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Abstract

We propose a standard approach to make inference for spatial generalized linear

mixed models using Laplace approximation. Based on analysis of two datasets previous

analysed in literature, we compare our approach with different approaches. The first

the rhizoctonia root rot dataset is an example of Binomial SGLMM and the second

rongelap dataset is an example of Poisson or Negative Binomial SGLMM. Our results

show that Laplace approximation provides point estimate really similar to MCMC

likelihood, MCEM and modified Laplace approximation. The advantege to use Laplace

approximation is to avoid tuning and convergence analysis when using based simulation

method. Furthermore, using Laplace approximation we can compute the maximum log-

likelihood value and realistic confidence interval based on profile likelihood. We provide

R code to use our approach on the supplement material webpage.
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1 Introduction

Evaluating the likelihood function for spatial generalised linear mixed models (SGLMM)

(Diggle et al., 1998) requires the solution of a high dimensional integral for the spatially

correlated random effects. E.g., for the standard setup with observed data regarded as a

single partial realisation of a process within an area, the dimension of the integral is equals

the number of data. Solve such intractable integral is the main problem in these models.

In the literature, such models are most commonly fitted by Monte Carlo Markov chain

(MCMC) methods under the Bayesian paradigm. Diggle et al. (1998) presents Bayesian

inference for SGLMM, a more efficient Langevin-Hastings MCMC algorithm was proposed by

Christensen et al. (2000). A robust version of their method was presented by Christensen et al.

(2006). Christensen and Waagepetersen (2002) presents the general ideas about Bayesian

prediction in the context of count data. There is a rich literature about Bayesian inference

using MCMC methods for SGLMM, an extended review may be found in Banerjee et al.

(2004).

In practice, MCMC methods for SGLMM comes with a wide range of problems in terms

of convergence and computational time. Moreover, the implementation itself can be prob-

lematic, especially for end users who might not be experts in programming. There are several

software platforms for fitting generic models with random effects via MCMC, including JAGS

(Plummer, 2003), BayesX (Belitz et al., 2012), WinBUGS (Lunn et al., 2000) and others.

Recently, some authors have dedicated attention for approximate methods inside the

Bayesian framework. Rue and Martino (2007) proposed approximate Bayesian inference in

the context of Gaussian Markov Random Fields. Eidsvik et al. (2012) presents a similar ap-

proach for SGLMM and Hosseini et al. (2011) proposes approximate Bayesian inference for

SGLMM but with skew Normal latent variables. All these approaches have in common the

fact of using Laplace approximation (Tierney and Kadane, 1986) to solve a high dimensional

integral. Rue et al. (2009) consolidates the Laplace approximation use, and show that this

type of approximation is accurate enough for practical data analysis. Although, computa-
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tionally convenient the most serious criticism of the Bayesian approach is its dependence on

the choice of the prior distributions.

Christensen (2004) presents the likelihood analysis still relying on MCMC algorithms.

Both MCMC likelihood and Bayesian algorithms are implemented for Poisson and Binomial

models in the R (R Core Team, 2013) package geoRglm (Christensen and Ribeiro, 2002) and

described in details in Diggle and Ribeiro Jr (2007). Alternative methods are proposed by

Zhang (2002) adopting a spatial EM algorithm (still with Monte Carlo method).Baghishani

and Mohammadzadeh (2011) and Torabi (2014) proposes a different approach based on data

clone algorithm Lele et al. (2010).

Although, these algorithms made frequentist analysis of SGLMM they are equally com-

putationally inconvenient that MCMC algorithms in Bayesian analysis. Once that, they

make inference based on simulation. In general these methods do not provide maximum log-

likelihood value and it is not clear how to use these methods to compute profile likelihood,

two important tools in the context of likelihood analysis for SGLMM. Varin et al. (2005)

proposes to use pairwise likelihood to make inference in SGLMM, this approach is compu-

tationally convenient, because its solve just bidimensional integrals, the overhead is that we

need to choose these pair of observations. There are some approaches to do it, but is difficult

to evaluate the impact of different choices in the final result.

Likelihood analysis for SGLMM has been the subject of a great deal of research over

the past decades. Perhaps the work of Breslow and Clayton (1993) about penalized quasi-

likelihood (PQL) and marginal quasi-likelihood (MQL) was the initial point of likelihood

analysis for SGLMM. However, it seems to work away the interest of researchers in the use

of Laplace aproximation in the context of likelihood analysis. It is a well known result in

the literature that Breslow and Clayton’s method yields a non-negligible bias when applied

to binary clustered data (Breslow and Lin, 1995), (Lin and Breslow, 1996). Evangelou et al.

(2011) presents a modified Laplace approximation and applied this method for estimation

and prediction for SGLMM. The authors compare their results with other approach as PQL
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and MCMC likelihood and conclude that their method has better performance.

In the context of generalized linear mixed models Millar (2011) argument that penalized

quasi-likelihood have much in common with Laplace approximation, but the author states

that the weakness this ad hoc likelihood method is that it use additional approximations to

avoid the optimization and second derivative calculation required by the Laplace approxima-

tion.

Computational capabilities have increased since the proposal of the SGLMM. This mo-

tivates us to revisit standard methods for evaluating the likelihood function. We adopt the

Laplace approximation (Tierney and Kadane, 1986) for integrating for the random effects.

Under this approach, for each evaluation of the likelihood function, the computational bur-

den for integration is replaced a maximization to find optimised values for the random effects

and the Hessian around such maximum. In other words we have an optimisation algorithm

for the random effect within the optimisation for the model parameters.

In what follows we describe the algorithm and present analysis for the rhizoctonia root rot

data previous analysed by Zhang (2002) and Evangelou et al. (2011) and compare our results

with the results from these papers. We reanalyse the Rongelap data which motivates Diggle

et al. (1998). Using rongelap data we compare our approach with MCMC likelihood, such

that implementated in the package geoRglm and we propose an extended analysis using

Negative Binomial distribution. Our procedure can be immediately extended to other GLM

families and Beta models.

There is no free lunch each method ”charges its price” replacing the complexity of the

integral by some procedures which also depends on choices and tunings, which may be trick

or influential in the results. We argue that, despite the developments of new and sometimes

sophisticated algorithms and methods, there is a need to have an straightforward implemen-

tation of inference and prediction for SGLMM such that they can be widely used in routine

simple applications which may be safer for general usage than specialised algorithms.
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2 Spatial Generalized Linear Mixed Models

The spatial generalized linear mixed models (SGLMM), assume that we have recorded

observations y = (y1, . . . , yn)T at locations x = (x1, . . . , xn)T and y is a realization of

Y = (Y1, . . . , Yn)T . The hierarquical description for the SGLMM is the following:

Y(x)|S(x) ∼ f(·;µ(x), ψ) (1)

g(µ(x)) = Dβ + S(x) = Dβ + σR(x;φ) + τz and

S(x) ∼ N(0,Σ).

The model assumes that Y1, . . . , Yn are conditionally independent given a (Gaussian) spatial

process S(x) and distributed as f(·;µ(x), ψ). This distribution has two set of parameters.

The first denoted by µ(x) is related to the linear predictor through the link function g.

The second denoted by ψ is a precision or dispersion parameter which must be included in

the density or probability function f and here is treated only as an extra parameter in the

likelihood function. The spatial process is decomposed on spatially dependent (R(x;φ)) and

independent (Z) processes both with unit variance and scaled by the parameters σ and τ ,

respectively.

The linear predictor consist of the sum of fixed effects Dβ, spatially correlated random

effects R(x;φ) and uncorrelated τz = ε ∼ N(0, τ 2I). D is a design matrix with potential

covariates and β is a vector of regression parameters with dimension p× 1.

In geostatistical context R(x;φ) is a unit variance Gaussian random field (GRF) with

correlation function ρ(u, φ) where u denotes the distance between a pair of spatial locations

and φ a parameter that measures the spatial correlation. For a given choice of a valid

correlation function ρ ∈ <d parametrized by φ with d being the dimension of the spatial

domain. Here we assume in particular correlation functions for spatially continuous process

depending only on Euclidean distance u = ||xi − xj|| between pair of points. The common

choices for the correlation functions are the exponential, Matérn and spherical. The random
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part of the linear predictor has variance-covariance matrix Σ = σ2R(x;φ) + τ 2I.

2.1 Estimation and Laplace approximation

The main interest here is to make inference with respect the parameter vector θ = (β, σ2, τ 2, φ, ψ)

whose estimates are given by the maximization of the marginal likelihood function, obtained

by integrating out the random effects S(x) from the joint distribution of the random terms

of the model:

L(θ;y) =

∫
<n

[Y(x)|S(x)][S(x)]dS(x). (2)

The marginal likelihood function (10) is a product between two distributions and analyt-

ically intractable in general. The first is the sampling distribution for the observed variable

Y and the second is typically assumed to be a multivariate Gaussian distribution. A no-

table exception is the case where a Gaussian distribution is also assumed for Y, in this case

the integral has a closed form expression and notice that the parameters τ and ψ becomes

indistinguishable.

Numerical integrate this function may be challenge because its dimension n is equal

the number of observed values. Methods such as numerical quadrature, Gauss-Hermite or

adaptive Gauss-Hermite (Pinheiro and Bates, 1995) are impracticable here. Monte Carlo

integration is slow and difficult to monitor for convergence and accuracy (McCulloch, 1997).

An alternative is provided by the Laplace approximation of the integral (Tierney and

Kadane, 1986) which is largely adopted in longitudinal data analysis (Molenberghs and Ver-

beke, 2005). Overall, the Laplace approach is not widely explored or adopted for spatial

generalized linear mixed models. The idea is to approximate the integrand to obtain a

tractable expression for which a closed-form expression of the integral can be obtained, turn-

ing feasible the numerical maximization of the marginal likelihood. The Laplace method has

been designed to approximate integrals as follows

I =

∫
<n

exp{Q(s)}ds ≈ (2π)n/2| −Q′′(ŝ)|−1/2 exp{Q(ŝ)} (3)
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where Q(s) is a known, unimodal, and bounded function of a n-dimensional variable (s). Let

ŝ be the value for which Q is maximized. The method requires obtaining the maximum of

the integrand and the Hessian (Q′′(ŝ)), the matrix of second derivatives either analytically

or numerically.

Such approximation may be used for likelihood based inference for generalized linear

mixed models in general and in particular for spatial generalized linear mixed models as

follows. For simplicity, assume that the distribution f can be written in the form of the one

parameter exponential family,

f(y;β) = exp{yT (Dβ + S(x))− 1T b(Dβ + S(x)) + 1T c(y)} (4)

where b is a specific function. Common used distribution are the Poisson and the Bernoulli/Binomial.

The multivariate Gaussian density function is given by,

f(S(x); Σ) = (2π)−n/2|Σ|−1/2 exp{−1

2
S(x)TΣ−1S(x)}. (5)

The integrand in (10) is the product of (4) and (5). The likelihood function written in a

suitable format for the Laplace approximation is

L(θ;y) =

∫
<n

exp{Q(S(x))}dS(x),

where

Q(S(x)) = yT (Dβ+S(x))−1T b(Dβ+S(x))+1T c(y)−n
2

log(2π)−1

2
log |Σ|−1

2
S(x)TΣ−1S(x).

(6)

The equation (6) highlights the convenience of adopting the Laplace method to fit SGLMM.

The function Q(S(x)) is the sum of a GLM log-likelihood for the observed variable and a

multivariate Gaussian log-likelihood for the latent variable. To use the approximation at (3)
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we need the maximum ŝ of the function Q(S(x)) for a particular set of model parameters.

This is a high n-dimensional maximization. We propose to use an efficient Newthon-Raphson

(NR) algorithm to find ŝ although other numerical maximisation methods can be used. The

NR algorithm consists in computing:

si+1 = si −Q′′(si)−1Q′(si) (7)

up to convergence to get ŝ. Note that at this stage all parameter are considered known.

After convergence for the NR algorithm the value of the integral is computed to evaluate the

likelihood. The generic derivatives are given by:

Q′(s) = {y − b′(Dβ + s}T − sTΣ−1, (8)

and

Q′′(s) = −diag{b′′(Xβ + s} − Σ−1. (9)

The log-likelihood approximate by Laplace method is given by:

l(θ;y) =
n

2
log(2π)− 1

2
log | − diag{b′′(Dβ + ŝ)} − Σ−1|+ yT (Dβ + ŝ)− 1T b(Dβ + ŝ) + 1T c(y)

−n
2

log(2π)− 1

2
log |Σ| − 1

2
ŝTΣ−1ŝ

which now is maximised numerically over the model parameters. For the outer iterative

step we typically use the BFGS algorithm, implemented by the function optim() in R and

parametrised the model as θ = (β, log(σ2), log(φ), log(τ 2), log(ψ)). Others algorithms can be

used in the inner maximisation, however our tests showed a best performance with NR.

To make inference about θ̂ we can use the well known asymptotic distribution of the

maximum likelihood estimator,

θ̂ ∼ N(θ, Io(θ̂)−1)
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where Io(θ) denote the observed information of θ. Note that, in the SGLMM models we can-

not compute the Fisher information, because the second derivatives of log-likelihood function

are not available in a closed form. In this way, we use the observed information matrix com-

puted numerically on the point θ̂.

In general this type of asympotic approximation does not work well for parameters of

variance or correlation. In the context of SGLMM we have interest to make inference with

respect the covariance parameters (σ2,τ 2 e φ), so we propose to use the profile likelihood

approach to build confidence interval for covariance parameters, when analysing small or

medium data sets. Details about how implement profile likelihood in R can be found in

(Bolker and Team, 2014).

2.2 Practical issues

Our procedure is compost of a lot of steps, in the following we try to summary these steps.

1. Choose a set of initial values (θi) for the model parameters θ;

2. build the covariance matrix Σ and its inverse Σ−1;

3. estimate ŝ by the following maximisation;

(a) choose a set of initial values for s;

(b) compute Q′(s) by (8) and Q′′(s) by (9);

(c) solve the system Q′′(s)s∗ = Q′(s);

(d) update s = s + s∗;

(e) iterate up to convergence to obtain ŝ.

4. replace S(x) by ŝ and compute Q(ŝ) in (6);

5. compute the approximated value of the integral by (3) to obtain the value of the

marginal likelihood (10);
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6. use for example the BFGS algorithm to get the next value θi+1;

7. iterate up to convergence to obtain parameter estimates θ̂.

The Newton-Raphson algorithm is efficient, but its require a good initial values. In the

case of SGLMM, we have a really good initial value, once that our model suppose that the

expected value of the random effects is equal zero, we can use the expected value of S(x) to

start our Newton-Raphson algorithm. This step is computationally fast, because everything

that we need is solve a system of equations.

Reasonable starting values are important for fast convergence to the correct maximum of

the approximate likelihood. We propose a simple strategy to get initial values for the outer

iterative step. First, fit a simple generalized linear model to get initial values for β, based on

these values compute µ̂ (predict values), then compute the ordinary residuals r̂ = (µ̂ − y)

the variance of r̂ may be used as a initial value of σ2, if the model has nugget effect, we

can used some percent of the initial value of σ2 for example 10% as an initial value for τ 2.

Finally, the initial value for φ depends on the correlation function. In general we recomend

10% of the bigger distance between two observed points. It is a safe habit to try different

initial values for φ, to be sure that found the correct mode.

The procedure described here to get initial values is implemented in R through the function

start.values.sglmm(). The generic function sglmm() implements the algorithm described

and its use is similar the function glm() with additional arguments to specify the correlation

function.

3 Results

3.1 Binomial example

To evaluate the quality of our procedure we opted to compare our results with previous

results on literature. The first example, we analyse the rhizoctonia root rot data set, that
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was analysed by (Zhang, 2002) and (Evangelou et al., 2011). The rhizoctonia root rot is a

disease that attaches on the roots of plants and hinders their process of absorbing water and

nutrients. In this study 15 plants were pulled from each of 100 randomly chosen locations in

a farm and the number of crown roots and infected crown roots were counted. In the same

way that (Zhang, 2002) and (Evangelou et al., 2011) we assume constant mean (Intercept),

spherical covariance structure plus nugget effect for the underlying Gaussian random field.

We suppose binomial distribution for the response variable, here the number of infected crown

roots.

(Evangelou et al., 2011) compares five methods to estimation of SGLMM for the rhizoc-

tonia root rot data set. The first is a simple logit transformation of the observed probabilities

with additional supposition of normal distribution for the transformed response variable, de-

note this approach by trans. The next three approaches are different combinations of mod-

ified Laplace approximation proposed by (Evangelou et al., 2011) denoted by LA1, LA2a

and LA2b, for details see (Evangelou et al., 2011), Section 6.1. The fourth is the MCMC

likelihood (MCMCLik) implemented in the R package geoRglm. The burn-in size was 10000

and the subsequent iteration size 10000 with thinning 50. The fifth method is the MCEM

approach proposed by (Zhang, 2002). We reproduce here the Table 5 from (Evangelou et al.,

2011) with some modifications and include our estimates in the column called LAPLACE in

Table 1.

trans LA1 LA2a LA2b MCMCLik MCEM LAPLACE
Intercept -1.76 -1.72 -1.72 -1.72 -1.72 -1.62 -1.72
Partiall sill 0.13 0.08 0.10 0.11 0.10 0.18 0.11
Nugget 0.64 0.49 0.47 0.47 0.47 0.35 0.47
Range 151.20 149.10 148.60 148.80 148.30 145.11 148.66

Table 1: Point estimates from different methods using the rhizoctonia root rot data set.

The results in Table 1 show that LAPLACE approach presents point estimates really

similar to LA2a, LA2b and MCMCLik. It is important to emphasize that any method outside

LAPLACE provides the maximum likelihood value. (Zhang, 2002) and (Evangelou et al.,
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2011) reported standard errors of the parameter estimates showed in Table 1. In this paper we

argument that sometimes such standard error does not make sense for covariance parameters

ans small sample size, as rhizoctonia data set. Then, we propose to use profile likelihood

to acess the uncertainty of these estimates. The Figure 1 presents the profile likelihood

for the covariance parameters reparametrised on the logarithmic scale for computational

convenience.
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Figure 1: Profile likelihood contours for SGLMM fitted for rhizoctonia root rot data set.

The profile likelihood for the intercept and nugget effect are similar to a quadratic func-

tion, so in this case make sense to use the asymptotic result and to build confidence interval

based on asymptotic normality of maximum likelihood estimator. However, for covariance

parameters that describes the spatial structure the behavior of the profile likelihood is high

asymmetric and show clearly that based in this data set we do not have enough information

to make inference with for example 95% of confidence.

The second important contribution form our approach is that we can compute the maxi-

mum log-likelihood value. For example, the maximum log-likelihood value for a simple GLM

model fitted for rhizoctonia root rot data set is −584.50 the maximum log-likelihood value

for the SGLMM fitted using spherical correlation function is −400.26, based on these values

we can compute for example the Akaike criterion (AIC) and choice the best fit. For the

rhizoctonia root rot data set the AIC for GLM is 1171.00 and for the SGLMM is 808.53, so

no doubts about the best fit.
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3.2 Poisson example

The rongelap dataset was analysed by (Diggle et al., 1998) and others. The dataset consist of

n = 157 measurements of yi radionuclide counts for various time durations mi. The data are

modeled as a SGLMM with a Poisson distribution. We fit eight models for this dataset, we

consider a global mean (Intercept) and two correlation functions (Matérn and spherical). For

the Matérn correlation function we consider three values for the smooth parameter (κ = 0.5,

1.5 and 2.5). We consider too models with and without nugget effect and fit all models using

Laplace approximation and MCMC likelihood, using the R package geoRglm. The burn-in

size was 20000 and the subsequent iteration size 50000 with thinning 50. We use the same

strategy for initial values for both approaches. The idea here is first to compare the point

estimates from Laplace with the benchmarking MCMC likelihood method and after to use

the maximum log-likelihood value to choice the best among these eight models.

Table 2 presents the point estimates from Laplace and MCMC likelihood method together

the maximum log-likelihood value obtained from Laplace approximation for the eight models

described.

Models
Intercept Partial Sill Nugget Range logLik
LA MCL LA MCL LA MCL LA MCL LA

Matérn κ = 0.5 1.83 1.83 0.30 0.30 – – 103.27 103.13 -1317.99
Matérn κ = 0.5 + nugget 1.82 1.82 0.26 0.26 0.04 0.04 151.80 152.00 -1317.19
Matérn κ = 1.5 1.94 1.94 0.22 0.22 – – 2.47 0.00 -1337.25
Matérn κ = 1.5 + nugget 1.82 1.82 0.24 0.24 0.07 0.07 75.49 75.53 -1315.75
Matérn κ = 2.5 1.94 1.94 0.22 0.22 – – 0.00 0.00 -1337.25
Matérn κ = 2.5 + nugget 1.83 1.82 0.24 0.24 0.07 0.07 53.58 53.61 -1315.08
Spherical 1.84 1.84 0.33 0.33 – – 212.43 212.37 -1318.02
Spherical + nugget 1.84 1.84 0.24 0.24 0.04 0.04 252.08 252.28 -1315.91

Table 2: Point estimates using Laplace approximation (LA) and MCMC likelihood (MCL)
for the rongelap dataset.

We note that both approaches show results really similars. In general the fitted models

to indicate that the nugget effect is important. The maximum log-likelihood value indicates

that the best model is using Matérn correlation function with κ = 2.5 which indicate a
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smooth spatial process. But the difference between Matérn with κ = 1.5 and spherical both

with nugget effect is really small. The Figure 2 shows the profile likelihood contour for each

model parameter.
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Figure 2: Profile likelihood contours for SGLMM fitted with Matérn correlation function
(κ = 2.5) for rongelap dataset.

The profile likelihood contours presented in the Figure 2 are well-behaved, in the sense

that are near a quadratic form. In this way the asymptotic results works well for this data

set. We can compute the confidence interval based on the reparametrized model and use the

invariance property of the maximum likelihood estimator to obtain confidence interval in the

original scale.

3.3 Negative binomial example

In previous section we presented an likelihood analysis for the rongelap dataset. The response

variable is the radionuclide counts, so we adopted the Poisson distribution, but we can

use some alternative model to compare with Poisson, for example the Negative Binomial.

Once that our method provides the maximum log-likelihood value we can compare different

supposition about the sampling distribution in a natural way. Table 3 presents the point

estimates and maximum log-likelihood values for the same eight models considered in Section

3.2, but now we use the Negative Binomial distribution instead of Poisson.

The results in Table 3 show in general that the nugget effect is not important when using

Negative Binomial. The nugget effect captures the non structured random effects, but when
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Models Intercept Partial sill Nugget Range Dispersion logLik
Matérn κ = 0.5 1.98 0.03 – 663.84 7.24 -1310.08
Matérn κ = 0.5+ nugget 1.98 0.03 0.00 664.60 7.24 -1310.08
Matérn κ = 1.5 1.97 0.03 – 269.48 7.23 -1309.71
Matérn κ = 1.5+ nugget 1.97 0.03 0.00 269.44 7.23 -1309.72
Matérn κ = 2.5 1.97 0.03 – 198.80 7.21 -1309.66
Matérn κ = 2.5+ nugget 1.97 0.03 0.00 198.73 7.21 -1309.66
Spherical 1.97 0.03 – 1265.15 7.26 -1309.83
Spherical + nugget 1.97 0.03 0.00 1265.60 7.26 -1309.83

Table 3: Point estimates for the Negative Binomial SGLMM using Laplace approximation
for the rongelap dataset.

using Negative Binomial distribution the extra dispersion parameter captures these effects.

Remember that Negative Binomial is Poisson plus Gamma random effects, so the Gamma

effect captures the non structured variation. In this model is difficult to know if is possible

to estimate both nugget effect and extra dispersion parameter. We fit these type of model

to be sure that our procedure is able to identify non significant nugget effect.

Comparing the maximum log-likelihood values we can see that the best fit is using Matérn

correlation function with κ = 2.5, this result agrees with previous result using Poisson distri-

bution. Now, comparing Negative Binomial and Poisson the maximum log-likelihood value

indicate that Negavite Binomial provides a better fit than Poisson. The partial sill from

Negative Binomial fit (0.03) is smaller than from Poisson (0.24) and the range is much big-

ger, these results show that the Gamma random effect in the Negative Binomial distribution

capture much of the variability in the data and the spatial effect is weak and really smooth.

To finish this likelihoof analysis for the rongelap dataset, we present in Figure 3 the profile

likelihood contour for the model parameter in the Negative Binomial SGLMM using Matérn

correlation function with κ = 2.5.

The profile likelihood contours show a slightly right asymmetric, that should be to take

into account to compute confidence interval. The general way our procedure is able to

estimate SGLMM, compute the maximum log-likelihood value and provide profile likelihood

contour, which provides a complete tool for likelihood analysis of the spatial generalized
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Figure 3: Profile likelihood contours for Negative Binomial SGLMM fitted with Matérn
correlation function (κ = 2.5) for rongelap dataset.

linear mixed models.

4 Conclusion

In this paper we showed how to use Laplace approximation to estimate parameter for spatial

generalized linear mixed models. Through a couple of datasets we show that our approach

provides results really similar with other method such as MCMC likelihood, MCEM and

modified Laplace approximation. The advantege to use Laplace approximation is that we

can compute the maximum log-likelihood value and profile likelihood contour, two important

tools for likelihood analysis for SGLMM.

The Laplace approximation avoids subjective analysis, such as tuning and convergence

in MCMC methods used in MCMC likelihood and MCEM methods. Tuning such algorithm

no always is a easy task, mainly for not specialized users. In this sense, Laplace approach is

easier to use than methods based on simulation.

The computational overhead from our approach is the inversion of a dense variance-

covariance matrix, but this overhead is found on other approaches too. This overhead may

be alleviated using for example covariance tapering Furrer et al. (2006) Kaufman et al. (2008),

predictive process Eidsvik et al. (2012), low rank kriging Cressie and Johannesson (2008) and

SPDE models Lindgren et al. (2011).

We provide R function to fit SGLMM using Laplace approximation. Our goal here is
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provide a standard method to make likelihood analysis for small and medium datasets using

spatial generalized linear mixed models. On the supplement material webpage we make

available our R code and examples using the generic function sglmm().

Possible topics for further investigation and extensions include analyse other real datasets,

make simulations studies to evaluate the quality of our estimates, improve the R code and

include this method in the geoR package. The Laplace approximation may be extended to

deal with multivariate SGLMM as well as space-time GLMM.
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