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SUMMARY

Contributions to statistical theory and general methodology published in Biometrika,
19012000, are telegraphically reviewed.
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1. INTRODUCTION
Biometrika begins with a clear statement of purpose:

It is intended that Biometrika shall serve as a means not only of collecting or publishing
under one title biological data of a kind not systematically collected or published else-
where in any other periodical, but also of spreading a knowledge of such statistical
theory as may be requisite for their scientific treatment.

Its contents were to include

(a) memoirs on variation, inheritance, and selection in Animals and Plants, based upon
the examination of statistically large numbers of specimens ... (b) those developments
of statistical theory which are applicable to biological problems; (c) numerical tables and
graphical solutions tending to reduce the labour of statistical arithmetic; (d) abstracts of
memoirs, dealing with these subjects, which are published elsewhere; and (¢) notes on
current biometric work and unsolved problems.

Early volumes contained many memoirs on biological topics, but over the twentieth
century Biometrika became a ‘journal of statistics in which emphasis is placed on papers
containing original theoretical contributions of direct or potential value in applications’.
Thus, of the five types of contents envisaged by its founders, only (b) and to a lesser extent
(c) remain, largely shorn of their biological roots. The purpose of this paper is to review
Biometrika’s contributions to statistical theory and general methodology. To refer to every
paper published in this area is evidently impossible: quite apart from the difficulty of
staking out its boundaries, the result would be both unreadable and Pearsonian in length.
Hence this review is selective, focusing on fairly recent developments which seem to me
of probably lasting value but including some early work that has stood the test of time.
After some discussion of the foundations of statistics in § 2, an account is given in § 3
of likelihood and associated concepts, before prediction is touched on in § 4. Subsequent
sections deal with estimating functions, model selection and Bayesian statistics, before
contributions to simulation and asymptotic approximation are outlined in §§ 8 and 9.
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14 A. C. DAVISON

Contributions in generalised regression are outlined in § 10, before the paper concludes
with some miscellaneous topics.

2. FOUNDATIONS
2-1. Objective theories

The foundations of statistical inference are discussed sporadically in early issues of
Biometrika. Karl Pearson’s views were apparently close to what was then called inverse
probability and is now called a Bayesian approach, though he seems to have believed that
the prior should have some frequency interpretation, and certainly his son Egon Sharpe
Pearson believed that it should be subject to empirical assessment. Inverse probability
had dominated discussions of inference for much of the 19th century, but for the first half
of the 20th century it was largely eclipsed by the ideas of Fisher, Neyman and Egon
Pearson. An important exception to this was the attempt to put objective Bayesian infer-
ence on a secure footing summarised by Jeffreys (1939). Wilk’s (1941) verdict now
seems ironic:

From a scientific point of view it is doubtful that there will be many scholars thoroughly
familiar with the system of statistical inference initiated by R. A. Fisher and extended
by J. Neyman, E. S. Pearson, A. Wald and others who will abandon this system in favour
of the one proposed by Jeffreys in which inverse probability plays the central role.

The rats have subsequently abandoned ship in numbers unthinkable in the 1940s. Bayesian
contributions in Biometrika are briefly surveyed in § 7.

Inverse probability was initially strongly rejected by Fisher, though in later years his
views seem to have softened, but his lifelong goal was the same as that of Jeffreys, namely
the construction of an objective theory of inference, based on the data at hand. Fisher’s
fiducial inference transferred the initial uncertainty surrounding sample values into a
density and hence measures of uncertainty for the parameter, given the data observed. In
some cases this yields the frequentist confidence intervals proposed by Neyman in the
1930s, a coincidence that led early workers to believe that the difference between the
approaches was merely a matter of presentation. This was indignantly rebutted by Neyman
(1941), whose relations with Fisher had broken down well before. Kendall (1949) is a
thoughtful and well-meaning attempt to synthesise positive aspects of the various theories.
Fisher’s lack of clarity over the basis of the fiducial method led to considerable unease
about it, which seemed justified when counterexamples showed that it need not yield
unique inferences (Anscombe, 1957; Lindley, 1958; Fraser, 1964). D. A. S. Fraser investi-
gated the circumstances under which fiducial inferences behave sensibly, and in doing so
developed his theory of structural inference based on group transformation models (Fraser,
1961, 1965, 1966), though its roots are much earlier (Pitman, 1938, 1939). Fraser estab-
lished that, when fiducial inference for a scalar parameter is well defined, the model must
be essentially a location family. A few subsequent attempts have been made to resurrect
fiducialism, but it now seems largely of historical importance, particularly in view of its
restricted range of applicability when set alongside models of current interest. Despite
this, the group models introduced by Fraser are important in theories of conditional
inference.

The foundations of frequentist inference were laid when Jerzy Neyman and Egon
Pearson published in 1928 two massive and influential papers on hypothesis testing
(Neyman & Pearson, 1928a,b). The eponymous lemma was published elsewhere five years
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later (Neyman & Pearson, 1933) but the familiar notions of simple and composite hypoth-
eses and errors of the first and second kind appear, and the view of testing as decision-
making lurks behind the arras. The first paper introduces the generalised likelihood ratio
test for composite hypotheses, and applies it to normal, uniform and exponential models.
The second shows the link between the likelihood ratio and chi-squared statistics, discusses
the degrees of freedom of the latter and introduces minimum chi-squared estimation. A
third discusses how small the sample may be before the large-sample approximation fails,
by enumerating significance levels in samples of size ten (Neyman & Pearson, 1931).
Welch (1933) applied the Neyman—Pearson approach to tests in the linear model.

2-2. Principles of inference

Most attempts to put statistical inference on a consistent footing rest on some subset
of the sufficiency, conditionality, likelihood and invariance principles. The sufficiency prin-
ciple simply says that two datasets from the same model that yield identical minimal
sufficient statistics should give the same inferences on the model parameter 0. The con-
ditionality principle rests on the notion of an ancillary statistic, namely a function 4 of
the minimal sufficient statistic whose distribution does not depend on the parameter, and
says that inference should be conducted using the relevant subset of the sample space, i.e.
that portion of it in which A equals its observed value a. Following papers in the Annals
of Mathematical Statistics by Welch (1958) and Cox (1958), Robinson (1975) gives
examples where the conditionality principle conflicts with standard unconditional or
Neyman confidence intervals. Both principles have been extended to situations where 6 =
(¥, A) consists of interest parameters i for which inference is required and nuisance param-
eters A that are not of central concern (Bartlett, 1937; Cox, 1958; Barndorff-Nielsen, 1973,
1976, Sprott, 1975; Godambe, 1976, 1980; Basawa, 1981b; Liang, 1983). Approximate
notions of sufficiency and ancillarity have also been discussed (Feigin & Reiser, 1979; Cox,
1980; Ryall, 1981; Liang, 1984; Skovgaard, 1986; Severini, 1993), with Efron & Hinkley
(1978) particularly influential.

The strong likelihood principle states that, if the likelihoods under two possibly different
models but with the same parameter are proportional, then inferences about 6 should be
the same in each case; its weak form is equivalent to the sufficiency principle. In particular,
this implies that inference should not be influenced by elements of the sample space that
were not in fact observed, appearing to rule out use of procedures such as significance
tests and confidence intervals and paving a path towards some form of Bayesian inference.

Both the sufficiency and conditionality principles are accepted more widely than the
likelihood principle, so Birnbaum’s (1962) article in the Journal of the American Statistical
Association caused consternation when he showed that acceptance of the first two entails
acceptance of the third. Later work somewhat reducing the force of this result includes
Kalbfleisch (1975), who distinguishes between experimental and mathematical ancillaries.
The former are aspects of the data on which the inference would usually be conditioned
whatever the precise form of the model, such as the design matrix in regression, while the
latter are quantities that turn out to be distribution-constant once the full probability
model has been specified. As experimental ancillaries typically determine the precision of
the experiment, conditioning on them would normally be regarded as uncontroversial,
while more questions surround mathematical ancillaries: in a particular model there may
be several choices of these that give different inferences on 6. A striking example of this,
the Cauchy location-scale model, is described by McCullagh (1992).
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16 A. C. DAVISON

The invariance principle is closely related to the theory of structural inference mentioned
above, and it too has its difficulties. One is that in any practical situation the use of the
full group of transformations, however mathematically appealing, would not be sensible:
it is more natural to measure distances between galaxies in parsecs than in nanometres.
A second is that an invariant solution is often inadmissible, invariance considerations
typically ruling out the use of shrinkage estimators.

3. LIKELIHOOD
3-1. Primary notions

Likelihood is central to much statistical theory and practice. The ideas of likelihood,
sufficiency, conditioning, information and efficiency are due to R. A. Fisher, whose work
established the excellent asymptotic properties of the maximum likelihood estimator and
showed that likelihood gives a basis for exact conditional inference in location and scale
models. The last 25 years have seen a second flowering of this theory, stimulated by
influential work in the late 1970s and early 1980s.

To outline the basic theory, let y,,.. ., y, be the observed data, taken to be a realisation
of a random sample Y;,..., 7Y, from a regular model whose density function f(y; 0)
depends on a parameter 6. The corresponding loglikelihood /() is maximised at the
maximum likelihood estimator , and standard arguments tell us that in large samples 0
has an approximate normal distribution with mean 0 and variance matrix .#(0) ™!, where

a1(0)
30 00T

are respectively the expected or Fisher information and the observed information matrices.
This gives a basis for confidence intervals for elements of 6. As stressed by Bartlett (1953a,b,
1955), inference may also be based on the asymptotically normal score statistic U(6) =
01(0)/00, with mean zero and variance .#(6). A third closely related basis for inference is
the likelihood ratio statistic W(#) = 2{1(0)— [(8)}, whose asymptotic distribution is chi-
squared.

In practice 0 is unknown, and so .#(0) is unavailable. Hence confidence intervals based
on normal approximation to 0 must be computed using .# (0) J (9) or another consistent
estimator of #(#). Efron & Hinkley (1978) gave convincing evidence that confidence
intervals that use J(@) are generally more appropriate than those based on expected
information, because they obey the conditionality principle more closely. They are also
simpler to compute, because no expectation is involved; there is no need to specify a
censoring or missingness mechanism when data are incompletely observed. However,
normal approximation to 0 may be inaccurate for small n, while lack of invariance to
reparameterisation makes the resulting confidence intervals somewhat unsatisfactory.

In typical applications there are many parameters and we write 8 = (, 1), where only
the interest parameter  is of central concern. For theoretical discussion it is convenient
to focus on testing the null model y =, tests of which may be inverted to give confidence
intervals for . Sometimes estimation is more easily performed for the full model, with no
restriction on ¥; in such a case Cox & Wermuth (1990) show how to obtain approximate
maximum likelihood estimates for the restricted model. In many models the score statis-
tic enables assessment of fit by embedding the null model in a judiciously chosen wider
class, so that Y =y, corresponds to interesting departures. Tests may then be based on
U, /1,,,0) where /1,,, is the null estimate of 1. This is often computationally convenient,

H0)=EUO), JO)=-—
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because only the null model need be fitted (Bartlett, 1953a). Plots of contributions that
different observations make to the test statistic can be used to diagnose the source of
model failure; see, for example, Aranda-Ordaz (1981) or Hosking (1984). Mardia & Kent
(1991) show how appealing to group structure can simplify construction of score tests.
Peers (1971) compares score tests with those based on likelihood ratios and maximum
likelihood estimators of i, establishing that none is uniformly superior in the case of a
simple null hypothesis.

In many models the maximum likelihood estimator is biased. In simple cases the bias,
investigated by Haldane & Maynard Smith (1956), can be removed directly by subtracting
an estimated correction, or indirectly by biasing the score statistic. Firth (1993) investigates
the second option, showing it to be equivalent to use of a Jeffreys prior in linear exponential
family models.

3-2. Likelihood ratio statistic

Large-sample inference for an interest parameter ¥ is often based on the likelihood
ratio statistic W,(y) = 2{l(¢ /1) (/A /1,,,)} or equivalently the profile loglikelihood [,(f) =
A /1.,,) where /1,,, is the maximum likelihood estimator of A for fixed . Although the
large-sample distribution of W, () is chi-squared with degrees of freedom p equal to the
dimension of ¥, this may provide a poor approximation if n is small or if A has high
dimension. One way to improve the approximation follows on writing E{W,({)} as
p{l +b(0)/n} + O(n~2). This implies that the modified likelihood ratio statistic
W,(¥){1 + b(0)/n} ~* has expectation closer to the mean p of the approximating chi-
squared distribution. The quantity {1 + b(0)/n} is known as a Bartlett adjustment, follow-
ing Bartlett (1937) who had investigated its performance in a special case; see also Box
(1949). Lawley (1956) showed that in the continuous case this modification not only
changes the mean of W, () but also improves the approximation to its entire distribution,
so that W,(y){1 + b(@)/n} ! has a Xp distribution with relative error O(n~2). In practice
b(@) must be replaced by b(@) and as 0 —0=0 ,(n~%) it appears that the error has order

~3/2 (Harris, 1986), but Barndorff-Nielsen & Hall (1988) used properties of cumulant
expansions to show that it remains O(n~?). As this suggests, the approximation can be
remarkably accurate even in small samples; see, for example, Porteous (1985) or Jensen
(1986). G. M. Cordeiro and co-workers have derived Bartlett adjustments for classes of
regression models (Cordeiro, 1987; Cordeiro & Paula, 1989) and investigated the extent
to which the ideas extend to score statistics (Cordeiro & de Paula Ferrari, 1991; Cordeiro
et al., 1994; Cribari-Neto & Ferrari, 1995). A puzzling point in the calculation of Bartlett
adjustments is elucidated by Chesher & Smith (1995).

A central role in such calculations is played by the Bartlett identities linking cumulants
of the score statistic and its derivatives (Bartlett, 1953a,b), the first two of which are the
standard formulae E{U(6)} =0 and var {U(0)} = I(9).

Although Bartlett adjustment can also improve the practical performance of the likeli-
hood ratio statistic for discrete data, Frydenberg & Jensen (1989) showed that the theoreti-
cal improvement seen with continuous data does not carry over.

When the interest parameter  is scalar, a better basis for inference on v is a signed
version of W,(y), namely R(y) = sign(u} — Y)W, (¥)* (DiCiccio, 1984; McCullagh, 1984a),
and a related quantity R*(y) which is analogous to a signed Bartlett-adjusted version of
W,(¥), though it is not obtained in the same way; see § 3-3. Jensen (1986) shows that
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18 A. C. DAVISON

confidence intervals based on R*(y) closely approximate those based on exact similar tests
in exponential family models.

Bartlett-like adjustments for Bayesian quantities are given by DiCiccio & Stern (1993),
while Cox (1984) investigates the relation between Bartlett adjustment and the notion of
effective degrees of freedom.

Though often straightforward in principle, the calculations needed for asymptotic expan-
sions of 0, W,(y) and related quantities such as b(0) can be extremely tedious. One valuable
way to simplify these calculations is through use of cumulants and index notation, system-
atised for statistical purposes by McCullagh (1984b). Symbolic computation can help
conceal the sordid details (Stafford & Andrews, 1993).

3-3. Conditional and marginal likelihood

The profile likelihood [,(}) is often used to form confidence intervals for y, but it can
perform badly if the distribution of W,(y) is not close to x* and can fail entirely when the
dimension of 1 grows with n, as arises in so-called Neyman—Scott problems. Even in cases
where large-sample results apparently work, the presence of nuisance parameters can cause
poor small-sample performance, prompting the search for improvements (Lubin, 1981).
One possibility is to use not the full likelihood but a related marginal or conditional
density. Suppose that the original likelihood may be expressed as

Fs v, A= 1@, 2 a ¥, D@ (|, 4, a), (1)

where u,@ and A are maximum likelihood estimators, (u}, 2, a) is minimal sufficient and a is
ancillary. Factorisation (1) is implied in Bartlett (1937). Then all the information about
the parameters is contained in the first term on the right-hand side of (1). In many
important models this term can be expressed as one of

fQla Y, D a ), O, @, A a ),

where fi (u,@ | /Al, a; ) and f (u,@ | a; ) are respectively conditional and marginal densities that
depend only on . Regarded as functions of i, these are examples of conditional and
marginal likelihoods. There may be a loss of information for  if inference is based on
one of these, but it is often small in practice; see, for example, the discussion of the 2 x 2
table in Plackett (1977), a classic example earlier treated in detail by Barnard (1947a,b),
Pearson (1947) and others. If we adhere to the conditionality principle, inference should
be conducted conditional on the observed value of the ancillary, so we would wish to
investigate conditional properties of the conditional or marginal likelihoods and quantities
derived therefrom.

Conditioning and marginalisation may be used to eliminate nuisance parameters from
linear exponential family and group transformation models, respectively. Almost the sim-
plest transformation model is the location-scale model, in which the random sample
Y;,..., Y, may be written as Y;=# +1tZ;, where the density of Z; is independent of
0 =(n, 1), expressed with no nuisance parameter. In this model the ordered values of the
A;=(Y;—1)/z are ancillary, so the conditionality principle suggests that inference should
be conditioned on A. We have exactly (Fisher, 1934)

[0 0) = c(a)|J(0)[* exp{1(0) — (D)}, (2)

where c(a) is a constant depending on a that makes the integral of (2) over 4 and £ equal
to unity for each fixed a and |.| denotes determinant. More complex marginal likelihoods
have been described by Levenbach (1972), Kalbfleisch & Prentice (1973), Pettitt (1983)
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and many others; see particularly Kalbfleisch & Sprott (1970). An important example is
restricted likelihood, discussed in § 3-5.

In the linear exponential family exp {ty + sA — x(, 1) + c(t, s)}, the parameters A can be
eliminated by conditioning, giving a density f(t|s; ) of the form exp {ty — k() + c(t, 5)}
that can be treated as a conditional likelihood. Here the argument for conditioning stems
from the desire to eliminate A rather than from the conditionality principle. A key problem
in this context is to obtain the normalising quantity x,(y¥), which is typically not in a form
useful for applications, though algorithms exist for some special cases (Gail et al., 1981).

Formula (2) applies in wider generality than merely location-scale models, as pointed
out in a Royal Statistical Society discussion by Daniels (1958). It turns out to be exact
for transformation models (Barndorff-Nielsen, 1980, 1983) and highly accurate much more
widely, reproducing the saddlepoint approximation to the density of 0 in full exponential
family models, for which it has error O(n~*?). Unlike the large-sample normal distribution
of 0, it has the potential to give inferences that are independent both of the scale chosen
for 0 and of the particular form of likelihood function used. It generalises work of Cox
(1980), Hinkley (1980), Durbin (1980a,b) and others and forms a useful basis for theoretical
comparison of likelihood and Bayesian approaches (Efron, 1993). A practical difficulty is
how it may be used for inference on components of 0.

Inference is typically required on one parameter at a time, based on a pivotal quantity.
In the location-scale model suitable pivots are Q, =( —n)/? and Q, = %/r, whose joint
density may be derived from (2). Inference for » may be performed by integrating this
joint density to give the marginal distribution of Q, given A4, from which confidence
intervals for # may be found by inversion. Similar arguments give the intervals for t in
the location-scale model and for other group transformation models. Exact inference is
difficult because of the integration involved in obtaining c(a) and the marginal distributions
of the required pivots, and approximations are needed for use in practice; see §9. In a
continuous full exponential family a suitable pivot for scalar i is the probability integral
transformation jt_m f(u]s; ) du, but in discrete exponential families there is in principle
no exact pivot. However, the quantity R*(y) mentioned in § 3-2 has a standard normal
distribution to a high degree of approximation, typically to O(n~>/?) in moderate deviation
regions (Barndorff-Nielsen, 1986; Jensen, 1992) and to O(n~1) in large-deviation regions,
both conditionally on a and unconditionally. Its form is

R¥(y) = RW) + R)™ " log {V(y)/R(Y)},

where R(y) is the signed likelihood ratio statistic based on the profile loglikelihood and
the form of V() depends on the underlying model (Fraser, 1990; Barndorff-Nielsen, 1991).
Sweeting (1995b) considers R*(y) from a Bayesian point of view. Unfortunately an explicit
ancillary is often needed to compute V(y), and hence Barndorff-Nielsen & Chamberlin
(1994) and others have sought alternative forms.

3-4. Modified profile likelihood
As mentioned above, the profile loglikelihood can be a poor basis for inference in the
presence of nuisance parameters. One explanation of this is that dl,(/)/0y does not have
the usual properties of a score function; its mean is generally O(1) rather than zero, as it
would be for the score itself. This suggests modifying [,(i/) by the addition of a function
chosen to improve the properties of the profile score dl,(f)/dy.
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Barndorff-Nielsen (1983) gave a general form of modified profile loglikelihood, namely

1 &y, ) d,
lm(W)—lp(W)— 210g’ - oL 0T aiT
where the second determinant requires that the loglikelihood function be expressed in
terms of the minimal sufficient statistic (i, A, a). Expression (3) recovers standard inferen-
tial quantities when these are known, as in Neyman—Scott cases, while in others it can
greatly improve on /(). Calculation of its last term, however, entails writing the likelihood
explicitly in terms of ¥, 4 and an ancillary statistic a. As mentioned in § 2-2, exact ancillaries
may not exist, and may not be unique even when they do, so (3) is unavailable for many
models of practical interest. One way to reduce the size of the last term, typically O,(1),
is to parameterise the model in such a way that 1 and ¥ are orthogonal, that is to say,
E{0*I(y, 2)/0y 04"} =0, for then the term is O,(n~') and it can be ignored relative to the
other terms, as pointed out in a Royal Statistical Society discussion paper of Cox & Reid
(1987). Further work including comparisons of these modifications has been done by Cox
& Reid (1992), Barndorff-Nielsen & McCullagh (1993), Fraser & Reid (1989), Liseo (1993)
and Severini (1998a,b), while Cruddas et al. (1989) show their effect in a time series
example. Mukerjee & Chandra (1991) derive a Bartlett adjustment for the Cox—Reid
likelihood ratio statistic. A major effort has been put into such adjustments, in order to
produce versions that work automatically in applications (Severini, 1999).

The idea of parameter orthogonality has ramifications beyond modified likelihoods;
see, for example, Solomon & Taylor (1999).

Cox (1980) and McCullagh (1984a) discuss inference based on approximate ancillaries,
the latter showing that the lack of uniqueness is not typically a problem provided inference
is required only accurate to terms of size O(n~*), while Barndorfl-Nielsen (1995) describes
approximations that do not require specification of an ancillary but which retain much
of the accuracy of (3); see also Barndorff-Nielsen (1986).

_log > (3)

3-5. Restricted maximum likelihood

An important application of marginal likelihood is to components of variance models.
The simplest case is the normal linear model with a single additional level of random
effects, in which the n x 1 response y equals X + Zn + ¢, where X and Z are known n X p
and n x k matrices and the elements of the k x 1 vector n are independent normal variables
independent of the n x 1 vector of errors ¢ f is an unknown parameter. The means of 5
and ¢ are zero, while the variance matrices are I,ys® and I,6% y and ¢ being positive
unknowns. Hence y is normal with mean X f and variance matrix Q = 6*(yZZ" + I,). The
usual unbiased estimator of f is f=(X"X) 1X"y, which is normal with mean p and
variance matrix X(X7X) 1Q(XTX) 1XT, independent of the residuals r=y— Xf that
contribute to the residual sum of squares, whose distribution depends only on ¢? and y.
This suggests that inference for these parameters be based on the marginal density of r,
or equivalently on n — p linearly independent residuals. It turns out that the corresponding
loglikelihood may be written as

—110g|Q| — 3 log|XTQ X |- LT{Q 1 —Q 1X(XTQ LX) 1XTQ 1}

This result was derived by Patterson & Thompson (1971) in a different form, building on
Hartley & Rao (1967) and on earlier ideas of Thompson (1962) and others. Inference
based on such expressions is known as restricted maximum likelihood inference; a connec-
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tion to Bayesian procedures was explored by Harville (1974). In the simplest case # is not
present and hence Q = ¢°1,; the restricted loglikelihood then yields the marginal loglikeli-
hood obtained from the chi-squared distribution of the residual sum of squares. Hence
the resulting estimator of ¢? is unbiased (Bartlett, 1937). The bias reduction due to use
of restricted maximum likelihood can be substantial, especially if p and k are large. Similar
bias reductions arise in other contexts where the parameter of interest appears in the
variance structure. Examples are crossover designs (Matthews, 1989) and Gaussian
random fields (Dietrich, 1991).

An important generalisation is to multilevel models, in which data are structured hier-
archically. Such models are used in contexts as different as the social sciences and animal
breeding experiments. For example, data on the attainments of individual pupils within
classes within schools may be available, with random effects at each level of the hierarchy.
Estimation that accounts for the variance structure imposed by these effects may be
achieved using restricted maximum likelihood (Goldstein, 1986, 1987, 1989). An algorithm
for estimation by standard maximum likelihood in these models is given by Longford
(1987).

These ideas have been extended to nonlinear and generalised linear models by Gilmour
et al. (1985), Goldstein (1991), Schall (1991) and others.

3-6. Non-regular models
The theory described above applies to settings where the usual regularity conditions
hold. They can fail in such a variety of ways that general discussion is difficult. One type
of failure occurs when parameters present under one model vanish under a contiguous
model. One example is two-phase regression with an unknown changepoint 6, the simplest
case of which has

Yi=PBo+ i(x;— 0)(x;>0)+ae;, j=1,...,n,

where the ¢; are independent standard normal variables and I(.) is an indicator function,
so the regression slope is zero up to x =6 and subsequently ;. A second example sets
Y, = ¢, sin(j0) + &, cos(j0) + o¢;. The parameter 0 is meaningless if §; =0 in the first case
and &, =¢&,=0 in the second, and standard likelihood ratio or other tests are hence
inapplicable. One approach to such problems is detailed case-by-case analysis, as in
Hinkley’s (1969) discussion of two-phase regression, but the resulting intricate approxi-
mations are difficult to generalise. Simulation is now a natural alternative, but a useful
and fairly satisfactory analytical approach was proposed by Davies (1977, 1987), based
on upcrossings of stochastic processes. The chosen test statistic for comparison of the
models is W = sup, W(0), where W(0) is the likelihood ratio statistic applicable if 0 were
fixed and known, and the supremum is over 0; < 6 < 0y. If W(0) has an approximate chi-
squared distribution with p degrees of freedom for each 6, then the process W(6) as 6
varies in [6;, 0] should be related to a chi-squared process, and the distribution of W
close to that of its supremum. Davies (1987) uses results on extrema of stochastic processes
to show that the approximate significance level for W is 1 — F,(W) + Vf,(W), where F,
and f, are the 3 distribution and density functions, and

o oW
b J ©
o | 00

= [W3(0,) — WHOL)| + [W3(0,) — WE(0,) + ... + | WH0y) — WH0,)I,

do
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where 0, < ... <0, are the turning points of W*(9) in [0, 0,]. He also gives more
accurate approximations, but examples suggest that this remarkably simple approach will
be precise enough for many purposes.

Standard likelihood asymptotics break down if the true parameter value is on the
boundary of the parameter space, and the maximum likelihood estimator then has a
nonnormal limiting distribution. Chant (1974) investigates the relation between likelihood
ratio and C(x) tests in this situation, and finds that they are asymptotically equivalent
only when the true parameter value is not a boundary case. Likelihood inference in a
particular case of such models was investigated by Crowder (1990). An important example
of such models is in estimation and testing in standard models but under ordered alterna-
tives (Bartholomew, 1959).

A different form of nonregularity arises because of failure of the Bartlett identities. These
fail perhaps most commonly when 6 contains an endpoint, as when Y;= 8 +¢;, where
&4, ..., &, are independent positive random variables from a density for which f(g) ~ aye* ™!
as ¢|0, and o,y >0; here 0 =(p, «, y). Densities in this framework include the three-
parameter Weibull and gamma distributions, and the generalised extreme-value and
Pareto distributions, which are useful in modelling extreme values in areas as diverse as
strength of materials, athletic records, and environmental and financial applications. The
degree of nonregularity depends on «. If « > 2, the Fisher information for 0 is finite and
0 has its usual large-sample properties of consistency, normality and efficiency. If 1 <a < 2,
then there is a large-sample local maximum of the likelihood, but when o <2 the limiting
distribution of B is nonnormal and ﬁ B =0,(n"*), while when o = 2 the limit is normal
but ﬁ B=0,{(n*logn)~'}. When 0 <o <1 the likelihood has no asymptotic local maxi-
mum but is maxnnlsed by taking = min Y, ., giving B—p=0 ,(n~1%), an order of conver-
gence that cannot be improved. A scattered llterature on such results, related particularly
to the three-parameter Weibull distribution, was unified by Smith (1985), who discusses
also the properties of maximum likelihood estimators for «, y and other parameters, if
any. When 1 <a <2 their maximum likelihood estimators are asymptotically normal,
independent of ﬁ and converge at the usual rate. He also proposes an alternative approach,
replacing § by min Y; and then estimating the remaining parameters from the likelihood
for the other observations, acting as if § were known to equal min Y;. Smith (1994) extends
these results to regression models Y;= f7x;+¢;, showing that § can be estimated by a
linear programming algorithm, and that the remaining parameters are amenable to the
same treatment as in the location case.

The discussion above presupposes that the correct model has been fitted. In misspecified
models this is not the case. Results analogous to those of standard likelihood theory then
hold, but modified by the fact that asymptotically the best-fitting model is not the truth
but that closest to the truth among the class fitted. Kent (1982) shows that in this case
the likelihood ratio statistic behaves asymptotically like a weighted combination of y3
variables; the weights would all equal unity were the model correct. A related setting is
robust estimation where the estimating function and loglikelihood derivative for the under-
lying model are different. Boente & Fraiman (1988) discuss nonregular likelihood inference
in this context, and give resistant estimators with the same rates of convergence as maxi-
mum likelihood estimators for various nonregular contexts; some of their estimators are
also efficient.

Rather different problems arise in inference for parameters of stochastic processes. Such
problems are often called non-ergodic because the quantity analogous to the scaled infor-
mation matrix that norms the maximum likelihood estimator typically converges not to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Biometrika Centenary: Theory and general methodology 23

a constant but to a random variable. The case perhaps most thoroughly investigated is
the branching process, where the asymptotics depend sharply on the birth parameter. See
Stigler (1970, 1971), Becker (1974), Basawa & Scott (1976), Sweeting (1978), Feigin &
Reiser (1979) and Basawa (1981a). Sweeting (1992) gives a more general discussion of
such problems.

Practical difficulties arise when the likelihood has multiple local maxima or its global
maximum equals infinity. Some particular instances of this are investigated by Barnett
(1966), Copas (1975) and Crisp & Burridge (1994), while Jensen et al. (1991) discuss
global convergence of Newton-like algorithms for important cases.

A further nonstandard situation is the comparison of nonnested families of models,
initiated by Cox (1961). This topic was subsequently developed by econometricians and
in regression (McAleer, 1983). Kent (1986) clarifies the structure of likelihood ratio tests
in this context.

4. PREDICTIVE INFERENCE

Prediction has long been a weak point of likelihood theory. Bayes’s theorem gives a
basis for inference not only on parameters but also on an unobserved random variable
Z. Given the observed data Y =y, the posterior predictive density of Z may be written

£zl y; 0)f(y; 0)m(0) dO
(£ O)m(0)d0 °

where n(0) is a prior density for 6 and 7n(0|y) is the corresponding posterior density.
Although Fisher proposed a form of likelihood for predictive inference, it was largely
ignored until Hinkley (1979) attempted to put it on a firmer footing. The idea is to treat
the joint density of Y and Z conditional on the value of a joint sufficient statistic for 0,
S =s(Y, Z), as a function of z, but this is feasible only when the model admits a reduction
by sufficiency. When it can be calculated it is close to (4) with vague priors, suggesting
that approximation to (4) might be profitable.

Butler (1989) gave several general forms of predictive likelihood, including the approxi-
mate conditional quantity

fzly) = Jf(ZIy; 0)n(0|y) do = (4)

Sz 0 |LO,)
L0 1001

where 92 is the maximum likelihood estimator of 6 based on (y, z), 1,(0) is the observed
information computed from f(y, z; 0), and J(0) = é* log f(y, z; 0)/30 &(y", z7) is a mixed
partial derivative of the loglikelihood. The first ratio results from Laplace approximation
to the numerator integral in (4) (Davison, 1986), while the second ensures that L,(z|y)
has suitable invariance properties. Butler also discusses coverage properties of prediction
intervals based on such likelihoods.

A natural alternative, the so-called estimative approach, bases inference for z on the
conditional density f(z|y; 0), where 0 is typically the maximum likelihood estimate based
on y, but by acting as if 6 equalled the true 0 this understates the prediction uncertainty.
A measure of this understatement based on the Kullback—Liebler divergence between the
true density p(z|y; ) and a predictive density, g(z|y), is (Aitchison, 1975)

Lic(zly)=

z|y; 0
Dy(p. q) = def(y; 0) sz pz|y; 9)10g{w}.
q(z|y)
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A candidate predictive density r is judged poorer than q if Dy(p, r) > Dy(p, q). If the result
is independent of 0, it turns out that the estimative density can be bettered by a predictive
density of form (4), even if the prior used to construct it differs from that underlying the
data generation mechanism. In such cases a ‘smearing out’ of the estimative density by
averaging over values of 0 is always beneficial. Murray (1977), Ng (1980) and Komaki
(1996) investigated the generality of this result, which holds for gamma and multivariate
normal models, among others.

Harris (1989) suggested that the estimative density be averaged out by taking not
fzly; 0) but { f(y]z; 0)f(0; 0) d0, and showed that with 6 = 0 this improves on the estim-
ative density for the Poisson and binomial cases, and asymptotically in more general
exponential families. He used parametric simulation to estimate the integral, but Vidoni
(1995) suggested an analytical approach whereby (2) is used to replace the density of
and the integral is approximated by Laplace’s method. This approach also yields prediction
limits. More recent work in a Bernoulli article of Barndorff-Nielsen & Cox (1996) gives a
general but somewhat complicated basis for approximate predictive intervals which are
suitably invariant and satisfy the conditionality principle, while having good asymptotic
properties under repeated sampling,

5. ESTIMATING FUNCTIONS

Elementary discussion of maximum likelihood estimators usually stresses asymptotic
efficiency rather than finite-sample properties, which are difficult to obtain because of the
implicit nature of the score function. Starting in the 1960s finite-sample theory was devel-
oped from a different point of view, taking as basis score-like estimating functions that
determine estimators rather than estimators themselves. If s is a scalar parameter to be
estimated using data Y, the function g(Y; y) is said to be an unbiased estimating function
if E{g(Y; )} =0 for all Y. With g(y; ¥) =0 log f(y; ¥)/0y this determines the maximum
likelihood estimator, but it also encompasses least squares, minimum chi-squared and
robust estimators. In a paper in the Annals of Mathematical Statistics and under regularity
conditions, Godambe (1960) defined g* to be optimal in the class of all unbiased estimating
functions if it minimised the ratio E{g*(Y; y)*}/E{0g*(Y; y)/oys}* for all . An asymptotic
basis for this choice is that this ratio is the large-sample variance of ¥ determined as the
root of the equation g(Y; ) =0. A Cramér—Rao argument then establishes that the esti-
mating function g(y; ¥)=0logf(y; ¥)/ow, the score function, is optimal in this finite-
sample sense; this result extends to vector . It was extended to give a finite-sample non-
decision-theoretic justification for Bayesian inference on y by Ferreira (1982). Godambe
& Thompson (1984) extend these ideas to robust estimation of a location parameter,
giving theoretical tools to determine which among a variety of parameters can most
effectively be estimated, while the extension to stochastic processes is given by Godambe
(1985). Heyde & Morton (1993) discuss optimal estimating functions in the presence of
constraints on .

In more general situations the model also contains a nuisance parameter .. Godambe
(1976) showed that, if there is a complete statistic S=s(Y) such that f(y, ¥, A)=
f(y|s; y)f(s; ¥, 1), then the estimating function optimal for v is d log f(y|s; )/, corre-
sponding to the use of a conditional likelihood for . Further papers considered related
definitions of ancillarity and sufficiency (Godambe, 1980) and made the link between
orthogonality of estimating functions and optimal estimating functions (Godambe, 1991).
Lindsay (1982) generalised results of Godambe (1976) to more general likelihood factoris-
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ations such as partial likelihood (Cox, 1975), and examined the case where the conditioning
statistic depends on A. Globally optimal estimating equations are then unavailable, but a
weaker optimality criterion yields a class of estimated conditional score functions that
satisfy a similar information inequality.

A general approach to such problems was developed by Waterman & Lindsay (1996)
using Bhattacharyya scores. The motivation stems from the observation that, if S is
sufficient for /, then the residual U, — E(U,|S) from the projection of the score U, =
dlog f(y; ¥, 1)/0y on to the space of S-measurable functions equals the conditional score
U.(y)=0logf(y|s; ¥)/dy, which is the optimal estimating function. This suggests basing
inference on residuals from other projections of U, in cases where an exact conditional
score does not exist. To do so, it is useful to treat Uy, as an element of a Hilbert space of
square-integrable functions, subspaces of which may be generated by the quantities
f W, )7 0 log f(y; W, )[04y, . . . 04,,, the scaled tth-order derivatives of f(y; ¥, 4) with
respect to the elements of 1. Nested subspaces %, of the Hilbert space are determined by
taking 4, to be the subspace generated by the constant function, %, to be that generated
by the constant and first-order derivatives, %, to be that generated by the constant, first-
and second-order derivatives and so forth. We can now define a sequence of approximate
scores by taking the residuals from projection of Uy, on %,, %,, ... . If A can be eliminated
by conditioning on the statistic S independent of v, then the optimal conditional score
can be approximated arbitrarily closely by taking successive elements of this sequence,
without finding the conditioning statistic S or explicit calculation of U A is replaced by
its maximum likelihood estimate. In problems where S depends on , the nuisance param-
eter cannot be fully eliminated and properties of the score residual depend on the estimator
of 1 used. Examples suggest that t =2 will often be adequate in practice.

A different approach is to seek a combination of data and Y whose distribution depends
only on ¥, and to base inference on this. Cox (1993) discusses the extent to which this is
useful, and the modifications to the score equations needed for it to work. Morton (1981)
takes a different approach, seeking a type of pivotal quantity g(Y; y) whose distribution
may depend on ¥ but not on 4, and from which estimating functions may be formed; this
turns out to be related to the residuals from projected scores discussed above.

6. MODEL SELECTION

The labour of statistical arithmetic has been vastly reduced by the advent of modern
computing. One effect of this is that many models are now routinely fitted to a single
dataset, particularly but not exclusively in time series and regression analysis. The problem
of multiple testing entailed by standard approaches to model comparison using likelihood
ratio and related statistics was underscored when computers began to be widely used
during the 1960s, and since the early 1970s a major effort has been devoted to methods
for selection of the ‘best” model or, more sensibly, a few ‘good’ models for a dataset. In
time series this may boil down to selection of the order of an autoregressive process and
in regression to the choice of covariates to be retained in a final model. Such automatic
procedures treat all models on an equal footing, but in applications it is essential to
appreciate that some models are more equal than others: substantive interpretation and
consistency with established knowledge must also be taken into account.

A widely used approach is to choose the model that minimises Akaike’s informa-
tion criterion AIC = 2(—7+ p), where [ is the maximised loglikelihood when a p-parameter
model is fitted (Akaike, 1973). This may be derived by an asymptotic argument as an
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estimate of minus the expected loglikelihood for the fitted model, with expectation taken
with respect to the true model, supposed to be among those fitted, but there are important
connections to prediction (Larimore, 1983). The reduction in —/ when parameters are
added is traded off against the penalty p for model complexity. Several variant criteria
have been published, for example to allow for the true model not being among those
fitted, or to change the multiplier of p (Bhansali & Downham, 1977; Kohn, 1977; Akaike,
1979), but their performance depends on the family of models in which the ‘truth’ is
embedded (Atkinson, 1980). Unfortunately minimisation of aA1c does not give consistent
model selection, and in practice it often indicates models more complex than are warranted
by the data. The difficulty is that complexity is insufficiently penalised. In a series of papers
Hurvich & Tsai (1989, 1991, 1998) and Hurvich et al. (1990) have investigated a related
approach for models with normal errors in which the penalty is n(n + p)/(n — p — 2) rather
than p. The resulting criterion AIC, can appreciably increase the probability of choosing
the correct model, particularly in conventional regression and time series model selection,
but also in some wavelet applications and in multivariate regression (Fujikoshi & Satoh,
1997). Burman & Nolan (1995) discuss the generalisation of AIC to robust regression
models.

Theoretical properties of a1c and related statistics in regression contexts have been
investigated by Shibata (1981, 1984), Hurvich & Tsai (1995) and others, particularly in
the case where the underlying model is not among those fitted, so that comparison with
nonparametric regression procedures is appropriate.

There is a close connection to crossvalidation, also used for model selection. For
Biometrika’s contributions to this, see Hall (2001).

7. BAYESIAN STATISTICS

The Bayesian revival that began in the 1950s soon led to Biometrika publishing investi-
gations of particular models important in applications, such as the linear model (Tiao &
Zellner, 1964) and random effects models (Tiao & Tan, 1965, 1966), but also to broader
methodological discussions, concerning particularly the robustness of Bayesian inferences.
Examples are Box & Tiao (1962, 1964), who assess the sensitivity of posterior densities
to distributional assumptions, replacing the normal with a heavier-tailed density in work
prefiguring current practice, and the investigation of modelling of outliers by mixtures in
Box & Tiao (1968).

The role and use of prior knowledge has always been a stumbling block to the universal
acceptance of the Bayesian approach. Jeffreys attempted to circumvent this by constructing
what he hoped could be regarded as objective priors, but these are often improper. The
unease surrounding their use deepened when Stone & Dawid (1972) pointed out the
marginalisation paradoxes that can arise with improper priors. Kass (1990) gives heuristic
justification for the use of Jeffreys priors in cases where the likelihood boils down to a
location family, though not necessarily in the data themselves. Reference priors provide
an alternative to Jeffreys priors, particularly when parameters are ordered by their degree
of interest for the analyst, and Sun & Berger (1998) discuss their construction in cases
where there are different amounts of information about different parameters.

In empirical Bayes inference the sample is used to determine the parameters of the prior.
The original procedure proposed by Robbins (1956) is unstable except in large samples,
but in special cases smooth estimators of the marginal density of the data were shown by
Maritz (1966, 1967, 1968) to have considerably lower risk than the original proposal. An
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interesting application of empirical Bayes is to the estimation of the size of Shakespeare’s
vocabulary (Efron & Thisted, 1976; Thisted & Efron, 1987), while Copas (1972) shows
how empirical Bayes can improve precision when a standard treatment is used repeatedly
in clinical trials. Efron & Morris (1972) discuss a vector generalisation of the celebrated
James—Stein theorem on the inadmissibility of the sample average, and describe associated
empirical Bayes estimators. Hill (1990) attempts to tie empirical Bayesian, frequentist and
regular Bayesian inference into a single general framework.

A topic of perennial interest is that of when, how and by how much Bayes and frequentist
inferences differ, discussed, for example, by Bartholomew (1965) and Datta & Ghosh
(1995); the latter investigate the choice of prior that gives Bayesian credible and frequentist
confidence intervals the same approximate coverage probability. Similar investigations
are by Mukerjee & Dey (1993) and Datta (1996). Related ideas were exploited by
Tibshirani (1989), who discusses the construction of priors that are noninformative for a
single parameter of interest in problems where there are many nuisance parameters to
which it is orthogonal; it turns out that this is not the Jeffreys prior, though it involves
the Fisher information matrix. A more systematic treatment is by Liseo (1993), who
compares the effect of using Jeffreys and reference priors in a variety of classical problems,
concluding that reference priors generally give more acceptable inference than do classical
methods or Jeffreys priors.

Bayesian modelling provides a simple way to avoid the sometimes awkward approxi-
mations needed for nonregular likelihood analysis. A particular case is in inference for
changepoints, as in Smith (1975) and Raftery & Akman (1986).

As mentioned in §9-1, Laplace and related approximations provide useful tools for
dealing with the integrals that arise in Bayesian applications, and there are close links to
classical ideas described in § 3-3. Sweeting (1995a,b) shows how likelihood-based approxi-
mations to conditional p-values, pivots and suchlike can be derived from their Bayesian
counterparts using an unsmoothing argument, and investigates the relationships between
these various approximations.

An important development around 1970 was the use of hierarchical models, in which
parameters are treated as exchangeable. Smith (1973) discusses their application in simple
analysis of variance models, making comparisons with least squares solutions, while Fearn
(1975) treats growth curve modelling. Dawid (1977) discusses the implications of invari-
ance properties weaker than exchangeability for Bayesian analysis of variance; see also
Goldstein & Wooff (1998) for discussion of weak forms of exchangeability in linear
regression. Hierarchical models are now widely used; see, for example, Raftery (1988) who
gives an application to population size estimation, Malec & Sedransk (1992) and Mallick
& Walker (1997) who describe their use in meta-analysis, and Roeder et al. (1998) who
suggest how they can be used to account for variability in forensic science databases; for
other Bayesian applications in forensic science, see Lindley (1977) and David & Mortera
(1998). Difficulties that can arise when there are constraints on the parameter space of a
hierarchical model are tackled by Chen & Shao (1998) using a version of importance
sampling.

The Bayesian analogue of the significance test is the Bayes factor, discussed by Giinel
& Dickey (1974) in the context of contingency table modelling. McCulloch & Rossi (1992)
describe an attempt to compute Bayes factors for hypotheses that impose nonlinear con-
straints on the parameter space, with applications to logistic regression. Raftery (1996)
discusses their construction using Laplace approximation for families of generalised linear
models and suggests how model uncertainty can be incorporated into inference in this
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setting, which is also discussed by Goutis & Robert (1998) using Kullback—Leibler diver-
gence. Related work is by Dellaportas & Forster (1999), who use a reversible jump Markov
chain Monte Carlo algorithm for model comparison in hierarchical and graphical log-
linear models. There are close connections between approximations to the Bayes factor,
of which the best-known, the Schwarz criterion, can be derived by Laplace approximations
to the marginal density of the observed data, and classical analogues such as a1c. Pauler
(1998) outlines how these approaches may be applied for mixed models with normal errors.

Goldstein (1976, 1980) considers the Bayesian use of a linear model as an approximation
to an underlying nonlinear regression structure, choosing the regression coefficient to
minimise the posterior expected sum of squares; this depends only on certain joint posterior
moments.

A very important recent development has been the emergence of Markov chain Monte
Carlo methods for use in Bayesian applications. This is discussed in § 8.

8. SIMULATION

Simulation has been used to guide theoretical work since “Student’s” (1908) derivation
of the ¢ statistic, and for finite-sample comparison of statistical procedures since the 1960s,
but only in the last 20 years has it become integral to routine data analysis. The potential
of simulation for frequentist data analysis was highlighted by Efron’s (1979) account of
the bootstrap; see Hall (2001) for Biometrika’s contributions. Possibilities for Bayesian
analysis were perceived somewhat later, but there is now a large literature primarily about
Markov chain Monte Carlo simulation. The idea was first suggested by Metropolis et al.
(1953) and became standard in fields such as statistical mechanics and physical chemistry.
Its importance dawned on workers in spatial statistics and image analysis during the 1970s
and 1980s, before the possibilities it offers for investigation of posterior distributions and
likelihood functions were initially realised around 1990.

Suppose that we desire to sample from a distribution 7 on a large finite set, %, and
that 7 is known only up to a normalising constant, it being infeasible to visit every element
of . Consider an irreducible aperiodic Markov chain X, on %, with g;; denoting the
probability of transition from state i to state j, for i, j € &; suppose that g;; = q;;, so the
transition probability matrix is symmetric. Then Metropolis et al. (1953) suggest that a
new state X, ., be chosen as follows: given X, =i, generate a proposal state X;,, =j using
the transition probability g;;; then set X,,; = X;,; with probability a;;=min{r;/n;, 1}
and otherwise take X, = X,. If the resulting transition probabilities are p;;, it is easy to
verify that 7;p;; = m;p;; for all i and j, so the induced chain X, is reversible with stationary
distribution 7. We can then invoke the ergodic theorem and estimate functions of 7 using
the generated values X, ..., Xy, provided that T is large enough; the expected value of
f(X) with respect to the stationary distribution = is estimated by T~ 1Y, f(X,).

This algorithm became widely used outside statistics, though the requirement that g;; =
qj; is highly restrictive. An important generalisation was the realisation of Hastings (1970)
that, if a reversible chain is sought, and the acceptance probability is changed to a;;=
min {(7;q;;)/(%;q;:), 1}, then the transition probability matrix g;; of the underlying chain
need not be symmetric: the matrix corresponding to essentially any irreducible aperiodic
chain can be used, though the choice of g;; will strongly influence the practical value of
the algorithm. In finite state spaces, Peskun (1973) showed that autocorrelation in the
chain is reduced by making the acceptance probability as large as possible, subject to
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retaining the detailed balance condition 7;p;;==;p; for all i and j. The Hastings-
Metropolis algorithm extends to continuous state spaces, and it and variants such as the
Gibbs sampler are now used in a huge range of Bayesian models (George & Robert, 1992;
Carlin & Gelfand, 1993; Glad & Sebastiani, 1995; Miiller & Roeder, 1997; Chib &
Greenberg, 1998).

In such applications the distribution 7 is typically the posterior distribution of param-
eters and predictands, given the data. In frequentist statistics it may represent a distribution
whose support or normalising constant is unknown. Besag & Clifford (1989, 1991) use
such algorithms to construct null distributions for test statistics in complex problems,
such as assessing the adequacy of models for contingency tables, of which an example is
the Rasch model. In such cases the parameters may be eliminated by conditioning on
suitable margins of the table, but the conditional distribution has sample space and nor-
malising constant that are typically so awkward that the Hastings—Metropolis algorithm
is the best means of estimating conditional p-values. The same ideas may be used to
estimate conditional likelihoods, though importance sampling also has a role (Booth &
Butler, 1999).

The use of Markov chains in this context is essentially constructive; subject to mild
conditions, the analyst is free to build the algorithm in many possible ways. A natural
idea is to implement it so as to maximise speed of convergence. One approach to this is
to minimise posterior correlations among parameters, as discussed in normal linear mixed
models by Gelfand et al. (1995), while another approach is post-simulation improvement
to get the effect of a longer run of the chain (Liu et al., 1994; Casella & Robert, 1996).
Roberts & Tweedie (1996) give sufficient conditions for geometric ergodicity of certain
algorithms and discuss central limit theorems in this context. There are numerous
approaches to assessing if a chain has converged; see, for example, Brooks & Roberts
(1999) for a critical discussion of the use of quantiles of the output in this regard.

If the parameter space is continuous but its dimensions may vary, then the discussion
above does not apply. Unfortunately, this situation is common in more complex appli-
cations, where, for example, a choice must be made between competing models or where
a mixture distribution has an unknown number of components. Green (1995) generalised
the Hastings—Metropolis algorithm to this situation by introducing reversible jump
Markov chain Monte Carlo algorithms. Suppose that the parameter space for the kth
of a countable collection of candidate models is %, =R", with n, <n,<..., and
write the joint density of the model index k, its parameter 6% and the data y as
n(k)ym(0® |k)f(y|k, 0®). Bayesian inference in this context uses the posterior density
n(k, 0% |y), typically expressed as m(k|y)m(0® |y, k); often it makes little sense to average
over different models. The goal of setting up a Markov chain with this posterior density
as its stationary distribution is complicated by the varying dimension of %, As the chain
is constructed so as to be reversible, then, if a transition is allowed between %, and %,
say, the reverse jump must also be possible. The difficulty lies in setting up the jumps in
such a way that the equilibrium joint distribution of the current and proposed next states
has a density with respect to any symmetric dominating measure. This is achieved through
an ingenious ‘dimension-matching’ condition, whereby the jump from %, to %, lands in a
subspace of dimension n,; determined by the point of origin and an auxiliary random
variable of dimension n, — n;, while the reverse jump treats the departure point in C, as
an element of a subspace of dimension n,. The resulting algorithm is widely applicable;
see, for example, Denison et al. (1998) and Rue & Hurn (1999).
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9. SADDLEPOINT AND RELATED APPROXIMATIONS

9-1. Laplace approximation

A recurrent theme of statistical work is the importance of small-sample methods. Fisher,
Student, Wishart and others derived exact results for many statistics derived from the
normal model, for example in analysis of variance and multivariate statistics. One obvious
choice of approximations for wider use is based on Edgeworth series and Fisher—Cornish
inversion, but, though important in the theoretical study of density, distribution and
quantile approximations, these can give negative density estimates and non-monotone
approximations to distributions and quantile functions when applied in practice. A natural
alternative toolkit uses asymptotic expansions for integrals, such as Laplace and saddle-
point approximations. The latter have been intensively studied over the past 30 or so
years, building on the seminal Annals of Mathematical Statistics paper of Daniels (1954).

Suppose that we are confronted with an integral based on a sample of size n and written
in the form

Jexp { —nh(u)} du, (5)

where h(u) is O(1), sufficiently well behaved, strictly convex in u and attains its minimum
at i, at which point dh(u)/ou = 0. Here nh(u) is typically a negative loglikelihood or some
variant thereof. The key idea of Laplace approximation is Taylor series expansion of h(u)
about @t and neglect of the third- and higher-order terms, followed by integration of the
resulting normal density. The result is

2y %
fmar sl et +ouy, ©)
where p is the dimension of 4 and |.| indicates the determinant; unlike an Edgeworth series
expansion, (6) is guaranteed to be nonnegative under mild conditions on h. Moreover,
the error term is relative, so this approach can yield approximations that work well for
both small and large values of the integrand, unlike Edgeworth series, whose error is
typically absolute and can therefore greatly exceed the approximation. Cox (1948) used
this approach to derive approximate densities and distributions for the sample range, in
work extended to differences of order statistics by Harvill & Newton (1995). Daniels
(1956) applied the ideas to small-sample distributions for the serial correlation coeflicient.
Other applications are in mixed models (Wolfinger, 1993; Vonesh, 1996).
For distribution function approximations it is better to consider integrals of the form

n\* [t
<£> J a(u)e "8 {1 + O(n™ 1)} du, (7)
where u is scalar, a(u) > 0, and, in addition to possessing the properties of h(u) above, g(.)
is such that g(&) = 0. Under regularity conditions and after several changes of variable, it
turns out that (7) may be expressed as ®(n?rE) + O(n~1!), where

a(uo)ro}

8
g'(uo) ®)

ro =sign(uy — ﬁ){2g(u0)}%, 1§ =ro— (’”0”)_1 108{

The first of these expressions corresponds to a signed loglikelihood ratio statistic, and the
second, which has a standard normal distribution to high order, is a modified version
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thereof. Fraser (1990), DiCiccio et al. (1990), DiCiccio & Martin (1991), DiCiccio & Field
(1991) and Fraser et al. (1999) describe similar approaches for such integrals, for both
Bayesian and frequentist problems, while Cheah et al. (1994) apply them to testing prob-
lems in exponential families.

Integrals such as (5) arise very commonly in Bayesian statistics, for example in calculat-
ing the marginal posterior density

[n, 21y) d2
7, 21 y) di dy

of a parameter ¥ of interest in the presence of a nuisance parameter 4. The denominator
integrand has form (5), with h(u) replaced by —n~1log n(y/, A|y), that is, minus the scaled
loglikelihood plus log prior; then @ corresponds to the mode of the joint posterior density.
The numerator integrand has a similar form, but depends on . Tierney et al. (1989),
Wong & Li(1992) and others have investigated the use of Laplace’s method in this context,
for posterior predictive densities and for posterior moments, while Kass et al. (1989) have
considered how it can be used for assessment of influence and sensitivity in Bayesian
analysis. DiCiccio et al. (1993), Sweeting (1995a) and Fraser et al. (1999) have considered
related tail probability approximations.

Wy |y) =

9-2. Saddlepoint approximation
Saddlepoint approximation starts by considering the average Y of a sample of continu-
ous independent and identically distributed random variables Y;, . .., Y,, whose cumulant-
generating function, K (u) =log E(e*"), is assumed to exist in some open interval a <u <b
containing the origin. The Laplace inversion formula implies that Y has density given by
the complex integral

ct+ico
f(y= 2l J exp[n{K(u) — uy}] du,
Tl Je—ico
where any path of integration for which a < ¢ < b may be used. The idea is to choose ¢
to pass through a saddlepoint of the integrand, outside a neighbourhood of which the
integrand is negligible. An argument like that leading to (6), but complicated by the
necessity for complex integration, yields

1

n 3
m} exp[n{K(@) — ay}]1{1 + O(n™ ")}, 9)
where @i satisfies the saddlepoint equation K'(u) = y. Not only is the error in (9) relative
rather than absolute, but it also turns out to be uniformly bounded in large-deviation
regions, often giving an astonishingly accurate approximation far into the tail of the
density. Generally the leading term on the right of (9) does not have unit integral, but
when renormalised to do so the relative error improves to O(n~*?). The renormalised
version is exact for the normal, gamma and inverse Gaussian densities (Daniels, 1980).
Application of (7) to (9) gives an approximation to the probability that Y <y, of form
®(r*), where r* is given by

f(f)={

r*=r+r-tlog(v/r), r=sign(u,)[2n{u,y — K@u,)}15, v=u,/|K"(u,)?,

in which u, satisfies the equation K'(u) = y. Here r is the signed likelihood ratio statistic
for assessing whether or not the data have mean E(Y), while v is the corresponding Wald
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statistic. Jensen (1992) showed that ®(r*) differs from the Lugannani—Rice approximation
O(r)+ ¢(r)(r 1 —v~1) by O(n~*?) in ordinary-deviation regions.

Although known in principle, the distribution of statistics used in multivariate analysis
can be awkward to use in practice, making simple approximations desirable. Butler et al.
(1992a,b) have advocated saddlepoint methods for this context. Similar comments apply
to quadratic forms, used for comparison of parametric and nonparametric regression
models (Kuonen, 1999).

The application of these approximations in small-sample likelihood inference was briefly
discussed in § 3-3, and here we concentrate mainly on non- and semiparametric appli-
cations. One is to estimators defined through estimating functions g(y; ), supposed mono-
tonic decreasing in the scalar  for each y. Then, as pointed out by Daniels (1983),
following Field & Hampel (1982), u,b <y if and only if > g(Y;; ¥) < 0. Hence the probability
that u,b <y may be read off from the distribution of the average Y. g(Y;; ¥), to which the
results above apply directly. This idea applies to robust estimates of location and has
found many uses elsewhere. Spady (1991) generalised it to regression problems, in which
¥ is no longer scalar.

Such approximations are also useful in the context of finite-population sampling and
resampling. Davison & Hinkley (1988) show how saddlepoint methods can be used to
avoid Monte Carlo simulation in numerous bootstrap and randomisation contexts, while
Booth & Butler (1990) set that work in a more general context and point out the link
with exponential family distributions. Wang (1993) shows how the same ideas apply to
finite-population sampling, while applications to time series autocorrelations are given by
Phillips (1978) and Wang (1992). In the bootstrap context the approach is sometimes
called the empirical saddlepoint; its accuracy has been investigated by Feuerverger (1989),
Jing et al. (1994) and Monti & Ronchetti (1993). Daniels & Young (1991) use a mixture
of saddlepoint and Laplace approximations to obtain the marginal distribution of the
studentised average, as used in bootstrap resampling for confidence intervals for a mean;
see also DiCiccio et al. (1992). Booth et al. (1999) describe the use of saddlepoint approxi-
mation and parametric asymptotics to avoid bootstrap calibration.

10. GENERALISED REGRESSION
10-1. Generalised linear models

One of the most important developments of the 1970s and 1980s was the unification of
regression provided by the notion of a generalised linear model (Nelder & Wedderburn,
1972; McCullagh & Nelder, 1989) and its associated software, though the concept had
appeared earlier (Cox, 1968). In such models the response Y is taken to have an
exponential family distribution, most often normal, gamma, Poisson or binomial, with its
mean p related to a vector of regressor variables through a linear predictor n = x™f and
a link function g, where g(u) =#. The variance of Y depends on u through the variance
function V(p), giving var(Y) = ¢V (u), where ¢ is a dispersion parameter. Special cases are:
the normal linear model, for which V(u) =1, ¢ is the error variance and the link is g(u) =
w;, models for gamma errors, V(u)=u? and link functions g(u)=pu"! or g(u) =logy;
Poisson models for counts, with V(u)=u and g(u)=1logu; and logistic models for pro-
portions, with V(u)= u(1 — pw)/m and g(u) =log{u/(1 — w)}. These last two models have
¢ = 1. This brings under the same roof the linear model with normal errors, logistic and
log-linear models and many less familiar regression models.

One aspect of this unification was the more widespread use of likelihood concepts, with
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different models compared through a likelihood ratio statistic called the deviance, thereby
extending familiar notions from analysis of variance. A second was the realisation that
iterative use of weighted least squares estimation can form the basis of a general algorithm
for fitting regression models. The estimating equations for a generalised linear model for
independent responses Y;,..., Y, and corresponding covariate vectors x, ..., x, may be
expressed as

n ('5,u Y, — Yi—w _
X; , (10)
Z Ton; Vi)
or in matrix form
TV Y —w=0, (11)

where D is the n x p matrix of derivatives du;/0f,, and the n x n covariance matrix V is
diagonal if the responses are independent but not in general. Taylor expansion of (11)
shows that the solution § may be found by repeated linear regression of a constructed
response variable on the columns of D with weight matrix V'~ ! The existence and unique-
ness of ﬁ has been studied by Wedderburn (1976) and others, while Jorgensen (1983)
discusses large-sample inference for such models and their nonlinear extensions.

The idea of decoupling the systematic and random structure of the model, that is,
covariate matrix and response distribution, has obvious wider implications. One can envis-
age building models by fitting different covariate structures on to a chosen response
distribution using an appropriate link, as in generalised additive models (Hastie &
Tibshirani, 1990), in which smoothers are added to the linear predictor # to give a semipara-
metric model. Link functions themselves can be chosen on subject-matter or statistical
grounds, or estimated parametrically or nonparametrically if the data are extensive enough.

10-2. Quasilikelihood

Data are often overdispersed relative to a textbook model. For example, although the
variance of count data is often proportional to their mean, the constant of proportionality
¢ may exceed the value anticipated under a Poisson model, so var(Y)=¢u for ¢ > 1. One
way to deal with this is to model explicitly the source of overdispersion by the incorpor-
ation of random effects; see § 3-5. The resulting integrals can considerably complicate
computation of the likelihood, however, and a simpler approach is through quasilikelihood
(Wedderburn, 1974).

Quasilikelihood is perhaps best seen as an extension of generalised least squares. To
see why, note that (11) is equivalent to U(B)=0, where U(f)=¢ 'DV (Y —p).
Asymptotic properties of ﬂ stem from the relations E(U)=0 and cov(U) = —E(0U/dp),
corresponding to standard results for a loglikelihood derivative. However, these properties
do not depend on a particular probability model, requiring merely that E(Y)=u and
cov(Y) =@V (w), subject also to some regularity conditions. Hence f has the key properties
of a maximum likelihood estimator, namely consistency and asymptotic normality, des-
pite not being based on a fully-specified probability model. Moreover, it may be com-
puted simply by solving (11), that is, behaving as if the exponential family model with
variance function V(u) were correct. The scale parameter ¢ is estimated by 45 =
(n—p)~ (Y= @"V(2)~ (Y — @), and the asymptotic covariance matrix of B is $(DTVD) 1
evaluated at ﬁ A unified asymptotic treatment of such estimators from overdispersed
count and proportion data is provided by Moore (1986); see also Morton (1991), who
discusses the choice of variance functions in the binomial case.
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Despite being consistent and asymptotically normal, the quasilikelihood estimator B
need not be asymptotically fully efficient. Firth (1987) showed that under modest over-
dispersion its efficiency is generally high, confirming an earlier conclusion of Cox (1983),
who had established that overdispersion on the borderline of detectability has little effect
on estimation of a suitably chosen parameter. It turns out that moment parameters are
suitable, so that high efficiency can be expected if, for example, a log-linear model deter-
mines the expected value u of an observed count; this is precisely the case with quasilikeli-
hood analysis. If the correct variance function is used, then McCullagh (1983) has shown
that quasilikelihood estimators have the smallest asymptotic variance among estimators
derived from estimating functions that are linear in Y; this is a large-sample generalisation
of the Gauss—Markov theorem. Crowder (1987) gives examples in which quasilikelihood
estimators are inferior to those based on quadratic estimating equations, but these are
mainly of theoretical interest, as the resulting procedures depend on the third and fourth
cumulants of Y, which are typically unspecifiable and can be estimated rather poorly at
best; see also Firth (1987). These cumulants also enter into the resulting standard errors,
which therefore tend to be unreliable. A further difficulty is that, unlike in the linear case,
estimators derived from quadratic estimating functions are consistent only if the variance
function is correctly specified, and it may be hard to be sure of this in applications. One
effect of misspecifying the variance function is to invalidate the usual chi-squared theory
underlying score- and estimate-based tests and confidence intervals. One remedy for this
is to use an ‘information sandwich’ (Rotnitzky & Jewell, 1990), replacing (D"VD) ™! with
(DTVD) DTV "1 cov(Y)V " ID(DTVD) ™!, where cov(Y) is a residual-based estimator of the
true variance function. Such estimators can be unstable, however, and in practice it can
be better to sacrifice generality on the altar of stability.

Although its efficiency relative to maximum likelihood estimation will often be high,
the relationship of quasilikelihood with generalised least squares implies that its resistance
to outliers is low. Morgenthaler (1992) investigates the extent to which this may be
overcome by least absolute deviation estimation of B, in which X |(Y; — p;)/V(y;)| is
minimised. For discrete data this introduces a bias which can only be removed by assuming
that the underlying distribution is fully known. This is not required for continuous data,
and when g=1 this approach amounts to modelling the median rather than mean
response.

As mentioned above, the equation U(f)=0 is an analogue to the usual likelihood
equation, and it is natural to ask under what circumstances a log-quasilikelihood can be
obtained by integrating U(p), just as a loglikelihood is obtained by integrating a score.
When the responses are independent, we can define a log-quasilikelihood as

0(; »)= ZJ 7

where Vi(u) is the jth diagonal element of the covariance matrix V(u), which gives
aQ(B; v)/op = U(P). If V(u) is not diagonal, however, it is typically impossible to produce
a unique function Q, because the integral depends on the path along which it is evaluated;
the corresponding Q is not a conservative vector field. Hanfelt & Liang (1995), following
Li (1993), have investigated the extent to which this non-uniqueness is important, and
conclude that in many circumstances approximate likelihood ratios can be defined that
are sufficiently well behaved for inference in large samples; see McLeish & Small (1992)
for related discussions and further examples.
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In practice, the elements of cov(Y) may involve other parameters, giving
var(Y;) = d(x;; n)Vil s A,
say. With independent responses, examples of this are ¢ =1, V;(u;; 4) = u; + Au3, which

arises on supposing that the mean of a Poisson variable is itself distributed as gamma
with mean y; and shape parameter ™', and

¢0x; ) =exp(xTy), Vi(p; =1,

which enables joint modelling of mean and dispersion as dependent on covariates, useful
in industrial quality experiments. Although this idea can be generalised to other settings,
the normalising constant required for comparison of values of A and vy is missing from the
quasilikelihood. This led Nelder & Pregibon (1987) to extend quasilikelihood by adding
extra terms to Q(f; y) to enable A and y to be estimated; one interpretation of the resulting
log extended quasilikelihood is through saddlepoint approximation to a linear exponential
family with the chosen variance function, if one exists. Unfortunately, the resulting esti-
mators of A and y are inconsistent, though they can behave adequately in small and
moderate samples.

10-3. Longitudinal, clustered and other correlated data models

Applications of generalised linear models may involve numerous individuals, on each
of which correlated responses are obtained. As with models for independent data, the
responses may be continuous, binary or counts; sometimes more complicated observations
are available, as for example with rainfall data, which typically comprises positive values
interspersed with zeros. A medical example might involve binary repeated measures on
individuals collected on several occasions, perhaps with missing data. This falls into the
framework above, with the variance matrix block diagonal, the blocks corresponding to
individuals. A simple structure for the jth block is A}*R;(x)A}?. Here A; is a diagonal
matrix containing the posited variance for the n; responses on the jth individual, of form
diag {1 (1 — pjr), - - -5 tin, (1 — )} if the responses are binary, for example; and R;(«) is
a correlation matrix whose structure depends on the supposed underlying dependence.
The simplest specification, R;(«)= 1, ignores correlation among the responses for each
individual, but other possibilities include modelling serial correlation among them, or
taking an equicorrelation matrix in which all the off-diagonal elements equal a single
intra-cluster correlation parameter «. In an influential paper, Liang & Zeger (1986) develop
a modelling strategy using estimators based on such models, calling the resulting analogue
of (11) a generalised estimating equation. They use information sandwich variances like
those in § 10-2.

This approach has a number of potential advantages over fully parametric competitors
such as log-linear and logistic models. In applications interest typically focuses on how
mean parameters change in response to varying covariates, that is, on marginal features
of the model, but in complex applications it can be hard to express this simply in terms
of the natural parameters of the corresponding exponential family, which express con-
ditional dependencies among variables. This difficulty is overcome by use of generalised
estimating equations, in which marginal changes in means may be expressed in a natural
way. Other advantages are robustness of the estimating equation approach to incorrect
choice of variance function and the possibility of allowing for overdispersion. A good deal
of subsequent work has refined the initial approach taken by Liang & Zeger (1986); see,
for example, Lipsitz et al. (1991), who show that use of odds ratios rather than correlations
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has advantages for binary data, and Liang et al. (1992) and its discussion. Crowder (1995),
however, cautions that a bad choice of working correlation matrix R;(x) can lead to the
disaster of inconsistent estimators of § and «; thought is needed in specifying the estimating
functions to be fitted.

These and related ideas have been extended to models for count data with hierarchical
covariance structure (Morton, 1987) and to continuous data with multiplicative errors
(Firth & Harris, 1991), where there is a rather simple analogue of standard analysis of
variance procedures for split-plot-like experiments. A rather different approach is taken
by Zeger (1988), who develops quasilikelihood estimation for time series of counts. Paik
(1996) discusses quasilikelihood estimation for models with missing covariates and
Buonaccorsi (1996) discusses an estimating function approach to measurement error for
general regression models, while Preisser & Qagqish (1996) extend deletion diagnostics to
estimators determined by generalised estimating equations.

10-4. Local models

One major change during the last two decades has been the development, implemen-
tation and now widespread use of smoothing procedures. A wide range of methods for
local density and curve estimation, each with its advantages and disadvantages, is now
available to the data analyst. Contributions in Biometrika to this area are reviewed in
Hall (2001), and here we simply note some connections with the regression models dis-
cussed above. One approach to local estimation of the mean u(x) of a response Y as a
function of the scalar covariate x is through weighting the contribution to a system of
estimating equations according to their distance from the point at which local estimation
is required. Then (10) becomes

Loy (Xt o Y-
P W< h )aﬁ Vi) (12)

where ¢ is the value of x at which it is required to estimate u, w(.) is a weighting function
such as the normal density, and h is a bandwidth. As h— oo the system reduces to (10),
while as h—0 the estimation is based entirely on the observations closest to t. One
interpretation of (12) is that each observation is given a dispersion parameter ¢; inversely
proportional to its weight h~'w{(x; — t)/h}, so data for which x is close to t are observed
more precisely than those further away. Evidently the ideas underlying our earlier dis-
cussion are also applicable here: the data may be overdispersed relative to likely models,
with consistent estimation of u(t) now possible as n— oo and h—0 with nh — oo, even if
the chosen variance function is wrong. A local model such as this is particularly useful
when assessing the adequacy of a parametric form for u(t), and this is discussed by Azzalini
et al. (1989) and Firth et al. (1991).

11. MISCELLANEA
11-1. Graphical methods
Graphical representations of data play a crucial role at all stages of applied work, and
has become increasingly important with the rise of the computer. One useful tool is the
quantile-quantile plot, widely used both to compare different samples and to compare a
single sample with quantiles of a probability distribution, perhaps even more common
when applied to regression residuals. Wilk & Gnanadesikan (1968) discuss these and
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related probability plotting techniques, with many examples, while Michael (1983) and
Coles (1989) describe an improved probability plot whose points are variance-stabilised,
and related test statistics.

There is a close connection between probability plots and goodness-of-fit statistics that
use the empirical distribution function, which have been extensively investigated; see, for
example, Durbin (1961, 1975) and Stephens (1977, 1979).

Graphical methods are important in multivariate statistics. The simplest is the scat-
terplot. Fisher & Switzer (1985) describe the chi-plot, a transformation of the variables
in a scatterplot intended to emphasise different forms of dependence. A more sophisticated
tool is the biplot (Gabriel, 1971), which has proved useful as a dimension-reducing tool
in principal components analysis and elsewhere, extended from the familiar Pythagorean
metric to nonlinear metrics by Gower & Harding (1988) and further generalised by Gower
(1990, 1992).

11-2. Robustness and diagnostics

Although the term ‘robust’ seems to have been introduced by Box (1953), the notion
that inferences should be stable across a variety of models had been expressed much
earlier; for example, Rider (1929) investigated the properties of the ¢ statistic in nonnormal
data. Analysis of variance was rapidly seen to be a major advance whose simplest basis
is the assumption of normal errors, but there was concern about its sensitivity to this.
Egon Pearson considered this analytically and by simulation, concluding that moderate
nonnormality posed no serious problem (Pearson, 1928, 1929, 1931). Randomisation lends
validity to analysis of variance regardless of the assumed error distribution, and was shown
by Pitman (1937), Welch (1937) and others to give results very close to those obtained
under normal theory. The alphabet soup of modern robustness developed from the 1960s
onwards; tidbits floating in Biometrika are Devlin et al. (1975), McKean & Hettmansperger
(1978) and Stefanski et al. (1986).

A counterpart to the idea of robustifying statistical methods is the use of diagnostic
techniques, intended to detect departures from assumptions, which are widely used particu-
larly in regression modelling; the associated ideas of goodness of fit, residuals and influence
measures are commonplace. A key notion is that tests for model failure be accompanied
by plots intended to highlight possible sources of difficulty and to suggest remedies.
Failures can be general or caused by a few unusual observations, and the literature for
detecting them splits along these lines. Examples of the first include the score test for
heteroscedasticity in regression and the nonlinearity plot proposed by Cook & Weisberg
(1983, 1994), while the second are represented by the simulation envelopes and approach
to the detection of masking suggested by Atkinson (1981, 1986) and the discussion of
influence in generalised linear models in Thomas & Cook (1989).

An approach to Bayesian outlier detection that avoids modelling outliers is described
by Chaloner & Brant (1988), who compute the posterior probability that the unseen error
is large relative to the observed standard deviation. Weiss & Cook (1992) describe an
approach to Bayesian influence analysis.

11-3. Multivariate analysis

Although Karl Pearson developed principal component analysis as an exploratory tool
from a geometric viewpoint at the very beginning of the 20th century (Pearson, 1901),
the formal methods of multivariate analysis using the normal model began to develop
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around 1930, spurred by Wishart’s (1928) derivation of the joint distribution of the covari-
ance matrix for a multivariate normal sample. Wilks (1932) applied the ideas of Neyman
and Pearson to hypothesis tests on mean vectors and variance matrices for multivariate
normal populations, and hence obtained the statistic that now bears his name; this work
was amplified by Lawley (1938) and Hsu (1940). Pearson & Wilks (1933) described a
systematic approach to multivariate analysis of variance, giving examples of the appli-
cation of the earlier results. Hotelling (1936) introduced canonical correlation analysis in
a massive and influential paper that was followed up by Bartlett (1941), who made connec-
tions to likelihood ratio and other testing criteria. Other authors who applied likelihood
methods to multivariate models were Plackett (1947) and Rao (1948), the latter author
introducing the famous cork data, while Pillai (1956) discusses the distributions of extreme
eigenvalues in multivariate analysis.

In a brief note Welch (1939) discussed the foundations of discriminant analysis, advocat-
ing general use of the likelihood ratio and pointing out that it yields Fisher’s linear
discriminant rule in the spatial case of normal populations. Subsequent workers have
greatly extended discrimination, in particular to discrete data (Anderson, 1972; Aitchison
& Aitken, 1976; Titterington, 1977) and to mixed discrete-continuous data (Krzanowski,
1979; Vlachonikolis, 1990).

A major unification was that of Joreskog (1970), who developed maximisation algor-
ithms for likelihood estimation for the multivariate normal model with structural covari-
ance matrices of the type arising in factor analysis, educational testing, variance
components and linear structural relationships.

An important development since 1980 has been the expression of multivariate depen-
dence in terms of graphical models, an idea that has its roots in path analysis and which
is useful in many areas of the social and medical sciences. For example, Wermuth &
Lauritzen (1983), in work related to Goodman (1973), show how restrictions on the
conditional independence structure of the variable in a contingency table yield two classes
of models, one graphical and one recursive, respectively appropriate for studying associ-
ations among variables and for expressing relationships between explanatory and response
variables. The intersection of these classes is the important class of decomposable models,
which admits simple sufficient statistics and maximum likelihood estimators (Frydenberg
& Lauritzen, 1989). Practical issues such as model selection, fitting and interpretation are
considered by Edwards & Kreiner (1983) and Edwards & Havranek (1985). Tests on
graphical Gaussian models involve constraints on the inverse covariance matrix, setting
an element of which to zero amounts to asserting that the corresponding variables are
conditionally independent given the rest. Roverato & Whittaker (1998) use Isserlis
matrices to give a general discussion of properties of these models. Asmussen & Edwards
(1983) discuss the types of model that may be appropriate when response variables are
involved and the relation to collapsible tables; see also Madigan & Mosurski (1990). Cox
& Wermuth (1992) investigate the construction of joint models for binary and continuous
responses, with emphasis on those derived from the normal distribution.

Notions of causality lie at the root of much statistical analysis, particularly in the
medical and social sciences, but have mostly been discussed informally until fairly recently.
Rosenbaum & Rubin (1983) give an account of notions of causality in observational
studies that centres on the role of the propensity score, the conditional probability of
assignment to a treatment given the observed covariates, adjustment for which removes
bias due to such covariates. Aspects of the extent to which graphical models can aid causal
inference are dissected in Pearl (1995) and its useful discussion.
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11-4. Missing data

Missing data arise in many contexts and had been dealt with informally for many years
before the first general account of their potential effect on likelihood inference (Rubin,
1976). Let Y denote the full set of observations that might be made, and let M be a
collection of indicators of whether or not the corresponding elements of Y have been
observed. Thus the observed value (Y, M) might be (y, 1) or (2,0) if Y was scalar. More
generally, let y,.,, and y,;; denote the observed and missing parts of y. Suppose that we
wish to base inference for 0 on the observed data, (., m), the likelihood for which may
be written

f(yobsn m, Qa V) = Jpr(m | Yobss Vmis» y)f(ymls: 9) dymisf(yobs; 9)>

where y is a nuisance parameter which may play a role in the missingness mechanism
pr(m|y; y). It is assumed that 0 and y are distinct parameters, in the sense that there are
no a priori ties in the form of parameter space restrictions or links between prior infor-
mation on them.

Then there are three cases: data are missing completely at random if pr(m| y; y) = pr(m; ),
so the pattern of missingness is unaffected by the observations, seen or unseen; data are
missing at random if pr(m|y; y) = pr(m|yops; 7), s0 the pattern of missingness is affected
only by the observations actually seen; and nonignorable nonresponse, in which the miss-
ingness mechanism depends on not only the observed but also the missing data. The
original formulation was in terms of data observed at random, meaning that pr(m|y; y) =
Pr(m| ymis; 7v); the conjunction of this and missing at random entails missing completely
at random. If data are missing at random or completely at random, the integral plays no
role in the likelihood, but in the third case the missingness mechanism is inextricably tied
into it. Bayesian inferences, or frequentist inferences that use only the observed likelihood,
will be unaffected by the mechanism for data missing at random, but it will affect modes
of inference requiring sample-space expectations, such as confidence intervals based
on Fisher information. The strong conditions above can be weakened in some cases
(Goffinet, 1987).

These ideas have been widely applied, for example in sampling and in longitudinal data
analysis (Sugden & Smith, 1984; Molenberghs et al., 1997). A related development is the
study of data coarsening, which encompasses missingness and other forms of incom-
pleteness (Heitjan, 1994). Tests have been developed to distinguish whether data are
missing at random or missing completely at random (Chen & Little, 1999), but little can
generally be done when there is nonignorable nonresponse and sensitivity analysis seems
the best way forward (Molenberghs et al., 1997).

A related development has been the use of imputation, various forms of which are
widely used to replace missing data in sample surveys and medical statistics (Vach &
Schumacher, 1993). The idea is to replace missing data with values generated randomly
from a suitable distribution, so that standard full-data methods can be applied, with
uncertainty augmented appropriately by repeating the simulation procedure. The coverage
accuracies of confidence intervals and efficiencies of variance estimators from different
imputation procedures are compared by Wang & Robins (1998) and Robins & Wang
(2000), who describe estimators that improve considerably over those previously in use

Another important development was the realisation that many awkward problems
simplify when the observed data are regarded as merely part of an ideal full dataset
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for which analysis would be easy, and the identification of the EM algorithm in a Royal
Statistical Society discussion paper by Dempster et al. (1977). Some subsequent work
concerns the many possible applications of the algorithm, to areas as diverse as contin-
gency table analysis (Laird, 1978), data analysis using the multivariate normal model
(Rubin & Szatrowski, 1982; Titterington & Jiang, 1983; Didelez & Pigeot, 1998), the
analysis of data with mixed discrete and continuous responses ( Little & Schluchter, 1985),
measurement error in regression (Schafer, 1987) and electron microscope autoradiography
(Aykroyd & Anderson, 1994).

It was realised early on that, though rather stable the EM algorithm can be slow, and
much effort has been devoted to accelerating its linear rate of convergence. Its steps involve
an expectation or E-step in which the conditional expectation of the loglikelihood given
the observed data is computed, followed by a maximisation or M-step in which a derived
loglikelihood is maximised. Among the approaches used to speed up the Em algorithm
have been replacement of the potentially complicated M-step with a number of simpler
maximisations (Meng & Rubin, 1993; Liu & Rubin, 1994; Kowalski et al., 1997) and
expansion of the parameter space (Liu et al. 1998).

11-5. Spatial statistics

Spatial statistics developed rapidly in the 1970s after the relation between Gibbs distri-
butions and Markov random fields as generalisations of Markov chains was clarified by
the Hammersley—Clifford theorem. Brook (1964) is a precursor to this, giving consistency
conditions that must be obeyed by Markov random fields. Earlier pioneering work on
spatial autoregressions had been done by Whittle (1954), who proposed models and
methods of estimation for lattices of data, analogous to the autoregressive process widely
used in time series, and applied them to two datasets, one showing a clear nugget effect.
Besag (1972) took up these ideas, studying the autocorrelation properties of such processes
and considering some of Whittle’s examples in detail, while Besag & Moran (1975) con-
sidered estimation and testing in lattice models in which the responses are Gaussian. An
important technique for estimation in such models was based on maximising the pseudo-
likelihood, the product of conditional densities for each observation on the lattice given
its neighbours, whose efficiency was found to be generally acceptable by Besag (1977) in
cases where the spatial correlation is not too strong. Kiinsch (1987) generalised such
models to cases where only the increments and not the observations themselves are station-
ary, thereby overcoming one of their chief drawbacks; he described an extended version
of the maximum likelihood estimator proposed by Whittle (1954). Such models are further
investigated by Besag & Kooperberg (1995), who use ideas from graphical Gaussian
modelling to circumvent some of the associated difficulties.

An apparently quite different approach is that of Green (1985), who fits least squares
smoothing models by generalised least squares. There is a close connection to restricted
maximum likelihood estimation; see also Williams (1986). Relationships among different
estimators that allow for spatial effects in field experiments are discussed by Draper
& Faraggi (1985) and Zimmerman & Harville (1989). Further approaches to spatial
smoothing and noise removal use the excellent local adaptivity properties of wavelet
expansions (Donoho & Johnstone, 1994; Abramovich & Silverman, 1998).

A closely related topic is image analysis. Markov random fields provide pixel-level
models for images, while object recognition demands higher-level models. These have been
studied, for example, by Rue & Hurn (1999), whose idea is to use reversible jump Markov
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chain Monte Carlo with suitable priors for the numbers and shapes of objects in the
image; an unknown object type is used to accelerate convergence of the algorithm.

Models for spatial point processes are considered by Strauss (1975), who suggests a
Markovian model for clustering and inhibition. Kelly & Ripley (1976) point out difficulties
with the clustering model, and establish the spatial Markov structure in the inhibitory
case, while Wolpert & Ickstadt (1998) discuss a wide class of Bayesian hierarchical models
for doubly stochastic Poisson processes whose underlying intensity is a gamma random
field; fitting is by Markov chain Monte Carlo simulation. Lund & Rudemo (2000) give a
likelihood method for estimation of an underlying scene when a point process is observed
with noise.

Mardia & Marshall (1984) establish consistency of maximum likelihood estimation for
spatial Gaussian processes, though Warnes & Ripley (1987) point out that maximum
likelihood can give nonsensical estimates of covariance functions in this context.

12. THE FUTURE

What would Karl Pearson make of a current issue of Biometrika? Statistical theory and
methods have developed so much and in so many unexpected ways over the past century
that detailed prediction would be foolhardy. One broad trend has been the mathematis-
ation of the subject, which has greatly clarified key notions. It has also enabled ready
transfer of ideas from fields such as probability, stochastic processes, algorithmics, optimis-
ation and so forth, despite occasional complaints that journals have become unreadable
by non-specialists, comments that were already being made in the early years of the
twentieth century!

Developments in statistics have in their turn stimulated research in other fields, an
example being how modern simulation has renewed interest in Markov chain theory
among probabilists. Such interaction seems likely to be increased by the ever more complex
stochastic models needed in applications.

Perhaps the dominant trend is the effect of the astonishing advances in computation
without which much of modern statistics would not have developed. A consequence of
this is the increasingly detailed modelling of phenomena in ways unthinkable only 15 years
ago, based on data whose form and quantity would then have seemed a dream, or perhaps
a nightmare! One result is increasing diversity, as researchers become more immersed in
particular areas of application. This brings with it the potential for further fragmentation
of the discipline of statistics, so a continuing and increasingly important role for journals
such as Biometrika is to be a medium of transfer for new theory and methods among
sub-fields.

A related development is the rise of the Internet, with its vast possibilities for acquiring
data and rapidly making them available for analysis. Although it is important to under-
score that not all data are equally reliable, the simple availability of so much information
will certainly have a profound impact, and interaction with computer science and algor-
ithmics seems bound to increase as we look for ways to cope with it.

The century ends as it began, with a wave of enthusiasm for the biological sciences.
Historically these have been much more dependent on statistical thinking than the physical
sciences, so the opportunities for statistics seem bright, if we seize them.
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