims on the temperature vari-
able can be valued via Equation (1) once the temperature process, the
agent’s preference, and the dividend process are specified.

Modeling the Daily Temperature Behavior

In order to model the temperature variable, historical daily temperature
data, covering the period from January 1, 1979, to December 31, 1998,
for Atlanta, Chicago, Dallas, New York, and Philadelphia are obtained
from the National Climate Data Center (NCDC), a subsidiary of the
National Oceanic Atmospheric Administration (NOAA). Table II pres-
ents summary statistics.3 The following observations are in order: (1) the
sample means of the two southern cities (Atlanta and Dallas) are higher
than those of the three northern counterparts, as expected; (2) northern
cities generally have larger standard deviations, with Chicago having the

X(t, T) �
1

Uc(dt, t)
Et(Uc(dT, T)qT,  5 t � (0, T)
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TABLE II

Summary Statistics for Daily Temperature

Atlanta Chicago Dallas New York Philadelphia

Mean 63 50 66 56 56
Median 64 50 67 56 56
Mode 79 70 86 72 75
Standard deviation 15 20 16 17 18
Minimum 5 �17 9 3 1
Maximum 92 93 97 93 92
Sample size 7,300 7,300 7,300 7,300 7,300

Correlation

Atlanta 1.0000
Chicago 0.8847 1.0000
Dallas 0.8777 0.9038 1.0000
New York 0.8966 0.8964 0.8443 1.0000
Philadelphia 0.9125 0.8970 0.8455 0.9853 1.0000

Auto correlation

k-lags
1 0.9402 0.9421 0.9354 0.9448 0.9462
2 0.8690 0.8809 0.8680 0.8896 0.8926
3 0.8281 0.8494 0.8318 0.8654 0.8678
4 0.8069 0.8304 0.8132 0.8533 0.8550
5 0.7952 0.8181 0.8005 0.8470 0.8486
6 0.7867 0.8091 0.7918 0.8431 0.8437
7 0.7804 0.8022 0.7855 0.8394 0.8380
8 0.7764 0.7973 0.7813 0.8346 0.8330
9 0.7728 0.7925 0.7773 0.8297 0.8283

10 0.7687 0.7894 0.7731 0.8246 0.8228
11 0.7665 0.7870 0.7718 0.8197 0.8175
12 0.7652 0.7857 0.7720 0.8164 0.8142
13 0.7614 0.7835 0.7683 0.8124 0.8098
14 0.7562 0.7793 0.7608 0.8099 0.8054
15 0.7534 0.7759 0.7558 0.8070 0.8017

Note. Sample period is from January 1, 1979, to December 31, 1998.

4Although not shown here, plots of daily temperature also reveal a clear global warming trend for
each city.

largest sample standard deviation of 20 degrees, indicating large temper-
ature swings (in contrast, Atlanta has the smallest sample standard devi-
ation of 15 degrees); (3) correlations among the five cities are very high,
with New York and Philadelphia having the highest correlation, 0.9853;
and (4) daily temperatures exhibit strong autocorrelations.4

To fix notation, let yr index the years in the sample period, thus
yr � 1 for 1979, yr � 2 for 1980 and yr � 20 for 1998. In addition,
January 1 is indexed as d � 1, January 2 as d � 2, and so on for 365 days

, . . . ,
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FIGURE 1
Standard Deviation of Date d’s Temperature (cd).

Note. The graph shows the standard deviation for each of the 365 calendar days. For each calendar
day, the standard deviation is calculated from the corresponding 20 observations in the sample
(January 1, 1979–December 31, 1998). 

5The finance literature on weather modelling is very scanty. One exception is Campbell and Diebold
(2003). They use a time-series approach to modeling and forecasting daily average temperature for
10 U.S. cities. They find that the time-series approach is surprisingly successful in describing and
capturing the distributional properties of the temperature variable. The model proposed below is
also based on the time-series approach, However, the specification is different from theirs.

in a year. Denote yyr,d as the temperature on date d in year yr. The mean
and the standard deviation for date d can be calculated as

and

5 d �1, 2 365 and

The plot of daily standard deviations for Atlanta and Chicago in
Figure 1 shows a clear seasonal pattern: the temperature variation in the
HDD season is larger than that in the CDD season. This is common for
all cities under consideration.

In light of the above observations, a model for the daily temperature
should possess the following features. First, it must capture the seasonal
cyclical patterns; second, the daily variations in temperature must be
around some average “normal” temperature; third, it should incorporate
the autoregressive property in temperature changes (i.e., a warmer day is
most likely to be followed by another warmer day, and vice versa); fourth,
the extent of variation must be bigger in the winter and smaller in the
summer; and fifth, the model must reflect the global warming trend.5

(cd)

[y � [y1�y2 �y3 �. . .�y365]�, . . . ,

 cd � B
1
19

 a
20

yr�1
(yyr,d � yd)2;yd �

1
20

 a
20

yr�1
 yyr,d

(cd)(yd)
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For ease of exposition, the daily temperature observations are stacked
in vector Yt for t � 1, 2, 3 T � 20 � 365 � 7300 and the correspon-
ding historical average temperature for each day are stacked in vector 

where is a vector of ones. After removing the
mean and the trend, the residual daily temperature can be expressed as

(2)

where b is the warming trend parameter and t � 1, 2 T.

Assumption 1. The daily temperature residual, , follows a k-lag auto-
correlation process:

(3)

where presents the randomness in the temperature changes.

In the above, the volatility specification using the sine wave reflects
the fourth requirement and the feature in Figure 1. The parameter 
captures the proper starting point of the sine wave. The autocorrelation
setup reflects the third feature. The other features such as the global
warming trend and seasonal variations and are captured by and .
Since represents the daily historical average temperature within the
sample, the daily temperatures over the first half of the sample period
must be, on average, lower than the historical average temperature; and
the opposite is true for the second half of the sample. This is captured by
the term in Equation (2) involving b.

Modeling the Investor’s Preference
and Aggregate Dividend Behavior

Following the convention in the literature, the representative investor is
assumed to have a risk preference characterized by constant relative risk
aversion:

Assumption 2. The representative agent’s period utility is described by 

(4)

with the rate of time preference, and the risk parameter
g� (��, 0].

r � 0

U(ct, t) � e�rt 
ct
g	1

g 	 1

Yt

Ytb

f

jt

 5�t � 1, 2, . . . , T
 jt  ~  i.i.d N(0, 1)

 st � s0 � s1 |sin(pt�365 	 f)|

 Ut � a
k

i�1
rtUt�i 	 st *  jt

Ut

, . . . ,

Ut � Yt � a b
365

 at �
T
2
b 	 Ytb

20 � 1l20�1y365�1 � l20�1

Yt �

, . . . ,
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6In general, the correlation parameters, can be time dependent throughout the
year, and this will not add any difficulty in modeling. To streamline notation, the time index to those
parameters is omitted, although all results still hold when time dependency is introduced.

w, h1, h2, h3, . . . ,

For the aggregate dividend process, the estimation results of Marsh
and Merton (1987) suggest mean-reversion in the rate of aggregate divi-
dend changes. Specifically,

Assumption 3. The aggregate dividend, , evolves according to the
following Markov process:

(5)

where measures the speed of mean reversion, and the error term
takes the following form

(6)

In the above, is an i.i.d. standard normal variable which captures
the randomness due to all factors other than the temperature uncer-
tainty; and its lagged terms are innovations of the temperature variable
defined in Equation (3). By construction, the contemporaneous correla-
tion between the dividend process and the temperature process is w. The
lagged terms capture the lagged effects of the temperature on the aggre-
gate dividend or output of the economy. By necessity and assumption,

is bounded.6 When t represents a future time and when
all the lags are beyond the present time, the conditional variance of is

which can be broken down into three parts: the
part due to all factors other than the temperature, s2; the part due to the
contemporaneous impact of the temperature, and the part due
to the lagged impact of the temperature, . The correlation
between the dividend innovation at time t and the temperature innova-
tion at time is When and

the dividend process is totally independent of the tempera-
ture innovation.

The specifications for the representative agent’s preference in
Equation (4), the dividend process in Equations (5) and (6), and temper-
ature dynamics in Equations (2) and (3), together with the general pricing
equation in Equation (1), enable the valuation of any claim contingent
upon the temperature variable.

hj � 0, 5 j,
w � 0[hj�(1 	

w2

1 � w2 	 gm
j�1h

2
j )].t � j 5 j

s2©m
j�1h

2
j

s2 w2

1 � w2;

s2[1 	
w2

1 � w2 	 gm
j�1h

2
j ],

nt

h2
j  (5 m)gm

j�1

jt

Pt

0 
 m 
 	�

	 p 	 hmjt�m d ,nt � sPt 	 s c w

21 � w2
 jt 	 h1jt�1 	 h2jt�2 	 h3jt�3

1 � m

dt�1 	 nt,�5�m 
 1ln dt � a 	 m ln

dt
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VALUING HDD/CDD DERIVATIVES

Valuation of HDD/CDD Forward Contracts
and Options

Consider an HDD forward contract with a tick size of $1 and a delivery
price, K. The accumulation period starts at T1 and ends at T2 � T1.
Denote HDD(T1, T2) as the accumulation of heating degree days
between dates T1 and T2. Then, by applying the general pricing equation
in Equation (1) and the utility function in Equation (4), the value of the
HDD forward contract at time t, fHDD(t, T1, T2, K), can be expressed as

(7)

By definition, the forward price at time t, FHDD(t, T1, T2), is the value of
K which makes f � 0. That is,

(8)

Similar expressions for fCDD(t, T1, T2, K) and FCDD(t, T1, T2) can be
obtained by replacing the notation “HDD” in Equations (7) and (8) with
“CDD.”

Now consider a European option written on HDD(T1, T2) with
maturity T2 and strike price X. Denote the call and put prices at time t
as CHDD(t, T1, T2, X) and PHDD(t, T1, T2, X), respectively. Again, by
Equations (1) and (4), the call and put values can be expressed as

(9)

(10)

Similar formulas for CCDD(t, T1, T2, X) and PCDD(t, T1, T2, X) can be
obtained by replacing “HDD” with “CDD” in Equations (9) and (10).

The specifications for the dividend and temperature processes render
closed-form solutions impossible. Monte Carlo simulations must be used.

Market Price of Weather Risk

The inherent market price of risk for the temperature variable results
from the inability to hedge the temperature risk. In other words, the

 PHDD(t, T1, T2, X) � e�r(T2�t)dt
�gEt(d

g
T2

 max(X � HDD(T1, T2), 0))

 CHDD(t, T1, T2, X) � e�r(T2�t)dt
�gEt(d

g
T2

 max(HDD(T1, T2) � X, 0))

FHDD(t, T1, T2) �  
Et(d

g
T2

HDD(T1, T2))

Et(d
g
T2

)

 � e�r(T2�t)Etad
g
T2

dgt
 [HDD(T1, T2) � K]b

 fHDD(t, T1, T2, K) � EtaUc(dT2
, T2)

Uc(dt, t)
[HDD(T1, T2) � K]b
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correlation between the temperature variable and the aggregate dividend
plays an important role in determining the risk premium embedded in
the value of a temperature derivative contract. To begin with, the follow-
ing statement about the market price of risk can be inferred from the
pricing equations: the risk premium in the value of a derivative security
would be zero if the dividend process and the temperature process are
completely independent, i.e., if and In this case, any
contingent claim can be valued by discounting its payoff at the risk-free
rate. In certain special cases, it is also possible to make some specific
statements about the market price of risk for forward prices. Take the
forward price for HDD in Equation (8) as an example. The forward price
can be re-expressed as 

(11)

where cov( ) stands for covariance. The first term represents the
expected future spot value of HDD, and the second term represents for-
ward premium. Similar results can be obtained for the CDD forward
price. Since HDD is negatively related to the temperature, Equation (11)
implies that the forward price is smaller (larger) than the expected HDD
when and and The reverse is true
for CDDs.

EMPIRICAL ESTIMATION

Estimation of the Temperature Process

Our setup calls for a joint estimation of the aggregate dividend and the
daily temperature processes. Macroeconomic variables such as GNP or
aggregate consumption can be used as proxies for the aggregate divi-
dend. Unfortunately, the frequency of such data is usually low (at most
monthly), making it impossible to carry out the joint estimation with
daily data. To get around this difficulty, the temperature process is esti-
mated independently using daily data, and then the correlation between
the dividend and temperature processes is estimated using the monthly
consumption data.

hj � 0, 5 j).hj 
 0, 5 j (w � 0w � 0

# , #

 � Et(HDD(T1, T2)) 	
cov(dgT2

, HDD(T1, T2))

Et(d
g
T2

)

 FHDD(t, T1, T2) �
Et(d

g
T2

HDD(T1, T2))

Et(d
g
T2

)

hj � 0, 5 j.w � 0
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The parameters in Equations (2) and (3) are estimated using the
maximum likelihood method. In order to determine k in Equation (3),
sequential estimations are performed by including, respectively, 

and so on, and for each estimation, the Schwarz criterion, SC �

[�2 ln(maximum likelihood) 	 (ln T)(number of parameters)] is calcu-
lated. The optimal number of lags is the one which minimizes SC.
It turns out that three lags describe the data the best for all cities. The
estimation results are reported in Table III.

Almost all parameters are estimated with very low standard errors,
implying the proper specification of the temperature process.
Furthermore, the first order autoregressive behavior tends to be stronger
for southern cities, and has the highest value for Atlanta. Roughlyr1

r3,
r2,r1,

TABLE III

Maximum Likelihood Estimation Results

Log- SC
s0 s1 f b rl r2 r3 likelihood value

Atlanta

7.6501 5.0697 �0.1939 0.0235 0.9487 �0.3186 0.0839 �20753.6 41569.5
(0.1144) (0.1130) (0.0139) (0.0264) (0.0117) (0.0157) (0.0117)

Chicago

7.9283 3.1183 �0.1999 0.0682 0.8605 �0.2666 0.0929 �23266.2 46594.7
(0.1455) (0.1718) (0.0247) (0.0371) (0.0117) (0.0151) (0.0117)

Dallas

9.0128 6.3318 �0.1495 0.0311 0.8720 �0.2523 0.0706 �21513.7 43089.8
(0.1274) (0.1207) (0.0104) (0.0263) (0.0117) (0.0152) (0.0117)

New York

6.7025 2.8063 �0.2432 0.0979 0.8093 �0.2596 0.0929 �21864.5 43791.3
(0.1186) (0.1372) (0.0264) (0.0267) (0.0117) (0.0148) (0.0117)

Philadelphia

7.0430 3.2261 �0.2026 0.1047 0.8274 �0.2565 0.0966 �21941.7 43945.7
(0.1247) (0.1423) (0.0176) (0.0288) (0.0117) (0.0149) (0.0117)

Note. 1. The estimated system is:

with 

2. The numbers in parentheses are standard errors.
3. “SC value” stands for Schwarz criterion value which is defined as �2 ln(maximum likelihood) 	 (ln T )(number

of parameters). This criterion is used to determine the optimal number of lags, k, in the error term, Ut. This value
is to be minimized. It turns out that k is 3 for all five cities.

jt � i.i.d. N(0, 1),���t � 1, 2, . . . , 7300

st � s0 � s1 0sin(pt�365 	 f) 0
Ut � Yt � ( b365(t � 7300

2 ) 	Yt)

Ut � r1Ut�1 	 r2Ut�2 	 r3Ut�3 	 # # #	 rkUt�k 	 st * jt
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7Although not reported, the correlation for each month of the year is also calculated, and the over-
all structure is consistent with the HDD/CDD season dichotomy, but the change in sign and magni-
tude is not very smooth. A smooth fitting procedure could be applied to the monthly correlation
estimates.

speaking, a stronger autocorrelation means less dramatic changes in
temperature, and vice versa. As shown in Table II, Atlanta does have the
lowest overall standard deviation in the sample period. Incidentally,
Atlanta has the lowest trending parameter and Philadelphia has the
highest. Over the twenty-year period, a value of, say 0.1047 (for
Philadelphia), indicates that the temperature has risen by about two
degrees Fahrenheit.

Correlation Estimation Using Monthly Data

Historical monthly consumption data are obtained from the Federal
Reserve Bank of St. Louis (http://www.stls.frb.org/fred). Total personal
consumption is used to proxy the aggregate consumption. The consump-
tion data are matched with monthly average temperature. Again, the
sample period is from 1979 to 1998 and the total number of observa-
tions is 20 � 12 � 240.

Joint dynamics for the temperature variable and total consumption
similar to those in Equations (2), (3), (5), and (6) are postulated, all on a
monthly scale. To avoid the cumbersome evaluation of all the Schwarz
criterion permutations for the joint system, the temperature system and
the consumption process are estimated separately, and the resulting
residuals are used to estimate the parameters in Equation (6). Panel A of
Table IV reports the temperature estimation results.

Next, the constant correlation between the consumption residuals
and the temperature residuals is calculated. This is done for each city,
and for the average residual over the five cities. Panel B of Table IV sum-
marizes the results. It is seen that, when the correlation is forced to be
constant throughout the year, it tends to be negative and not very high.
However, a simple dichotomy of CDD and HDD months (by putting
April and October into HDD months) shows a clear seasonal pattern in
the correlation. The results indicate that, in the summer/winter months,
higher/lower temperatures are associated with more consumptions. This
is certainly intuitive for energy and power products.7

With the above insights, the lagged correlations can be investigated.
Based the HDD/CDD dichotomy, it is assumed that the contemporaneous
correlations keep the same absolute values but can change sign across the
two seasons. As for the lagged coefficients in Equation (6), two simplifying

b

b,



TABLE IV

Estimation Results for Monthly Average Temperature and Consumption

Panel A: Parameter estimates for monthly average temperature

City s0 sl f b rl r2 r3

Atlanta 4.1563 2.2222 �0.2796 0.0293 0.2384 0.1140 �0.0639
(0.4055) (0.4519) (0.0925) (0.0406) (0.0659) (0.0659) (0.0617)

Chicago 5.6138 3.2856 �0.2959 0.0433 0.1880 0.1324 �0.0323
(0.4836) (0.4992) (0.0817) (0.0502) (0.0651) (0.0659) (0.0602)

Dallas 3.6349 1.6489 �0.2281 0.0362 0.2178 �0.0313 0.0624
(0.3650) (0.4263) (0.1205) (0.0373) (0.0719) (0.0666) (0.0619)

New York 4.1563 2.6084 �0.2590 0.0837 0.1569 0.1431 �0.0686
(0.3354) (0.3409) (0.0734) (0.0320) (0.0653) (0.0631) (0.0572)

Philadelphia 4.3236 2.4967 �0.2620 0.0959 0.1877 0.1403 �0.0466
(0.3791) (0.4100) (0.0962) (0.0389) (0.0657) (0.0631) (0.0585)

Panel B: Correlation between temperature and total consumption

Over all Over HDD months Over CDD months
City months 1,2,3,4,10,11,12 5,6,7,8,9

Atlanta �0.1086 �0.2166 0.2268
Chicago �0.0281 �0.1439 0.3458
Dallas �0.0149 �0.1254 0.2602
New York �0.0657 �0.1464 0.2322
Philadelphia �0.0906 �0.1758 0.1903
Average �0.0739 �0.1882 0.3382

Panel C: Lagged correlation between temperature and total consumption

Zero lag One lag Two lags Three lags

Multiple correlation 0.2188 0.2199 0.2209 0.2260
R2 0.0479 0.0484 0.0488 0.0511
Adjusted R2 0.0436 0.0400 0.0362 0.0344

Contemporaneous correlation (w) 0.2298 0.2278 0.2254 0.2238
(t value) (3.4237) (3.3840) (3.3372) (3.3122)

Lag-one correlation (h1) N/A �0.0229 �0.0247 �0.0203
(t value) (�0.3391) (�0.3641) (�0.2975)

Lag-two correlation (h2) N/A N/A �0.0219 �0.0177
(t value) (�0.3230) (�0.2601)

Lag-three correlation (h3) N/A N/A N/A 0.0507
(t value) (0.7447)

Note. 1. In panel A, the estimated system is:

with 

The data frequency is monthly. The monthly temperature is calculated as the average daily temperature within
the month. is the average of the 20 monthly temperatures for each calendar month. Similar to the estimation
in Table III, the Schwarz criterion is also used to determine the optimal number of lags, which happens to be
three for all cities.

2. In panel B, correlations are calculated between monthly temperature and monthly total consumption. When calculat-
ing correlations for HDD and CDD seasons, the shoulder months,April and October, are added to the HDD season.

3. In panel C, an OLS regression is run according to Equation (5) using monthly consumption data. The residuals
from Equation (5) are then regressed on the residual terms from the system in panel A of this table according to
Equation (6). See the text for details.

4. The CDD season is the base season for signing the parameters. For example, in the zero lag case, the
contemporaneous correlation is 0.2298 for the summer season and �0.2298 for the winter season.

5. In panel C, the temperature is the average across the five cities.

Yt
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assumptions are made: (1) their magnitude remains constant, and (2) they
will adopt the sign of the contemporaneous correlation belonging to the
season where the lagged error term is from. For instance, if the current
month is June, then and will be positive, but will be negative. With
the above structure, simple OLS regressions in Equation (6) are run (with
the intercept suppressed) to estimate the parameters. The regression co-
efficients are scaled by the residual’s standard deviation to obtain

and so on. For brevity, panel C of Table IV reports only the
results for the average temperature across five cities.

It is seen that only the contemporaneous correlation is significant
(with a t value larger than 3). Adding lagged terms will reduce the
adjusted R2 and none of the estimated coefficients are significant.
Results for individual cities are the same qualitatively. Taken altogether,
the above analysis seems to indicate that total consumption is indeed
affected by the temperature as evidenced by the significant correlation
estimate which is around 0.22 in absolute terms. However, the lagged
impacts seem to be weak, and the magnitude of lagged coefficients is
much smaller.

MARKET PRICE OF RISK FOR
TEMPERATURE DERIVATIVES:
NUMERICAL ANALYSIS

Simulation Design

To jointly generate the temperature and aggregate dividend processes,
parameters are initialized as follows. First, throughout the simulations,
the rate of time preference, is set at 0.03, which mirrors the historical
level of the real interest rate.

Second, the base value of the mean reversion parameter for the div-
idend process, is set at 0.9. This is based on the empirical findings in
the literature. Shiller (1983) estimated to be 0.807, while Marsh and
Merton (1987) estimated to be as high as 0.945.

Third, as for the number of lagged error terms in Equation (6), the
analysis in the previous section seems to indicate a maximum of 30 (i.e.,
one month). Two cases are simulated, one with only the contemporane-
ous correlation and the other with 30 lagged error terms. The coeffi-
cients, are set in conjunction with the contemporaneous correla-
tion by using a simple geometric decay function, to be discussed later.
The upper bound for the contemporaneous correlation is set at 0.25,
in light of the estimation results. For simplicity, w and are assumedhj 5 j

w

w

hj 5 j

m

m

m

r

w, h1, h2,

h2h1w
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to share the same sign which remains unchanged across seasons. A
robustness check is performed for mixed correlation signs.

Fourth, for a given structure of and a contemporaneous correla-
tion w, s is set such that the overall volatility of the dividend process,

is 20%, a magnitude similar to that for a stock
market index.

Fifth, the risk aversion parameter, g is used as a comparative static
variable. Three cases are examined: g� �2.0, �10.0, and �40.0. Most
empirical studies indicate that g ranges between zero and �2.0,
although some recent studies suggest a higher risk aversion to accommo-
date the so-called equity premium puzzle. Mehra and Prescott (1985)
found that a risk aversion between �30.0 and �40.0 is required to
explain the historical equity premium. The case of g � �40.0 is there-
fore included to accommodate the observed equity premium. For each
risk aversion scenario, two correlation levels are examined, each of
which can be positive or negative.

Sixth, given the choice of volatility parameters and a value for , the
average dividend growth rate a and the initial dividend are set accord-
ing to such that the risk-free interest rate or yield,
r(t, T) is maintained at 6%.

Finally, the parameter estimates in Table III are used for the tem-
perature process. January 1, 1999 is taken as the valuation date, which is
the first day following the last observation date in the sample. Since
HDD contracts are mirror image of CDD contracts in nature, for brevity,
only simulation results for CDD contracts are reported, which cover the
period of May 1, 1999 to September 30, 1999. Each temperature deriv-
ative’s value is averaged over 10,000 realizations. The antithetic variable
technique is used to reduce simulation errors.

Since and amount to a zero market price of risk
for the temperature variable (irrespective of the risk-aversion level), for-
ward and option values in this case are called “risk-neutral” values.
Derivatives values under other correlation/risk aversion scenarios are
compared against these “risk-neutral” values. The difference in values
directly gauges the impact of market price of risk.

Correlations and Market Price of Risk

Contemporaneous Correlations Only

Two contemporaneous correlation levels (0.15 and 0.25) are used for the
analysis. With zero-lagged correlations, a contemporaneous correlation

hj � 0, 5 jw � 0.0

e�r(t,T)(T�t) � Et(
Uc(dT )
Uc(dt ) )

dt

g

s21 	 w2

1 � w2 	 ©90
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of 0.15 or 0.25 means that about 2.3% or 6.3% of the total variance
in outputs is due to temperature variations (the percentages are
calculated from Table V reports the risk pre-
mium for forward prices, which is defined as the percentage difference
between the forward price under various correlation/risk aversion sce-
narios and the risk-neutral price. Several observations are in order. First,
the risk premium is very small for all cases. The largest percentage price
difference, 0.66%, is for Chicago when the correlation is �0.25 and the
risk aversion parameter is �40.0. Second, the correlation’s sign deter-
mines the sign of the risk premium or market price of risk, which is con-
sistent with the theoretical results discussed earlier. Third, for a fixed
correlation, a higher risk aversion leads to a bigger risk premium, which
makes intuitive sense. In addition, other things being equal, a stronger
correlation leads to a bigger risk premium, which again makes intuitive
sense.

Table VI reports risk premiums for CDD call and put options. To
facilitate discussions, the strike price is set equal to the risk-neutral for-
ward price so that the risk-neutral call and put options are exactly at-the-
money and have the same value. The rest of the setup is the same as in

( w2

1 � w2 )�(1 	
w2

1 � w2 ) � w2).

TABLE V

Risk Premium in Forward Prices: Contemporaneous Correlations Only

Risk-neutral
g� �2.0 g� �10.0 g� �40.0

forward f � �a f � a f � �a f � a f � �a f � a

Panel A: a � 0.15

Atlanta 1802.6 0.02 �0.01 0.08 �0.04 0.31 �0.15
Chicago 826.7 0.03 �0.01 0.13 �0.05 0.40 �0.27
Dallas 2416.7 0.01 �0.01 0.07 �0.04 0.24 �0.13
New York 1181.0 0.02 �0.01 0.10 �0.04 0.33 �0.20
Philadelphia 1233.4 0.02 �0.01 0.10 �0.04 0.33 �0.18

Panel B: a � 0.25

Atlanta 1802.6 0.03 �0.02 0.12 �0.08 0.48 �0.27
Chicago 826.7 0.04 �0.03 0.18 �0.10 0.66 �0.44
Dallas 2416.7 0.02 �0.02 0.10 �0.07 0.39 �0.23
New York 1181.0 0.03 �0.02 0.14 �0.09 0.53 �0.33
Philadelphia 1233.4 0.03 �0.02 0.14 �0.08 0.53 �0.31

Note. 1. “Risk-neutral forward” prices are calculated by setting the correlation between the temperature and the dividend
processes to zero. Other entries are percentage differences between the risk-neutral price and the price under
risk aversion. For example, for Atlanta, when the correlation is �0.25 and the risk aversion is �10, the price
under risk aversion is 0.12% higher than the risk-neutral one.

2. All prices are for a CDD season which covers the period of May 1, 1999, to September 30, 1999.
3. In panel A, the contemporaneous correlation is either �0.15 or 0.15 under each risk aversion; in panel B, it is

either �0.25 or 0.25.



1082 Cao and Wei

TABLE VI

Risk Premium in Option Prices: Contemporaneous Correlations Only

RN
Strike option

g� �2.0 g� �10.0 g� �40.0

price value f � �a f � a f � �a f � a f � �a f � a

Panel A: a � 0.15

Atlanta Call 1802.6 45.9 0.34 �0.20 1.74 �0.97 5.90 �5.92
Put 45.9 �0.34 0.19 �1.86 0.80 �8.52 3.77

Chicago Call 826.7 52.1 0.22 �0.09 1.15 �0.39 3.32 �2.99
Put 52.1 �0.17 0.10 �0.93 0.47 �3.87 2.77

Dallas Call 2416.7 46.2 0.37 �0.25 1.90 �1.22 6.69 �7.05
Put 46.2 �0.37 0.24 �2.03 1.09 �9.30 5.07

New York Call 1181.0 44.7 0.27 �0.15 1.40 �0.68 4.37 �4.45
Put 44.7 �0.25 0.14 �1.34 0.61 �5.83 3.29

Philadelphia Call 1233.4 47.8 0.27 �0.14 1.38 �0.63 4.14 �4.32
Put 47.8 �0.24 0.12 �1.35 0.53 �5.92 2.83

Panel B: a � 0.25

Atlanta Call 1802.6 45.9 0.52 �0.38 2.65 �1.86 10.18 �9.53
Put 45.9 �0.51 0.36 �2.73 1.70 �12.44 8.01

Chicago Call 826.7 52.1 0.32 �0.20 1.66 �0.89 5.73 �4.83
Put 52.1 �0.26 0.20 �1.39 0.94 �6.17 4.90

Dallas Call 2416.7 46.2 0.58 �0.46 2.95 �2.25 11.61 �11.29
Put 46.2 �0.58 0.45 �3.04 2.15 �13.79 10.13

New York Call 1181.0 44.7 0.41 �0.29 2.10 �1.36 7.63 �7.11
Put 44.7 �0.37 0.27 �1.99 1.27 �8.87 6.31

Philadelphia Call 1233.4 47.8 0.40 �0.27 2.05 �1.29 7.29 �6.85
Put 47.8 �0.37 0.25 �1.97 1.16 �8.84 5.73

Note. 1. The strike price is set at the risk-neutral forward price. “RN option value” stands for “risk-neutral option value”
which is calculated by setting the correlation between the temperature and the dividend processes to zero. Other
entries are percentage differences between the risk-neutral price and the price under risk aversion. For example,
for Atlanta, when the contemporaneous correlation is �0.25 and the risk aversion is �10, the call option’s price
under risk aversion is 2.65% higher than the risk-neutral one.

2. All prices are for a CDD season which covers the period of May 1, 1999, to September 30, 1999.
3. In panel A, the contemporaneous correlation is either �0.15 or 0.15 under each risk aversion; in panel B, it is

either �0.25 or 0.25.

Table V. Again, the risk-neutral option values do not contain risk premi-
ums, and all other option values are compared against these values to
assess the market price of risk.

All the patterns associated with the forward prices also apply to call
options. The opposite patterns apply to put options, which is intuitive
since the value of a put is inversely related to the level of CDD. In fact,
all the explanations for the patterns in forward prices also apply to
options. However, the risk premiums in option prices are many-fold
larger than those in the forward prices. The marked difference in risk
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premium between the two types of instruments is mainly due to the dif-
ferent payoff features: linear for forward contracts and non-linear for
options.

For options, when the risk aversion is �10.0 or �40.0, the risk pre-
mium is no longer insignificant. The largest risk premium, 11.61% for
call and �13.79% for put, is observed for the combination of g� �40.0
and w� �0.25 for the city of Dallas. It means that the CDD call (put)
option contains a risk premium of 11.61% (�13.79%) purely due to the
market price of risk associated with the temperature variable.

The overall results in Tables V and VI indicate that, by and large, the
market price of risk is not a significant factor if the dividend and temper-
ature processes are only contemporaneously correlated and if the risk
aversion is low (i.e., g � �2.0). For forward prices, it is not significant
even when the risk aversion is high. However, for options, the market
price of risk is no longer negligible, especially when the risk aversion is
high.

Contemporaneous and Diminishing
Lagged Correlations

Lagged correlations are introduced to fully assess the significance of risk
premium. Our empirical analysis indicates that correlation diminishes
significantly after one month, suggesting that daily correlations most
likely follow the same diminishing pattern. To reflect this feature, a
simple geometric decay structure for the coefficients, is assumed.
Specifically, once the contemporaneous correlation, w is set, h1 is calcu-
lated as as as and so on with 0 � q � 1. The decay
factor q is chosen such that a level arbitrarily
chosen to signify the eventual diminution of the lagged effect. With such
a structure, the portion of the variance attributable to the temperature
variations is calculated as:

.

With and the corresponding proportions are
5.56% and 13.64%. Given that one-seventh (or 14.3%) of the GNP is
believed to be weather sensitive, the case of roughly cor-
responds to reality. Interestingly, this is also the correlation level revealed
in panel C of Table IV. Lastly, without loss of generality, the realized,

|w| � 0.25
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TABLE VII

Risk Premium in Forward Prices: Contemporaneous
and Diminishing Lagged Correlations

Risk-neutral
g� �2.0 g� �10.0 g� �40.0

forward f � �a f � a f � �a f � a f � �a f � a

Panel A: a � 0.075

Atlanta 1802.6 0.12 �0.10 0.64 �0.38 3.22 �1.06
Chicago 826.7 0.23 �0.20 1.19 �0.87 5.83 �2.91
Dallas 2416.7 0.10 �0.08 0.51 �0.27 2.66 �0.64
New York 1181.0 0.16 �0.14 0.85 �0.58 4.24 �1.82
Philadelphia 1233.4 0.16 �0.14 0.86 �0.58 4.27 �1.82

Panel B: a � 0.15

Atlanta 1802.6 0.21 �0.18 1.23 �0.53 7.99 �1.03
Chicago 826.7 0.38 �0.34 2.15 �1.32 12.75 �3.80
Dallas 2416.7 0.17 �0.14 1.02 �0.35 7.02 �0.53
New York 1181.0 0.28 �0.24 1.59 �0.86 9.83 �2.22
Philadelphia 1233.4 0.28 �0.24 1.60 �0.86 9.89 �2.22

Note. 1. “Risk-neutral forward” prices are calculated by setting the correlation between the temperature and the dividend
processes to zero. Other entries are percentage differences between the risk-neutral price and the price under
risk aversion. For example, for Atlanta, when the correlation is �0.25 and the risk aversion is �10, the price
under risk aversion is 0.12% higher than the risk-neutral one.

2. All prices are for a CDD season which covers the period of May 1, 1999, to September 30, 1999.
3. In panel A, the contemporaneous correlation is either �0.15 or 0.15 under each risk aversion; in panel B, it is

either �0.25 or 0.25.
4. The lag period is 30 days. The lagged correlation diminishes to zero according to a geometric series specified in

the text.

8But the larger proportion is not the only factor. Although not shown here, the calculations in
Table VII are repeated by lowering the correlation level while keeping 30 lag terms such that the
proportions are aligned to those in Table VI, i.e., 2.3% or 6.3%. It turns out that the risk premium is
still larger when lagged correlations are present. This implies that, other things being equal, the
presence of lagged correlations between the temperature and dividend processes would magnify the
impact of the market price of weather risk.

lagged innovations of the temperature process, 
are set to zero.

Table VII and VIII are counterparts of Table V and VI, with dimin-
ishing lagged correlations. To begin with, it is seen that the qualitative
relations between forward/option prices and the model parameters
remain the same when lagged correlations are introduced. But there is a
marked increase in the significance of the risk premium. For forward
prices, comparisons between Table VII and Table V reveal that the risk
premium increases by many times. When the risk aversion is �40, the
risk premium can be as high as 5.47%. This surge in magnitude is partly
due to the larger proportion of output variance attributable to tempera-
ture variations.8

0(1 
 m 
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TABLE VIII

Risk Premium in Option Prices: Contemporaneous 
and Diminishing Lagged Correlations

RN
Strike option

g� �2.0 g� �10.0 g� �40.0

price value f � �a f � a f � �a f � a f � �a f � a

Panel A: a � 0.15

Atlanta Call 1802.6 45.9 1.44 �1.28 7.40 �6.15 33.72 �25.32
Put 45.9 �1.39 1.26 �7.08 6.39 �30.61 33.60

Chicago Call 826.7 52.1 0.90 �0.76 4.71 �3.52 21.12 �13.19
Put 52.1 �0.78 0.72 �4.00 3.64 �18.17 19.27

Dallas Call 2416.7 46.2 1.58 �1.44 8.13 �6.95 37.26 �28.91
Put 46.2 �1.55 1.44 �7.82 7.37 �33.32 39.07

New York Call 1181.0 44.7 1.18 �1.04 6.10 �4.91 27.61 �19.51
Put 44.7 �1.08 0.99 �5.54 5.02 �24.57 26.42

Philadelphia Call 1233.4 47.8 1.15 �1.00 5.95 �4.73 26.73 �18.79
Put 47.8 �1.06 0.94 �5.41 4.78 �24.14 25.11

Panel B: a � 0.25

Atlanta Call 1802.6 45.9 2.13 �1.95 11.14 �9.26 54.55 �35.17
Put 45.9 �2.04 1.94 �10.21 10.02 �42.13 54.44

Chicago Call 826.7 52.1 1.32 �1.16 7.03 �5.27 35.19 �17.43
Put 52.1 �1.14 1.08 �5.81 5.57 �26.30 29.62

Dallas Call 2416.7 46.2 2.35 �2.19 12.28 �10.45 60.09 �40.42
Put 46.2 �2.29 2.21 �11.34 11.53 �45.68 63.85

New York Call 1181.0 44.7 1.74 �1.58 9.16 �7.35 45.22 �26.54
Put 44.7 �1.59 1.51 �8.01 7.76 �34.70 41.49

Philadelphia Call 1233.4 47.8 1.69 �1.52 8.92 �7.08 43.90 �25.44
Put 47.8 �1.54 1.44 �7.80 7.41 �34.02 39.54

Note. 1. The strike price is set at the risk-neutral forward price. “RN option value” stands for “risk-neutral option value”
which is calculated by setting the correlation between the temperature and the dividend processes to zero. Other
entries are percentage differences between the risk-neutral price and the price under risk aversion. For example,
for Atlanta, when the contemporaneous correlation is �0.25 and the risk aversion is �10, the call option’s price
under risk aversion is 11.14% higher than the risk-neutral one.

2. All prices are for a CDD season which covers the period of May 1, 1999, to September 30, 1999.
3. In panel A, the contemporaneous correlation is either �0.15 or 0.15 under each risk aversion; in panel B, it is

either �0.25 or 0.25.
4. The lag period is 30 days. The lagged correlation diminishes to zero according to a geometric series specified in

the text.

Very similar results are observed for option prices, and the impact of
the market price of risk is much more pronounced. For both correlation
levels, the risk premium is generally larger than 5% when the risk aversion
is �10. When the risk aversion is �40, the risk premium is extremely
large. Clearly, the market price of risk for the temperature variable can
not be ignored. The practice of discounting temperature derivative
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payoffs at the risk-free rate is highly questionable. It would be acceptable
only when the correlations, both contemporaneous and lagged, are very
low and/or the risk aversion of investors is low, none of which is supported
by empirical evidence.

Lagged Correlations with Mixed Signs

As mentioned before, a more refined way to model the correlations is to
make it time dependent. This will allow both the magnitude and the
sign of the lagged correlations to change. However, as far as their
impact on the risk premium is concerned, it can be seen intuitively that
as long as the signs of are not uniform, the overall impact of the mar-
ket price of risk will decline, simply due to a lower overall covariance
between the dividend process and the temperature process. The calcula-
tions in Tables VII and VIII are repeated by assuming alternating signs
in and the resulting risk premia are much lower. Therefore, the
conclusions based on uniformly signed correlations err on the side of
caution.

Mean Reversion of the Aggregate
Dividend and Market Price of Risk

So far, m is set at 0.9 which corresponds to a mean reversion rate of 0.1.
To see how sensitive the results are to this mean reversion parameter, the
calculations in Tables VII and VIII are repeated by assuming four other
levels of m: 0.80, 0.85, 0.95, 0.99. Note that m � 0.99 roughly corre-
sponds to a random walk. Since the results are very similar across all five
cities, only those for Chicago are reported in Table IX (Chicago has the
smallest risk premium in option values in Table VIII). It is seen that a
higher value of m, or a lower mean reversion speed, leads to a bigger risk
premium in forward and option values. This makes intuitive sense since
a higher m means bigger variations in the aggregate dividends. What is
striking is the nonlinearity of the impact. To illustrate, for options, when
m increases from 0.8 to 0.9, the risk premium slightly more than double
for all cases; however, when m increases from 0.9 to 0.99, the risk pre-
mium increases by more than 10-fold. With a near-random walk, the risk
premium is more than 10% for all option values. An obvious conclusion
is that, in determining the significance of the market price of risk for the
temperature variable, the degree of mean reversion in the aggregate divi-
dend process must be carefully determined.

hj � j,

hj
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TABLE IX

Impact of Mean Reversion in the Dividend Process: City of Chicago

Panel A: Forward prices

Mean Risk-neutral
g� �2.0 g� �10.0 g� �40.0

reversion forward f � �0.25 f � 0.25 f � �0.25 f � 0.25 f � �0.25 f � 0.25

0.80 826.7 0.07 �0.05 0.39 �0.14 2.87 �0.27
0.85 826.7 0.10 �0.08 0.55 �0.24 3.79 �0.52
0.90 826.7 0.16 �0.14 0.90 �0.49 5.47 �1.26
0.95 826.7 0.43 �0.39 2.26 �1.58 8.73 �4.88
0.99 826.7 2.11 �2.03 10.85 �9.77 40.58 �37.30

Panel B: Option prices

RN
Mean Strike option

g� �2.0 g� �10.0 g� �40.0

reversion price value f � �0.25 f � 0.25 f � �0.25 f � 0.25 f � �0.25 f � 0.25

0.80 Call 826.7 52.1 0.53 �0.43 2.81 �1.92 14.19 �5.82
Put 52.1 �0.44 0.40 �2.24 2.04 �10.29 10.46

0.85 Call 826.7 52.1 0.76 �0.64 4.07 �2.89 20.52 �9.05
Put 52.1 �0.64 0.60 �3.30 3.06 �15.16 15.76

0.90 Call 826.7 52.1 1.32 �1.16 7.03 �5.27 35.19 �17.43
Put 52.1 �1.14 1.08 �5.81 5.57 �26.30 29.62

0.95 Call 826.7 52.1 3.41 �3.12 18.43 �14.28 90.55 �49.22
Put 52.1 �3.03 2.99 �14.97 15.64 �60.53 91.58

0.99 Call 826.7 52.1 17.12 �15.16 73.75 �59.86 103.15 �89.76
Put 52.1 �14.55 15.78 �59.41 92.56 �90.23 220.34

Note. Forward and option prices are all for CDD contracts for the city of Chicago. Except for the mean reversion parameter,
all other aspects of the calculations are the same as in Tables VII and VIII.

SUMMARY AND CONCLUSION

This paper proposes a valuation framework for temperature derivatives
and studies the market price of weather risk therein. The framework is
the generalized Lucas’s model of 1978. The underlying variables in the
economy are the aggregate dividend and the weather uncertainty, and
the two are allowed to correlate with one another both contemporane-
ously and in a lagged fashion. The study leads to the following important
observations.

First and foremost, the market price of risk associated with the tem-
perature variable is significant. Based on investors’ risk aversion level and
the parameters governing the aggregate dividend process that conform to
empirical realities, it is found that the risk premium can represent a sig-
nificant portion of the derivative’s price. Risk-neutral valuation, or using
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the risk-free rate to discount derivatives payoffs, is a good approximation
only when the correlations (both contemporaneous and lagged) between
the temperature process and the dividend process are very low and/or the
risk aversion is low, none of which is supported by empirical evidence.

Second, the market price of risk affects option values much more
than forward prices, mainly due to the payoff specification. Because of
the linear payoff structure for forward contracts, much of the impact is
“integrated” out. For options, the truncation in payoffs leaves room for
the market price of risk to manifest its impact.

In addition to addressing the issue of market price of risk, the frame-
work has many other advantages. To start with, the model not only allows
easy estimation of the temperature system, but also incorporates key
features of the daily temperature such as seasonal cycles and uneven vari-
ations throughout the year. Moreover, since the starting point is the daily
temperature, the framework is capable of handling temperature contracts
of any maturity, for any season, and it requires only a one-time estima-
tion. In contrast, if one directly models the cooling degree days (CDDs)
or heating degree days (HDDs), then by nature of the temperature behav-
ior, the CDDs or HDDs will necessarily be season and maturity specific,
which implies that each contract requires a separate estimation proce-
dure. This not only creates potential inconsistency in pricing, but also
renders the whole idea impractical if many different contracts are dealt
with or if the valuation is to be done on an on-going basis.

As for future research, one obvious avenue is to adapt the frame-
work to other weather variables such as snowfall and rainfall. This is
challenging in that the weather variable such as rainfall is not a continu-
ous variable. Moreover, the cumulation of such a variable in a season
is far more important than the realized level within, say, one day.
Nonetheless, derivative contracts on such variables will have direct
appeal to users such as farmers and ski resort operators. Another avenue
is to test the model using the market data when such data become avail-
able in the future.
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