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ABSTRACT. A new mathematical method is developed for interpolation from a given set of
data points in a plane and for fitting a smooth curve to the points. This method is devised in
such a way that the resultant curve will pass through the given points and will appear smooth
and natural. It is based on a nmnnwmn function nnmnnqnd of aget of nn]\mnmmk each of degree

three, at most, and apphcable to successive 1ntervals of the given points. In thls method, the
slope of the curve is determined at each given point locally, and each polynomial representing
a portion of the curve between a pair of given points is determined by the coordinates of and
the slopes at the points. Comparison indicates that the curve obtained by this new method is

eloger to o manually drawn curve than those drawn by other mathematical methods
closer to & manually grawn curve than those drawn by cother mathematical methods.
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1. Inmtroduction

To determine a relation between two variables, we either perform computations
or make measurements. The result is given as a set of discrete data points in a plane.
Knowing that the relation can be represented by a smooth curve, we next try to
fit a smooth curve to the set of data points so that it will pass through all the points.
Manual drawing is the most primitive method for this purpose and results in a
reasonable curve if it is done by a well-trained scientist or engineer. But, since it is
very tedious and time consuming, we wish to let a computer draw the curve. The
computer must then be provided with necessary instructions for mathematically
interpolating additional points between the given data points.

There are several mathematical methods of interpolating a single-valued function
from a given set of values [3, 4, 6], but their application to curve fitting sometimes
results in a curve that is very different from one drawn manually. The common
difficulty is that the resultant curve sometimes shows unnatural wiggles. This seems
inevitable if we make any assumption concerning the functional form for the whole
set of given data points other than the continuity and the smoothness of the curve.

When we try to fit a smooth curve manually, we do not assume any functional
form for the whole curve; we draw a portion of the curve based on a relatively small
number of points, without taking into account the whole set of points This local

abpe(,l'; lS a very 1mp01TaIlT; Iea.nure OI ma.nua.l curve ]].'Dtllllg a.nu 15 llllt} Ddrblb IOI' our
new method.
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one of the existing mathematical methods is applied
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its first-order derivative at the junction points cannot be generally guaranteed.
However, if we can determine the slope of the curve at each given point locally, we
obtain a smooth curve by piecewise application of one of the existing mathematical
methods. The osculatory interpolation method {1, 5], which is based on a piccewise
function composed of 4 set of third-degree polynomials with slopes at the junction
points locally determined, was developed along this line. But, sometimes this
method also glves unnatural curves.

Recently the author pr uposw a method of interpolation and smooth curve fitting
that is based on a piecewise function with slopes at the junction points locally
determined under a geometrical condition [2]. In the present study this method is
further developed with an improved condition for determining the slope of the

anrva
Surve,

In this paper, except in Appendix B, we describe a new method of interpolation

and Smooth curve fitting that is applicable to a single-valued funetion. However,

also applicable to a multiple-valued funetion,

is
-his funetion is outlined in Appendix R.

Qi1 uiiineq LAppendix

2. New Method
Our method is based on a piecewise function composed of a set of polynomials, each
of degree three, at most, and applicable to successive intervals of the given points.

We assume that the slope of the curve at each given point is determined locally
by the coordinates of five points, with the point in question as a center point, and
two points on each side of it. This is discussed in the next section.

A polynomial of degree three representing a portion of the curve between a pair
of given points is determined by the coordinates of and the slopes at the two points.
This interpolation procedure is described in Section 2.2.

Since the slope of the curve must thus be determined also at the end points of
the curve, estimation of two more points is necessary at each end point. This esti-
mation procedure is deseribed in Section 2.3.

2.1. Svope or tHE CURVE. With five data points 1, 2, 3, 4, and 5 given in a
plane, we seek a reasonable condition for determining the slope of the curve at
point 3. It seems appropriate to assume that the slope of the curve at point 3 should
approach that of line segment 23 when the slope of 12 approaches that of 23. It is
also highly desirable that the condition be invariant under a linear-scale transforma-
tion of the coordinate system. With thesc rather intuitive reasonings as a guideline,
the condition of determining the slope is still not unique. In Appendix A, some pos-
sible conditions are discussed.

Based on the discussion given in Appendix A, we assume that the slope ¢ of the
curve at point 3 is determined by

t = (|m4" ms|me + |me — mi|ma)/({ms — mg| + [mz—ma]), (1)
where i, mz, ms, and my are the slopes of line segments 12, 23, 34, and 45, re-
spectlvely U der this condition, the slope ¢ of the curve at point 3 depends only
on the slopes of the four line segments and is independent of the interval widihs.

e in
Under condition (1), ¢ = m,; when mu = ms and m; #= my,
W

my and m1 # mq, as desired. It also follows from (1) that

Invarlance of ¢ ndltlon (1) under a linear scale transformation of the coordi-
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When my = my # my = my, the slope ¢ is undefined under condition (1): the
slope ¢ can take any value between ms and ms when ny approaches ms and ms ap-
proaches m; simultaneously. It is a cornerstone of our new method that ¢ = m»
when my = m» and, similarly, ¢ = m; when ms = ms, and these two rules confiict
when m1 = ma # ms = my ; therefore, no desired curve exists under condition (1)
m this special case. (In order to give a definite unique result in all cases, the slope:
t is equated to $(m. + m;) as a convention for this case in the computer programs,
which are described in Section 4. This convention is also invariant under a linear-
scale transformation of the coordinate system.)

2.2. INTERPOLATION BETWEEN A PAIr oF PoinTs. We try to express a portion
of the curve between a pair of consecutive data points in such a way that the curve
will pass through the two points and will have at the two points the slopes deter-
mined by the procedure described in Section 2.1. To do so, we shall use a poly-
nomial because, as stated by Milne [6], “polynomials are simple n form, can be
calculated by elementary operations, are free from singular points, are unrestricted
as to range of values, may be differentiated or integrated without difficuity, and the
coefficients to be determined enter linearly.” Since we have four conditions for
determining the polynomial for an interval between two points (z;, y1) and (22, y2),
ie.

d

¥y =1 and a%=t1 at = =z,
d

y =y and -J—?i=t2 at = m,
A2

where t, and f, are the slopes at the two points, a third-degree polynomial can be
uniquely determined. Therefore, we assume that the curve between a pair of points
can be expressed by a polynomial of, at most, degree three.

The polynomial, though uniquely determined, can be written in several ways.
As an example we shall give the following form:

¥y =po+ ple — 1) + poe — 3) + pslz — 1)}, 2
where

Do = Y1, (3)

o= b, 4)

P = [Blyz — y1) /(@2 — 7)) — 2 — L] /(2 — 1), (5)

pe = [+t — 2(y2 — y)/ (@2 — 21)]/ (22 — 1% (6)

2.3. EstmmaTioNn oF Two MoRE PoinTs AT AN Enp Poinr. At each end of
the curve, two more points have to be estimated from the given points. We assume
for this purpose that the end point (z;, ys) and two adjacent given points (., y2)
and (z1, w), together with two more points (x4, ys) and (zs, ys) to be estimated,
lie on a curve expressed by

Y =go+ ql@ — z) + galx — x3)", )
where the ¢’s are constants. Assuming that

—_— Lo = Tz — X = Lo — M
w3 4 wZ w3 wiy
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~
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we can determine the ordinates y, and ys , corresponding to 24 and z; , respectively,
from (7). The results are

(s — ya)/(@s — ) — (s — ys)/(Xs — Ts)
= (Y4 — Ya)/ (@ — x3) — (ys — y2)/(@a — x2) (9)
= (ys — y2)/(@s — T2) — (Y2 — Y0/ (@2 — x1).

3. Comparison With Some Other Methods

Using a simple example taken from a study of waveform distortion in electronic
circuits being conducted by the author, we compare our new method with four
others. Assume that the values of z and y at 11 points are as follows:

2 | 0 1 2 3 45 6 7 8 910
=ylz) | 10 10 10 10 10 10 105 15 50 60 85"

thnn'nn- 'me thea h"\nc1nn1 nature of the nhenomena that - 1 S;'rln-]a_‘rq]nm"]
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(z) is
y(z) is a
smooth function of z, we try to interpolate the values of y(x) and to fit a smooth
curve to the mvnn set of data noints

LIl €l 3CL O Lata pOLLs.

First we apply the method of interpolation based on polynomials [4, 6]. This
method is, perhaps, the one most often used. The result obtained by applying the
tenth- degree polynomial is shown in Figure 1(A).

Second we use another well-known method based on the Fourier series (see [4,
Sec. 9.3]). In applying this method to our data, we assume that the whole range of
2 from 0 to 10 corresponds to one-half of the fundamental period from 0 to = and
apply a series of cosine functions up to the tenth-order harmonic term. The result
is shown in Figure 1(B).

The third method is based on a spline function [3]. The spline function of degree
n is a piecewise function composed of a set of polynomials, each of degree n, at most,
and applicable to successive intervals of the given data points. All the polynomials
are determined as a set, so that the function and its derivatives of order 1,2, --- |
n — 1 are continuous in the whole range of z. Note that, although the spline function
of degree three is somewhat similar to our method, no individual polynomial can
be determined locally in the spline function. The result of applying the third-degree
spline function is shown in Figure 1(C).

Next we try to apply the osculatory interpolation method [1, 5]. It is, like our
method, based on a piecewise function composed of a set of third-degree poly-
nomials, each applicable to successive intervals of the given points, with the slopes
at the given points locally determined. The only difference between this method and
ours is the manner of determining the slopes at the given points. In the osculatory
interpolation, the determination of the slope involves only three points, i.e. the
data point in question as a center point and two neighboring data points. It is
assumed that the slope of the desired curve at the data point is equal to the slope
at the same point of the curve of the second-degree polynomial passing through the
three points involved. From the three data points given, (x1 , Y1), (€2, ¥2), and (23,

P, P RS R gy Y PO 2

yg) bllU slope t av blltﬁ Lﬁllbtﬂl PULUIJ \.bz 3 yZ} Lb uGbUlllmlUu IJy

t = [(x: — 20*(Ys — y2) + (B — 22)*(y: — y)l/

\ 1e
J

(s — z1)*(zs — 22) + (25 — 22)2 (w2 — 71)] (10)
— T o e Nam L fae oo Nama 1/ 2o N L (e, — 2]
L\L3 L)l T~ Pz T1Mai/ 1\ %3 Tz} T X2 Tijl
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Fia. 1. Comparison of several methods of smooth curve fitting.
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where my and m. are the slopes of line segments 12 and 23, respectively. The result
of applying this method is shown in Figure 1(D).

Finally, we apply our new method, with the result shown in Figure 1(E).

In addition to these results of mathematical methods, the curve obtained man-
ually is shown in Figure 1(F); it is the average of curves drawn manually by six
scientists and engineers.

Comparison of the curves in Figure 1 (A)—(¥) indicates that the first two methods
are definitely unsuitable for the example given. Although the curves obtained by
the spline function method and the osculatory interpolation method, shown in
Figure 1 (C) and (D), respectively, resemble the one obtained manually, shown in
(F), they have maxima and minima that are absent in the manually drawn curve.
The curve obtained by our new method, shown in Figure 1(E), is closer than the
other curves to the manually drawn curve in (F).

In Figure 2 (A)—~(F), we further compare our new method with the splime func-

1. o

tion method and the osculatory interpolation method with the same y v

S as

Journal of the Association for Computing Machinery, Vol. 17, No. 4, October 1970



594 HIROSHI AKIMA
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F16. 2. Further comparison of three methods when the data
points are given at unequal intervals. (Encircled points
are given data points.)

in Figure 1 (A)-(F), but with different z values. In Figure 2 (A), (C), and (E),
the z values are 0, 1, 3, 4, 6, - - - , 13, and 15. They are 0, 2, 3, 5, 6, -- - , 14, and
15 in Figure 2 (B), (D), and (F). The comparison indicates that, even when the
data points are given at unequal intervals, our method performs as well as or better
than the other two methods.

4. Computer Applications

0 - TS R, LU AT A YUY wrl o anlin 1
Our new method is further compared with the spline fun

osculatory interpolation method from the standpoint of its computer applications.
A

Two types of computer subroutines were programmed for each method, both in

tion meth d and th

a
i L2 8151

the CDC-3800 ForTrAN: one for interpolation and the other for smooth curve fitting.
The interpolation subroutine interpolates, from a given set of coordinates of data
points and for a given set of abscissa values of desired points, ordinate values of the

ing Maghinery, Vol. 17, No. 4, October 1970
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desired poiats. The curve fitting subroutine equally divides each interval between a
pair of given points, interpolates an ordinate value for each dividing point, and
generates a new set of points consisting of the given data points and the interpolated
points. For the spline function method, the FORTRAN program given in [3] was used
after slight modifications—modifications made to save both program length and
computation time for fair comparison.

41. Program Lrnctas. The interpolation and smooth curve fitting subrou-
tines based on our new method occupy 339 and 324 locations, respectively, com-
pared with 245 and 276 locations occupied by the same subroutines based on the
osculatory interpolation method. Program lengths of the same subroutines based
on the spline function method depend on the maximum number of given data points
Lmax that can be processed by the subroutines. The subroutines, based on a third-
degree spline function, occupy 270 + 3Lmax and 293 + 3Lmax locations.

In each application, program length for our method is longer than that for the
osculatory interpolation method. Comparison between our method and the spline
function method depends on Ly..x ; program lengths for these two methods are
nearly equal for interpolation and smooth curve fitting at Lm.x = 25 and 10, respec-
tively.

42. CowmpuraTioN TiMes, Bach subroutine was run many times on the CDC-
3800 computer, and the running time was measured by the internal clock. The sub-
routines based on the spline function method were run with the error tolerance in
iterative solution of the equations for the second derivative of the spline function
of 10~° and the input data scaled in several ways, and the averages of the running
times were taken. The results are shown in Tables I and II for interpolation and
smooth curve fitting, respectively. For simplicity, we denote the number of given
data points for both interpolation and curve fitting by L, the number of desired
points for interpolation by N, and the number of divisions in each interval for
smooth curve fitting by M.

In each application, the time required by the osculatory interpolation is the
shortest for a given combination of L and N or L and M. For interpolation, com-
parison between our new method and the spline function depends on the combina-
tion of L and N and also on the way the abscissa values of the desired points are
given. Table I indicates that our new method almost always requires less time than
the spline function method when the abscissa values of the desired points are given
in an ascending order. For smooth curve fitting, the new method always requires
less time than the spline function method.

5. Concluding Remarks

We have deseribed a new mathematical method of interpolation and smooth curve
fitting. For proper application of our new method, the following remarks seem
pertinent,

(1) Since the curve obtained by our method passes through all the given points,
the method is applicable only when the precise values of the coordinates of the data
points are given. All experimental data have some errors in them, and unless the
errors are negligible it is more appropriate to smooth the data, i.e. to fit a curve
approximating the data appropriately, than to fit a curve passing through all the

points.
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TABLE I. Comrarison oF COMPUTATION

N TIMES OF INTERPOLA-
TION BY VARIOUsS METHoDS. (I. = NUMBER OF GIVEN DaTa

Points aND N = NuMBER oF DEsigep PoInNTs.)

Computation itmes (msec)

L N

Spline Osculatory New meihod

1 3.0 0.8 1.0

10* 4.6 2.0 2.6

5 10** 4.7 2.3 3.3
160* 17 12 16
100** 21 15 26

1 7.2 0.8 1.1

10* 9.2 3.0 3.9

10 10** 9.6 3.6 5.2
i00* 24 i7 21
100** 30 27 46

1 20 0.9 1.2

10* 23 3.5 4.4

20 10** 23 4.3 5.8
100* 42 22 27
100** 48 33 55

1 46 1.0 1.2

10* 49 4.6 6.3

40 10*+ 50 5.4 7.6
100* 75 32 36
100** 81 47 67

1 120 1.0 1.2

10* 125 5.3 7.0

100 10** 125 5.8 8.0
100* 160 41 49
100** 160 53 74

* When abscissa, values of the desired points are given in ascending
order.

** When those values are given in random order.

(2) Asis true for any method of interpolation, the accuracy of the interpolation
cannot be guaranteed unless the method in uestlon has been checked in advance
aoaing nl Lrimatianal £

aém_uou PIUUIDU va,dlcb or a 1unuuxuucu I0TIN.

(3) Our method yields a smooth, natural-looking curve and is therefore useful

3 e +4+ino w11l da 3 3 inl
in cases where manual, but tedious, curve fitting will do in prineciple.

(4) The resultant curve of our method is invariant under a linear-scale trans-
formation of the coordinate system. In other words, different scalings of the oo

100 GLI0141 QL VIS COOIMALNAVC BUDiaL. ail Vuatl WUOIUDS, WLLICITLY Svaauigs Ul wiS O~

ordinates result in equivalent curves.

(5) Ourmethod isnonlinear. In other words, if y; = y;" + y,” for all ¢, the interpo-
lated values do not, in general, satisfy y(z) = y'(x) + y”(x)

(6) Our method gives exact results when y is a second-degree polynomial of z
provided the abscissas of the data points are equally spaced.

(7) Our method requires only straightforward procedures, not iterative solutions
of equations with preassigned error tolerances, which are required by some methods.
No problem concerning computational stability or convergence exists in applica-
tion of our method.

(8) Our method can be implemented as computer subroutines with reasonable

Journal of the Association for Computing Machinery, Vol. 17, No. 4, October 1970



TABLE II. CoMmpariSon OF CoMPUTATION TIMES OF SMOOTH
Curve Frrming By Various MurHODS. (I = NUMBER OF
G1vEN DaTa Points aND M = NuMser oF DIviSions
IN BEacH INTERVAL BETWEEN A PAIR OF SUCCESSIVE
DaTa PoInTs.)

Computaiion Times (msec)

L M
Spline Osculatory New method

2 3.3 1.5 2.0

5 10 4.9 3.0 3.6
100 21 20 21

2 8.0 2.8 3.7

10 10 12 6.1 6.9
100 50 44 46

2 22 5.2 7.0
20 10 29 12 14
100 110 93 95
2 50 10 13
40 10 64 25 28
100 230 190 200
2 130 25 33
100 10 170 63 71
100 590 480 500

)] (8)
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F1a. 3. A condition for determining the slope of the tangent to the

curve, previously proposed [2]
program length. There is no drawback in computation time compared with typical
existing mathematical methods.

(9) Our method, as reported on in the text of this paper, is applicable only to a
single-valued function, but the basic idea of our new method is also applicable to
the case of a multiple-valued function. A modified method for this case is outlined
in Appendix B.

Appendiz A. A Supplementary Note on the Determination of the Slope of the
Curve

With five data points 1, 2, 3, 4, and 5, as shown in Figure 3, the author [2] previ-
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ously proposed a condition that the slope of line segment CD), tangent to the eurve
at point 3, is determined by

|2C/CA| = |4D/DB |, 1)
where the point of intersection of the two straight lines extended from line segments
12 and 34 is denoted by A, the same point corresponding to line segments 23 and
45 by B, and the poiuts of intersection of the tangent with two straight lines ex-
tended from 1 and 45 are denoted by C and D, respectively. The ratio of two line

xho'n f}\o two line seoments are on
useq whe eoments n

here to symbohcal y represent the ratio of the lengths of the two line segments with

a S{-rrnn']nf- 11nn 1a nanr]
=y

ne seements have the same
ALIC DUSLAI.U UD 41V U UIIU DALUT

condition (11) will

a vlusg or minus Q!n’n denendine on whother thoan twa
@ s O JUUS Sagu GQepClitiilg O WilCuilll taese vwo

Ii
sense or not. An analytical expression of the slope of CD u

be derived in the next paragraph.

Let the coordmates of points 1, 2, 3, 4, 5, A, B, C, and D in Figure 3 be denoted
13 .

te1 9 2 4 F IS nd Jd respnectively
W51, 4 0,5, 0,8, 0, ¢, aNG T, Trespect 1)

y u
define
@i =T —z: (i =1,234), (12)
b = Yo — s i=123 4). (13)
We denote the slopes of 12, 23, 34, 45, and CD by my , ma, ms, ma, and {, respec-
tively, i.e.
m; = Yo1 — Yi)/ (@i — 2;) = bi/a; (i=1,2 3,4, (14)
= (Ya — y.)/(xa — ). (15)
Then, it is clear from I'igure 3 that the following equations should hold:
Yo — Y2)/(@a — 22) = (Yo — y2)/(@c — @2) = bi/as, (16)
(s — yo)/ (@ — @) = (Ya — Ya) /(@ — xa) = bi/aa, (17
(s — ya)/ (s — xa) = bs/as, (18)
(Yo — ys3)/(@s — 5) = bs/as, (19)
(s — yeo)/(@s — @) = (Ya — ¥s)/(za — 73) = ¢ (20)
Using (12) and (13), we have, from (16),
y3 - !/a} - bz}/ (#s — %.) — 0:2] = bl/lh- (21)

Eliminating (y; — y,) from (18) and (21), we obtain
(xg - x.,)/aa = (Chbz — azbl)/(a1b3 — agbl). (22)

Following the same procedure as in obtaining (22) from (16) and (18), we obtain

(CL‘b - x3)/a2 = (agb4 - a4bg)/(azb4 - a4bz), (23)
T3 — ((111)9 et (lqh1>//(ﬂ1f — h1\, (24)
XTg — X3 = (a3b4 bt (14b3)/(b4 ot a4t). (25)
Journal of the Asscciation for Computing Machinery, Vol. 17, No. 4, October 1070
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[[(1'3 — 20) — a2]/[(2xs — Tq) — (x5 — 2] |
= |las — (@a — z)]/l(@a — @) — (xs — 25)]], (26)

we obtain, by eliminating (z; — z.), (xs — 23), (s — 2.), and (x4 — 3) from (22)-
(26), a quadratic equation of the form

[ 812824 | (a5t — 2)? = | S138s | (ast — ba)2, en)
where
Si,' = (J/ibj - a,,-bz: (1 9é;l) (28)

From the requirement that points 2 and 4 must lie on the same side of the tangent
to the curve at point 3, it follows that

(ast — ba)(ast — by) < 0. (29)
Therefore, we have
| S1080s F(bs — ast) = | S15Sx |*(ast — ba). (30)
Solving this equation, we obtain
t = (11)]}2 + 1_)3b3)/(1_)2m‘, + wmg)i (31)
where
we = | SuSu |}, (32)
Wy = !Swgz-; !%- (33)

This is an analytical expression of the slope of CD determined under condition (11).
The relations (31)—(33) can also be expressed as

t = (wa'me + ws'ms)/(wy’ + ws’), (34)

where
wy' = (sign of az) | (ms — mi)(ma — my) |}, (35)
ws' = (sign of as) | (ma2 — ma)(ma — my) A (36)

Note that, in the case of a single-valued function, we can always make a; and a5
positive and simplify (35) and (36).

Since condition (11) is a purely geometrical one, it is invariant under a linear
transformation of the coordinate system, which includes a linear scale transforma-
tion and a rotation. It follows from (34)—(36) and also from the geometrical con-
struction dictated by (11), that the slope ¢ depends only on the slopes of four se-
cants, i.e. on the quantities m;, ma, m; , and my , and is independent of the interval
widths. It is also clear from (34)—(36) that m1 = ms, ms # m;, and my ¥ m; im-
plies ¢ = my = my, and similarly that m; = ms, m; # ms, and my # m; implies
{ = mz; = my : these are highly desirable properties. When m; = m, = m; or when
my = maz = ms, tis undefined by (34); however, this difficulty can easily be settled
by taking ¢ = m, = m; for such cases as a natural and logical extension.

However, despite its desirable properties, condition (11) has a serious drawback.

Journal of the Asaceiation for Computing Machinery, Vol
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It follows from (34)-(36) that t = m, when my = ma, mz # my, and me # ms,
and similarly that ¢ = m; when ms = my, ma: # my, and my ¥ m,. These proper-
ties are by no means desirable or to be expected.

The simplest way to eliminate these undesirable properties for the case of a
single-valued function is, perhaps, to modify weighting coefficients w," and w;’ in
(34) to read

wy' = | my — ms}, @7

wy' = |ms — ml, (38)

79 mN\ 790N

instead of (35) and (36), respectively. By this modification, most of the desirable
properties of condition (11) are retained. The only exceptlon is that the property of
invariance under a rotation of the coordinate system is lost. But the requu‘emeuu
for invariance under a rotation is 1mmater1al in the case of mterpolatlon of a single-
V:i;}.li'sd fuubmuu. uquauuu \u:) with We a,ud W3 dUﬁqu oy \ol) mud \oo;, respec-
tively, is used in the text of this paper as the equation for determining the slope.

Thia ig anmivaelantly odvean in thae taxvt ag anndition (1)
24118 15 euUivainiuy g1ven 1 Ui 1CXy as COUGIuon (1 ).

Iu the case of a multiple-valued function, on the other hand, the property of in-

variance under a rotation of the coordinate svstem is essential. While retaining this

ariance under a retation of the coordinate system is essential. While retaining this
property, the undesirable properties of (11) can be eliminated by modifying w, and
w; in (31) to read

we = | Sa |, (39
wy = | Sz |, (40)

instead of (32) and (33), respectively. Invariance under a rotation by using (31)
with these modified w, and ws can be realized from the fact that | Sy; | is an invariant
quantity representing twice the area of the triangle bounded by the vectors (a;, b)
and (a;, b;), and that (31) can be written in the form

Se/Se = | Sul/|Sul, (41)

if a; and b, are chosen so that £ = b;/a; and Ss; and S¢; are defined by
St = asb: — a2, (42)
S = ads — ah,, (43)

resnectively. ag S..is defined by (28)

SPULLAVOLY, a5 K45 U2l Y

correspond to

§
I

a3 | Gaay(ms — ms) |, (44)
’W3' = a3 i a;la;g(mz -_ ’ﬂ’L],) i 4, )

Tt follows from (44) and (45) that another property of dependence of ¢ on my , m.,
ms , and my only is lost, but this property is not important in the case of a multlple-
valued function. Equation (31) with the weighting coefficients defined by (39) and

(40) is used in Appendix B.
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Appendixz B. An OQutline of the Method of Interpolation for a Multiple-Valued
Function

As described in Appendix A, (31) with (39) and (40) can be used in principle to de-
termine the slope of the curve in the case of a multiple-valued function. To present
the method in a form that is ready to be implemented in a computer program, how-
ever, it is necessary to rewrite all the equations without a ratio of the increment in
y to that in z, such as m; or ¢ in Appendix A. Since (39) and (40) are given in terms
of the increments in the x and y directions, we have only to rewrite and eliminate ¢
from (31). This can be done by the use of cos 8 and sin 6 instead of ¢ = tan §, where
0 is the angle of the tangent to the curve measured from the z axis. The results are

cos & = aolag® + b3, (46)
sin 6 = bo(as® + be®)~%. 47)
where

Gy = Waas + wsas , 48)
bo = wabs + wsbs, (49)
we = | Sul| = | ashs — adbs |, (50)
wy = | Spa| = | aba — ashy |, (51)
@i = Tiyy — Zi (i=12234), (52)
bi = Y — Y (1=1,2234). (53)

We assume that the curve between a pair of data points (r;, ¥1) and (z:, y2) can
be expressed by

z = po + Pz + p* + pid, (54)
Y=g+ ge+ ¢ + g, (35)
where the p’s and ¢’s are constants, and z is a parameter that varies from 0 to 1 as
the curve is traversed from (z;, y) to (z:, ya). Since the coordinates of the two
points (z1, 1) and (zz, ¥2), as well as the direction of the curve (cos 61, sin 8;) and

(cos 8, , sin 6,) at these points, are given, we further assume that 2 and y satisfy
the condition

T = a; Y = 1y dx/dz = r cos 8 and dv/dz = r sin 8
x Z1, Y Y, ax/dz rcosf;, ang 4 2 r s g

T =2y, Y=Yy, dx/dz =rcosf;, and dy/dz =rsinf, at z=1,

where
r= [z, — 2 + (¥ — y1)?P} (56)
F"Gm 'H'\ece nnnr“'h.ene we ¢ean nninmealyv dotarmine the m and o ennetante ha ra_
from nese conaiuions an uniguely aelermine yne p ana g consianvs, 11e re
sults are
Po = 21, (57)
m == e . (EQ)
T 7 &GS vy, \U0)
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pe=3 @y — x1) — 7 (cos 0 + 2 cos 6,), (59)
p3 = —2 (xg — 1) + 7 (cos 85 + cos 6), (60)
o = Y1, (61)
¢1 = rsin b6, (62)
g2 = 3 {y2 — y1) — 7 (sin 62 + 2 sin 61), (63)
g3 = —2(y2 — y1) + 7 (sin 03 + sin 61). (64)
Except for the case of a closed curve, estimation of two more points from the data

1 Aftha cuirre Wa gaaarime for +hia niimnnae that 4ha and

nn Q1 BAMNITINA nanh o
PULLLLS 10 TUHYULLTU A4 b CAUll TLI 1 VIIT CUL YO, ¥Y © addullic Ior inis PuLpusc Ciav uIw Cliv

point (zs , ¥s) and two adjacent given points (z;, ¥2) and (21, %), together with two
~ (

more nointa ( ) and (x-  2:) 10 he astimated lie on a eurve sxnrecsed by
more poInts (T4, ¥a/ aRA (Ts, ¥s,) V0 0 estimated, l1e on o CUrve expressea 0y
—_ 2 5
& = go + g1z + 27, (65)
y = ho + Mz + hat?, (66)

where the ¢g’s and h’s are constants and z is a parameter. Assuming that

r=2; and y=y; at z =1 (+ =1,2, 3,4,5),

hald I e N A B B B |

we can determine the g and & constants and, consequently, also the coordinates
(x4, ) and (x5, ¥s). The results can be expressed as

(s — xa) — (@ — @3) = (w4 — 23) — (T3 — 22) = (T3 — 2s) — (X2 — 1), (67)
s — Y0) — Wa — Ys) = (s — Ys) — (s — y2) = (Y5 — y2) — (Y2 — 11). (68)

The interpolated curve is invariant under a rotation of the coordinate system but
variant under a linear-scale transformation. Therefore, both the abscissa and the
ordinate should be scaled with their respective units ha,vmg an equal actual length
on the graph.
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