
In the study of the dependence of a response variable on
a set of independent variables, the choice of a model is
largely determined by the scale of measurement of the
response.1 Epidemiologists are often interested in es-
timating the risk of adverse events originally measured
on an interval scale (such as birthweight), but they often
choose to divide the outcome into two or more cat-
egories in order to compute an estimate of effect (risk
or odds ratio). Similarly, response variables originally
measured on an ordinal scale (e.g. severity of pre-
eclampsia: none, mild, severe) are often categorized
into several binary variables during statistical analysis.

Consider, as a motivating example, the data set de-
scribed in Table 1. This data is derived from a clinical

trial of a single-dose, post-operative analgesic clinical
trial.2 A series of four drugs, denoted by C15, C60,
Z100, and EC4 were randomized to patients. The
patient responses to the drug were recorded on a five-
level ordinal scale (poor, fair, good, very good and ex-
cellent). Counts for the most favourable responses,
‘very good’ and ‘excellent’, were amalgamated into one
category (‘very good’) due to sparse cell counts. The
two drugs Z100 and EC4 were found to be quite similar
and together rated better than the pair C15 and C60.2

The drugs C15 and C60 are the same drug, but vary 
in their potency. Usually, such data are analysed by
creating dichotomies among the levels of the response
variable. Possible dichotomies include comparing ‘very
good’ to ‘poor’, ‘good’ to ‘poor’, and so on. Standard
regression procedures, such as the logistic regression,
can then be utilized for data analyses.

Although such approaches are not incorrect, they
often result in a loss of information due to collapsing
(or ignoring) some categories of the response (unless
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there is perfect homogeneity within the categories
being collapsed), typically resulting in a considerable
loss of statistical power. Although several statistical
models for ordinal responses have been proposed, their
utilization in the epidemiological and biomedical lit-
erature has been minimal.

The purpose of this paper is twofold: first, to provide
a synthesized review of models for analysing data with
ordinal responses, and second, to evaluate their useful-
ness in epidemiological research, with particular em-
phasis on model formulation, interpretation of model
coefficients, and their implications. Ordinal models 
that are considered include (1) cumulative logit or 
the ‘grouped continuous’ model,3,4 (2) continuation-
model,5 (3) constrained and unconstrained partial pro-
portional odds models,6 (4) polytomous logistic model,7,8

(5) adjacent-category logistic model,9 and (6) stereo-
type logistic model.10 The development of each model
is described in detail, with analysis examples using a
data set from a perinatal health programme. We then
describe briefly the statistical software that were used
to fit these models. Finally, the paper concludes with a
discussion on the choice of ordinal model.

REGRESSION MODELS FOR 
ORDINAL RESPONSES
1. Cumulative Logit Model
Attempts to extend the logistic regression model for
binary responses to allow for ordinal responses have
often involved modelling cumulative logits. Consider a
multinominal response variable Y with categorical out-
comes, denoted by 1,2,…,k, and let xi denote a 
p-dimensional vector of covariates. When no confusion
arises, the subscript ‘i’ will be dropped. The cumulative
logit model was originally proposed by Walker and

Duncan3 and later called the proportional odds model
by McCullagh.4 The dependence of Y on x for the pro-
portional odds model has the following representation:

Pr(Y ø yj x) =
exp (α j – x′β)

1 + exp (α j – x′β) 
, j = 1,2,…,k (1)

or equivalently can be re-expressed in logit form as

(2)

where ∏j = Pr(Y ø yj) is the cumulative probability of
the event (Y ø yj). α j are the unknown intercept
parameters, satisfying the condition α1 ø α2 ø …
ø α k, and β = (β1, β2,…,βk)′ is a vector of unknown
regression coefficients corresponding to x.

The regression coefficient, βl, for a binary explan-
atory variable xl is the log-odds ratio for the Y by xl
association, controlling for other covariates in model
(2). Notice that the regression coefficient vector, β,
does not depend on j, implying that model (2) assumes
that the relationship between xl and Y is independent 
of j. McCullagh4 calls this assumption of identical 
log-odds ratios across the k-cut points, the proportional
odds assumption, and hence the name ‘proportional odds’
model. The validity of this assumption can be checked
based on a χ2 Score test.11 A model that relaxes 
the proportional odds assumption can be represented as
logit(∏j) = α j – x′βj, where the regression parameter
vector β is allowed to vary with j. The usefulness of this
latter model is to test the assumption of proportionality
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TABLE 1 Ratings of drugs on a single-dose, post-operative analgesic clinical triala

Drug Rating of the drugs

Poor Fair Good Very goodb Total

C15 & C60 17 18 20 5 61
Z100 & EC4 10 4 13 34 60
Log-odds ratioc, β̂ 0.7013 1.5476 2.6384
Standard error sê (β̂) 0.4491 0.4016 0.5535
Odds ratios, eβ̂ 1.0 2.0 4.7 13.9

a Source: ref.2
b Favourable responses very good and excellent are amalgamated.
c Log-odds ratios involve comparisons between (‘poor’ versus ù ‘fair’), (ø ‘fair’ versus ù ‘good’), and (ø ‘good’ versus ‘very good’).
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in the log-odds ratio (β), and may formally be stated as 
a test of the null hypothesis H0 : β1 = β2 = ,…, = βk.

The proportional odds model is invariant when the
codes for the response Y are reversed4,12 (i.e. y1 recoded
as yk, y2 recoded as yk–1, and so on), resulting only in a
reversal of the sign of the regression parameters.
Secondly, the proportional odds model is invariant under
collapsability of the categories of the ordinal response.11

This property implies that when the categories of Y are
deleted or collapsed, the coefficients β will remain
unchanged, although the intercept parameters α will be
affected. The collapsibility property of the proportional
odds model enables one to model an ordinal outcome Y
which may be continuous. Greenland12 provides a more
detailed review of these properties.

Based on the fit of model (2), the cumulative odds
ratio, Ψl, for the lth binary covariate, xl, can be obtained
by the following relationship:

Pr(Y < yj xl
(1))

ΨP =
Pr(Y < yj xl

(0))

= exp {–βl(xl
(1) – xl

(0))} (3)

2. Continuation-Ratio Model
Feinberg5 proposed an alternative method (to the
proportional odds model) for the analysis of categorical
data with ordered responses. When the cumulative
probabilities, ∏j = Pr(Y ø yj), of being in one of 
the first j categories in the cumulative logit model
(model 2) is replaced by the probability of being in
category j [i.e. θj = Pr(Y = yj)] conditional on being 
in categories greater than j [i.e. (1 – ∏j)], this results in
the continuation-ratio model. Define δj = θj/(1 – ∏j).
The continuation-ratio model can then be formulated as:

(4)

and could essentially be viewed as the ratio of the two con-
ditional probabilities, Pr(Y = yj x) and Pr(Y . yj x).
This model of conditional odds has been referred to as
the ‘continuation-ratio’ model.5 When the ‘logit’ link is
replaced by the ‘complimentary log–log’ link function
in model (4), the resulting model is

log [– log (δj)] = α j – x′β (5)

which is the Cox proportional-hazards model13 for
survival data in discrete time.13–15 Läära and Mathews16

explicitly prove that when the complimentary log-log
link is used, the proportional odds and the continuation-
ratio models are identical. A more detailed discussion
can be found in McCullagh4 and McCullagh and
Nelder.14

The odds ratio’s, ΨC, based on continuation-ratios
for the lth covariate x1 can be obtained directly from
model (4) as follows:

Pr(Y = yj xl
(1))/Pr(Y . yj xl

(1))
ΨC =

Pr(Y = yj xl
(0))/Pr(Y . yj xl

(0))

= exp {–βl(xl
(1) – xl

(0))}

The continuation-ratio model is best suited to
circumstances where the individual categories of the
response variable are of intrinsic interest, and are not
merely an arbitrary grouping of an underlying con-
tinuous variable.14 Unlike the proportional odds model
(model 2), the continuation-ratio model (model 4) is
neither preserved by a reversal of the codes for the
ordinal response nor under collapsibility of the cat-
egories of Y.12

3. Partial-Proportional Odds Model
The primary motivation for the development of the
partial-proportional odds model6 was to relax the strong
assumption of identical log-odds ratio for the Y by x1
association, in the proportional odds model. Violation
of the assumption of identical log-odds could lead to
the formulation of an incorrect or misspecified model.
A situation under which this assumption does not hold
is illustrated below.

Analgesic trial data. For purposes of illustration,
consider the analgesic trial data2 described in Table 1.
The estimated log-odds ratios [β̂], and their estimated
standard errors [sê(β̂)], for the logits are presented in
Table 1, for comparisons between the drugs Z100 and
EC4 versus C15 and C60. The results indicate that the
log-odds ratio is largest (β̂ = 2.6384) when the rating of
the drug is dichotomized at Y = 4 ‘ less than very good’
(ø3) versus ‘very good’ (4); the dichtomization for the
next largest (β̂ = 1.5476) being at Y = 3, ‘poor or fair’
versus ‘good or very good’ (Y ù 3), and the log-odds
ratio is smallest (β̂ = 0.7013), when the dichtomization
is made at Y = 2, ‘poor’ versus ‘above fair’ (Y ù 2).
These data are suggestive of a trend in the log-odds
ratios. Fitting a proportional odds model (model 2) to
the above data resulted in a log-odds ratio (se) of
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1.7710 (0.3625), with the assumption of the pro-
portionality of odds being violated (P , 0.001). Hence,
fit of a proportional odds model to the data is inap-
propriate, and may result in incorrect or misleading
inferences.

3a. Unconstrained partial-proportional odds model.
The partial-proportional odds model model6 permits
non-proportional odds for a subset q of the p-predictors
(q , p). In addition, the assumption of proportional
odds can be tested for the sub-set q. With Y being 
an ordinal variable with k categories, and x being a 
p-dimensional vector of covariates, the model sug-
gested for the cumulative probabilities is

exp (–α j – x′β – t′γj)
Pr(Y < yj x) =

1 + exp (–α j – x′β – t′γj)
, j = 1,2,…,k (6)

where t is a (q × 1) vector, q , p, of a subset q-
covariates for which the proportional odds assumption
either is not assumed a priori or is to be tested; γj is a
(q × 1) vector of regression coefficients associated with
the q-covariates in t, so that t′γj is the increment
associated only with the jth cumulative logit
(1 ø j ø k), and γ1 = 0. We will henceforth refer to this
model as the ‘unconstrained model’. When γj = 0 for all
j, model (6) reduces to the proportional odds model
(model 1). A test of the proportional odds assumption
for the q-covariates in t is based on the null hypothesis
H0 : γj = 0, for all j (2 ø j ø k). Notice that since γ1 = 0,
the model uses only (α + x′β) to estimate the odds ratio
associated with the dichotomization of Y into yj = 1

versus yj . 1. However, estimation of odds ratios as-
sociated with the remaining cumulative probabilities
involve incrementing (α + x′β) by t′γj.

3b. Constrained partial-proportional odds model.
Peterson and Harrell,6 in addition to the partial-
proportional odds model, propose another model called
the ‘constrained partial-proportional odds model’. In
the analgesic trial example (Table 1), we noted the
existence of a linear relationship in the log-odds ratios
between the drugs and the response. Although fitting
model (6) to the data in Table 1 will require two γjl
parameters, a model constraining the γjl to account for
the linearity (in log-odds ratios) in j would require an
additional parameter in the model. Such a model has the
form described below.

exp (–α j – x′β – t′γΓj)
Pr(Y < yj x) =

1 + exp (–α j – x′β – t′γΓj)
, j = 1,2,…,k (7)

where Gj’s are pre-specified, fixed scalars, and G1 = 0.
The new parameter, γ, is a vector of length q, and is not
indexed by j. Although γ is not dependent on j, it is
multiplied by the fixed scalar constant Gj in the com-
putation of the jth cumulative logit.

Results of fitting the unconstrained (model 6) and con-
strained partial-proportional odds (model 7) models to
the analgesic trial data (Table 1) are contrasted in Table 2.
It was demonstrated earlier that the data did not satisfy
the proportional odds assumption, and that a monotonically
increasing trend in the log-odds ratios was observed in the
different logits. Hence, a constrained (partial-proportional
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TABLE 2 Results of fitting partial proportional odds models: Analgesic trial dataa

Variable β̂ ± sê (β̂) χ2 P-value

Constrained model
Drug 0.6899 ± 0.4495 2.3 0.1248

Constraint 0.9216 ± 0.2661 12.0 0.0005
Drug (2 d.f.) 31.1 0.0001
Likelihood ratio test (2 d.f.) 37.0 0.0001
Goodness-of-fit : linear constraint–drug 19.1 0.0001
Test for proportional odds 0.2 0.7114

Unconstrained model
Drug 0.7013 ± 0.4491 2.4 0.1184

Response ù good 0.8463 ± 0.3552 6.4 0.0116
Response ù v. good 0.9272 ± 0.5891 10.7 0.0011
Likelihood ratio test (3 d.f.) 37.2 0.0001
Test for nonproportional odds (2 d.f.) 11.8 0.0028
Drug (3 d.f.) 30.3 0.0001

a Source: ref.2 Data illustrated in Table 1.



odds) model was fit, with the specification of the fol-
lowing constraints: G1 = 0, G2 = 1, and G3 = 2.

The log-odds ratio when the response is dicho-
tomized at (yj = 1) is β̂ (0.6899), while the log-odds
ratios associated with the second and third cumulative
logits are β̂ + G2̂γ̂ (0.6899 + 0.9216) and β̂ + G3̂γ̂
(0.6899 + 2 * 0.9216), respectively. A simultaneous two
degrees of freedom test of H0 : β = 0, γ = 0, was re-
jected (χ2 = 31.1, 2 d.f.). However, since the goodness-
of-fit of the linearity constraint6 was not satisfied
(χ2 = 19.9, 1 d.f., P , 0.0001), the model was rejected
in favour of the unconstrained model.

The fit of the unconstrained model implies that no
constraints are placed in the estimation of the log-odds
ratios. Hence, instead of using one constrained parameter
in the model (as in model 6), 2 – γj parameters asso-
ciated with the response are used for the second and
third cumulative logits. The estimated log-odds ratios
are 0.7013, 0.7013 + 0.8463 and 0.7013 + 0.9272 for
the three cumulative logits, respectively.

4. Polytomous Logistic Model
The polytomous logistic model7,8 is a straight forward
extension of the logistic model for binary responses, to
accommodate multinomial responses. Unlike the models
discussed above, the polytomous logistic model does
not impose any restrictions on the ordinality of the re-
sponse. The model has the following representation:

exp (α j + x′βj)
Pr(Y = yj x) =

Σk

l=1 exp (α l + x′βl)

, j = 1,2,…,k (8)

where αk = 0 and βk = 0. The parameter vector
β = (β1,β2,…,βk)′ corresponds to the regression co-
efficients for the log-odds of (Y = yj), relative to the
referent category (Y = yk), and there are (k – 1) intercept
parameters α j. Notice that unlike the models described
above, the regression coefficient βj, in the polytomous
model depends on j. Exponentiating the regression
coefficient βl, for the lth covariate xl will result in the
odds ratio comparing (Y = yj) versus (Y = yk) for a unit
increase in xl.

5. Adjacent-Category Logistic Model
The adjacent-category logistic model9 involves model-
ling the ratio of the two probabilities, Pr(Y = yj) and
Pr(Y = yj+1), (j = 1,2,…,k). The model has the following
representation:

(9)

where αk = 0 and βk = 0. The parameter β1 corresponds
to the regression coefficient for the log-odds of (Y = y1)
relative to (Y = y2); β2 corresponds to the log-odds of
(Y = y2) relative to (Y = y3), and so on, and there are
(k – 1) intercept parameters α j. Exponentiating the re-
gression coefficient βl, for the lth covariate xl will result
in the odds ratio comparing (Y = yj) versus (Y = yj+1),
for a unit increase in xl.

6. Stereotype Logistic Model
The most flexible model for analysing an ordinal re-
sponse is the polytomous logistic model, where β rep-
resents the log odds ratio for (Y = yj) versus (Y = y0) per
unit change in xl. The polytomous logistic model, how-
ever, fails to utilize the ordering of the response
categories of Y. Anderson10 proposed modelling the
regression coefficients, βj, by imposing the (linear)
relationship

βj = –øj β j = 1,2,…,k (10)

where øj may be thought of as ‘scores’ assigned to the
response yj.

12 Note that since βk = 0, we have øk = 0,
and a further constraint, ø1 = 1 (in order to uniquely
identify the parameters when using estimated scores12).
Substituting equation (10) in the polytomous logistic
model (8) yields the stereotype model:

exp (α j – x′øjβ)
Pr(Y = yj x) = Σk

l=1 exp (α l – x′ølβ)
, j = 1,2,…,k (11)

Anderson10 further imposed an additional order con-
straint on the ø’s with 1 = ø1 . ø2 . … . øk = 0. Under
this model, the odds ratio relating Y = yj versus Y = yk
for the lth covariate xl is given by

Pr(Y = yj xl
(1))/Pr(Y = yk xl

(1))
ΨS =

Pr(Y = yj xl
(0))/Pr(Y = yk xl

(0))

= exp {–øjβ(xl
(1) – xl

(0))}

The stereotype models described thus far relate to
situations in which the response Y is considered one-
dimensional. Consider a situation where one is inter-
ested in modelling a response Y that is constructed by
merging multiple factors, or is a multidimensional con-
struct such as the Apgar score. The Apgar score (rang-
ing from 0 to 10) is constructed by amalgamating the
scores of five individual measurements (Heart rate,
Respiratory effect, Colour, Muscle tone, and Reflex
response) on a newborn infant, with each recorded on 
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a three-point scale (0 = no response, 1 = intermediate
response, and 2 = full response to the function).
Anderson10 extended the stereotype model to capture
the multidimensional structure (such as Apgar scores)
of the underlying response Y. He proposed a two-
dimensional extension to equation (10) as 

βj = øj β – ϕ j γ j = 1,2,…,k (12)

with øk ≡ ϕk ≡ 0. Equation (12) can be extended further
to allow for higher dimensions.

Model Fitting and Statistical Software
With the exception of the Stereotype logistic model, all
models described above were fit to the data of Table 3
using the SAS system (SAS Institute, Cary, NC). The
proportional odds and continuation ratio models were
fit using the LOGISTIC procedure with the logit
(logistic) and the cloglog (complimentary log-log) link
function specifications, respectively. The polytomous
and adjacent category logistic models were fit using the
CATMOD procedure with the logit and the alogit spe-
cifications for link functions, respectively. The LOGIST
procedure of SAS’s supplemental library (version 5.18)
was utilized to fit both the constrained and the uncon-
strained partial proportional-odds models. Peterson and
Harrell11 describe the SAS code required to fit the
partial proportional odds models. All models were fit
through the procedure of maximum likelihood estima-
tion, while the adjacent category model was fit using
the weighted least squares procedure. Peterson and
Harrell6,12 however, warn against the use of the Score
test for assessing the proportional odds and parallel
slopes assumptions due to its extreme anti-conservatism.
Hence, we used graphical methods to assess the validity
of these assumptions. Although we have illustrated the
general form of Anderson’s Stereotype logistic model,
we did not fit this model to our data due to the lack of
availability of statistical software.

APPLICATION
The data described in Table 3 were derived from the Nova
Scotia Atlee perinatal database of the Reproductive Care
Program of Nova Scotia, Canada. The ordinal response
variable ‘degree of laceration’ refers to the wounds of
the perineum as a consequence of performing an episio-
tomy. Episiotomy is an obstetric surgical procedure for
the enlargement of the vaginal opening just prior to de-
livery.17 There are two commonly accepted techniques
for episiotomy: midline and mediolateral procedures. The
midline procedure is performed by making a midline peri-
neal incision and directed toward the rectum. The medio-
lateral procedure is performed by making a perineal incision
at the midline directed obliquely away from the rectum.17

The response variable, laceration, is coded on a five-
point ordinal scale, classified as ‘1°’ (least severe) to ‘4°’
(most severe), the classification based on the amount of
tissue damage involvement, and a fifth group consisting
of women free of any laceration.17,18 For the purpose of
this paper, we will restrict our analysis to midline epi-
siotomy, coded as ‘0’ indicating the absence of midline
episiotomy and ‘1’ if the procedure was performed.

The proportional odds (PO) and continuation-ratio
(CR) models (models 2 and 4, respectively) were fit to
the data described in Table 3, and their results
summarized in Table 4. Midline episiotomy carried
with it a relative risk of 2.1 (95% CI : 1.8–2.5) com-
pared to no episiotomy for ‘any laceration’ by the PO
model, and a relative risk of 1.4 (95% CI : 1.3–1.5) by
the CR model. It is important to note that the assump-
tions of the underlying models differ: the PO model
assumes that the relative risk associated with ‘any lacera-
tion’ is equivalent when comparing 4° versus none 
to 1° – 3° (combined), 3° – 4° (combined) versus none
plus 1° – 2° (combined), and so on. In constrast, the CR
model assumes that the relative risk associated with
‘any laceration’ is equivalent to 4° versus 3°, 3° – 4°
(combined) versus 2°, and so on. The likelihood ratio
test of H0: β = 0 is rejected both for the PO and the CR
models, implying that midline episiotomy is a strong
predictor of lacerations during pregnancy, although
both models violated the proportional odds and parallel
slopes assumptions (discussed later).

The results of fitting a partial proportional odds model
to the laceration data are summarized in Table 5a.
Based on the fit of an unconstrained model (model 6),
the estimated log odds ratio comparing women with
‘any laceration’ to no laceration in relation to midline
episiotomy is β (0.7125), whereas the log odds compar-
ing 2° – 4° to none plus 1°, 3° – 4° to none plus 1° – 2°,
and 4° to none plus 1° – 3° are β + γ2, β + γ3, and
β + γ4, respectively. The corresponding log-odds ratios
with the standard errors are presented in Table 5. A
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TABLE 3 Distribution of perineal lacerations in relation to
episiotomy: Nova Scotia, Canada, 1992–93

Episiotomy Degree of laceration

None 1° 2° 3° 4° Total

None 9238 140 71 131 37 9617
Midline 1204 8 8 89 38 1347
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TABLE 4 Maximum likelihood estimates: Results of fit of proportional odds (PO model) and continuation-ratio (CR model) modelsa

Variable PO model P-value CR model P-value
β̂ ± sê (β̂) β̂ ± sê (β̂)

Intercept1 (α1) –2.8452 ± 0.0336 –3.9387 ± 0.0484
Intercept2 (α2) –3.0363 ± 0.0363 –0.8260 ± 0.0213
Intercept3 (α3) –3.1680 ± 0.0383 –0.8260 ± 0.0213
Intercept4 (α4) –5.0027 ± 0.0883 –0.8260 ± 0.0213
Midline episiotomy 0.7423 ± 0.0946 0.0001 0.2968 ± 0.0345 0.0001

Model fit
Likelihood Ratio test, χ2

1 52.9 0.0001 74.7 0.0001

a Response variable is degree of laceration: no laceration, 1°, 2°, 3°, and 4°.
Model: logit[Pr (Y ø yj)] = α j – β (Episiotomy).

TABLE 5 Maximum likelihood estimates: Results of fit of partial-proportional odds modelsa

Variable Parameter Estimate ± SE χ2 P-value

a. Unconstrained model
Intercept1 α1 –2.8431 ± 0.0336
Intercept2 α2 –3.0543 ± 0.0370
Intercept3 α3 –3.1972 ± 0.0395
Intercept4 α4 –5.1914 ± 0.1034
Midline episiotomy β 0.7125 ± 0.0946 56.7 0.0001

Laceration ù 2° γ2 0.1471 ± 0.0278 28.0 0.0001
Laceration ù 3° γ3 0.2225 ± 0.0393 32.1 0.0001
Laceration ù 4° γ4 0.9394 ± 0.1738 29.1 0.0001

Likelihood ratio test χ2
4 89.8 0.0001

Midline episiotomy χ2
4 116.0 0.0001

b. Constrained modelb

Intercept1 α1 –2.8432 ± 0.0336
Intercept2 α2 –3.0455 ± 0.0363
Intercept3 α3 –3.2026 ± 0.0393
Intercept4 α4 –5.1510 ± 0.0939
Midline episiotomy β 0.7160 ± 0.0946 57.3 0.0001
Constraint parameter γ 0.1126 ± 0.0165 46.6 0.0001

Likelihood ratio test χ2
2 85.6 0.0001

Midline episiotomy χ2
2 108.1 0.0001

a Response variable is degree of laceration: no laceration, 1°, 2°, 3°, and 4°.

Model (a): log = α j – β(Episiotomy) – γ2(Episiotomy:Lacr ù2°) –

γ3(Episiotomy:Lacr ù3°) – γ4(Episiotomy:Lacr ù4°)

Model (b): log = α j – β(Episiotomy) – γGj(Episiotomy) .

Constraints: G1 = 0, G2 = 1, G3 = 2, and G4 = 7.
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likelihood ratio test of H0: β = γj = 0 resulted in a
χ2 = 89.8 (4 d.f.), a significant improvement over the
proportional odds model.

We also fit a constrained partial proportional odds
model (Table 5b) to the data, with the following con-
straints specified a priori: G1 = 0, G2 = 1, G3 = 2, and
G4 = 7. These resulted in the following log-ratios: β,
β + γ, β + 2γ, and β + 7γ, for the four logits, as
described earlier. Our choice of constraints were based
on examining the log odds ratios from the observed data,
which were derived by constructing four 2 × 2 tables,
with episiotomy (yes/no) as the two rows, and lacera-
tions ‘any’ versus ‘none’ as the columns for the first
table; 2° – 4° versus none plus 1° for the second table,
and so on. A simultaneous test of H0: β = 0, γ = 0
(based on 2 d.f.) resulted in a χ2 = 85.6, implying good
fit. Notice that the choice of different constraints will
produce different parameter estimates and standard
errors.

The results of fitting the polytomous logistic and the
adjacent-category logistic models are summarized in
Table 6. The formulation of these models is more
flexible when compared to the proportional odds and
continuation-ratio models, in that the regression co-
efficients corresponding to a covariate (such as midline
episiotomy) is allowed to vary by every level of the
ordinal response. The regression coefficient corres-
ponding to the polytomous model for the first logit
comparison (1° versus no laceration) is negative
(–0.4661), resulting in a relative risk estimate of 0.6
(95% CI : 0.3–1.3). However, the coefficients for other
logit comparisons are all positive, implying that mid-
line episiotomy increases the likelihood of lacerations
of ù2°. Women with midline episiotomy are 5.4 (95%
CI : 3.7–7.9) times at greater risk of a 4° laceration
relative to women with no episiotomy. Notice the

monotonic increase in the regression coefficients for
midline episiotomy. The results of fitting an adjacent-
category logit model are somewhat similar to that of the
polytomous model, although the underlying model
assumption differ; the latter model involves comparing
women with 1° to no laceration (first logit), 2° to 1°
(second logit), and so on, while the logit comparisons
for the polytomous model correspond to each category
of laceration versus a baseline category (i.e. women
with no laceration).

DISCUSSION
Choice of an Ordinal Model
The choice between the cumulative logit and
continuation-ratio models merit further discussion.
Armstrong and Sloan15 argue that when the cumulative
logit model is valid implying that the cumulative log-
odds ratios are a constant, say β*, then the continuation-
ratio model will begin at βj = β*, but will approach 0 as
j increases. This argument has led to the cumulative
logit model being proposed as an adjunct to the Cox’s
proportional hazards model13 i.e. continuation-ratio
model for survival data when hazard rates of groups are
thought likely to converge with time (see McCullagh4

and McCullagh and Nelder14 for a more thorough
discussion).

The choice of a simple logistic model to an ordered
response has its own disadvantages. Based on extensive
simulations, Armstrong and Sloan15 conclude that the
logistic model attains only between 50 and 75% effi-
ciency, relative to the cumulative logit model for a five-
level ordered response. Moreover, efficiency is based
on the assumption that the dichotomization for the
logistic model is made close to the optimal point. In
reality, dichotomization can be somewhat arbitrary
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TABLE 6 Results of fit of polytomous logistic (PL model) and adjacent category (AC model) logistic modelsa

Variable PL model P-value AC model P-value
β̂ ± sê (β̂) β̂ ± sê (β̂)

Intercept1 (α1) –4.5479 ± 0.0771 –5.0987 ± 0.1013
Intercept2 (α2) –5.0987 ± 0.1013 –0.5508 ± 0.1268
Intercept3 (α3) –3.3328 ± 0.0425 1.7659 ± 0.1093
Intercept4 (α4) –5.1404 ± 0.1013 –1.8076 ± 0.1113
Midline episiotomy

1° –0.4661 ± 0.3628 0.1988 –0.4661 ± 0.3630 0.1991
2° 0.0847 ± 0.3687 0.8182 0.5508 ± 0.5158 0.2856
3° 0.7280 ± 0.1178 0.0001 0.6433 ± 0.3849 0.0947
4° 1.6845 ± 0.1945 0.0001 0.9565 ± 0.2235 0.0001

a Response variable is degree of laceration: none, 1°, 2°, 3°, and 4°.



which may violate the underlying assumptions of the
model. The arbitrariness is worsened in situations when
a logistic model is fit to a response that has many
ordered categories.

A more intuitive choice between the proportional
odds and continuation-ratio models can be based on the
goals of the statistical analysis. Assuming that both
models are valid, if an a priori interest is to estimate the
risk of 4° laceration relative to other groups (none and
1° – 3° combined), then the cumulative logit model is
the obvious model choice. On the contrary, if the ana-
lyst is interested in estimating the risk by comparing 4°
laceration to 3°, then the continuation-ratio model is the
preferred model. In general, the choice of a model de-
pends on how the logits are formulated, a priori. The
analyst should, however, be wary of departures from
the underlying model assumptions (proportional odds
and parallel slopes assumptions), as was the case in 
our data. Tests for model assumptions could also be
viewed as goodness-of-fit tests of the link functions;
Holtbrugge and Schumacher19 provide a detailed re-
view of such tests.

Since the formulation of the logit functions in the
proportional odds and the partial-proportional odds
model are identical (i.e. 4° versus 1° – 3° plus no lacera-
tion, 3° – 4° versus 1° – 2° plus no laceration, etc), the
overall fit of these models are comparable. The pro-
portional odds model can be viewed as a model ‘nested’
within the unconstrained partial-proportional odds
model. The deviance14 (defined as the difference in the
likelihood ratios between two nested models) is
χ2 = 36.9 (89.8 – 52.9) with 2 d.f. (4 – 2), favouring
the unconstrained partial-proportional odds model as a
better fit to the data. Applying the same argument, the
deviance comparing the likelihood ratios between the
unconstrained and the constrained partial proportional
odds models is χ2 = 4.2 (89.8 – 85.6) with 2 d.f. (4 – 2),
0.1 ø P ø 0.25. This suggests that the unconstrained
partial proportional odds model, once again, fits the
data better than the constrained partial proportional
odds model.

Graphical Methods of Assessing Model Fit and 
Model Constraints
The assumptions of proportional odds and parallel
slopes in the proportional odds and continuation ratio
models, respectively, were examined by graphical
methods. First, consider the fit of the proportional odds,
unconstrained, and constrained partial proportional odds
models to the laceration data. Relative risks estimated
from each of these three models were contrasted to those
based on the observed data (Figure 1). Clearly, the fit 
of a proportional odds model, constraining the relative

risk to be 2.1 performs the least satisfactorily, while the
fit of a constrained and unconstrained partial proportional
odds models are almost identical, but an improvement
over the proportional odds model. Note, however, that
based on comparing the likelihood ratios between these
two models the unconstrained partial proportional odds
model performs better than the constrained model.

Similarly, the fit of a continuation-ratio model was
compared to the observed data (Figure 2). Once again,
the continuation ratio model does not adequately fit 
the data for the first continuation-ratio (relative
risk = 2.7), whereas the model fits well for the other
three continuation-ratios. On the other hand, when the
ordering of the response variable is subjective, then a
polytomous logistic model is more preferable than
fitting (k – 1) simple logistic models. If the ordering is
valid, then an appropriate ordinal model must be chosen
from the class of ordinal models, the choice made based
on the goals of statistical analyses.

Finally, Koch et al.20 developed a two-stage pro-
cedure called as Functional Assymptotic Regression
Methodology (FARM) for fitting a partial proportional
odds model based on the weighted least squares es-
timation procedure. Although we did not consider fit-
ting this model, the interested reader is referred to the
papers by Koch et al.,20 and Peterson and Harrell6 for
thorough review and discussion.

CONCLUSIONS
This paper presents a synthesized review of generalized
linear regression models for analysing ordered re-
sponses. The cumulative logit and the continuation-
ratio models for ordinal responses have been the
primary focus in epidemiological and biomedical ap-
plications,1–10,15,19–23 while other models for the ana-
lysis of ordinal outcomes have received less attention.
However, since all these models are developed under
rather strong assumptions (such as the proportional-
odds assumption), departures from these assumptions
may well result in the incorrect model formulation. It is
imperative that the analyst performs (i) goodness-of-fit
tests and an analysis of residuals, and (ii) sensitivity
analysis by fitting and comparing different models.1

Notice that when the number of response levels is
two, all models discussed above reduce to the simple
logistic model for binary responses:

exp (α + x′β)
Pr(Y = 1 x) =

1 + exp (α + x′β)
(13)

Our illustration of the models for ordered responses
was based on a single covariate. Our intent here was to
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FIGURE 1 Relative risks for lacerations by midline episiotomy based on observed data (o), pro-
portional odds (✶), constrained (h) and unconstrained (e) partial proportional odds models

FIGURE 2 Relative risks for lacerations by midline episiotomy based on observed data (o), and the
continuation-ratio model (h)
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clearly illustrate the formulation and interpretation of
every model using a practical, but simple data set. All
the models described in this paper have much wider
applications to situations involving several covariates
under a variety of sampling situations (see for example,
the work by Greenland12 and Anderson and Philips23).
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