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Nonparametric Estimation of
Crop Insurance Rates Revisited

Alan P. Ker and Barry K. Goodwin

With the crop insurance program becoming the cornerstone of U.S. agricultural policy, recovering
accurate rates is of paramount interest. Lack of yield data presents, by far, the most fundamental
obstacle to recovery of accurate rates. This article employs new methodology to estimate conditional
yield densities and derive the insurance rates. In our application, we find the nonparametric kernel
density estimator requires an additional twenty-six years of yield data to estimate the shape of the
conditional yield densities as accurately as the recently developed empirical Bayes nonparametric
kernel density estimator. Such methodological improvements can significantly aid in ameliorating
the data problem.
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Recovering accurate premium rates is
paramount to the actuarial soundness of the
crop insurance program, a program which
has gained prominence in the overall U.S.
agricultural policy agenda. The 1996 Federal
Agricultural Improvement and Reform
(FAIR) Act signaled a new policy environ-
ment under which farmers would be subject
to market forces. Under this policy regime,
crop insurance remains, in some respects, one
of the only government-subsidized, income
stabilizing mechanisms available to agricul-
tural producers. In addition, it appears that
current political forces are in the process of
fashioning crop insurance as the cornerstone
of U.S. agricultural policy. Consider the 1999
State of the Union Address in which the
President stated:

As this congress knows very well, drop-
ping prices and the loss of foreign markets
have devastated too many family farmers.
Last year, the Congress provided substan-
tial assistance to help stave off a disaster
in American agriculture, and I am ready to
work with lawmakers of both parties to cre-
ate a farm safety net that will include crop
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insurance reform and farm income assis-
tance. (Italics added.)

A variety of crop insurance plans are cur-
rently available to farmers and a number of
new pilot programs are under development.
Standard crop yield insurance, termed Mul-
tiple Peril Crop Insurance (MPCI), pays
an indemnity at a predetermined price to
replace yield losses caused by any haz-
ard. There exist three revenue insurance
programs: Crop Revenue Coverage, Income
Protection, and Revenue Assurance. These
programs guarantee a minimum level of
crop revenue and pay an indemnity if rev-
enues fall beneath the guarantee. “group-
risk” yield insurance, termed the Group Risk
Plan (GRP), is based upon the county’s yield.
Insured farmers collect an indemnity when-
ever the county average yield falls beneath
a yield guarantee, regardless of the farmers’
actual yields. A variation of GRP which
insures county revenues rather than yields
has recently been developed and is termed
Group Risk Income Plan. Over most of their
existence, these all-risk crop insurance pro-
grams have been characterized by low par-
ticipation and spotty actuarial performance.
Consequently, the U.S. crop insurance pro-
gram has been the subject of three General
Accounting Office (GAO) investigations over
the last five years.1

1 See Crop Insurance: Federal Program Faces Insurability
and Design Problems, GAO/RCED 93-98 (May 1993), Crop
Insurance: Opportunities Exist to Reduce Government Costs for
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For both yield and revenue insurance prod-
ucts, accurate estimation of conditional yield
densities is crucial to minimize adverse selec-
tion. The premium rate for a contract that
guarantees a percentage, denoted λ where
0 ≤ λ ≤ 1, of the expected yield, denoted ye ,
is given as

Premium Rate(1)

= P(Y <λye)(λye−E(Y |y <λye))
λye

where the expectation operator and prob-
ability measure are taken with respect to
the conditional yield density f(y|Ft), and Ft

is the minimal σ-algebra generated by the
information known at the time of rating. If
yield data were abundantly available for the
given area of interest (county, farm, or farm
unit), estimation of conditional yield densities
would not be a particularly interesting prob-
lem. One could simply employ nonparametric
kernel methods to recover a reasonably accu-
rate estimate. Lack of historical yield data is,
by far, the most fundamental obstacle in rat-
ing crop insurance contracts. Although yield
data by county, farm, or farm unit tend to
be extremely scarce, the number of counties,
farms, or units is numerous. Presumably there
is information in the extraneous yield data
that may assist in estimating the conditional
yield density for the particular area of inter-
est. Unfortunately, the panel nature of the
yield data is generally not exploited.2

Goodwin and Ker (henceforth GK)
employed nonparametric kernel methods to
estimate conditional yield densities and then
subsequently derived GRP crop insurance
rates. A concern with using nonparametric
kernel methods or so-called flexible paramet-
ric forms in small samples is stability. Given
this concern, GK combined innovations
recovered from the temporal models of con-
tiguous counties to estimate the conditional
yield densities. We have two concerns with
that approach. First, the method by which
the innovations from the temporal models
were combined is admittedly ad hoc. Second,
innovations from contiguous counties are not
likely to be independent.

In this article, a new estimator which cir-
cumvents these concerns is employed. Ker

Private Sector Delivery, GAO/RCED 97-70 (April 1997), and
Crop Revenue Insurance: Problems With New Plans Need to Be
Addressed, GAO/RCED 98-111 (April 1998).

2 See Ker (1996) for an approach that explicitly models the
panel nature of the data.

(1998) derived an empirical Bayes nonpara-
metric kernel density estimator which uses
empirical Bayes techniques on the estimated
values from the kernel density estimators.
This estimator may be used to exploit the
panel nature of the yield data in recover-
ing nonparametric estimates of the condi-
tional yield densities. In addition to using
this new estimator, this article makes strides
in three other directions. First, we use a
variable smoothing approach to estimate the
conditional yield densities. Accurate estima-
tion of lower tail probabilities is crucial to
deriving accurate rates. A variable smoothing
approach significantly decreases the depen-
dency of estimated tail probabilities on
the specific location of the tail realizations.
Second, we restrict our estimated densities
to have variance equal to the sample vari-
ance. The variance of the kernel density esti-
mate is greater than the sample variance
almost surely for an order two kernel. In
small samples such as ours, the additional
variance can be significant and have a pro-
found effect on the derived rates. Third, we
explicitly acknowledge that rates must be
derived two years in advance. Despite popu-
lar belief, innovations may not in general be
scaled up when accounting for a two period
ahead forecast. This arises because the con-
volution may or may not be a member of the
original family. We illustrate how the innova-
tions need to be manipulated. To date, this
has not been considered in the actual rat-
ing of GRP.3 Finally, given the relative promi-
nence of GRP with all-practice corn in Iowa,
we apply the model by rating 1997 GRP Iowa
all-practice corn contracts. Although we use
the GRP program as our empirical case study,
the proposed methods are applicable to other
crop insurance products.

Spatio-temporal Process of Yields

Given that we wish to estimate the condi-
tional yield densities for rating crop insurance

3 Recently, the temporal models used in the rating of GRP
have changed from IMA(2,2) models to one-knot linear splines
(Skees, Black, and Barnett). The existence of a lag structure
necessitated explicit consideration of the two period versus one
period prediction. This was erroneously ignored in the initial rat-
ing process. However, given that a lag structure is not accounted
for in the newly adopted temporal models, one no longer needs
to be concerned with the two period versus one period predic-
tion since the conditional yield density is, under the null that the
one-knot linear spline is the correct specification, invariant to a
one-step or n-step ahead prediction.
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contracts, this section considers the data gen-
erating process of mean yields. Yields follow
a spatio-temporal process. By averaging over
some spatial region (field, farm, or county)
and conditioning on the temporal process,
one recovers the conditional mean yield den-
sity for that given space at a point in time.
The spatial region of interest for our analysis
is the county as GRP is offered on a county
basis. This section is separated into two parts:
the spatial process of yields and the temporal
process of yields.

Spatial Process of Yields

Consider that yields come from one of
two distinct sub-populations: a catastrophic
sub-population and a non-catastrophic sub-
population. That is, in years when a catas-
trophic event occurs such as a drought, flood,
freeze, etc., yields are drawn from the catas-
trophic sub-population. Conversely, in years
when a catastrophic event does not occur,
yields are drawn from the non-catastrophic
sub-population. Thus, conditional yields may
be thought of as a mixture of two unknown
distributions where the secondary distribu-
tion (from catastrophic years) lives on the
lower tail of the primary distribution (from
non-catastrophic years) and has significantly
less mass. The secondary distribution would
be expected to have less mass because catas-
trophic events are realized with far less
frequency than their complement. Also, the
secondary distribution would be expected to
live on the lower tail of the primary distri-
bution because realized yields tend to be far
less in catastrophic years. Given this basic
structure, mean yields may have a unimodal
symmetric density (mass of catastrophic dis-
tribution is negligible), a negatively skewed
density (mass of catastrophic distribution
is non-negligible and distribution is rela-
tively flat), or a negatively skewed bi-modal
density (mass of catastrophic distribution is
non-negligible and distribution is relatively
peaked).

In empirical applications, most researchers
have used the beta distribution rather than
a mixture distribution to accommodate neg-
ative skewness. The reader is directed to
Babcock and Hennessy, Coble et al., Lee,
Harwood, and Somwaru, Borges and Thur-
man, Kenkel, Busby, and Skees, Nelson, and
Nelson and Preckel. Ker and Coble (1997)
discourage the use of the beta distribu-
tion for modeling yields. Some researchers

have assumed yields follow other distribu-
tional families. Gallagher used a gamma dis-
tribution while Moss and Shonkwiler used
an inverse hyperbolic sine transformation to
model yields. Ker (1996) used a mixture of
two Gaussians.

Although these parametric families can
accommodate negative skewness, this by no
means indicates yields can be adequately
approximated by them. The unknown yield
distribution may or may not be uniquely
defined by its first three population moments.
Theoretical distributions may be constructed
such that their resulting premium rates at
low coverage levels differ by an order of
magnitude despite having identical first three
moments. Therefore, although these so-called
flexible parametric forms can accommodate
negative skewness, we have not seen any
empirical evidence or statistical theory which
justifies their use in modeling yields.A second
concern with these parametric families is that
they do not allow bi-modality. Central Limit
Theorems (CLTs) for dependent processes
suggest the possibility that yields at some
aggregate level may be bi-modal. GK found
evidence of bi-modality. Ker (1996) repre-
sents the only parametric empirical work
which allows the conditional yield density to
be bi-modal; yields were modeled using semi-
nonparametric maximum likelihood methods
(Hermite series expansions) with a mixture
of two Gaussians for the innovations. Unfor-
tunately, we can not be assured that counties
contain sufficiently large land mass such that
conditional spatial dependence dies off and a
mixture of two Gaussians would result.4

Given the above problems associated
with parametric forms, a viable alternative
is nonparametric kernel density estimators.
Nonparametric methods are extremely intu-
itive and relatively simple to use. For use of
nonparametric kernel methods in the agricul-
tural economics literature, see GK, Ker and
Coble (1997), Turvey and Zhao, and Mos-
chini.

Temporal Process of Yields

Past work by GK, Ker and Coble (1997), and
Bessler modeled yields using IMA(1� q) pro-
cesses (q = 1� 2).The IMA(1� 1)model is rep-
resented as follows:

yt = yt−1 + θ0 + θ1et−1 + et�(2)

4 Conditional spatial dependence refers to the spatial depen-
dence given which sub-population is realized.
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This model has economic appeal in that it is
a stochastic linear trend with autocorrelated
innovations. The linear trend θ0 represents
technological advances while the moving
average component θ1 suggests that the
underlying factors generating the sequence
of innovations have effects on future yields.
Consider, for example, a drought in time t.
It is obvious that yields in time t will be
affected by drought conditions in time t. It
is also reasonable that the soil in time t + 1,
which influences yields in time t + 1, would
have leftover effects from the drought in
time t. Because weather is not a condition-
ing variate, these effects are represented in
the innovations. Consequently, the innova-
tions in time t would influence yields in time
t + 1, thereby suggesting the existence of an
MA component. The coefficient on the MA
component, θ1, should belong to the inter-
val (−1� 0). Recall, the temporal process of
yields is essentially a submartingale (with-
out the MA component) while the effect
of some variates represented by the innova-
tions should persist but die out in subsequent
periods. Therefore, the process is both trend
reverting and non-overshooting and thus θ1 ∈
(−1� 0).This result was found by GK, Ker and
Coble (1997), and Bessler.

A problem with estimating the IMA(1� 1)
model is the need to employ non-linear
least squares in small samples where con-
vergence and parameter stability become
issues. To address these problems, we use
the error correction form of the model by
replacing the MA(1) process with its AR(∞)
representation. In doing so, the model is
linear. An AR(4) process is found to be
sufficient to represent the MA(1) process.
The ARIMA(4� 1� 0) model is represented
as follows:

yt = yt−1+β0+β1(yt−1−yt−2)(3)

+β2(yt−2−yt−3)+β3(yt−3−yt−4)

+β4(yt−4−yt−5)+et�
National Agricultural Statistics Service
county yield data for Iowa all-practice corn
during the period 1957–95 are used. Het-
eroskedasticity is tested and corrected for
as per GK.5 Given the estimated model,
a sequence of asymptotically independent

5 Heteroskedasticity is tested for using Goldfeld–Quandt para-
metric and nonparametric tests on both the raw and standardized
(by predicted value) residuals. As with GK, the results indicate
the standardized residuals be used for the analysis.

and identically distributed realizations from
f(y|FT ) is recovered in the following manner:

ŷT+1� t =
( êt
ŷt

)
× ŷT+1 + ŷT+1(4)

∀t = 5� � � � � T

where êt is the estimated innovation in time
t, ŷt is the fitted value in time t, and ŷT+1
is the prediction for time T + 1, all from
equation (3).

Empirical Bayes Nonparametric Kernel
Density Estimation

Ker (1998) derived an empirical Bayes non-
parametric kernel density estimator which
exploits possible similarities among the set of
unknown densities that are to be estimated.
Rather than specifying a prior over a func-
tion space, the estimator uses empirical Bayes
techniques on the estimated values from
the kernel density estimators. Certainly, the
strengths of the estimator result from using
kernel methods as the basis for the empirical
Bayes. Given the empirical Bayes is under-
taken pointwise across the support for the
density, Ker (1998) illustrates that the empir-
ical Bayes estimator is uniformly continu-
ous under standard continuity assumptions
regarding the kernel function. Ker (1998)
shows that the empirical Bayes nonpara-
metric kernel density estimator converges in
probability at a rate of Op(T

−(4/5)) to the
standard kernel. As such, the proposed esti-
mator inherits the asymptotic properties of
the standard kernel estimator and attains the
optimal rate Op(T

−(2/5)). Given the empirical
Bayes nonparametric kernel density estima-
tor is asymptotically equivalent to the stan-
dard kernel estimator, Ker (1998) suggests
it may be considered a competing estimator.
Before outlining the empirical Bayes non-
parametric kernel density estimator, the rele-
vant technical literature is reviewed.

Nonparametric Kernel Methods

As previously mentioned, nonparametric
kernel methods have been sparingly used
in the agricultural economics literature.
Moschini employed nonparametric kernel
regression methods to estimate cost func-
tions and recover economies of size and scale.
GK, Ker and Coble (1997, 1998), and Tur-
vey and Zhao estimated yield densities using
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Figure 1. Standard kernel density estimator

univariate kernel density estimators. Univari-
ate kernel density estimation is very intu-
itive (Silverman, Scott). A required input
of the kernel density estimator is a set
(y1� y2� � � � � yT ) of independent realizations
from the unknown density of interest fY .
Oversimplifying for the moment, the kernel
density estimator places a bump or individ-
ual kernel at each realization. The estimate of
the density at any given point in the support
is simply the sum of the individual kernels
at that point. Figure 1 illustrates this using
an arbitrary sample of seven realizations. An
individual kernel is centered at each of the
seven points. The density estimate is just
the sum of the individual kernels. Although
this explanation is oversimplified, it serves
to illustrate the intuitive nature of the non-
parametric kernel density estimator. Conve-
niently ignored was any discussion regarding
the shape of the individual kernels. We dis-
cuss these matters below.

Consider estimating the unknown yield
density fY based on a set (y1� y2� � � � � yT ) of
independent realizations from fY . The non-
parametric kernel estimate of fY at a given
point, say y0, is defined as

f̂Y (y0) =
T∑
i=1

K
(
y0−yi
h

)
Th

(5)

where h is the smoothing parameter and
K(·) is the kernel function. Thus, two deci-
sions must be made: choice of the ker-
nel function, and choice of the smoothing
parameter. A kernel function must integrate
to one but need not be everywhere non-
negative. Epanechnikov derived the optimal
non-negative kernel function with respect to
minimizing mean integrated squared error
(MISE) of the estimated density. Subse-
quently, Rosenblatt showed that choice of
a suboptimal kernel, such as the standard
Gaussian, results in only a moderate loss
in the asymptotic MISE. Following general
practice, a standard Gaussian kernel is used
in figure 1 and throughout the analyses.6

The choice of the smoothing parameter
requires two distinct decisions. The first deci-
sion is the choice of the smoothing parameter
itself. The second is whether this smooth-
ing parameter should be global or local. We
choose the smoothing parameter according to

6 In practice, a truncated Gaussian must be used since the
estimated density is evaluated over real closed sets with finite
Lebesgue measure while the support for the Gaussian density
has infinite measure. We evaluate the densities over a range of
plus and minus ten standard deviations from the mean.
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Silverman’s rule of thumb:

ĥ = 0�9(6)

×min
[

standard deviation�

interquartile range

1�34

]
× T −(1/5)�

This has been found to yield a mean inte-
grated square error within 10% of the
optimum for t-distributions, for log-normal
distributions with skewness up to about 1.8,
and a Gaussian mixture with separation up to
three standard deviations (Silverman). Visual
inspection of the estimated densities sug-
gests that the set of unknown true densities
belongs to the above defined class.

The second decision is the choice between
a local or global smoothing parameter. A
global smoothing parameter smooths the
data equally. It is sometimes the case where
the chosen smoothing parameter will yield
too much spurious detail in the tails of the
density in attempts to identify detail in the
main area of the density. Undersmoothing in
the tail is particularly problematic in long-
tailed densities such as conditional yield den-
sities. Given the high dependence of the
derived premium rates on the extreme lower
tail of the conditional yield density, a global
smoothing parameter is particularly problem-
atic. Thus, in contrast to GK, adaptive kernel
methods are employed.

Recall the kernel estimator is the sum of
individual kernels centered at each realiza-
tion. The adaptive kernel estimator simply
allows the smoothing parameter to vary with
each realization. That is, a vector of smooth-
ing parameters with dimension equal to the
data rather than a single smoothing parame-
ter is employed. Given that we are concerned
with undersmoothing in the tails, we desire
our smoothing parameters to be inversely
related to the denseness of the data. Thus, a
tail realization would have its individual ker-
nel significantly flatter than a non-tail realiza-
tion. Figure 2 illustrates the adaptive kernel
density estimator based on the same seven
yield realizations as in figure 1. It is clear
how the adaptive kernel estimator is com-
posed of individual kernels, still centered on
the seven realizations, but with differing vari-
ances unlike the standard kernel estimator.

Given the smoothing parameter based on
Silverman’s rule of thumb, we adapt or adjust
it for each individual kernel. The first prob-
lem is to decide whether a realization belongs

to a relatively dense or sparse region. If the
true density were known, we could compare
the realization to the true density and make a
decision regarding the necessary smoothness
for its individual kernel. Clearly, we do not
know the true density. Thus, a pilot estimate
of the density needs to be used. For the pilot,
we use the standard kernel estimate. Denot-
ing the pilot estimate f̌ , the local scale λi is
defined as

λi =
(
f̌ (yi)

g

)−α
(7)

where log(g) = 1
T

∑
log f̌ (yi) and α ∈ [0� 1] is

the sensitivity parameter. Now consider esti-
mating the unknown yield density fY based
on a set (y1� y2� � � � � yT ) of independent real-
izations from fY with a vector of smoothing
parameters. The adaptive kernel estimate of
fY at a given point, say y0, is defined as

f̂Y (y0) =
T∑
i=1

K
(
y0−yi
λih

)
Thλi

(8)

where hλi is the smoothing parameter for
realization i, and K(·) is the kernel func-
tion. Silverman reviews this methodology and
notes that the adaptive estimate is relatively
insensitive to the pilot estimate. The smooth-
ing parameter vector depends on the power
to which the pilot density is raised. The larger
α, the more sensitive the method will be to
variations in the pilot density and the more
difference there will be between the smooth-
ing parameters. Obviously, setting α = 0
reduces the adaptive method to the standard
kernel estimate. We set α = 1

2 for theoretical
reasons outlined by Abramson. Although the
adaptive kernel estimator increases the com-
putational complexity of our Bayesian non-
parametric kernel estimator, it is not without
reward, particularly when tail estimation is
crucial.

An unfortunate problem with using ker-
nel estimators is that the estimated density
does not necessarily have moments equal
to the sample moments. The consistency of
these estimators indicates that this is a finite
sample problem. However, in the size of
samples we have for estimating conditional
yield densities, this can be disconcerting. Con-
sider the first two moments of the estimated
density using adaptive kernel methods. A
kernel function is said to be of order p
if

∫
K(u)du = 1; ki = ∫

uiK(u)du = 0�
i = 1� � � � � p − 1; and kp = ∫

upK(u)du =
0. Therefore, the standard Gaussian kernel,
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Figure 2. Adaptive kernel density estimator

which has mean 0 and variance 1, is a ker-
nel of order 2 because k1 = 0 and k2 =
1 = 0. Now consider the first moment of the
kernel density estimate. If k1 = 0, that is,
the kernel is symmetric about zero, the esti-
mated density has mean equal to the sample
mean almost surely. Intuitively, a symmet-
ric kernel function about zero ensures the
mean of each individual kernel is the point
at which it is centered on, independent of the
smoothing parameter. Given each kernel is
equally weighted (they all have equal mass),
the mean of the adaptive kernel estimate is
just the sum of the sample divided by T .
Obviously this is the sample mean. Thus, our
estimated densities will have means equal to
their respective sample means (see Lemma 1,
Appendix 1 for proof).

With respect to the second sample moment,
the estimated density will have variance
greater than or equal to the sample vari-
ance almost surely for an order two kernel.7
The proof for the adaptive kernel estima-
tor is given in Lemma 2, Appendix 1. The
additional variance of the kernel estimate
is rather intuitive. Since the mass ( 1

T
) at

each realization is being smoothed or spread
out, variance must necessarily increase. This

7 The equality holds for T = {1�∞}.

is an undesirable property given the sam-
ple variance is an unbiased estimator of the
population variance. For our application, this
is particularly problematic because the addi-
tional variance may be large in small samples
while tail probabilities, and thus derived rates,
are quite sensitive to changes in variance.

Appendix 1 derives the variance of the esti-
mated density from the adaptive kernel esti-
mator. The variance is

var(y) = h2 ∑T
i=1 λ

2
i

T
+ T − 1

T
s2(9)

= Op

(
T −(7/5))+O(1)s2

where y ∼ f̂Y and s2 is the sample variance of
the set of independent realizations from fY .
We adjust our adaptive kernel estimates by
taking a scale transformation of the support
(see Lemma 2, Appendix 1).8 In doing this,
we force the estimated density to have vari-
ance equal to the sample variance. Beirens
undertakes a different approach which leads
to the same result. Rather than taking a scale
transformation of the initial kernel estimate,

8 The kernel is evaluated at uniformly spaced points along an
interval of ± 10 standard deviations. The transformation is taken
with respect to the support points at which the kernel estimate
is calculated.
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Figure 3. Adaptive versus standard kernel; Adair County, Iowa

Beirens scales the data prior to entering the
kernel.9

Figure 3 illustrates the difference between
the standard kernel estimate, the adaptive
kernel estimate, and the adaptive kernel esti-
mate adjusted to have variance equal to the
sample variance for Adair County. First con-
sider the difference between the adaptive
kernel estimate and the standard kernel esti-
mate. Clearly, the tail lumpiness with the stan-
dard kernel estimator is undesirable whereas
the relative smoothness with the adaptive
kernel estimator more closely resembles our
prior beliefs. Note, however, that the adap-
tive kernel estimator will not be such that bi-
modality is removed when the data suggest
the underlying density is bi-modal. Second,
consider the difference between the adap-
tive kernel estimate and the adaptive kernel
estimate adjusted to have variance equal to
the sample variance. Their respective rates
at the 65% coverage level are perhaps more
different than one might have thought. As
discussed, the additional variance can be non-

9 An alternative solution would be to employ a higher-
order kernel such as a fourth order kernel where∫
K(u)du = 1� k1 = k2 = k3 = 0 = k4. In this case, var(y)=

T−1
T s2y a.s. since k2 = 0 (see Lemma 2, Appendix 1). Unfortu-

nately, higher-order kernels require negative mass which may
lead to negative mass in the estimated yield density. Therefore,
higher-order kernels were not employed.

trivial in small samples despite its quick con-
vergence rate Op(T

−(7/5)). The difference in
the premium rate for the 65% coverage level
is economically significant. If one does not
correct for the inflated variance, the rates
are increased by 17.2%. Not surprisingly, this
result was found for most counties. Obvi-
ously, as the coverage level is increased, the
effect of the additional variance on the rates
decreases.

Bayesian Nonparametric Kernel
Density Estimation

We wish to consider not only a single condi-
tional yield density, but a set of conditional
yield densities, one for each county. Denote
the number of counties as Q and the adap-
tive kernel estimate at support point yj for
county i as f̂ij . Ker (1998) proposes the fol-
lowing hierarchical model:

f̂ij |µij ∼ N
(
µij� σ

2
ij

)
(10)

µij ∼ N
(
µj� τ

2
j

)
where µij = fij + βij� fij is the unknown den-
sity value for county i at support point yj , βij
is the bias for county i at support point yj , σ

2
ij

is the variance of the adaptive kernel density
estimate for county i at support yj , µj is the
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mean value of the densities across counties
at support yj , and τ2

j is the variance across
counties at support yj . The intuition behind
the hierarchical model is that even though
the µij ’s are mutually independent for a given
j , they are tied together in that there is one
loss function for estimating the Q densities
at support point yj . Thus, in flavor similar
to Stein’s paradox, an estimator (the poste-
rior) which is a function of the {f̂1j � � � � � f̂Qj

}
is constructed which may be preferable to
the adaptive kernel estimate. If the bias term
βij was zero or asymptotically zero, we could
say that the resulting posterior dominates the
adaptive kernel estimate, thus making it inad-
missible. Unfortunately such a statement can-
not be made and dominance, either finite or
asymptotically, cannot be asserted regarding
either estimator. As a result, Ker (1998) pro-
poses a simulation approach to gauge the
value of the empirical Bayes estimator in a
given situation.The posterior estimate for the
hierarchical is

f̃ij = f̂ij

(
τ2
j

τ2
j + σ2

ij

)
+ µj

(
σ2
ij

τ2
j + σ2

ij

)
(11)

where the unknowns (µj� τ2
j � σ2

ij ) must
be estimated. Bootstrap methods are used
to estimate the variance σ2

ij . An estimate
of the mean and variance across counties
is obtained using the following method of
moments estimators: µ̂j = 1

Q

∑Q
i=1 f̂ij and τ̂

2
j =

ŝ2
j − 1

Q

∑Q
i=1 σ̂

2
ij where ŝ2

j = 1
Q−1

∑Q
i=1(f̂ij − µ̂j )2

(see Lemma 3, Appendix 1). Therefore, the
empirical Bayes nonparametric kernel den-
sity estimator at support yj for county i is

f̃ij = f̂ij

(
τ̂2
j

τ̂2
j + σ̂2

ij

)
+ µ̂j

(
σ̂2
ij

τ̂2
j + σ̂2

ij

)
�(12)

The resulting posterior or empirical Bayes
nonparametric kernel estimate f̃ij is very
intuitive. As the estimated variance of the
kernel estimates across counties increases
(τ̂2
j ↑), the less the set of adaptive kernel esti-

mates (f̂1j � f̂2j � � � � � f̂Qj) will shrink toward
the overall mean (µ̂j ). Conversely, the larger
the estimated variance of the kernel esti-
mate for a given county (σ̂2

ij ), the more that
given adaptive kernel estimate (f̂ij ) shrinks
toward the overall mean (µ̂j ). As expected
with many shrinkage or Stein type estimators,
the greater the variance within the experi-
mental units relative to the variance across

the experimental units, the greater the shrink-
age and the greater the potential improve-
ments in efficiency. Ker (1998) indicates that
the empirical Bayes nonparametric kernel
estimator may offer the largest efficiency
gains in small samples where the variance
within counties tends to be relatively high
as compared to the variance across coun-
ties. Figure 4 illustrates, for Adair County,
the empirical Bayes nonparametric kernel
density estimate (f̃ ), along with the adap-
tive kernel estimate (f̂ ) and the mean of the
adaptive kernel estimates for the subset con-
taining Adair County.

Empirical Simulation

The empirical Bayes nonparametric kernel
estimate has been proposed as a competing
estimator to the adaptive kernel estimator.
Ker (1998) proposes the following approach
for choosing between the competing estima-
tors. The data are initially used to recover
estimates of the yield densities by employing
the adaptive kernel estimator only. This con-
stitutes a set of pilot density estimates from
which random samples of the size of the orig-
inal sample may be drawn. For each sample
from the adaptive kernel estimates, or equiv-
alently, each smoothed bootstrap sample of
the original data, the adaptive kernel and the
empirical Bayes nonparametric kernel esti-
mators are recovered and compared to the
pilots. If the empirical Bayes nonparametric
kernel estimator mean metric value, for some
appropriately chosen metric, is significantly
lower than that of the adaptive kernel estima-
tor, then the empirical Bayes nonparametric
kernel estimator would be the preferable esti-
mator if in fact the pilots were the unknown
densities of interest. Conversely, if the adap-
tive kernel estimator mean metric value is
significantly lower than that of the empir-
ical Bayes nonparametric kernel estimator,
then the adaptive kernel estimator would
be preferable, if again the pilots were the
unknown densities of interest. Note that this
type of simulation does not indicate which
estimator is preferable for the unknown yield
densities, but rather which estimator is prefer-
able if the initial estimates were the unknown
yield densities.Although this may seem a rea-
sonable way to proceed, we are comparing
the competing estimators to an estimate of
the unknown yield densities rather than the
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Figure 4. Adaptive kernel versus empirical Bayes nonparametric kernel; Adair County, Iowa

true unknown yield densities and thus cau-
tion must be taken.

Recall that county yield data for Iowa all-
practice corn is the application. There are
ninety-nine counties in Iowa, all of which pro-
duce a significant amount of corn. Rather
than grouping the entire set of ninety-nine
counties together for the empirical Bayes
nonparametric kernel density estimator, sub-
sets are taken for two reasons. First, yields
are believed to be dependent among con-
tiguous counties. The empirical Bayes non-
parametric kernel density estimator will tend
to overshrink toward the mean (µ̂j ) because
the estimated variance (τ̂2

j ) will be negatively
biased. This approach avoids the issue of
explicitly modeling spatial correlation which
would be necessary if neighboring counties
were pooled. Extensions to this research
may profit from a consideration of meth-
ods for pooling nonindependent observations
and explicit modeling of spatial correlation.
Second, the more similar the underlying den-
sities, the greater nonparametric kernel den-
sity estimator relative to the adaptive kernel.
In fact, Ker (1998) illustrates that if the
unknown densities of interest are known up
to an estimable transformation, the asymp-
totic MISE of the empirical Bayes non-
parametric kernel density estimator is lower

than the standard kernel density estimator.10
Because Central Limit Theorems for depen-
dent processes play a significant role in the
shape of the conditional yield densities, coun-
ties with similar planted acres would tend
to be similar in shape. Therefore, we cre-
ate subsets of counties with similar mean
planted acres subject to the restriction that
no contiguous counties belong to the same
set. This results in eleven subsets composed
of nine counties each. The empirical Bayes
nonparametric kernel estimator is employed
separately with each subset.The adaptive ker-
nel estimate for a given county is unaffected
by the composition of the subsets.

A very nice feature of kernel estimators is
that they are invariant to transforming the
data, estimating the density with the trans-
formed data, and then taking the inverse
transformation on the estimated density. To
ensure our density estimates have mean and
variance determined by their county data
only, the data are transformed to have mean
zero and variance one prior to entering the
density estimators. The estimated densities
are then transformed back to have mean
and variance equal to the sample mean and
variance.

10 The result is easily generalized to the adaptive kernel
estimator.
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One hundred smoothed bootstrap samples
of the size of our data (35) were taken in
order to compare the empirical Bayes to
the adaptive kernel estimator. The smoothed
bootstrap samples, after making the appro-
priate variance adjustment, are independent
draws from the adaptive kernel estimate of
the yield densities. The competing estimators
are compared for each bootstrap sample to
the underlying density (original adaptive ker-
nel estimate) using both L1 and L2 norms.
The L1 norm is included as the tails are
given more weight relative to the L2 norm.
For each simulation, the total metric value
over the nine counties in each of the eleven
subsets is recovered. Table 1 presents the
percentage decrease, from the adaptive ker-
nel estimator to the empirical Bayes ker-
nel density estimator, of the mean (over the
100 simulations) of each subset’s total met-
ric value. Paired t-tests were performed for
each county as well as the total for each sub-
set. The percentage decreases in both L1 and
L2 norms are large and statistically signifi-
cant for each subset. These simulation results
suggest the empirical Bayes nonparametric
kernel density estimator is very likely to
offer significant efficiency gains in estimating
the conditional yield densities. Additionally,
for subset one, smoothed bootstrap samples

Figure 5. Empirical Bayes versus adaptive kernel

Table 1. Empirical Bayes versus Adap-
tive Kernel: Percentage Decrease in Mean
Metric

Subset L1 Norm L2 Norm

1 10�74% 19�68%
2 13�67% 19�00%
3 13�15% 13�13%
4 10�96% 12�81%
5 10�96% 9�55%
6 9�31% 7�79%
7 9�23% 24�31%
8 84�4% 9�42%
9 10�65% 16�47%

10 94�9% 9�05%
11 15�63% 13�71%

(100) of varying sizes were taken from the
pilot estimates. The total L2 norm over the
nine counties at various sample sizes is illus-
trated for both estimators in figure 5. The
results suggest that one would need approx-
imately sixty-one years of yield data to esti-
mate the shape of the pilots with adaptive
kernel estimators as accurately, according to
the L2 norm, as the thirty-five years of yield
data with the empirical Bayes nonparametric
kernel density estimator. Given that scarcity
of data remains the largest problem for rat-
ing crop insurance contracts, these simula-
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tion results are noteworthy. They illustrate
that potentially large gains in estimation effi-
ciency may be captured with the use of the
empirical Bayes nonparametric kernel den-
sity estimator.

Rating Crop Insurance Contracts:
Empirical Results

In this sectionwederive and contrast estimates
of the 1997 GRP rates for Iowa all-practice
corn associated with the various conditional
yield density estimates. Specifically, we con-
trast the empirical Bayes nonparametric ker-
nel rates with existing GRP rates, GK rates,
standard kernel rates, standard kernel rates
adjusted for variance inflation,adaptive kernel
rates, and, adaptive kernel rates adjusted for
variance inflation. Comparisons are made for
the 65% and 85% coverage levels.

Recall the temporal models were found to
be ARIMA(4� 1� 0) and thus

yt = yt−1+β0+β1(yt−1−yt−2)(13)

+β2(yt−2−yt−3)+β3(yt−3−yt−4)

+β4(yt−4−yt−5)+et
and

yT+2 = ŷT+2 + νT+2(14)

where νT+2 = (1+ β1)eT+1 + eT+2 and ŷT+2 is
the two-step ahead prediction.11

The set of transformed innovations rep-
resents a set of asymptotically independent
realizations from f(e). Given that GRP rates
must be set two years in advance, we require
the density f(ν). In general, innovations
are inflated or scaled by

√
1+ (1+ β1)

2 to
account for the increased variance as yt+1 is
unknown. This procedure is valid if, and only
if, the innovation distribution has two special
properties: the family is a scale family dis-
tribution and the convolutions of two inde-
pendent draws belong to the same family.
The Gaussian family is rare in that it main-
tains these two properties. Unfortunately,
conditional yield densities f(yT+1|FT ) are not
Gaussian.12 However, estimates of the density

11 The two-step ahead prediction is defined as ŷT+2 = (1 +
β1)yT + (2 + β1)β0 + (β1 + β2

1 + β2)(yT − yT−1) + (β2 + β1β2 +
β3)(yT−1−yT−2)+(β3+β1β3β4)(yT−2−yT−3)+(β4+β1β4)(yT−3−
yT−4).

12 Ker (1996) illustrates that if the innovations are a mixture of
two Gaussians, which not surprisingly happens to be a location-
scale family, then the convolution is a mixture of four Gaussians.
Thus, variances may not simply be scaled.

f̂ (ν) may be numerically recovered from the
nonparametric estimates of the density f̂ (e)
(see Appendix 2 for the derivations). Figure 6
illustrates, for Adair County, the effect of con-
sidering the two-step ahead prediction using
the empirical Bayes nonparametric kernel
density estimator. Not surprisingly, there is
very little difference since β̂1 = −0�887 for
Adair County. Since νT+2 = (1 + β1)eT+1 +
eT+2, as β1 → −1 then νT+2 → eT+2 and
f(ν)→ f(e).

Table 2 illustrates the rates derived from
the various methods averaged over the
ninety-nine counties.13 The results are as one
would expect. First, the standard and adap-
tive kernel rates are significantly higher than
their respective counterparts that adjust the
densities for the inflated variance. For the
standard kernel estimator, the rates are 16%
and 10% smaller, on average, for the 65%
and 85% coverage levels, respectively. At the
65% coverage level, the percentage decrease,
by county, ranges from 2% to as high as 63%
lower when the standard kernel density esti-
mate is transformed to have variance equal to
the sample variance. Similarly, the percentage
decrease, by county, ranges from 1% to 20%
lower at the 85% coverage level.With respect
to the adaptive kernel estimator, the rates are
19% and 12% smaller, on average, for the
65% and 85% coverage levels, respectively.
The percentage decrease, by county, ranges
from 4% to 58% for the 65% coverage level
and from 3% to 27% for the 85% coverage
level. Second, the adaptive kernel rates tend
to be higher than the standard kernel rates
at the lower coverage level given mass in the
tails of the estimated densities is more dis-
persed.Third, the empirical Bayes rates are in
line with the variance adjusted adaptive ker-
nel rates. This is expected given the empirical
Bayes nonparametric kernel density estima-
tor is based on the variance adjusted adap-
tive kernel estimator. Finally, the empirical
Bayes rates, adjusted for the two-step ahead
forecast, are 3% higher than the unadjusted
rates for both coverage levels. Although the
increase was small for most counties, the
percentage adjustment, by county, ranged
from approximately 0% to 20% at the 65%
coverage level and 0% to 11% for the 85%
coverage level.

13 Rates by method and county are available upon request from
the lead author.
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Figure 6. Empirical Bayes versus empirical Bayes two-step ahead prediction; Adair County,
Iowa

Conclusions

This manuscript revisits the use of non-
parametric kernel methods used in GK for
estimating the conditional yield densities and
the subsequent derivation of premium rates.
We feel this is particularly topical given
the increased prominence of the crop insur-
ance program in the U.S. agricultural policy
agenda.

A concern with using nonparametric ker-
nel methods or so-called flexible parametric
forms in small samples is stability. Given this
concern, GK combined innovations recov-

Table 2. Mean 1997 GRP Rates for Iowa All-Practice Corn

Mean Rate Mean Rate
Methodologya 65% Coverage Level 85% Coverage Level

Actual GRP rates 1�4609 3�5118
Goodwin and Ker rates 1�6440 4�0379

Standard kernel rates 1�6147 4�3944
Standard kernel ratesb 1�3581 3�9724

Adaptive kernel rates 1�8468 4�3945
Adaptive kernel ratesb 1�5017 3�8500

Empirical Bayes nonparametric kernel ratesb 1�5066 3�8645
Empirical Bayes nonparametric kernel ratesb� c 1�5496 3�9653

a Rates by county and methodology are available from the lead author.
b Densities are adjusted to have variance equal to sample variance.
c Accounts for two-step ahead prediction.

ered from the temporal models of contigu-
ous counties to estimate the conditional yield
densities. We have two concerns with that
approach. First, the method by which the
innovations from the temporal models were
combined was admittedly ad hoc. Second,
innovations from contiguous counties are not
likely to be independent. Our objective in
this manuscript has been to employ both an
equally flexible method for estimating con-
ditional yield densities as well as one that
exploits the similarities among the county
yield densities. The empirical Bayes nonpara-
metric kernel density estimator, which uses
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empirical Bayes techniques on the estimated
values from the kernel density estimator, was
used. Simulations suggest that this estimator
may provide very significant efficiency gains
in estimating conditional yield densities. In
our simulations, sixty-one years of data were
required for the adaptive kernel to estimate
the shape of the conditional yield densities
(up to a location-scale transformation), as
accurately, on average and with respect to
L2 norm, as the empirical Bayes nonpara-
metric kernel density estimator given only
thirty-five years of data. Finally, the empirical
Bayes nonparametric kernel estimator may
be employed in rating other crop insurance
products as well.

In addition to employing a new estima-
tor, this manuscript makes three additional
strides. First, we employ an adaptive kernel
method. Accurate estimation of lower tail
probabilities is crucial to deriving accurate
rates. A variable smoothing approach signifi-
cantly decreases the dependency of estimated
tail probabilities on the specific location of
the tail realizations. Second, we force the
estimated densities to have variance equal
to the sample variance. The variances of the
standard and adaptive kernel density esti-
mators are greater than the sample vari-
ance almost surely when a kernel of order
two, such as the standard Gaussian, is used.
Although it was shown that this additional
variance is O(T −(7/5)), it was found to have a
significant effect on the derived rates. Finally,
we have explicitly recognized that rates need
to be calculated two years in advance. Given
the AR(1) parameters are close to −1 for
most counties, the resulting rates do not
increase significantly by considering a two-
step ahead forecast.

[Received November 1997;
accepted August 1999.]
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Appendix 1

This appendix contains the technical derivations
for the adaptive kernel estimator and the empir-
ical Bayes kernel density estimator. Although we
have not seen the below proofs in the statisti-
cal literature, most likely because of their trivial
nature, we are not advancing these as contribu-
tions. Rather, we include them because of their
pertinence to our analysis. For Lemmas 1 and 2 it
is necessary to define second order kernels. A ker-
nel is of order two if k1 = ∫

uK(u)du = 0� k2 =∫
u2K(u)du = 0, and

∫
K(u)du = 1.

Lemma 1. The mean of the estimated density from
the adaptive kernel estimator is equal to the sample
mean almost surely:

E(y) =
∫
yf̂ (y)dy(A.15)

=
∫
y

1
Th
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(K( y−yi
λih
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)
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= 1
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Lemma 2. The variance of the estimated den-
sity from the adaptive kernel estimator is greater
than the sample variance almost surely. Denote∫
u2K(u) du = k2. For the standard Gaussian ker-

nel, k2 = 1�

E(y2) =
∫
y2f̂ (y) dy(A.16)
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Therefore,

Var(y) = E(y2)−E(y)2(A.17)

= 1
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− ȳ2

= h2k2
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Lemma 3. E[ŝ2j ] = (
∑Q

i=1 σ
2
ij/Q) + τ2

j where ŝ2j =
1

Q−1

∑Q
i=1(f̂ij − µ̂j )

2 and µ̂j = 1
Q

∑Q
i=1 f̂ij .
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If ŝ2j = 1
Q−1

∑Q
i=1(f̂ij − µ̂j )

2, then
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Q − 1
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j
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Thus, τ2
j is estimated by τ̂2

j = ŝ2j − (
∑Q

i=1 σ̂
2
ij/Q).

Note, if σ̂2
ij = σ̂2

j ∀ i = 1� � � � �Q then the common
estimator τ̂2

j = ŝ2j − σ̂2
j would result.

Appendix 2

The temporal models were found to be
ARIMA(4� 1� 0) and thus

yt = yt−1 + β0 + β1(yt−1 − yt−2)(A.21)

+ β2(yt−2 − yt−3)

+ β3(yt−3 − yt−4)

+ β4(yt−4 − yt−5)+ et

and

yT+2 = ŷT+2 + νT+2(A.22)

where νT+2 = (1 + β1)eT+1 + eT+2. As mentioned
in the main text, estimates of the density f̂ (ν) may
be numerically recovered from the nonparametric
estimates of the density f̂ (e).

If ω = (1 + β1)e (hence de
dω

= 1/(1+ β1)), then
by the well-known change-of-variables formula

f&(ω) = fE(e)
∣∣∣ de
dω

∣∣∣(A.23)

= fE(e)
1

1+ β1
�

Now consider the joint density of e and ω. We
know they are independent because et and et−1 are
independent. Hence, fE�&(e�ω) = fE(e) × f&(ω).
Now let ν = e + ω and consider the joint den-
sity fE�V (e� ν). Obviously both transformations are
monotone and thus one to one and onto. Thus,

fE�V (e� ν) = fE(e) f&(ν − e)× 1(A.24)

since the determinant of the Jacobian is 1. There-
fore, the marginal density fV (ν) is defined as

fV (ν) =
∫ ∞

−∞
fE�V (e� ν)de(A.25)

=
∫ ∞

−∞
fE(e)× f&(ν − e)de

which we must calculate numerically. Recall, how-
ever, that we desire to have the mean and variance
of the estimated conditional yield densities to be
determined by the county data only. The variance
of the estimated density, f̂E(e), is

h2k2
∑T

i=1 λ
2
i

T
+ T − 1

T
s2E�

Therefore, we transform the estimated density by
the scalar

√√√√ s2E
h2k2

∑T
i=1 λ

2
i

T
+ T−1

T
s2E

to get f̃E(e) with mean zero and variance s2E and
calculate various estimates of fV (ν) numerically
from our various estimates of fE(e).


