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Preface

Most of the observable phenomena in the empirical sciences are of a multivariate nature.
In financial studies, assets in stock markets are observed simultaneously and their joint
development is analyzed to better understand general tendencies and to track indices. In
medicine recorded observations of subjects in different locations are the basis of reliable
diagnoses and medication. In quantitative marketing consumer preferences are collected in
order to construct models of consumer behavior. The underlying theoretical structure of
these and many other quantitative studies of applied sciences is multivariate. This book
on Applied Multivariate Statistical Analysis presents the tools and concepts of multivariate
data analysis with a strong focus on applications.

The aim of the book is to present multivariate data analysis in a way that is understandable
for non-mathematicians and practitioners who are confronted by statistical data analysis.
This is achieved by focusing on the practical relevance and through the e-book character of
this text. All practical examples may be recalculated and modified by the reader using a
standard web browser and without reference or application of any specific software.

The book is divided into three main parts. The first part is devoted to graphical techniques
describing the distributions of the variables involved. The second part deals with multivariate
random variables and presents from a theoretical point of view distributions, estimators
and tests for various practical situations. The last part is on multivariate techniques and
introduces the reader to the wide selection of tools available for multivariate data analysis.
All data sets are given in the appendix and are downloadable from www.md-stat.com. The
text contains a wide variety of exercises the solutions of which are given in a separate
textbook. In addition a full set of transparencies on www.md-stat.com is provided making it
easier for an instructor to present the materials in this book. All transparencies contain hyper
links to the statistical web service so that students and instructors alike may recompute all
examples via a standard web browser.

The first section on descriptive techniques is on the construction of the boxplot. Here the
standard data sets on genuine and counterfeit bank notes and on the Boston housing data are
introduced. Flury faces are shown in Section 1.5, followed by the presentation of Andrews
curves and parallel coordinate plots. Histograms, kernel densities and scatterplots complete
the first part of the book. The reader is introduced to the concept of skewness and correlation
from a graphical point of view.

http://www.md-stat.com
http://www.md-stat.com
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At the beginning of the second part of the book the reader goes on a short excursion into
matrix algebra. Covariances, correlation and the linear model are introduced. This section
is followed by the presentation of the ANOVA technique and its application to the multiple
linear model. In Chapter 4 the multivariate distributions are introduced and thereafter
specialized to the multinormal. The theory of estimation and testing ends the discussion on
multivariate random variables.

The third and last part of this book starts with a geometric decomposition of data matrices.
It is influenced by the French school of analyse de données. This geometric point of view
is linked to principal components analysis in Chapter 9. An important discussion on factor
analysis follows with a variety of examples from psychology and economics. The section on
cluster analysis deals with the various cluster techniques and leads naturally to the problem
of discrimination analysis. The next chapter deals with the detection of correspondence
between factors. The joint structure of data sets is presented in the chapter on canonical
correlation analysis and a practical study on prices and safety features of automobiles is
given. Next the important topic of multidimensional scaling is introduced, followed by the
tool of conjoint measurement analysis. The conjoint measurement analysis is often used
in psychology and marketing in order to measure preference orderings for certain goods.
The applications in finance (Chapter 17) are numerous. We present here the CAPM model
and discuss efficient portfolio allocations. The book closes with a presentation on highly
interactive, computationally intensive techniques.

This book is designed for the advanced bachelor and first year graduate student as well as
for the inexperienced data analyst who would like a tour of the various statistical tools in
a multivariate data analysis workshop. The experienced reader with a bright knowledge of
algebra will certainly skip some sections of the multivariate random variables part but will
hopefully enjoy the various mathematical roots of the multivariate techniques. A graduate
student might think that the first part on description techniques is well known to him from his
training in introductory statistics. The mathematical and the applied parts of the book (II,
III) will certainly introduce him into the rich realm of multivariate statistical data analysis
modules.

The inexperienced computer user of this e-book is slowly introduced to an interdisciplinary
way of statistical thinking and will certainly enjoy the various practical examples. This
e-book is designed as an interactive document with various links to other features. The
complete e-book may be downloaded from www.xplore-stat.de using the license key given
on the last page of this book. Our e-book design offers a complete PDF and HTML file with
links to MD*Tech computing servers.

The reader of this book may therefore use all the presented methods and data via the local
XploRe Quantlet Server (XQS) without downloading or buying additional software. Such
XQ Servers may also be installed in a department or addressed freely on the web (see www.i-
xplore.de for more information).

http://www.xplore-stat.de
http://www.i-xplore.de
http://www.i-xplore.de
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Part I

Descriptive Techniques





1 Comparison of Batches

Multivariate statistical analysis is concerned with analyzing and understanding data in high
dimensions. We suppose that we are given a set {xi}ni=1 of n observations of a variable vector
X in Rp. That is, we suppose that each observation xi has p dimensions:

xi = (xi1, xi2, ..., xip),

and that it is an observed value of a variable vector X ∈ Rp. Therefore, X is composed of p
random variables:

X = (X1, X2, ..., Xp)

where Xj, for j = 1, . . . , p, is a one-dimensional random variable. How do we begin to
analyze this kind of data? Before we investigate questions on what inferences we can reach
from the data, we should think about how to look at the data. This involves descriptive
techniques. Questions that we could answer by descriptive techniques are:

• Are there components of X that are more spread out than others?

• Are there some elements of X that indicate subgroups of the data?

• Are there outliers in the components of X?

• How “normal” is the distribution of the data?

• Are there “low-dimensional” linear combinations of X that show “non-normal” behav-
ior?

One difficulty of descriptive methods for high dimensional data is the human perceptional
system. Point clouds in two dimensions are easy to understand and to interpret. With
modern interactive computing techniques we have the possibility to see real time 3D rotations
and thus to perceive also three-dimensional data. A “sliding technique” as described in
Härdle and Scott (1992) may give insight into four-dimensional structures by presenting
dynamic 3D density contours as the fourth variable is changed over its range.

A qualitative jump in presentation difficulties occurs for dimensions greater than or equal to
5, unless the high-dimensional structure can be mapped into lower-dimensional components
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(Klinke and Polzehl, 1995). Features like clustered subgroups or outliers, however, can be
detected using a purely graphical analysis.

In this chapter, we investigate the basic descriptive and graphical techniques allowing simple
exploratory data analysis. We begin the exploration of a data set using boxplots. A boxplot
is a simple univariate device that detects outliers component by component and that can
compare distributions of the data among different groups. Next several multivariate tech-
niques are introduced (Flury faces, Andrews’ curves and parallel coordinate plots) which
provide graphical displays addressing the questions formulated above. The advantages and
the disadvantages of each of these techniques are stressed.

Two basic techniques for estimating densities are also presented: histograms and kernel
densities. A density estimate gives a quick insight into the shape of the distribution of
the data. We show that kernel density estimates overcome some of the drawbacks of the
histograms.

Finally, scatterplots are shown to be very useful for plotting bivariate or trivariate variables
against each other: they help to understand the nature of the relationship among variables
in a data set and allow to detect groups or clusters of points. Draftman plots or matrix plots
are the visualization of several bivariate scatterplots on the same display. They help detect
structures in conditional dependences by brushing across the plots.

1.1 Boxplots

EXAMPLE 1.1 The Swiss bank data (see Appendix, Table B.2) consists of 200 measure-
ments on Swiss bank notes. The first half of these measurements are from genuine bank
notes, the other half are from counterfeit bank notes.

The authorities have measured, as indicated in Figure 1.1,

X1 = length of the bill

X2 = height of the bill (left)

X3 = height of the bill (right)

X4 = distance of the inner frame to the lower border

X5 = distance of the inner frame to the upper border

X6 = length of the diagonal of the central picture.

These data are taken from Flury and Riedwyl (1988). The aim is to study how these mea-
surements may be used in determining whether a bill is genuine or counterfeit.
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Figure 1.1. An old Swiss 1000-franc bank note.

The boxplot is a graphical technique that displays the distribution of variables. It helps us
see the location, skewness, spread, tail length and outlying points.

It is particularly useful in comparing different batches. The boxplot is a graphical repre-
sentation of the Five Number Summary. To introduce the Five Number Summary, let us
consider for a moment a smaller, one-dimensional data set: the population of the 15 largest
U.S. cities in 1960 (Table 1.1).

In the Five Number Summary, we calculate the upper quartile FU , the lower quartile FL,
the median and the extremes. Recall that order statistics {x(1), x(2), . . . , x(n)} are a set of
ordered values x1, x2, . . . , xn where x(1) denotes the minimum and x(n) the maximum. The
median M typically cuts the set of observations in two equal parts, and is defined as

M =

{
x(n+1

2
) n odd

1
2

{
x(n

2
) + x(n

2
+1)

}
n even

. (1.1)

The quartiles cut the set into four equal parts, which are often called fourths (that is why we
use the letter F ). Using a definition that goes back to Hoaglin, Mosteller and Tukey (1983)
the definition of a median can be generalized to fourths, eights, etc. Considering the order
statistics we can define the depth of a data value x(i) as min{i, n − i + 1}. If n is odd, the
depth of the median is n+1

2
. If n is even, n+1

2
is a fraction. Thus, the median is determined

to be the average between the two data values belonging to the next larger and smaller order

statistics, i.e., M = 1
2

{
x(n

2
) + x(n

2
+1)

}
. In our example, we have n = 15 hence the median

M = x(8) = 88.
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City Pop. (10,000) Order Statistics
New York 778 x(15)

Chicago 355 x(14)

Los Angeles 248 x(13)

Philadelphia 200 x(12)

Detroit 167 x(11)

Baltimore 94 x(10)

Houston 94 x(9)

Cleveland 88 x(8)

Washington D.C. 76 x(7)

Saint Louis 75 x(6)

Milwaukee 74 x(5)

San Francisco 74 x(4)

Boston 70 x(3)

Dallas 68 x(2)

New Orleans 63 x(1)

Table 1.1. The 15 largest U.S. cities in 1960.

We proceed in the same way to get the fourths. Take the depth of the median and calculate

depth of fourth =
[depth of median] + 1

2

with [z] denoting the largest integer smaller than or equal to z. In our example this gives
4.5 and thus leads to the two fourths

FL =
1

2

{
x(4) + x(5)

}
FU =

1

2

{
x(11) + x(12)

}
(recalling that a depth which is a fraction corresponds to the average of the two nearest data
values).

The F -spread, dF , is defined as dF = FU − FL. The outside bars

FU + 1.5dF (1.2)

FL − 1.5dF (1.3)

are the borders beyond which a point is regarded as an outlier. For the number of points
outside these bars see Exercise 1.3. For the n = 15 data points the fourths are 74 =
1
2

{
x(4) + x(5)

}
and 183.5 = 1

2

{
x(11) + x(12)

}
. Therefore the F -spread and the upper and
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# 15 U.S. Cities

M 8 88

F 4.5 74 183.5

1 63 778

Table 1.2. Five number summary.

lower outside bars in the above example are calculated as follows:

dF = FU − FL = 183.5− 74 = 109.5 (1.4)

FL − 1.5dF = 74− 1.5 · 109.5 = −90.25 (1.5)

FU + 1.5dF = 183.5 + 1.5 · 109.5 = 347.75. (1.6)

Since New York and Chicago are beyond the outside bars they are considered to be outliers.
The minimum and the maximum are called the extremes. The mean is defined as

x = n−1

n∑
i=1

xi,

which is 168.27 in our example. The mean is a measure of location. The median (88), the
fourths (74;183.5) and the extremes (63;778) constitute basic information about the data.
The combination of these five numbers leads to the Five Number Summary as displayed in
Table 1.2. The depths of each of the five numbers have been added as an additional column.

Construction of the Boxplot

1. Draw a box with borders (edges) at FL and FU (i.e., 50% of the data are in this box).

2. Draw the median as a solid line (|) and the mean as a dotted line ().

3. Draw “whiskers” from each end of the box to the most remote point that is NOT an
outlier.

4. Show outliers as either “?” or “•”depending on whether they are outside of FUL±1.5dF
or FUL ± 3dF respectively. Label them if possible.
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Boxplot
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778.00
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Figure 1.2. Boxplot for U.S. cities. MVAboxcity.xpl

In the U.S. cities example the cutoff points (outside bars) are at −91 and 349, hence we draw
whiskers to New Orleans and Los Angeles. We can see from Figure 1.2 that the data are
very skew: The upper half of the data (above the median) is more spread out than the lower
half (below the median). The data contains two outliers marked as a star and a circle. The
more distinct outlier is shown as a star. The mean (as a non-robust measure of location) is
pulled away from the median.

Boxplots are very useful tools in comparing batches. The relative location of the distribution
of different batches tells us a lot about the batches themselves. Before we come back to the
Swiss bank data let us compare the fuel economy of vehicles from different countries, see
Figure 1.3 and Table B.3.

The data are from the second column of Table B.3 and show the mileage (miles per gallon)
of U.S. American, Japanese and European cars. The five-number summaries for these data
sets are {12, 16.8, 18.8, 22, 30}, {18, 22, 25, 30.5, 35}, and {14, 19, 23, 25, 28} for American,
Japanese, and European cars, respectively. This reflects the information shown in Figure 1.3.

http://www.quantlet.org/mdstat/codes/mva/MVAboxcity.html
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car data
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Figure 1.3. Boxplot for the mileage of American, Japanese and European
cars (from left to right). MVAboxcar.xpl

The following conclusions can be made:

• Japanese cars achieve higher fuel efficiency than U.S. and European cars.

• There is one outlier, a very fuel-efficient car (VW-Rabbit Diesel).

• The main body of the U.S. car data (the box) lies below the Japanese car data.

• The worst Japanese car is more fuel-efficient than almost 50 percent of the U.S. cars.

• The spread of the Japanese and the U.S. cars are almost equal.

• The median of the Japanese data is above that of the European data and the U.S.
data.

Now let us apply the boxplot technique to the bank data set. In Figure 1.4 we show
the parallel boxplot of the diagonal variable X6. On the left is the value of the gen-

http://www.quantlet.org/mdstat/codes/mva/MVAboxcar.html
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Swiss bank notes

138.78
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141.19

142.40

GENUINE COUNTERFEIT

Figure 1.4. The X6 variable of Swiss bank data (diagonal of bank notes).
MVAboxbank6.xpl

uine bank notes and on the right the value of the counterfeit bank notes. The two five-
number summaries are {140.65, 141.25, 141.5, 141.8, 142.4} for the genuine bank notes, and
{138.3, 139.2, 139.5, 139.8, 140.65} for the counterfeit ones.

One sees that the diagonals of the genuine bank notes tend to be larger. It is harder to see
a clear distinction when comparing the length of the bank notes X1, see Figure 1.5. There
are a few outliers in both plots. Almost all the observations of the diagonal of the genuine
notes are above the ones from the counterfeit. There is one observation in Figure 1.4 of the
genuine notes that is almost equal to the median of the counterfeit notes. Can the parallel
boxplot technique help us distinguish between the two types of bank notes?

http://www.quantlet.org/mdstat/codes/mva/MVAboxbank6.html
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Swiss bank notes
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216.30
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Figure 1.5. The X1 variable of Swiss bank data (length of bank notes).
MVAboxbank1.xpl

Summary
↪→ The median and mean bars are measures of locations.

↪→ The relative location of the median (and the mean) in the box is a measure
of skewness.

↪→ The length of the box and whiskers are a measure of spread.

↪→ The length of the whiskers indicate the tail length of the distribution.

↪→ The outlying points are indicated with a “?” or “•” depending on if they
are outside of FUL ± 1.5dF or FUL ± 3dF respectively.

↪→ The boxplots do not indicate multi modality or clusters.

http://www.quantlet.org/mdstat/codes/mva/MVAboxbank1.html
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Summary (continued)

↪→ If we compare the relative size and location of the boxes, we are comparing
distributions.

1.2 Histograms

Histograms are density estimates. A density estimate gives a good impression of the distri-
bution of the data. In contrast to boxplots, density estimates show possible multimodality
of the data. The idea is to locally represent the data density by counting the number of
observations in a sequence of consecutive intervals (bins) with origin x0. Let Bj(x0, h) denote
the bin of length h which is the element of a bin grid starting at x0:

Bj(x0, h) = [x0 + (j − 1)h, x0 + jh), j ∈ Z,

where [., .) denotes a left closed and right open interval. If {xi}ni=1 is an i.i.d. sample with
density f , the histogram is defined as follows:

f̂h(x) = n−1h−1
∑
j∈Z

n∑
i=1

I{xi ∈ Bj(x0, h)}I{x ∈ Bj(x0, h)}. (1.7)

In sum (1.7) the first indicator function I{xi ∈ Bj(x0, h)} (see Symbols & Notation in
Appendix A) counts the number of observations falling into bin Bj(x0, h). The second
indicator function is responsible for “localizing” the counts around x. The parameter h is a
smoothing or localizing parameter and controls the width of the histogram bins. An h that
is too large leads to very big blocks and thus to a very unstructured histogram. On the other
hand, an h that is too small gives a very variable estimate with many unimportant peaks.

The effect of h is given in detail in Figure 1.6. It contains the histogram (upper left) for the
diagonal of the counterfeit bank notes for x0 = 137.8 (the minimum of these observations)
and h = 0.1. Increasing h to h = 0.2 and using the same origin, x0 = 137.8, results in
the histogram shown in the lower left of the figure. This density histogram is somewhat
smoother due to the larger h. The binwidth is next set to h = 0.3 (upper right). From this
histogram, one has the impression that the distribution of the diagonal is bimodal with peaks
at about 138.5 and 139.9. The detection of modes requires a fine tuning of the binwidth.
Using methods from smoothing methodology (Härdle, Müller, Sperlich and Werwatz, 2003)
one can find an “optimal” binwidth h for n observations:

hopt =

(
24
√
π

n

)1/3

.

Unfortunately, the binwidth h is not the only parameter determining the shapes of f̂ .
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Figure 1.6. Diagonal of counterfeit bank notes. Histograms with x0 =
137.8 and h = 0.1 (upper left), h = 0.2 (lower left), h = 0.3 (upper right),
h = 0.4 (lower right). MVAhisbank1.xpl

In Figure 1.7, we show histograms with x0 = 137.65 (upper left), x0 = 137.75 (lower left),
with x0 = 137.85 (upper right), and x0 = 137.95 (lower right). All the graphs have been
scaled equally on the y-axis to allow comparison. One sees that—despite the fixed binwidth
h—the interpretation is not facilitated. The shift of the origin x0 (to 4 different locations)
created 4 different histograms. This property of histograms strongly contradicts the goal
of presenting data features. Obviously, the same data are represented quite differently by
the 4 histograms. A remedy has been proposed by Scott (1985): “Average the shifted
histograms!”. The result is presented in Figure 1.8. Here all bank note observations (genuine
and counterfeit) have been used. The averaged shifted histogram is no longer dependent on
the origin and shows a clear bimodality of the diagonals of the Swiss bank notes.

http://www.quantlet.org/mdstat/codes/mva/MVAhisbank1.html
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Figure 1.7. Diagonal of counterfeit bank notes. Histogram with h = 0.4
and origins x0 = 137.65 (upper left), x0 = 137.75 (lower left), x0 = 137.85
(upper right), x0 = 137.95 (lower right). MVAhisbank2.xpl

Summary
↪→ Modes of the density are detected with a histogram.

↪→ Modes correspond to strong peaks in the histogram.

↪→ Histograms with the same h need not be identical. They also depend on
the origin x0 of the grid.

↪→ The influence of the origin x0 is drastic. Changing x0 creates different
looking histograms.

↪→ The consequence of an h that is too large is an unstructured histogram
that is too flat.

↪→ A binwidth h that is too small results in an unstable histogram.

http://www.quantlet.org/mdstat/codes/mva/MVAhisbank2.html
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Summary (continued)

↪→ There is an “optimal” h = (24
√
π/n)1/3.

↪→ It is recommended to use averaged histograms. They are kernel densities.

1.3 Kernel Densities

The major difficulties of histogram estimation may be summarized in four critiques:

• determination of the binwidth h, which controls the shape of the histogram,

• choice of the bin origin x0, which also influences to some extent the shape,

• loss of information since observations are replaced by the central point of the interval
in which they fall,

• the underlying density function is often assumed to be smooth, but the histogram is
not smooth.

Rosenblatt (1956), Whittle (1958), and Parzen (1962) developed an approach which avoids
the last three difficulties. First, a smooth kernel function rather than a box is used as the
basic building block. Second, the smooth function is centered directly over each observation.
Let us study this refinement by supposing that x is the center value of a bin. The histogram
can in fact be rewritten as

f̂h(x) = n−1h−1

n∑
i=1

I(|x− xi| ≤
h

2
). (1.8)

If we define K(u) = I(|u| ≤ 1
2
), then (1.8) changes to

f̂h(x) = n−1h−1

n∑
i=1

K

(
x− xi
h

)
. (1.9)

This is the general form of the kernel estimator. Allowing smoother kernel functions like the
quartic kernel,

K(u) =
15

16
(1− u2)2 I(|u| ≤ 1),

and computing x not only at bin centers gives us the kernel density estimator. Kernel
estimators can also be derived via weighted averaging of rounded points (WARPing) or by
averaging histograms with different origins, see Scott (1985). Table 1.5 introduces some
commonly used kernels.
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Figure 1.8. Averaged shifted histograms based on all (counterfeit and gen-
uine) Swiss bank notes: there are 2 shifts (upper left), 4 shifts (lower left),
8 shifts (upper right), and 16 shifts (lower right). MVAashbank.xpl

K(•) Kernel
K(u) = 1

2
I(|u| ≤ 1) Uniform

K(u) = (1− |u|)I(|u| ≤ 1) Triangle
K(u) = 3

4
(1− u2)I(|u| ≤ 1) Epanechnikov

K(u) = 15
16

(1− u2)2I(|u| ≤ 1) Quartic (Biweight)

K(u) = 1√
2π

exp(−u2

2
) = ϕ(u) Gaussian

Table 1.5. Kernel functions.

Different kernels generate different shapes of the estimated density. The most important pa-
rameter is the so-called bandwidth h, and can be optimized, for example, by cross-validation;
see Härdle (1991) for details. The cross-validation method minimizes the integrated squared

error. This measure of discrepancy is based on the squared differences
{
f̂h(x)− f(x)

}2

.

http://www.quantlet.org/mdstat/codes/mva/MVAashbank.html
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Figure 1.9. Densities of the diagonals of genuine and counterfeit bank
notes. Automatic density estimates. MVAdenbank.xpl

Averaging these squared deviations over a grid of points {xl}Ll=1 leads to

L−1

L∑
l=1

{
f̂h(xl)− f(xl)

}2

.

Asymptotically, if this grid size tends to zero, we obtain the integrated squared error:∫ {
f̂h(x)− f(x)

}2

dx.

In practice, it turns out that the method consists of selecting a bandwidth that minimizes
the cross-validation function ∫

f̂ 2
h − 2

n∑
i=1

f̂h,i(xi)

where f̂h,i is the density estimate obtained by using all datapoints except for the i-th obser-
vation. Both terms in the above function involve double sums. Computation may therefore

http://www.quantlet.org/mdstat/codes/mva/MVAdenbank.html
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Figure 1.10. Contours of the density of X4 and X6 of genuine and coun-
terfeit bank notes. MVAcontbank2.xpl

be slow. There are many other density bandwidth selection methods. Probably the fastest
way to calculate this is to refer to some reasonable reference distribution. The idea of using
the Normal distribution as a reference, for example, goes back to Silverman (1986). The
resulting choice of h is called the rule of thumb.

For the Gaussian kernel from Table 1.5 and a Normal reference distribution, the rule of
thumb is to choose

hG = 1.06 σ̂ n−1/5 (1.10)

where σ̂ =
√
n−1

∑n
i=1(xi − x)2 denotes the sample standard deviation. This choice of hG

optimizes the integrated squared distance between the estimator and the true density. For
the quartic kernel, we need to transform (1.10). The modified rule of thumb is:

hQ = 2.62 · hG. (1.11)

Figure 1.9 shows the automatic density estimates for the diagonals of the counterfeit and
genuine bank notes. The density on the left is the density corresponding to the diagonal

http://www.quantlet.org/mdstat/codes/mva/MVAcontbank2.html
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of the counterfeit data. The separation is clearly visible, but there is also an overlap. The
problem of distinguishing between the counterfeit and genuine bank notes is not solved by
just looking at the diagonals of the notes! The question arises whether a better separation
could be achieved using not only the diagonals but one or two more variables of the data
set. The estimation of higher dimensional densities is analogous to that of one-dimensional.
We show a two dimensional density estimate for X4 and X5 in Figure 1.10. The contour
lines indicate the height of the density. One sees two separate distributions in this higher
dimensional space, but they still overlap to some extent.

Figure 1.11. Contours of the density of X4, X5, X6 of genuine and coun-
terfeit bank notes. MVAcontbank3.xpl

We can add one more dimension and give a graphical representation of a three dimensional
density estimate, or more precisely an estimate of the joint distribution of X4, X5 and X6.
Figure 1.11 shows the contour areas at 3 different levels of the density: 0.2 (light grey), 0.4
(grey), and 0.6 (black) of this three dimensional density estimate. One can clearly recognize

http://www.quantlet.org/mdstat/codes/mva/MVAcontbank3.html
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two “ellipsoids” (at each level), but as before, they overlap. In Chapter 12 we will learn
how to separate the two ellipsoids and how to develop a discrimination rule to distinguish
between these data points.

Summary
↪→ Kernel densities estimate distribution densities by the kernel method.

↪→ The bandwidth h determines the degree of smoothness of the estimate f̂ .

↪→ Kernel densities are smooth functions and they can graphically represent
distributions (up to 3 dimensions).

↪→ A simple (but not necessarily correct) way to find a good bandwidth is to
compute the rule of thumb bandwidth hG = 1.06σ̂n−1/5. This bandwidth
is to be used only in combination with a Gaussian kernel ϕ.

↪→ Kernel density estimates are a good descriptive tool for seeing modes,
location, skewness, tails, asymmetry, etc.

1.4 Scatterplots

Scatterplots are bivariate or trivariate plots of variables against each other. They help us
understand relationships among the variables of a data set. A downward-sloping scatter
indicates that as we increase the variable on the horizontal axis, the variable on the vertical
axis decreases. An analogous statement can be made for upward-sloping scatters.

Figure 1.12 plots the 5th column (upper inner frame) of the bank data against the 6th
column (diagonal). The scatter is downward-sloping. As we already know from the previous
section on marginal comparison (e.g., Figure 1.9) a good separation between genuine and
counterfeit bank notes is visible for the diagonal variable. The sub-cloud in the upper half
(circles) of Figure 1.12 corresponds to the true bank notes. As noted before, this separation
is not distinct, since the two groups overlap somewhat.

This can be verified in an interactive computing environment by showing the index and
coordinates of certain points in this scatterplot. In Figure 1.12, the 70th observation in
the merged data set is given as a thick circle, and it is from a genuine bank note. This
observation lies well embedded in the cloud of counterfeit bank notes. One straightforward
approach that could be used to tell the counterfeit from the genuine bank notes is to draw
a straight line and define notes above this value as genuine. We would of course misclassify
the 70th observation, but can we do better?
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Figure 1.12. 2D scatterplot for X5 vs. X6 of the bank notes. Genuine
notes are circles, counterfeit notes are stars. MVAscabank56.xpl

If we extend the two-dimensional scatterplot by adding a third variable, e.g., X4 (lower
distance to inner frame), we obtain the scatterplot in three-dimensions as shown in Fig-
ure 1.13. It becomes apparent from the location of the point clouds that a better separation
is obtained. We have rotated the three dimensional data until this satisfactory 3D view
was obtained. Later, we will see that rotation is the same as bundling a high-dimensional
observation into one or more linear combinations of the elements of the observation vector.
In other words, the “separation line” parallel to the horizontal coordinate axis in Figure 1.12
is in Figure 1.13 a plane and no longer parallel to one of the axes. The formula for such a
separation plane is a linear combination of the elements of the observation vector:

a1x1 + a2x2 + . . .+ a6x6 = const. (1.12)

The algorithm that automatically finds the weights (a1, . . . , a6) will be investigated later on
in Chapter 12.

Let us study yet another technique: the scatterplot matrix. If we want to draw all possible
two-dimensional scatterplots for the variables, we can create a so-called draftman’s plot

http://www.quantlet.org/mdstat/codes/mva/MVAscabank56.html
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Figure 1.13. 3D Scatterplot of the bank notes for (X4, X5, X6). Genuine
notes are circles, counterfeit are stars. MVAscabank456.xpl

(named after a draftman who prepares drafts for parliamentary discussions). Similar to a
draftman’s plot the scatterplot matrix helps in creating new ideas and in building knowledge
about dependencies and structure.

Figure 1.14 shows a draftman plot applied to the last four columns of the full bank data
set. For ease of interpretation we have distinguished between the group of counterfeit and
genuine bank notes by a different color. As discussed several times before, the separability of
the two types of notes is different for different scatterplots. Not only is it difficult to perform
this separation on, say, scatterplot X3 vs. X4, in addition the “separation line” is no longer
parallel to one of the axes. The most obvious separation happens in the scatterplot in the
lower right where we show, as in Figure 1.12, X5 vs. X6. The separation line here would be
upward-sloping with an intercept at about X6 = 139. The upper right half of the draftman
plot shows the density contours that we have introduced in Section 1.3.

The power of the draftman plot lies in its ability to show the the internal connections of the
scatter diagrams. Define a brush as a re-scalable rectangle that we can move via keyboard

http://www.quantlet.org/mdstat/codes/mva/MVAscabank456.html
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Figure 1.14. Draftman plot of the bank notes. The pictures in the left col-
umn show (X3, X4), (X3, X5) and (X3, X6), in the middle we have (X4, X5)
and (X4, X6), and in the lower right is (X5, X6). The upper right half con-
tains the corresponding density contour plots. MVAdrafbank4.xpl

or mouse over the screen. Inside the brush we can highlight or color observations. Suppose
the technique is installed in such a way that as we move the brush in one scatter, the
corresponding observations in the other scatters are also highlighted. By moving the brush,
we can study conditional dependence.

If we brush (i.e., highlight or color the observation with the brush) the X5 vs. X6 plot
and move through the upper point cloud, we see that in other plots (e.g., X3 vs. X4), the
corresponding observations are more embedded in the other sub-cloud.

http://www.quantlet.org/mdstat/codes/mva/MVAdrafbank4.html
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Summary
↪→ Scatterplots in two and three dimensions helps in identifying separated

points, outliers or sub-clusters.

↪→ Scatterplots help us in judging positive or negative dependencies.

↪→ Draftman scatterplot matrices help detect structures conditioned on values
of other variables.

↪→ As the brush of a scatterplot matrix moves through a point cloud, we can
study conditional dependence.

1.5 Chernoff-Flury Faces

If we are given data in numerical form, we tend to display it also numerically. This was
done in the preceding sections: an observation x1 = (1, 2) was plotted as the point (1, 2) in a
two-dimensional coordinate system. In multivariate analysis we want to understand data in
low dimensions (e.g., on a 2D computer screen) although the structures are hidden in high
dimensions. The numerical display of data structures using coordinates therefore ends at
dimensions greater than three.

If we are interested in condensing a structure into 2D elements, we have to consider alter-
native graphical techniques. The Chernoff-Flury faces, for example, provide such a conden-
sation of high-dimensional information into a simple “face”. In fact faces are a simple way
to graphically display high-dimensional data. The size of the face elements like pupils, eyes,
upper and lower hair line, etc., are assigned to certain variables. The idea of using faces goes
back to Chernoff (1973) and has been further developed by Bernhard Flury. We follow the
design described in Flury and Riedwyl (1988) which uses the following characteristics.

1 right eye size
2 right pupil size
3 position of right pupil
4 right eye slant
5 horizontal position of right eye
6 vertical position of right eye
7 curvature of right eyebrow
8 density of right eyebrow
9 horizontal position of right eyebrow

10 vertical position of right eyebrow
11 right upper hair line
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Observations 91 to 110

Figure 1.15. Chernoff-Flury faces for observations 91 to 110 of the bank
notes. MVAfacebank10.xpl

12 right lower hair line
13 right face line
14 darkness of right hair
15 right hair slant
16 right nose line
17 right size of mouth
18 right curvature of mouth

19–36 like 1–18, only for the left side.

First, every variable that is to be coded into a characteristic face element is transformed
into a (0, 1) scale, i.e., the minimum of the variable corresponds to 0 and the maximum to
1. The extreme positions of the face elements therefore correspond to a certain “grin” or
“happy” face element. Dark hair might be coded as 1, and blond hair as 0 and so on.

http://www.quantlet.org/mdstat/codes/mva/MVAfacebank10.html
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Observations 1 to 50

Figure 1.16. Chernoff-Flury faces for observations 1 to 50 of the bank
notes. MVAfacebank50.xpl

As an example, consider the observations 91 to 110 of the bank data. Recall that the bank
data set consists of 200 observations of dimension 6 where, for example, X6 is the diagonal
of the note. If we assign the six variables to the following face elements

X1 = 1, 19 (eye sizes)

X2 = 2, 20 (pupil sizes)

X3 = 4, 22 (eye slants)

X4 = 11, 29 (upper hair lines)

X5 = 12, 30 (lower hair lines)

X6 = 13, 14, 31, 32 (face lines and darkness of hair),

we obtain Figure 1.15. Also recall that observations 1–100 correspond to the genuine notes,
and that observations 101–200 correspond to the counterfeit notes. The counterfeit bank
notes then correspond to the lower half of Figure 1.15. In fact the faces for these observations
look more grim and less happy. The variableX6 (diagonal) already worked well in the boxplot
on Figure 1.4 in distinguishing between the counterfeit and genuine notes. Here, this variable
is assigned to the face line and the darkness of the hair. That is why we clearly see a good
separation within these 20 observations.

What happens if we include all 100 genuine and all 100 counterfeit bank notes in the Chernoff-
Flury face technique? Figures 1.16 and 1.17 show the faces of the genuine bank notes with the

http://www.quantlet.org/mdstat/codes/mva/MVAfacebank50.html
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Observations 51 to 100

Figure 1.17. Chernoff-Flury faces for observations 51 to 100 of the bank
notes. MVAfacebank50.xpl

same assignments as used before and Figures 1.18 and 1.19 show the faces of the counterfeit
bank notes. Comparing Figure 1.16 and Figure 1.18 one clearly sees that the diagonal (face
line) is longer for genuine bank notes. Equivalently coded is the hair darkness (diagonal)
which is lighter (shorter) for the counterfeit bank notes. One sees that the faces of the
genuine bank notes have a much darker appearance and have broader face lines. The faces
in Figures 1.16–1.17 are obviously different from the ones in Figures 1.18–1.19.

Summary
↪→ Faces can be used to detect subgroups in multivariate data.

↪→ Subgroups are characterized by similar looking faces.

↪→ Outliers are identified by extreme faces, e.g., dark hair, smile or a happy
face.

↪→ If one element of X is unusual, the corresponding face element significantly
changes in shape.

http://www.quantlet.org/mdstat/codes/mva/MVAfacebank50.html
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Observations 101 to 150

Figure 1.18. Chernoff-Flury faces for observations 101 to 150 of the bank
notes. MVAfacebank50.xpl

Observations 151 to 200

Figure 1.19. Chernoff-Flury faces for observations 151 to 200 of the bank
notes. MVAfacebank50.xpl

http://www.quantlet.org/mdstat/codes/mva/MVAfacebank50.html
http://www.quantlet.org/mdstat/codes/mva/MVAfacebank50.html
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1.6 Andrews’ Curves

The basic problem of graphical displays of multivariate data is the dimensionality. Scat-
terplots work well up to three dimensions (if we use interactive displays). More than three
dimensions have to be coded into displayable 2D or 3D structures (e.g., faces). The idea
of coding and representing multivariate data by curves was suggested by Andrews (1972).
Each multivariate observation Xi = (Xi,1, .., Xi,p) is transformed into a curve as follows:

fi(t) =


Xi,1√

2
+Xi,2 sin(t) +Xi,3 cos(t) + ...+Xi,p−1 sin(p−1

2
t) +Xi,p cos(p−1

2
t) for p odd

Xi,1√
2

+Xi,2 sin(t) +Xi,3 cos(t) + ...+Xi,p sin(p
2
t) for p even

(1.13)
such that the observation represents the coefficients of a so-called Fourier series (t ∈ [−π, π]).

Suppose that we have three-dimensional observations: X1 = (0, 0, 1), X2 = (1, 0, 0) and
X3 = (0, 1, 0). Here p = 3 and the following representations correspond to the Andrews’
curves:

f1(t) = cos(t)

f2(t) =
1√
2

and

f3(t) = sin(t).

These curves are indeed quite distinct, since the observations X1, X2, and X3 are the 3D
unit vectors: each observation has mass only in one of the three dimensions. The order of
the variables plays an important role.

EXAMPLE 1.2 Let us take the 96th observation of the Swiss bank note data set,

X96 = (215.6, 129.9, 129.9, 9.0, 9.5, 141.7).

The Andrews’ curve is by (1.13):

f96(t) =
215.6√

2
+ 129.9 sin(t) + 129.9 cos(t) + 9.0 sin(2t) + 9.5 cos(2t) + 141.7 sin(3t).

Figure 1.20 shows the Andrews’ curves for observations 96–105 of the Swiss bank note data
set. We already know that the observations 96–100 represent genuine bank notes, and that
the observations 101–105 represent counterfeit bank notes. We see that at least four curves
differ from the others, but it is hard to tell which curve belongs to which group.

We know from Figure 1.4 that the sixth variable is an important one. Therefore, the An-
drews’ curves are calculated again using a reversed order of the variables.
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Andrews curves (Bank data)
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Figure 1.20. Andrews’ curves of the observations 96–105 from the
Swiss bank note data. The order of the variables is 1,2,3,4,5,6.

MVAandcur.xpl

EXAMPLE 1.3 Let us consider again the 96th observation of the Swiss bank note data set,

X96 = (215.6, 129.9, 129.9, 9.0, 9.5, 141.7).

The Andrews’ curve is computed using the reversed order of variables:

f96(t) =
141.7√

2
+ 9.5 sin(t) + 9.0 cos(t) + 129.9 sin(2t) + 129.9 cos(2t) + 215.6 sin(3t).

In Figure 1.21 the curves f96–f105 for observations 96–105 are plotted. Instead of a difference
in high frequency, now we have a difference in the intercept, which makes it more difficult
for us to see the differences in observations.

This shows that the order of the variables plays an important role for the interpretation. If
X is high-dimensional, then the last variables will have only a small visible contribution to

http://www.quantlet.org/mdstat/codes/mva/MVAandcur.html
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Andrews curves (Bank data)
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Figure 1.21. Andrews’ curves of the observations 96–105 from the
Swiss bank note data. The order of the variables is 6,5,4,3,2,1.

MVAandcur2.xpl

the curve. They fall into the high frequency part of the curve. To overcome this problem
Andrews suggested using an order which is suggested by Principal Component Analysis.
This technique will be treated in detail in Chapter 9. In fact, the sixth variable will appear
there as the most important variable for discriminating between the two groups. If the
number of observations is more than 20, there may be too many curves in one graph. This
will result in an over plotting of curves or a bad “signal-to-ink-ratio”, see Tufte (1983). It
is therefore advisable to present multivariate observations via Andrews’ curves only for a
limited number of observations.

Summary
↪→ Outliers appear as single Andrews’ curves that look different from the rest.

http://www.quantlet.org/mdstat/codes/mva/MVAandcur2.html
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Summary (continued)

↪→ A subgroup of data is characterized by a set of simular curves.

↪→ The order of the variables plays an important role for interpretation.

↪→ The order of variables may be optimized by Principal Component
Analysis.

↪→ For more than 20 observations we may obtain a bad “signal-to-ink-ratio”,
i.e., too many curves are overlaid in one picture.

1.7 Parallel Coordinates Plots

Parallel coordinates plots (PCP) constitute a technique that is based on a non-Cartesian
coordinate system and therefore allows one to “see” more than four dimensions. The idea

Parallel coordinate plot (Bank data)

1 2 3 4 5 6

t

0
0.

5
1

f9
6 

- 
f1

05

Figure 1.22. Parallel coordinates plot of observations 96–105.
MVAparcoo1.xpl

http://www.quantlet.org/mdstat/codes/mva/MVAparcoo1.html
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Parallel coordinate plot  (Bank data)
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Figure 1.23. The entire bank data set. Genuine bank notes are dis-
played as black lines. The counterfeit bank notes are shown as red lines.

MVAparcoo2.xpl

is simple: Instead of plotting observations in an orthogonal coordinate system, one draws
their coordinates in a system of parallel axes. Index j of the coordinate is mapped onto the
horizontal axis, and the value xjis mapped onto the vertical axis. This way of representation
is very useful for high-dimensional data. It is however also sensitive to the order of the
variables, since certain trends in the data can be shown more clearly in one ordering than in
another.

EXAMPLE 1.4 Take once again the observations 96–105 of the Swiss bank notes. These
observations are six dimensional, so we can’t show them in a six dimensional Cartesian
coordinate system. Using the parallel coordinates plot technique, however, they can be plotted
on parallel axes. This is shown in Figure 1.22.

We have already noted in Example 1.2 that the diagonal X6 plays an important role. This
important role is clearly visible from Figure 1.22 The last coordinate X6 shows two different
subgroups. The full bank note data set is displayed in Figure 1.23. One sees an overlap of
the coordinate values for indices 1–3 and an increased separability for the indices 4–6.

http://www.quantlet.org/mdstat/codes/mva/MVAparcoo2.html
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Summary
↪→ Parallel coordinates plots overcome the visualization problem of the Carte-

sian coordinate system for dimensions greater than 4.

↪→ Outliers are visible as outlying polygon curves.

↪→ The order of variables is still important, for example, for detection of
subgroups.

↪→ Subgroups may be screened by selective coloring in an interactive manner.

1.8 Boston Housing

Aim of the analysis

The Boston Housing data set was analyzed by Harrison and Rubinfeld (1978) who wanted
to find out whether “clean air” had an influence on house prices. We will use this data set in
this chapter and in most of the following chapters to illustrate the presented methodology.
The data are described in Appendix B.1.

What can be seen from the PCPs

In order to highlight the relations of X14 to the remaining 13 variables we color all of the
observations with X14 >median(X14) as red lines in Figure 1.24. Some of the variables seem
to be strongly related. The most obvious relation is the negative dependence between X13

and X14. It can also be argued that there exists a strong dependence between X12 and X14

since no red lines are drawn in the lower part of X12. The opposite can be said about X11:
there are only red lines plotted in the lower part of this variable. Low values of X11 induce
high values of X14.

For the PCP, the variables have been rescaled over the interval [0, 1] for better graphical
representations. The PCP shows that the variables are not distributed in a symmetric
manner. It can be clearly seen that the values of X1 and X9 are much more concentrated
around 0. Therefore it makes sense to consider transformations of the original data.
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Figure 1.24. Parallel coordinates plot for Boston Housing data.
MVApcphousing.xpl

The scatterplot matrix

One characteristic of the PCPs is that many lines are drawn on top of each other. This
problem is reduced by depicting the variables in pairs of scatterplots. Including all 14
variables in one large scatterplot matrix is possible, but makes it hard to see anything from
the plots. Therefore, for illustratory purposes we will analyze only one such matrix from a
subset of the variables in Figure 1.25. On the basis of the PCP and the scatterplot matrix
we would like to interpret each of the thirteen variables and their eventual relation to the
14th variable. Included in the figure are images for X1–X5 and X14, although each variable
is discussed in detail below. All references made to scatterplots in the following refer to
Figure 1.25.

http://www.quantlet.org/mdstat/codes/mva/MVApcphousing.html
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Figure 1.25. Scatterplot matrix for variables X1, . . . , X5 and X14 of the
Boston Housing data. MVAdrafthousing.xpl

Per-capita crime rate X1

Taking the logarithm makes the variable’s distribution more symmetric. This can be seen
in the boxplot of X̃1 in Figure 1.27 which shows that the median and the mean have moved
closer to each other than they were for the original X1. Plotting the kernel density esti-
mate (KDE) of X̃1 = log (X1) would reveal that two subgroups might exist with different
mean values. However, taking a look at the scatterplots in Figure 1.26 of the logarithms
which include X1 does not clearly reveal such groups. Given that the scatterplot of log (X1)
vs. log (X14) shows a relatively strong negative relation, it might be the case that the two
subgroups of X1 correspond to houses with two different price levels. This is confirmed by
the two boxplots shown to the right of the X1 vs. X2 scatterplot (in Figure 1.25): the red
boxplot’s shape differs a lot from the black one’s, having a much higher median and mean.

http://www.quantlet.org/mdstat/codes/mva/MVAdrafthousing.html
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Figure 1.26. Scatterplot matrix for variables X̃1, . . . , X̃5 and X̃14 of the
Boston Housing data. MVAdrafthousingt.xpl

Proportion of residential area zoned for large lots X2

It strikes the eye in Figure 1.25 that there is a large cluster of observations for which X2 is
equal to 0. It also strikes the eye that—as the scatterplot of X1 vs. X2 shows—there is a
strong, though non-linear, negative relation between X1 and X2: Almost all observations for
which X2 is high have an X1-value close to zero, and vice versa, many observations for which
X2 is zero have quite a high per-capita crime rate X1. This could be due to the location of
the areas, e.g., downtown districts might have a higher crime rate and at the same time it
is unlikely that any residential land would be zoned in a generous manner.

As far as the house prices are concerned it can be said that there seems to be no clear (linear)
relation between X2 and X14, but it is obvious that the more expensive houses are situated
in areas where X2 is large (this can be seen from the two boxplots on the second position of
the diagonal, where the red one has a clearly higher mean/median than the black one).

http://www.quantlet.org/mdstat/codes/mva/MVAdrafthousingt.html
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Proportion of non-retail business acres X3

The PCP (in Figure 1.24) as well as the scatterplot of X3 vs. X14 shows an obvious negative
relation between X3 and X14. The relationship between the logarithms of both variables
seems to be almost linear. This negative relation might be explained by the fact that non-
retail business sometimes causes annoying sounds and other pollution. Therefore, it seems
reasonable to use X3 as an explanatory variable for the prediction of X14 in a linear-regression
analysis.

As far as the distribution of X3 is concerned it can be said that the kernel density estimate
of X3 clearly has two peaks, which indicates that there are two subgroups. According to the
negative relation between X3 and X14 it could be the case that one subgroup corresponds to
the more expensive houses and the other one to the cheaper houses.

Charles River dummy variable X4

The observation made from the PCP that there are more expensive houses than cheap
houses situated on the banks of the Charles River is confirmed by inspecting the scatterplot
matrix. Still, we might have some doubt that the proximity to the river influences the house
prices. Looking at the original data set, it becomes clear that the observations for which
X4 equals one are districts that are close to each other. Apparently, the Charles River does
not flow through too many different districts. Thus, it may be pure coincidence that the
more expensive districts are close to the Charles River—their high values might be caused by
many other factors such as the pupil/teacher ratio or the proportion of non-retail business
acres.

Nitric oxides concentration X5

The scatterplot of X5 vs. X14 and the separate boxplots of X5 for more and less expensive
houses reveal a clear negative relation between the two variables. As it was the main aim of
the authors of the original study to determine whether pollution had an influence on housing
prices, it should be considered very carefully whether X5 can serve as an explanatory variable
for the price X14. A possible reason against it being an explanatory variable is that people
might not like to live in areas where the emissions of nitric oxides are high. Nitric oxides are
emitted mainly by automobiles, by factories and from heating private homes. However, as
one can imagine there are many good reasons besides nitric oxides not to live downtown or in
industrial areas! Noise pollution, for example, might be a much better explanatory variable
for the price of housing units. As the emission of nitric oxides is usually accompanied by
noise pollution, using X5 as an explanatory variable for X14 might lead to the false conclusion
that people run away from nitric oxides, whereas in reality it is noise pollution that they are
trying to escape.
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Average number of rooms per dwelling X6

The number of rooms per dwelling is a possible measure for the size of the houses. Thus we
expect X6 to be strongly correlated with X14 (the houses’ median price). Indeed—apart from
some outliers—the scatterplot of X6 vs. X14 shows a point cloud which is clearly upward-
sloping and which seems to be a realisation of a linear dependence of X14 on X6. The two
boxplots of X6 confirm this notion by showing that the quartiles, the mean and the median
are all much higher for the red than for the black boxplot.

Proportion of owner-occupied units built prior to 1940 X7

There is no clear connection visible between X7 and X14. There could be a weak negative
correlation between the two variables, since the (red) boxplot of X7 for the districts whose
price is above the median price indicates a lower mean and median than the (black) boxplot
for the district whose price is below the median price. The fact that the correlation is not
so clear could be explained by two opposing effects. On the one hand house prices should
decrease if the older houses are not in a good shape. On the other hand prices could increase,
because people often like older houses better than newer houses, preferring their atmosphere
of space and tradition. Nevertheless, it seems reasonable that the houses’ age has an influence
on their price X14.

Raising X7 to the power of 2.5 reveals again that the data set might consist of two subgroups.
But in this case it is not obvious that the subgroups correspond to more expensive or cheaper
houses. One can furthermore observe a negative relation between X7 and X8. This could
reflect the way the Boston metropolitan area developed over time: the districts with the
newer buildings are farther away from employment centres with industrial facilities.

Weighted distance to five Boston employment centres X8

Since most people like to live close to their place of work, we expect a negative relation
between the distances to the employment centres and the houses’ price. The scatterplot
hardly reveals any dependence, but the boxplots of X8 indicate that there might be a slightly
positive relation as the red boxplot’s median and mean are higher than the black one’s.
Again, there might be two effects in opposite directions at work. The first is that living
too close to an employment centre might not provide enough shelter from the pollution
created there. The second, as mentioned above, is that people do not travel very far to their
workplace.
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Index of accessibility to radial highways X9

The first obvious thing one can observe in the scatterplots, as well in the histograms and the
kernel density estimates, is that there are two subgroups of districts containing X9 values
which are close to the respective group’s mean. The scatterplots deliver no hint as to what
might explain the occurrence of these two subgroups. The boxplots indicate that for the
cheaper and for the more expensive houses the average of X9 is almost the same.

Full-value property tax X10

X10 shows a behavior similar to that of X9: two subgroups exist. A downward-sloping curve
seems to underlie the relation of X10 and X14. This is confirmed by the two boxplots drawn
for X10: the red one has a lower mean and median than the black one.

Pupil/teacher ratio X11

The red and black boxplots of X11 indicate a negative relation between X11 and X14. This
is confirmed by inspection of the scatterplot of X11 vs. X14: The point cloud is downward
sloping, i.e., the less teachers there are per pupil, the less people pay on median for their
dwellings.

Proportion of blacks B, X12 = 1000(B − 0.63)2I(B < 0.63)

Interestingly, X12 is negatively—though not linearly—correlated with X3, X7 and X11,
whereas it is positively related with X14. Having a look at the data set reveals that for
almost all districts X12 takes on a value around 390. Since B cannot be larger than 0.63,
such values can only be caused by B close to zero. Therefore, the higher X12 is, the lower
the actual proportion of blacks is! Among observations 405 through 470 there are quite a
few that have a X12 that is much lower than 390. This means that in these districts the
proportion of blacks is above zero. We can observe two clusters of points in the scatterplots
of log (X12): one cluster for which X12 is close to 390 and a second one for which X12 is
between 3 and 100. When X12 is positively related with another variable, the actual pro-
portion of blacks is negatively correlated with this variable and vice versa. This means that
blacks live in areas where there is a high proportion of non-retail business acres, where there
are older houses and where there is a high (i.e., bad) pupil/teacher ratio. It can be observed
that districts with housing prices above the median can only be found where the proportion
of blacks is virtually zero!
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Proportion of lower status of the population X13

Of all the variables X13 exhibits the clearest negative relation with X14—hardly any outliers
show up. Taking the square root of X13 and the logarithm of X14 transforms the relation
into a linear one.

Transformations

Since most of the variables exhibit an asymmetry with a higher density on the left side, the
following transformations are proposed:

X̃1 = log (X1)

X̃2 = X2/10

X̃3 = log (X3)

X̃4 none, since X4 is binary

X̃5 = log (X5)

X̃6 = log (X6)

X̃7 = X7
2.5/10000

X̃8 = log (X8)

X̃9 = log (X9)

X̃10 = log (X10)

X̃11 = exp (0.4×X11)/1000

X̃12 = X12/100

X̃13 =
√
X13

X̃14 = log (X14)

Taking the logarithm or raising the variables to the power of something smaller than one helps
to reduce the asymmetry. This is due to the fact that lower values move further away from
each other, whereas the distance between greater values is reduced by these transformations.

Figure 1.27 displays boxplots for the original mean variance scaled variables as well as for the
proposed transformed variables. The transformed variables’ boxplots are more symmetric
and have less outliers than the original variables’ boxplots.
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Boston Housing data

Transformed Boston Housing data

Figure 1.27. Boxplots for all of the variables from the Boston Housing
data before and after the proposed transformations. MVAboxbhd.xpl

1.9 Exercises

EXERCISE 1.1 Is the upper extreme always an outlier?

EXERCISE 1.2 Is it possible for the mean or the median to lie outside of the fourths or
even outside of the outside bars?

EXERCISE 1.3 Assume that the data are normally distributed N(0, 1). What percentage of
the data do you expect to lie outside the outside bars?

EXERCISE 1.4 What percentage of the data do you expect to lie outside the outside bars if
we assume that the data are normally distributed N(0, σ2) with unknown variance σ2?

http://www.quantlet.org/mdstat/codes/mva/MVAboxbhd.html
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EXERCISE 1.5 How would the five-number summary of the 15 largest U.S. cities differ from
that of the 50 largest U.S. cities? How would the five-number summary of 15 observations
of N(0, 1)-distributed data differ from that of 50 observations from the same distribution?

EXERCISE 1.6 Is it possible that all five numbers of the five-number summary could be
equal? If so, under what conditions?

EXERCISE 1.7 Suppose we have 50 observations of X ∼ N(0, 1) and another 50 observa-
tions of Y ∼ N(2, 1). What would the 100 Flury faces look like if you had defined as face
elements the face line and the darkness of hair? Do you expect any similar faces? How many
faces do you think should look like observations of Y even though they are X observations?

EXERCISE 1.8 Draw a histogram for the mileage variable of the car data (Table B.3). Do
the same for the three groups (U.S., Japan, Europe). Do you obtain a similar conclusion as
in the parallel boxplot on Figure 1.3 for these data?

EXERCISE 1.9 Use some bandwidth selection criterion to calculate the optimally chosen
bandwidth h for the diagonal variable of the bank notes. Would it be better to have one
bandwidth for the two groups?

EXERCISE 1.10 In Figure 1.9 the densities overlap in the region of diagonal ≈ 140.4. We
partially observed this in the boxplot of Figure 1.4. Our aim is to separate the two groups.
Will we be able to do this effectively on the basis of this diagonal variable alone?

EXERCISE 1.11 Draw a parallel coordinates plot for the car data.

EXERCISE 1.12 How would you identify discrete variables (variables with only a limited
number of possible outcomes) on a parallel coordinates plot?

EXERCISE 1.13 True or false: the height of the bars of a histogram are equal to the relative
frequency with which observations fall into the respective bins.

EXERCISE 1.14 True or false: kernel density estimates must always take on a value between
0 and 1. (Hint: Which quantity connected with the density function has to be equal to 1?
Does this property imply that the density function has to always be less than 1?)

EXERCISE 1.15 Let the following data set represent the heights of 13 students taking the
Applied Multivariate Statistical Analysis course:

1.72, 1.83, 1.74, 1.79, 1.94, 1.81, 1.66, 1.60, 1.78, 1.77, 1.85, 1.70, 1.76.
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1. Find the corresponding five-number summary.

2. Construct the boxplot.

3. Draw a histogram for this data set.

EXERCISE 1.16 Describe the unemployment data (see Table B.19) that contain unemploy-
ment rates of all German Federal States using various descriptive techniques.

EXERCISE 1.17 Using yearly population data (see B.20), generate

1. a boxplot (choose one of variables)

2. an Andrew’s Curve (choose ten data points)

3. a scatterplot

4. a histogram (choose one of the variables)

What do these graphs tell you about the data and their structure?

EXERCISE 1.18 Make a draftman plot for the car data with the variables

X1 = price,

X2 = mileage,

X8 = weight,

X9 = length.

Move the brush into the region of heavy cars. What can you say about price, mileage and
length? Move the brush onto high fuel economy. Mark the Japanese, European and U.S.
American cars. You should find the same condition as in boxplot Figure 1.3.

EXERCISE 1.19 What is the form of a scatterplot of two independent random variables X1

and X2 with standard Normal distribution?

EXERCISE 1.20 Rotate a three-dimensional standard normal point cloud in 3D space. Does
it “almost look the same from all sides”? Can you explain why or why not?
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2 A Short Excursion into Matrix Algebra

This chapter is a reminder of basic concepts of matrix algebra, which are particularly useful
in multivariate analysis. It also introduces the notations used in this book for vectors and
matrices. Eigenvalues and eigenvectors play an important role in multivariate techniques.
In Sections 2.2 and 2.3, we present the spectral decomposition of matrices and consider the
maximization (minimization) of quadratic forms given some constraints.

In analyzing the multivariate normal distribution, partitioned matrices appear naturally.
Some of the basic algebraic properties are given in Section 2.5. These properties will be
heavily used in Chapters 4 and 5.

The geometry of the multinormal and the geometric interpretation of the multivariate tech-
niques (Part III) intensively uses the notion of angles between two vectors, the projection
of a point on a vector and the distances between two points. These ideas are introduced in
Section 2.6.

2.1 Elementary Operations

A matrix A is a system of numbers with n rows and p columns:

A =



a11 a12 . . . . . . . . . a1p
... a22

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
an1 an2 . . . . . . . . . anp


.

We also write (aij) for A and A(n×p) to indicate the numbers of rows and columns. Vectors
are matrices with one column and are denoted as x or x(p×1). Special matrices and vectors
are defined in Table 2.1. Note that we use small letters for scalars as well as for vectors.
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Matrix Operations

Elementary operations are summarized below:

A> = (aji)

A+ B = (aij + bij)

A− B = (aij − bij)
c · A = (c · aij)

A · B = A(n× p) B(p×m) = C(n×m) =

(
p∑
j=1

aijbjk

)
.

Properties of Matrix Operations

A+ B = B +A
A(B + C) = AB +AC
A(BC) = (AB)C
(A>)> = A
(AB)> = B>A>

Matrix Characteristics

Rank

The rank, rank(A), of a matrix A(n × p) is defined as the maximum number of linearly
independent rows (columns). A set of k rows aj ofA(n×p) are said to be linearly independent

if
∑k

j=1 cjaj = 0p implies cj = 0,∀j, where c1, . . . , ck are scalars. In other words no rows in
this set can be expressed as a linear combination of the (k − 1) remaining rows.

Trace

The trace of a matrix is the sum of its diagonal elements

tr(A) =

p∑
i=1

aii.
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Name Definition Notation Example
scalar p = n = 1 a 3

column vector p = 1 a

(
1
3

)
row vector n = 1 a>

(
1 3

)
vector of ones (1, . . . , 1︸ ︷︷ ︸

n

)> 1n

(
1
1

)
vector of zeros (0, . . . , 0︸ ︷︷ ︸

n

)> 0n

(
0
0

)
square matrix n = p A(p× p)

(
2 0
0 2

)
diagonal matrix aij = 0, i 6= j, n = p diag(aii)

(
1 0
0 2

)
identity matrix diag(1, . . . , 1︸ ︷︷ ︸

p

) Ip
(

1 0
0 1

)
unit matrix aij ≡ 1, n = p 1n1>n

(
1 1
1 1

)
symmetric matrix aij = aji

(
1 2
2 3

)
null matrix aij = 0 0

(
0 0
0 0

)
upper triangular matrix aij = 0, i < j

 1 2 4
0 1 3
0 0 1


idempotent matrix AA = A

 1 0 0
0 1

2
1
2

0 1
2

1
2


orthogonal matrix A>A = I = AA>

(
1√
2

1√
2

1√
2
− 1√

2

)

Table 2.1. Special matrices and vectors.

Determinant

The determinant is an important concept of matrix algebra. For a square matrix A, it is
defined as:

det(A) = |A| =
∑

(−1)|τ | a1τ(1) . . . apτ(p),

the summation is over all permutations τ of {1, 2, . . . , p}, and |τ | = 0 if the permutation can
be written as a product of an even number of transpositions and |τ | = 1 otherwise.
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EXAMPLE 2.1 In the case of p = 2, A =

(
a11 a12

a21 a22

)
and we can permute the digits “1”

and “2” once or not at all. So,

|A| = a11 a22 − a12 a21.

Transpose

For A(n× p) and B(p× n)

(A>)> = A, and (AB)> = B>A>.

Inverse

If |A| 6= 0 and A(p× p), then the inverse A−1 exists:

A A−1 = A−1 A = Ip.

For small matrices, the inverse of A = (aij) can be calculated as

A−1 =
C
|A|

,

where C = (cij) is the adjoint matrix of A. The elements cji of C> are the co-factors of A:

cji = (−1)i+j

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1(j−1) a1(j+1) . . . a1p
...

a(i−1)1 . . . a(i−1)(j−1) a(i−1)(j+1) . . . a(i−1)p

a(i+1)1 . . . a(i+1)(j−1) a(i+1)(j+1) . . . a(i+1)p
...
ap1 . . . ap(j−1) ap(j+1) . . . app

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

G-inverse

A more general concept is the G-inverse (Generalized Inverse) A− which satisfies the follow-
ing:

A A−A = A.

Later we will see that there may be more than one G-inverse.
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EXAMPLE 2.2 The generalized inverse can also be calculated for singular matrices. We
have: (

1 0
0 0

)(
1 0
0 0

)(
1 0
0 0

)
=

(
1 0
0 0

)
,

which means that the generalized inverse of A =

(
1 0
0 0

)
is A− =

(
1 0
0 0

)
even though

the inverse matrix of A does not exist in this case.

Eigenvalues, Eigenvectors

Consider a (p× p) matrix A. If there exists a scalar λ and a vector γ such that

Aγ = λγ, (2.1)

then we call
λ an eigenvalue
γ an eigenvector.

It can be proven that an eigenvalue λ is a root of the p-th order polynomial |A − λIp| = 0.
Therefore, there are up to p eigenvalues λ1, λ2, . . . , λp of A. For each eigenvalue λj, there
exists a corresponding eigenvector γj given by equation (2.1) . Suppose the matrix A has
the eigenvalues λ1, . . . , λp. Let Λ = diag(λ1, . . . , λp).

The determinant |A| and the trace tr(A) can be rewritten in terms of the eigenvalues:

|A| = |Λ| =
p∏
j=1

λj (2.2)

tr(A) = tr(Λ) =

p∑
j=1

λj. (2.3)

An idempotent matrix A (see the definition in Table 2.1) can only have eigenvalues in {0, 1}
therefore tr(A) = rank(A) = number of eigenvalues 6= 0.

EXAMPLE 2.3 Let us consider the matrix A =

 1 0 0
0 1

2
1
2

0 1
2

1
2

. It is easy to verify that

AA = A which implies that the matrix A is idempotent.

We know that the eigenvalues of an idempotent matrix are equal to 0 or 1. In this case, the

eigenvalues of A are λ1 = 1, λ2 = 1, and λ3 = 0 since

 1 0 0
0 1

2
1
2

0 1
2

1
2

 1
0
0

 = 1

 1
0
0

, 1 0 0
0 1

2
1
2

0 1
2

1
2

 0√
2

2√
2

2

 = 1

 0√
2

2√
2

2

, and

 1 0 0
0 1

2
1
2

0 1
2

1
2

 0√
2

2

−
√

2
2

 = 0

 0√
2

2

−
√

2
2

.
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Using formulas (2.2) and (2.3), we can calculate the trace and the determinant of A from
the eigenvalues: tr(A) = λ1 + λ2 + λ3 = 2, |A| = λ1λ2λ3 = 0, and rank(A) = 2.

Properties of Matrix Characteristics

A(n× n), B(n× n), c ∈ R

tr(A+ B) = trA+ trB (2.4)

tr(cA) = c trA (2.5)

|cA| = cn|A| (2.6)

|AB| = |BA| = |A||B| (2.7)

A(n× p), B(p× n)

tr(A·B) = tr(B·A) (2.8)

rank(A) ≤ min(n, p)

rank(A) ≥ 0 (2.9)

rank(A) = rank(A>) (2.10)

rank(A>A) = rank(A) (2.11)

rank(A+ B) ≤ rank(A) + rank(B) (2.12)

rank(AB) ≤ min{rank(A), rank(B)} (2.13)

A(n× p), B(p× q), C(q × n)

tr(ABC) = tr(BCA)

= tr(CAB) (2.14)

rank(ABC) = rank(B) for nonsingular A, C (2.15)

A(p× p)

|A−1| = |A|−1 (2.16)

rank(A) = p if and only if A is nonsingular. (2.17)

Summary
↪→ The determinant |A| is the product of the eigenvalues of A.

↪→ The inverse of a matrix A exists if |A| 6= 0.
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Summary (continued)

↪→ The trace tr(A) is the sum of the eigenvalues of A.

↪→ The sum of the traces of two matrices equals the trace of the sum of the
two matrices.

↪→ The trace tr(AB) equals tr(BA).

↪→ The rank(A) is the maximal number of linearly independent rows
(columns) of A.

2.2 Spectral Decompositions

The computation of eigenvalues and eigenvectors is an important issue in the analysis of
matrices. The spectral decomposition or Jordan decomposition links the structure of a
matrix to the eigenvalues and the eigenvectors.

THEOREM 2.1 (Jordan Decomposition) Each symmetric matrix A(p×p) can be written
as

A = Γ Λ Γ> =

p∑
j=1

λjγjγ
>
j

(2.18)

where
Λ = diag(λ1, . . . , λp)

and where
Γ = (γ1 , γ2 , . . . , γp)

is an orthogonal matrix consisting of the eigenvectors γ
j

of A.

EXAMPLE 2.4 Suppose that A =
(

1
2

2
3

)
. The eigenvalues are found by solving |A−λI| = 0.

This is equivalent to ∣∣∣∣ 1− λ 2
2 3− λ

∣∣∣∣ = (1− λ)(3− λ)− 4 = 0.

Hence, the eigenvalues are λ1 = 2 +
√

5 and λ2 = 2 −
√

5. The eigenvectors are γ1 =
(0.5257, 0.8506)> and γ2 = (0.8506,−0.5257)>. They are orthogonal since γ>1 γ2 = 0.

Using spectral decomposition, we can define powers of a matrix A(p × p). Suppose A is a
symmetric matrix. Then by Theorem 2.1

A = ΓΛΓ>,
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and we define for some α ∈ R
Aα = ΓΛαΓ>, (2.19)

where Λα = diag(λα1 , . . . , λ
α
p ). In particular, we can easily calculate the inverse of the matrix

A. Suppose that the eigenvalues of A are positive. Then with α = −1, we obtain the inverse
of A from

A−1 = ΓΛ−1Γ>. (2.20)

Another interesting decomposition which is later used is given in the following theorem.

THEOREM 2.2 (Singular Value Decomposition) Each matrix A(n × p) with rank r can
be decomposed as

A = Γ Λ ∆>,

where Γ(n×r) and ∆(p×r). Both Γ and ∆ are column orthonormal, i.e., Γ>Γ = ∆>∆ = Ir
and Λ = diag

(
λ

1/2
1 , . . . , λ

1/2
r

)
, λj > 0. The values λ1, . . . , λr are the non-zero eigenvalues of

the matrices AA> and A>A. Γ and ∆ consist of the corresponding r eigenvectors of these
matrices.

This is obviously a generalization of Theorem 2.1 (Jordan decomposition). With Theorem
2.2, we can find a G-inverse A− of A. Indeed, define A− = ∆ Λ−1 Γ>. Then A A− A =
Γ Λ ∆> = A. Note that the G-inverse is not unique.

EXAMPLE 2.5 In Example 2.2, we showed that the generalized inverse of A =

(
1 0
0 0

)
is A−

(
1 0
0 0

)
. The following also holds

(
1 0
0 0

)(
1 0
0 8

)(
1 0
0 0

)
=

(
1 0
0 0

)

which means that the matrix

(
1 0
0 8

)
is also a generalized inverse of A.

Summary
↪→ The Jordan decomposition gives a representation of a symmetric matrix

in terms of eigenvalues and eigenvectors.
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Summary (continued)

↪→ The eigenvectors belonging to the largest eigenvalues indicate the “main
direction” of the data.

↪→ The Jordan decomposition allows one to easily compute the power of a
symmetric matrix A: Aα = ΓΛαΓ>.

↪→ The singular value decomposition (SVD) is a generalization of the Jordan
decomposition to non-quadratic matrices.

2.3 Quadratic Forms

A quadratic form Q(x) is built from a symmetric matrix A(p× p) and a vector x ∈ Rp:

Q(x) = x> A x =

p∑
i=1

p∑
j=1

aijxixj. (2.21)

Definiteness of Quadratic Forms and Matrices

Q(x) > 0 for all x 6= 0 positive definite
Q(x) ≥ 0 for all x 6= 0 positive semidefinite

A matrix A is called positive definite (semidefinite) if the corresponding quadratic form Q(.)

is positive definite (semidefinite). We write A > 0 (≥ 0).

Quadratic forms can always be diagonalized, as the following result shows.

THEOREM 2.3 If A is symmetric and Q(x) = x>Ax is the corresponding quadratic form,
then there exists a transformation x 7→ Γ>x = y such that

x> A x =

p∑
i=1

λiy
2
i ,

where λi are the eigenvalues of A.

Proof:
A = Γ Λ Γ>. By Theorem 2.1 and y = Γ>α we have that x>Ax = x>ΓΛΓ>x = y>Λy =∑p

i=1 λiy
2
i . 2

Positive definiteness of quadratic forms can be deduced from positive eigenvalues.
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THEOREM 2.4 A > 0 if and only if all λi > 0, i = 1, . . . , p.

Proof:
0 < λ1y

2
1 + · · ·+ λpy

2
p = x>Ax for all x 6= 0 by Theorem 2.3. 2

COROLLARY 2.1 If A > 0, then A−1 exists and |A| > 0.

EXAMPLE 2.6 The quadratic form Q(x) = x2
1+x2

2 corresponds to the matrix A =
(

1
0

0
1

)
with

eigenvalues λ1 = λ2 = 1 and is thus positive definite. The quadratic form Q(x) = (x1 − x2)2

corresponds to the matrix A =
(

1
−1
−1

1

)
with eigenvalues λ1 = 2, λ2 = 0 and is positive

semidefinite. The quadratic form Q(x) = x2
1 − x2

2 with eigenvalues λ1 = 1, λ2 = −1 is
indefinite.

In the statistical analysis of multivariate data, we are interested in maximizing quadratic
forms given some constraints.

THEOREM 2.5 If A and B are symmetric and B > 0, then the maximum of x>Ax under
the constraints x>Bx = 1 is given by the largest eigenvalue of B−1A. More generally,

max
{x:x>Bx=1}

x>Ax = λ1 ≥ λ2 ≥ · · · ≥ λp = min
{x:x>Bx=1}

x> Ax,

where λ1, . . . , λp denote the eigenvalues of B−1A. The vector which maximizes (minimizes)
x>Ax under the constraint x>Bx = 1 is the eigenvector of B−1A which corresponds to the
largest (smallest) eigenvalue of B−1A.

Proof:
By definition, B1/2 = ΓB Λ

1/2
B Γ>B . Set y = B1/2x, then

max
{x:x>Bx=1}

x> Ax = max
{y:y>y=1}

y>B−1/2 AB−1/2y. (2.22)

From Theorem 2.1, let
B−1/2 A B−1/2 = Γ Λ Γ>

be the spectral decomposition of B−1/2 A B−1/2. Set

z = Γ>y ⇒ z>z = y>Γ Γ> y = y>y.

Thus (2.22) is equivalent to

max
{z:z>z=1}

z> Λ z = max
{z:z>z=1}

p∑
i=1

λiz
2
i .
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But
max
z

∑
λiz

2
i ≤ λ1 max

z

∑
z2
i︸ ︷︷ ︸

=1

= λ1.

The maximum is thus obtained by z = (1, 0, . . . , 0)>, i.e.,

y = γ1 ⇒ x = B−1/2γ1 .

Since B−1A and B−1/2 A B−1/2 have the same eigenvalues, the proof is complete. 2

EXAMPLE 2.7 Consider the following matrices

A =

(
1 2
2 3

)
and B =

(
1 0
0 1

)
.

We calculate

B−1A =

(
1 2
2 3

)
.

The biggest eigenvalue of the matrix B−1A is 2 +
√

5. This means that the maximum of
x>Ax under the constraint x>Bx = 1 is 2 +

√
5.

Notice that the constraint x>Bx = 1 corresponds, with our choice of B, to the points which
lie on the unit circle x2

1 + x2
2 = 1.

Summary
↪→ A quadratic form can be described by a symmetric matrix A.

↪→ Quadratic forms can always be diagonalized.

↪→ Positive definiteness of a quadratic form is equivalent to positiveness of
the eigenvalues of the matrix A.

↪→ The maximum and minimum of a quadratic form given some constraints
can be expressed in terms of eigenvalues.
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2.4 Derivatives

For later sections of this book, it will be useful to introduce matrix notation for derivatives
of a scalar function of a vector x with respect to x. Consider f : Rp → R and a (p×1) vector

x, then ∂f(x)
∂x

is the column vector of partial derivatives
{
∂f(x)
∂xj

}
, j = 1, . . . , p and ∂f(x)

∂x>
is the

row vector of the same derivative (∂f(x)
∂x

is called the gradient of f).

We can also introduce second order derivatives: ∂2f(x)
∂x∂x>

is the (p × p) matrix of elements
∂2f(x)
∂xi∂xj

, i = 1, . . . , p and j = 1, . . . , p. (∂
2f(x)
∂x∂x>

is called the Hessian of f).

Suppose that a is a (p× 1) vector and that A = A> is a (p× p) matrix. Then

∂a>x

∂x
=

∂x>a

∂x
= a, (2.23)

∂x>Ax
∂x

= 2Ax. (2.24)

The Hessian of the quadratic form Q(x) = x>Ax is:

∂2x>Ax
∂x∂x>

= 2A. (2.25)

EXAMPLE 2.8 Consider the matrix

A =

(
1 2
2 3

)
.

From formulas (2.24) and (2.25) it immediately follows that the gradient of Q(x) = x>Ax
is

∂x>Ax
∂x

= 2Ax = 2

(
1 2
2 3

)
x =

(
2x 4x
4x 6x

)
and the Hessian is

∂2x>Ax
∂x∂x>

= 2A = 2

(
1 2
2 3

)
=

(
2 4
4 6

)
.

2.5 Partitioned Matrices

Very often we will have to consider certain groups of rows and columns of a matrix A(n×p).
In the case of two groups, we have

A =

(
A11 A12

A21 A22

)
where Aij(ni × pj), i, j = 1, 2, n1 + n2 = n and p1 + p2 = p.
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If B(n× p) is partitioned accordingly, we have:

A+ B =

(
A11 + B11 A12 + B12

A21 + B21 A22 + B22

)
B> =

(
B>11 B>21

B>12 B>22

)
AB> =

(
A11B>11 +A12B>12 A11B>21 +A12B>22

A21B>11 +A22B>12 A21B>21 +A22B>22

)
.

An important particular case is the square matrix A(p× p), partitioned such that A11 and
A22 are both square matrices (i.e., nj = pj, j = 1, 2). It can be verified that when A is
non-singular (AA−1 = Ip):

A−1 =

(
A11 A12

A21 A22

)
(2.26)

where 
A11 = (A11 −A12A−1

22A21)−1 def
= (A11·2)−1

A12 = −(A11·2)−1A12A−1
22

A21 = −A−1
22A21(A11·2)−1

A22 = A−1
22 +A−1

22A21(A11·2)−1A12A−1
22 .

An alternative expression can be obtained by reversing the positions of A11 and A22 in the
original matrix.

The following results will be useful if A11 is non-singular:

|A| = |A11||A22 −A21A−1
11A12| = |A11||A22·1|. (2.27)

If A22 is non-singular, we have that:

|A| = |A22||A11 −A12A−1
22A21| = |A22||A11·2|. (2.28)

A useful formula is derived from the alternative expressions for the inverse and the determi-
nant. For instance let

B =

(
1 b>

a A

)
where a and b are (p× 1) vectors and A is non-singular. We then have:

|B| = |A − ab>| = |A||1− b>A−1a| (2.29)

and equating the two expressions for B22, we obtain the following:

(A− ab>)−1 = A−1 +
A−1ab>A−1

1− b>A−1a
. (2.30)
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EXAMPLE 2.9 Let’s consider the matrix

A =

(
1 2
2 2

)
.

We can use formula (2.26) to calculate the inverse of a partitioned matrix, i.e., A11 =
−1,A12 = A21 = 1,A22 = −1/2. The inverse of A is

A−1 =

(
−1 1
1 −0.5

)
.

It is also easy to calculate the determinant of A:

|A| = |1||2− 4| = −2.

Let A(n × p) and B(p × n) be any two matrices and suppose that n ≥ p. From (2.27)
and (2.28) we can conclude that∣∣∣∣ −λIn −AB Ip

∣∣∣∣ = (−λ)n−p|BA − λIp| = |AB − λIn|. (2.31)

Since both determinants on the right-hand side of (2.31) are polynomials in λ, we find that
the n eigenvalues of AB yield the p eigenvalues of BA plus the eigenvalue 0, n− p times.

The relationship between the eigenvectors is described in the next theorem.

THEOREM 2.6 For A(n × p) and B(p × n), the non-zero eigenvalues of AB and BA are
the same and have the same multiplicity. If x is an eigenvector of AB for an eigenvalue
λ 6= 0, then y = Bx is an eigenvector of BA.

COROLLARY 2.2 For A(n× p), B(q × n), a(p× 1), and b(q × 1) we have

rank(Aab>B) ≤ 1.

The non-zero eigenvalue, if it exists, equals b>BAa (with eigenvector Aa).

Proof:
Theorem 2.6 asserts that the eigenvalues of Aab>B are the same as those of b>BAa. Note
that the matrix b>BAa is a scalar and hence it is its own eigenvalue λ1.

Applying Aab>B to Aa yields

(Aab>B)(Aa) = (Aa)(b>BAa) = λ1Aa.

2
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Figure 2.1. Distance d.

2.6 Geometrical Aspects

Distance

Let x, y ∈ Rp. A distance d is defined as a function

d : R2p → R+ which fulfills


d(x, y) > 0 ∀x 6= y
d(x, y) = 0 if and only if x = y
d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z

.

A Euclidean distance d between two points x and y is defined as

d2(x, y) = (x− y)TA(x− y) (2.32)

where A is a positive definite matrix (A > 0). A is called a metric.

EXAMPLE 2.10 A particular case is when A = Ip, i.e.,

d2(x, y) =

p∑
i=1

(xi − yi)2. (2.33)

Figure 2.1 illustrates this definition for p = 2.

Note that the sets Ed = {x ∈ Rp | (x − x0)>(x − x0) = d2} , i.e., the spheres with radius d
and center x0, are the Euclidean Ip iso-distance curves from the point x0 (see Figure 2.2).

The more general distance (2.32) with a positive definite matrix A (A > 0) leads to the
iso-distance curves

Ed = {x ∈ Rp | (x− x0)>A(x− x0) = d2}, (2.34)

i.e., ellipsoids with center x0, matrix A and constant d (see Figure 2.3).
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Figure 2.2. Iso–distance sphere.
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Figure 2.3. Iso–distance ellipsoid.

Let γ1, γ2, ..., γp be the orthonormal eigenvectors of A corresponding to the eigenvalues λ1 ≥
λ2 ≥ ... ≥ λp. The resulting observations are given in the next theorem.
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THEOREM 2.7 (i) The principal axes of Ed are in the direction of γi; i = 1, . . . , p.

(ii) The half-lengths of the axes are
√

d2

λi
; i = 1, . . . , p.

(iii) The rectangle surrounding the ellipsoid Ed is defined by the following inequalities:

x0i −
√
d2aii ≤ xi ≤ x0i +

√
d2aii, i = 1, . . . , p,

where aii is the (i, i) element of A−1. By the rectangle surrounding the ellipsoid Ed we
mean the rectangle whose sides are parallel to the coordinate axis.

It is easy to find the coordinates of the tangency points between the ellipsoid and its sur-
rounding rectangle parallel to the coordinate axes. Let us find the coordinates of the tangency
point that are in the direction of the j-th coordinate axis (positive direction).

For ease of notation, we suppose the ellipsoid is centered around the origin (x0 = 0). If not,
the rectangle will be shifted by the value of x0.

The coordinate of the tangency point is given by the solution to the following problem:

x = arg max
x>Ax=d2

e>j x (2.35)

where e>j is the j-th column of the identity matrix Ip. The coordinate of the tangency point
in the negative direction would correspond to the solution of the min problem: by symmetry,
it is the opposite value of the former.

The solution is computed via the Lagrangian L = e>j x−λ(x>Ax−d2) which by (2.23) leads
to the following system of equations:

∂L

∂x
= ej − 2λAx = 0 (2.36)

∂L

∂λ
= xTAx− d2 = 0. (2.37)

This gives x = 1
2λ
A−1ej, or componentwise

xi =
1

2λ
aij, i = 1, . . . , p (2.38)

where aij denotes the (i, j)-th element of A−1.

Premultiplying (2.36) by x>, we have from (2.37):

xj = 2λd2.

Comparing this to the value obtained by (2.38), for i = j we obtain 2λ =
√

ajj

d2 . We choose

the positive value of the square root because we are maximizing e>j x. A minimum would
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correspond to the negative value. Finally, we have the coordinates of the tangency point
between the ellipsoid and its surrounding rectangle in the positive direction of the j-th axis:

xi =

√
d2

ajj
aij, i = 1, . . . , p. (2.39)

The particular case where i = j provides statement (iii) in Theorem 2.7.

Remark: usefulness of Theorem 2.7

Theorem 2.7 will prove to be particularly useful in many subsequent chapters. First, it
provides a helpful tool for graphing an ellipse in two dimensions. Indeed, knowing the slope
of the principal axes of the ellipse, their half-lengths and drawing the rectangle inscribing
the ellipse allows one to quickly draw a rough picture of the shape of the ellipse.

In Chapter 7, it is shown that the confidence region for the vector µ of a multivariate
normal population is given by a particular ellipsoid whose parameters depend on sample
characteristics. The rectangle inscribing the ellipsoid (which is much easier to obtain) will
provide the simultaneous confidence intervals for all of the components in µ.

In addition it will be shown that the contour surfaces of the multivariate normal density
are provided by ellipsoids whose parameters depend on the mean vector and on the covari-
ance matrix. We will see that the tangency points between the contour ellipsoids and the
surrounding rectangle are determined by regressing one component on the (p − 1) other
components. For instance, in the direction of the j-th axis, the tangency points are given
by the intersections of the ellipsoid contours with the regression line of the vector of (p− 1)
variables (all components except the j-th) on the j-th component.

Norm of a Vector

Consider a vector x ∈ Rp. The norm or length of x (with respect to the metric Ip) is defined
as

‖x‖ = d(0, x) =
√
x>x.

If ‖x‖ = 1, x is called a unit vector. A more general norm can be defined with respect to the
metric A:

‖x‖A =
√
x>Ax.
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Figure 2.4. Angle between vectors.

Angle between two Vectors

Consider two vectors x and y ∈ Rp. The angle θ between x and y is defined by the cosine of
θ:

cos θ =
x>y

‖x‖ ‖y‖
, (2.40)

see Figure 2.4. Indeed for p = 2, x =

(
x1

x2

)
and y =

(
y1

y2

)
, we have

‖x‖ cos θ1 = x1 ; ‖y‖ cos θ2 = y1

‖x‖ sin θ1 = x2 ; ‖y‖ sin θ2 = y2,
(2.41)

therefore,

cos θ = cos θ1 cos θ2 + sin θ1 sin θ2 =
x1y1 + x2y2

‖x‖ ‖y‖
=

x>y

‖x‖ ‖y‖
.

REMARK 2.1 If x>y = 0, then the angle θ is equal to
π

2
. From trigonometry, we know that

the cosine of θ equals the length of the base of a triangle (||px||) divided by the length of the
hypotenuse (||x||). Hence, we have

||px|| = ||x||| cos θ| = |x
>y|
‖y‖

, (2.42)
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Figure 2.5. Projection.

where px is the projection of x on y (which is defined below). It is the coordinate of x on the
y vector, see Figure 2.5.

The angle can also be defined with respect to a general metric A

cos θ =
x>Ay

‖x‖A ‖y‖A
. (2.43)

If cos θ = 0 then x is orthogonal to y with respect to the metric A.

EXAMPLE 2.11 Assume that there are two centered (i.e., zero mean) data vectors. The
cosine of the angle between them is equal to their correlation (defined in (3.8))! Indeed for
x and y with x = y = 0 we have

rXY =

∑
xiyi√∑
x2
i

∑
y2
i

= cos θ

according to formula (2.40).

Rotations

When we consider a point x ∈ Rp, we generally use a p-coordinate system to obtain its geo-
metric representation, like in Figure 2.1 for instance. There will be situations in multivariate
techniques where we will want to rotate this system of coordinates by the angle θ.

Consider for example the point P with coordinates x = (x1, x2)> in R2 with respect to a
given set of orthogonal axes. Let Γ be a (2× 2) orthogonal matrix where

Γ =

(
cos θ sin θ
− sin θ cos θ

)
. (2.44)

If the axes are rotated about the origin through an angle θ in a clockwise direction, the new
coordinates of P will be given by the vector y

y = Γ x, (2.45)
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and a rotation through the same angle in a counterclockwise direction gives the new coordi-
nates as

y = Γ> x. (2.46)

More generally, premultiplying a vector x by an orthogonal matrix Γ geometrically corre-
sponds to a rotation of the system of axes, so that the first new axis is determined by the
first row of Γ. This geometric point of view will be exploited in Chapters 9 and 10.

Column Space and Null Space of a Matrix

Define for X (n× p)

Im(X )
def
= C(X ) = {x ∈ Rn | ∃a ∈ Rp so that Xa = x},

the space generated by the columns of X or the column space of X . Note that C(X ) ⊆ Rn
and dim{C(X )} = rank(X ) = r ≤ min(n, p).

Ker(X )
def
= N(X ) = {y ∈ Rp | X y = 0}

is the null space of X . Note that N(X ) ⊆ Rp and that dim{N(X )} = p− r.

REMARK 2.2 N(X>) is the orthogonal complement of C(X ) in Rn, i.e., given a vector
b ∈ Rn it will hold that x>b = 0 for all x ∈ C(X ), if and only if b ∈ N(X>).

EXAMPLE 2.12 Let X =


2 3 5
4 6 7
6 8 6
8 2 4

 . It is easy to show (e.g. by calculating the de-

terminant of X ) that rank(X ) = 3. Hence, the columns space of X is C(X ) = R
3.

The null space of X contains only the zero vector (0, 0, 0)> and its dimension is equal to
rank(X )− 3 = 0.

For X =


2 3 1
4 6 2
6 8 3
8 2 4

 , the third column is a multiple of the first one and the matrix X

cannot be of full rank. Noticing that the first two columns of X are independent, we see that
rank(X ) = 2. In this case, the dimension of the columns space is 2 and the dimension of the
null space is 1.

Projection Matrix

A matrix P(n×n) is called an (orthogonal) projection matrix in Rn if and only if P = P> =
P2 (P is idempotent). Let b ∈ Rn. Then a = Pb is the projection of b on C(P).



78 2 A Short Excursion into Matrix Algebra

Projection on C(X )

Consider X (n× p) and let
P = X (X>X )−1X> (2.47)

and Q = In − P . It’s easy to check that P and Q are idempotent and that

PX = X and QX = 0. (2.48)

Since the columns of X are projected onto themselves, the projection matrix P projects any
vector b ∈ Rn onto C(X ). Similarly, the projection matrix Q projects any vector b ∈ Rn
onto the orthogonal complement of C(X ).

THEOREM 2.8 Let P be the projection (2.47) and Q its orthogonal complement. Then:

(i) x = Pb⇒ x ∈ C(X ),

(ii) y = Qb⇒ y>x = 0 ∀x ∈ C(X ).

Proof:
(i) holds, since x = X (X>X )−1X>b = Xa, where a = (X>X )−1X>b ∈ Rp.
(ii) follows from y = b− Pb and x = Xa⇒ y>x = b>Xa− b>X (X>X )−1X>Xa = 0. 2

REMARK 2.3 Let x, y ∈ Rn and consider px ∈ Rn, the projection of x on y (see Figure
2.5). With X = y we have from (2.47)

px = y(y>y)−1y>x =
y>x

‖y‖2
y (2.49)

and we can easily verify that

‖px‖ =
√
p>x px =

|y>x|
‖y‖

.

See again Remark 2.1.
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Summary
↪→ A distance between two p-dimensional points x and y is a quadratic form

(x− y)>A(x− y) in the vectors of differences (x− y). A distance defines
the norm of a vector.

↪→ Iso-distance curves of a point x0 are all those points that have the same
distance from x0. Iso-distance curves are ellipsoids whose principal axes
are determined by the direction of the eigenvectors ofA. The half-length of
principal axes is proportional to the inverse of the roots of the eigenvalues
of A.

↪→ The angle between two vectors x and y is given by cos θ = x>Ay
‖x‖A ‖y‖A

w.r.t.
the metric A.

↪→ For the Euclidean distance with A = I the correlation between two cen-
tered data vectors x and y is given by the cosine of the angle between
them, i.e., cos θ = rXY .

↪→ The projection P = X (X>X )−1X> is the projection onto the column
space C(X ) of X .

↪→ The projection of x ∈ Rn on y ∈ Rn is given by px = y>x
‖y‖2y.

2.7 Exercises

EXERCISE 2.1 Compute the determinant for a (3× 3) matrix.

EXERCISE 2.2 Suppose that |A| = 0. Is it possible that all eigenvalues of A are positive?

EXERCISE 2.3 Suppose that all eigenvalues of some (square) matrix A are different from
zero. Does the inverse A−1 of A exist?

EXERCISE 2.4 Write a program that calculates the Jordan decomposition of the matrix

A =

 1 2 3
2 1 2
3 2 1

 .

Check Theorem 2.1 numerically.
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EXERCISE 2.5 Prove (2.23), (2.24) and (2.25).

EXERCISE 2.6 Show that a projection matrix only has eigenvalues in {0, 1}.

EXERCISE 2.7 Draw some iso-distance ellipsoids for the metric A = Σ−1 of Example 3.13.

EXERCISE 2.8 Find a formula for |A+ aa>| and for (A+ aa>)−1. (Hint: use the inverse

partitioned matrix with B =

(
1 −a>
a A

)
.)

EXERCISE 2.9 Prove the Binomial inverse theorem for two non-singular matrices A(p×p)
and B(p × p): (A + B)−1 = A−1 − A−1(A−1 + B−1)−1A−1. (Hint: use (2.26) with C =(
A Ip
−Ip B−1

)
.)



3 Moving to Higher Dimensions

We have seen in the previous chapters how very simple graphical devices can help in under-
standing the structure and dependency of data. The graphical tools were based on either
univariate (bivariate) data representations or on “slick” transformations of multivariate infor-
mation perceivable by the human eye. Most of the tools are extremely useful in a modelling
step, but unfortunately, do not give the full picture of the data set. One reason for this is
that the graphical tools presented capture only certain dimensions of the data and do not
necessarily concentrate on those dimensions or subparts of the data under analysis that carry
the maximum structural information. In Part III of this book, powerful tools for reducing
the dimension of a data set will be presented. In this chapter, as a starting point, simple and
basic tools are used to describe dependency. They are constructed from elementary facts of
probability theory and introductory statistics (for example, the covariance and correlation
between two variables).

Sections 3.1 and 3.2 show how to handle these concepts in a multivariate setup and how a
simple test on correlation between two variables can be derived. Since linear relationships
are involved in these measures, Section 3.4 presents the simple linear model for two variables
and recalls the basic t-test for the slope. In Section 3.5, a simple example of one-factorial
analysis of variance introduces the notations for the well known F -test.

Due to the power of matrix notation, all of this can easily be extended to a more general
multivariate setup. Section 3.3 shows how matrix operations can be used to define summary
statistics of a data set and for obtaining the empirical moments of linear transformations of
the data. These results will prove to be very useful in most of the chapters in Part III.

Finally, matrix notation allows us to introduce the flexible multiple linear model, where more
general relationships among variables can be analyzed. In Section 3.6, the least squares
adjustment of the model and the usual test statistics are presented with their geometric
interpretation. Using these notations, the ANOVA model is just a particular case of the
multiple linear model.
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3.1 Covariance

Covariance is a measure of dependency between random variables. Given two (random)
variables X and Y the (theoretical) covariance is defined by:

σXY = Cov(X, Y ) = E(XY )− (EX)(EY ). (3.1)

The precise definition of expected values is given in Chapter 4. If X and Y are independent
of each other, the covariance Cov(X, Y ) is necessarily equal to zero, see Theorem 3.1. The
converse is not true. The covariance of X with itself is the variance:

σXX = Var(X) = Cov(X,X).

If the variable X is p-dimensional multivariate, e.g., X =

 X1
...
Xp

, then the theoretical

covariances among all the elements are put into matrix form, i.e., the covariance matrix:

Σ =

 σX1X1 . . . σX1Xp
...

. . .
...

σXpX1 . . . σXpXp

 .

Properties of covariance matrices will be detailed in Chapter 4. Empirical versions of these
quantities are:

sXY =
1

n

n∑
i=1

(xi − x)(yi − y) (3.2)

sXX =
1

n

n∑
i=1

(xi − x)2. (3.3)

For small n, say n ≤ 20, we should replace the factor 1
n

in (3.2) and (3.3) by 1
n−1

in order
to correct for a small bias. For a p-dimensional random variable, one obtains the empirical
covariance matrix (see Section 3.3 for properties and details)

S =

 sX1X1 . . . sX1Xp
...

. . .
...

sXpX1 . . . sXpXp

 .

For a scatterplot of two variables the covariances measure “how close the scatter is to a
line”. Mathematical details follow but it should already be understood here that in this
sense covariance measures only “linear dependence”.
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EXAMPLE 3.1 If X is the entire bank data set, one obtains the covariance matrix S as
indicated below:

S =


0.14 0.03 0.02 −0.10 −0.01 0.08
0.03 0.12 0.10 0.21 0.10 −0.21
0.02 0.10 0.16 0.28 0.12 −0.24
−0.10 0.21 0.28 2.07 0.16 −1.03
−0.01 0.10 0.12 0.16 0.64 −0.54

0.08 −0.21 −0.24 −1.03 −0.54 1.32

 . (3.4)

The empirical covariance between X4 and X5, i.e., sX4X5, is found in row 4 and column 5.
The value is sX4X5 = 0.16. Is it obvious that this value is positive? In Exercise 3.1 we will
discuss this question further.

If Xf denotes the counterfeit bank notes, we obtain:

Sf =


0.123 0.031 0.023 −0.099 0.019 0.011
0.031 0.064 0.046 −0.024 −0.012 −0.005
0.024 0.046 0.088 −0.018 0.000 0.034
−0.099 −0.024 −0.018 1.268 −0.485 0.236

0.019 −0.012 0.000 −0.485 0.400 −0.022
0.011 −0.005 0.034 0.236 −0.022 0.308

 · (3.5)

For the genuine, Xg, we have:

Sg =


0.149 0.057 0.057 0.056 0.014 0.005
0.057 0.131 0.085 0.056 0.048 −0.043
0.057 0.085 0.125 0.058 0.030 −0.024
0.056 0.056 0.058 0.409 −0.261 −0.000
0.014 0.049 0.030 −0.261 0.417 −0.074
0.005 −0.043 −0.024 −0.000 −0.074 0.198

 · (3.6)

Note that the covariance between X4 (distance of the frame to the lower border) and X5

(distance of the frame to the upper border) is negative in both (3.5) and (3.6)! Why would
this happen? In Exercise 3.2 we will discuss this question in more detail.

At first sight, the matrices Sf and Sg look different, but they create almost the same scatter-
plots (see the discussion in Section 1.4). Similarly, the common principal component analysis
in Chapter 9 suggests a joint analysis of the covariance structure as in Flury and Riedwyl
(1988).

Scatterplots with point clouds that are “upward-sloping”, like the one in the upper left of
Figure 1.14, show variables with positive covariance. Scatterplots with “downward-sloping”
structure have negative covariance. In Figure 3.1 we show the scatterplot of X4 vs. X5 of
the entire bank data set. The point cloud is upward-sloping. However, the two sub-clouds
of counterfeit and genuine bank notes are downward-sloping.
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Figure 3.1. Scatterplot of variables X4 vs. X5 of the entire bank data
set. MVAscabank45.xpl

EXAMPLE 3.2 A textile shop manager is studying the sales of “classic blue” pullovers over
10 different periods. He observes the number of pullovers sold (X1), variation in price (X2,
in EUR), the advertisement costs in local newspapers (X3, in EUR) and the presence of a
sales assistant (X4, in hours per period). Over the periods, he observes the following data
matrix:

X =



230 125 200 109
181 99 55 107
165 97 105 98
150 115 85 71
97 120 0 82

192 100 150 103
181 80 85 111
189 90 120 93
172 95 110 86
170 125 130 78


.

http://www.quantlet.org/mdstat/codes/mva/MVAscabank45.html
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Figure 3.2. Scatterplot of variables X2 vs. X1 of the pullovers data set.
MVAscapull1.xpl

He is convinced that the price must have a large influence on the number of pullovers sold.
So he makes a scatterplot of X2 vs. X1, see Figure 3.2. A rough impression is that the cloud
is somewhat downward-sloping. A computation of the empirical covariance yields

sX1X2 =
1

9

10∑
i=1

(
X1i − X̄1

) (
X2i − X̄2

)
= −80.02,

a negative value as expected.

Note: The covariance function is scale dependent. Thus, if the prices in this example were
in Japanese Yen (JPY), we would obtain a different answer (see Exercise 3.16). A measure
of (linear) dependence independent of the scale is the correlation, which we introduce in the
next section.

http://www.quantlet.org/mdstat/codes/mva/MVAscapull1.html
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Summary
↪→ The covariance is a measure of dependence.

↪→ Covariance measures only linear dependence.

↪→ Covariance is scale dependent.

↪→ There are nonlinear dependencies that have zero covariance.

↪→ Zero covariance does not imply independence.

↪→ Independence implies zero covariance.

↪→ Negative covariance corresponds to downward-sloping scatterplots.

↪→ Positive covariance corresponds to upward-sloping scatterplots.

↪→ The covariance of a variable with itself is its variance Cov(X,X) = σXX =
σ2
X .

↪→ For small n, we should replace the factor 1
n

in the computation of the
covariance by 1

n−1
.

3.2 Correlation

The correlation between two variables X and Y is defined from the covariance as the follow-
ing:

ρXY =
Cov(X, Y )√

Var(X) Var(Y )
· (3.7)

The advantage of the correlation is that it is independent of the scale, i.e., changing the
variables’ scale of measurement does not change the value of the correlation. Therefore, the
correlation is more useful as a measure of association between two random variables than
the covariance. The empirical version of ρXY is as follows:

rXY =
sXY√
sXXsY Y

· (3.8)

The correlation is in absolute value always less than 1. It is zero if the covariance is zero
and vice-versa. For p-dimensional vectors (X1, . . . , Xp)

> we have the theoretical correlation
matrix

P =

 ρX1X1 . . . ρX1Xp
...

. . .
...

ρXpX1 . . . ρXpXp

 ,
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and its empirical version, the empirical correlation matrix which can be calculated from the
observations,

R =

 rX1X1 . . . rX1Xp
...

. . .
...

rXpX1 . . . rXpXp

 .

EXAMPLE 3.3 We obtain the following correlation matrix for the genuine bank notes:

Rg =


1.00 0.41 0.41 0.22 0.05 0.03
0.41 1.00 0.66 0.24 0.20 −0.25
0.41 0.66 1.00 0.25 0.13 −0.14
0.22 0.24 0.25 1.00 −0.63 −0.00
0.05 0.20 0.13 −0.63 1.00 −0.25
0.03 −0.25 −0.14 −0.00 −0.25 1.00

 , (3.9)

and for the counterfeit bank notes:

Rf =


1.00 0.35 0.24 −0.25 0.08 0.06
0.35 1.00 0.61 −0.08 −0.07 −0.03
0.24 0.61 1.00 −0.05 0.00 0.20
−0.25 −0.08 −0.05 1.00 −0.68 0.37

0.08 −0.07 0.00 −0.68 1.00 −0.06
0.06 −0.03 0.20 0.37 −0.06 1.00

 . (3.10)

As noted before for Cov(X4, X5), the correlation between X4 (distance of the frame to the
lower border) and X5 (distance of the frame to the upper border) is negative. This is natural,
since the covariance and correlation always have the same sign (see also Exercise 3.17).

Why is the correlation an interesting statistic to study? It is related to independence of
random variables, which we shall define more formally later on. For the moment we may
think of independence as the fact that one variable has no influence on another.

THEOREM 3.1 If X and Y are independent, then ρ(X, Y ) = Cov(X, Y ) = 0.

�
�
�A
A
A! In general, the converse is not true, as the following example shows.

EXAMPLE 3.4 Consider a standard normally-distributed random variable X and a random
variable Y = X2, which is surely not independent of X. Here we have

Cov(X, Y ) = E(XY )− E(X)E(Y ) = E(X3) = 0

(because E(X) = 0 and E(X2) = 1). Therefore ρ(X, Y ) = 0, as well. This example
also shows that correlations and covariances measure only linear dependence. The quadratic
dependence of Y = X2 on X is not reflected by these measures of dependence.
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REMARK 3.1 For two normal random variables, the converse of Theorem 3.1 is true: zero
covariance for two normally-distributed random variables implies independence. This will be
shown later in Corollary 5.2.

Theorem 3.1 enables us to check for independence between the components of a bivariate
normal random variable. That is, we can use the correlation and test whether it is zero. The
distribution of rXY for an arbitrary (X, Y ) is unfortunately complicated. The distribution
of rXY will be more accessible if (X, Y ) are jointly normal (see Chapter 5). If we transform
the correlation by Fisher’s Z-transformation,

W =
1

2
log

(
1 + rXY
1− rXY

)
, (3.11)

we obtain a variable that has a more accessible distribution. Under the hypothesis that
ρ = 0, W has an asymptotic normal distribution. Approximations of the expectation and
variance of W are given by the following:

E(W ) ≈ 1
2

log
(

1+ρXY
1−ρXY

)
Var(W ) ≈ 1

(n−3)
·

(3.12)

The distribution is given in Theorem 3.2.

THEOREM 3.2

Z =
W − E(W )√

Var(W )

L−→ N(0, 1). (3.13)

The symbol “
L−→” denotes convergence in distribution, which will be explained in more

detail in Chapter 4.

Theorem 3.2 allows us to test different hypotheses on correlation. We can fix the level of
significance α (the probability of rejecting a true hypothesis) and reject the hypothesis if the
difference between the hypothetical value and the calculated value of Z is greater than the
corresponding critical value of the normal distribution. The following example illustrates
the procedure.

EXAMPLE 3.5 Let’s study the correlation between mileage (X2) and weight (X8) for the
car data set (B.3) where n = 74. We have rX2X8 = −0.823. Our conclusions from the
boxplot in Figure 1.3 (“Japanese cars generally have better mileage than the others”) needs
to be revised. From Figure 3.3 and rX2X8, we can see that mileage is highly correlated with
weight, and that the Japanese cars in the sample are in fact all lighter than the others!
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If we want to know whether ρX2X8 is significantly different from ρ0 = 0, we apply Fisher’s
Z-transform (3.11). This gives us

w =
1

2
log

(
1 + rX2X8

1− rX2X8

)
= −1.166 and z =

−1.166− 0√
1
71

= −9.825,

i.e., a highly significant value to reject the hypothesis that ρ = 0 (the 2.5% and 97.5%
quantiles of the normal distribution are −1.96 and 1.96, respectively). If we want to test the
hypothesis that, say, ρ0 = −0.75, we obtain:

z =
−1.166− (−0.973)√

1
71

= −1.627.

This is a nonsignificant value at the α = 0.05 level for z since it is between the critical values
at the 5% significance level (i.e., −1.96 < z < 1.96).

EXAMPLE 3.6 Let us consider again the pullovers data set from example 3.2. Consider the
correlation between the presence of the sales assistants (X4) vs. the number of sold pullovers
(X1) (see Figure 3.4). Here we compute the correlation as

rX1X4 = 0.633.

The Z-transform of this value is

w =
1

2
loge

(
1 + rX1X4

1− rX1X4

)
= 0.746. (3.14)

The sample size is n = 10, so for the hypothesis ρX1X4 = 0, the statistic to consider is:

z =
√

7(0.746− 0) = 1.974 (3.15)

which is just statistically significant at the 5% level (i.e., 1.974 is just a little larger than
1.96).

REMARK 3.2 The normalizing and variance stabilizing properties of W are asymptotic. In
addition the use of W in small samples (for n ≤ 25) is improved by Hotelling’s transform
(Hotelling, 1953):

W ∗ = W − 3W + tanh(W )

4(n− 1)
with V ar(W ∗) =

1

n− 1
.

The transformed variable W ∗ is asymptotically distributed as a normal distribution.
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Figure 3.3. Mileage (X2) vs. weight (X8) of U.S. (star), European (plus
signs) and Japanese (circle) cars. MVAscacar.xpl

EXAMPLE 3.7 From the preceding remark, we obtain w∗ = 0.6663 and
√

10− 1w∗ = 1.9989
for the preceding Example 3.6. This value is significant at the 5% level.

REMARK 3.3 Note that the Fisher’s Z-transform is the inverse of the hyperbolic tangent
function: W = tanh−1(rXY ); equivalently rXY = tanh(W ) = e2W−1

e2W+1
.

REMARK 3.4 Under the assumptions of normality of X and Y , we may test their indepen-
dence (ρXY = 0) using the exact t-distribution of the statistic

T = rXY

√
n− 2

1− r2
XY

ρXY =0∼ tn−2.

Setting the probability of the first error type to α, we reject the null hypothesis ρXY = 0 if
|T | ≥ t1−α/2;n−2.

http://www.quantlet.org/mdstat/codes/mva/MVAscacar.html
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Figure 3.4. Hours of sales assistants (X4) vs. sales (X1) of pullovers.
MVAscapull2.xpl

Summary
↪→ The correlation is a standardized measure of dependence.

↪→ The absolute value of the correlation is always less than one.

↪→ Correlation measures only linear dependence.

↪→ There are nonlinear dependencies that have zero correlation.

↪→ Zero correlation does not imply independence.

↪→ Independence implies zero correlation.

↪→ Negative correlation corresponds to downward-sloping scatterplots.

↪→ Positive correlation corresponds to upward-sloping scatterplots.

http://www.quantlet.org/mdstat/codes/mva/MVAscapull2.html
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Summary (continued)

↪→ Fisher’s Z-transform helps us in testing hypotheses on correlation.

↪→ For small samples, Fisher’s Z-transform can be improved by the transfor-
mation W ∗ = W − 3W+tanh(W )

4(n−1)
.

3.3 Summary Statistics

This section focuses on the representation of basic summary statistics (means, covariances
and correlations) in matrix notation, since we often apply linear transformations to data.
The matrix notation allows us to derive instantaneously the corresponding characteristics of
the transformed variables. The Mahalanobis transformation is a prominent example of such
linear transformations.

Assume that we have observed n realizations of a p-dimensional random variable; we have a
data matrix X (n× p):

X =


x11 · · · x1p
...

...
...

...
xn1 · · · xnp

 . (3.16)

The rows xi = (xi1, . . . , xip) ∈ Rp denote the i-th observation of a p-dimensional random
variable X ∈ Rp.

The statistics that were briefly introduced in Section 3.1 and 3.2 can be rewritten in matrix
form as follows. The “center of gravity” of the n observations in Rp is given by the vector x
of the means xj of the p variables:

x =

 x1
...
xp

 = n−1X>1n. (3.17)

The dispersion of the n observations can be characterized by the covariance matrix of the
p variables. The empirical covariances defined in (3.2) and (3.3) are the elements of the
following matrix:

S = n−1X>X − x x> = n−1(X>X − n−1X>1n1>nX ). (3.18)

Note that this matrix is equivalently defined by

S =
1

n

n∑
i=1

(xi − x)(xi − x)>.
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The covariance formula (3.18) can be rewritten as S = n−1X>HX with the centering matrix

H = In − n−11n1>n . (3.19)

Note that the centering matrix is symmetric and idempotent. Indeed,

H2 = (In − n−11n1>n )(In − n−11n1>n )

= In − n−11n1>n − n−11n1>n + (n−11n1>n )(n−11n1>n )

= In − n−11n1>n = H.

As a consequence S is positive semidefinite, i.e.

S ≥ 0. (3.20)

Indeed for all a ∈ Rp,

a>Sa = n−1a>X>HX a
= n−1(a>X>H>)(HX a) since H>H = H,

= n−1y>y = n−1

p∑
j=1

y2
j ≥ 0

for y = HX a. It is well known from the one-dimensional case that n−1
∑n

i=1(xi − x)2

as an estimate of the variance exhibits a bias of the order n−1 (Breiman, 1973). In the
multidimensional case, Su = n

n−1
S is an unbiased estimate of the true covariance. (This will

be shown in Example 4.15.)

The sample correlation coefficient between the i-th and j-th variables is rXiXj , see (3.8). If
D = diag(sXiXi), then the correlation matrix is

R = D−1/2SD−1/2, (3.21)

where D−1/2 is a diagonal matrix with elements (sXiXi)
−1/2 on its main diagonal.

EXAMPLE 3.8 The empirical covariances are calculated for the pullover data set.

The vector of the means of the four variables in the dataset is x = (172.7, 104.6, 104.0, 93.8)>.

The sample covariance matrix is S =


1037.2 −80.2 1430.7 271.4
−80.2 219.8 92.1 −91.6
1430.7 92.1 2624 210.3
271.4 −91.6 210.3 177.4

 .

The unbiased estimate of the variance (n =10) is equal to

Su =
10

9
S =


1152.5 −88.9 1589.7 301.6
−88.9 244.3 102.3 −101.8
1589.7 102.3 2915.6 233.7
301.6 −101.8 233.7 197.1

 .
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The sample correlation matrix is R =


1 −0.17 0.87 0.63
−0.17 1 0.12 −0.46

0.87 0.12 1 0.31
0.63 −0.46 0.31 1

 .

Linear Transformation

In many practical applications we need to study linear transformations of the original data.
This motivates the question of how to calculate summary statistics after such linear trans-
formations.

Let A be a (q × p) matrix and consider the transformed data matrix

Y = XA> = (y1, . . . , yn)>. (3.22)

The row yi = (yi1, . . . , yiq) ∈ Rq can be viewed as the i-th observation of a q-dimensional
random variable Y = AX. In fact we have yi = xiA>. We immediately obtain the mean
and the empirical covariance of the variables (columns) forming the data matrix Y :

y =
1

n
Y>1n =

1

n
AX>1n = Ax (3.23)

SY =
1

n
Y>HY =

1

n
AX>HXA> = ASXA>. (3.24)

Note that if the linear transformation is nonhomogeneous, i.e.,

yi = Axi + b where b(q × 1),

only (3.23) changes: y = Ax+ b. The formula (3.23) and (3.24) are useful in the particular
case of q = 1, i.e., y = Xa⇔ yi = a>xi; i = 1, . . . , n:

y = a>x

Sy = a>SXa.

EXAMPLE 3.9 Suppose that X is the pullover data set. The manager wants to compute
his mean expenses for advertisement (X3) and sales assistant (X4).

Suppose that the sales assistant charges an hourly wage of 10 EUR. Then the shop manager
calculates the expenses Y as Y = X3 + 10X4. Formula (3.22) says that this is equivalent to
defining the matrix A(4× 1) as:

A = (0, 0, 1, 10).

Using formulas (3.23) and (3.24), it is now computationally very easy to obtain the sample
mean y and the sample variance Sy of the overall expenses:

y = Ax = (0, 0, 1, 10)


172.7
104.6
104.0
93.8

 = 1042.0
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SY = ASXA> = (0, 0, 1, 10)


1152.5 −88.9 1589.7 301.6
−88.9 244.3 102.3 −101.8
1589.7 102.3 2915.6 233.7
301.6 −101.8 233.7 197.1




0
0
1

10


= 2915.6 + 4674 + 19710 = 27299.6.

Mahalanobis Transformation

A special case of this linear transformation is

zi = S−1/2(xi − x), i = 1, . . . , n. (3.25)

Note that for the transformed data matrix Z = (z1, . . . , zn)>,

SZ = n−1Z>HZ = Ip. (3.26)

So the Mahalanobis transformation eliminates the correlation between the variables and
standardizes the variance of each variable. If we apply (3.24) using A = S−1/2, we obtain
the identity covariance matrix as indicated in (3.26).

Summary
↪→ The center of gravity of a data matrix is given by its mean vector x =

n−1X>1n.

↪→ The dispersion of the observations in a data matrix is given by the empir-
ical covariance matrix S = n−1X>HX .

↪→ The empirical correlation matrix is given by R = D−1/2SD−1/2.

↪→ A linear transformation Y = XA> of a data matrix X has mean Ax and
empirical covariance ASXA>.

↪→ The Mahalanobis transformation is a linear transformation zi = S−1/2(xi−
x) which gives a standardized, uncorrelated data matrix Z.

3.4 Linear Model for Two Variables

We have looked many times now at downward- and upward-sloping scatterplots. What does
the eye define here as slope? Suppose that we can construct a line corresponding to the
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general direction of the cloud. The sign of the slope of this line would correspond to the
upward and downward directions. Call the variable on the vertical axis Y and the one on
the horizontal axis X. A slope line is a linear relationship between X and Y :

yi = α + βxi + εi, i = 1, . . . , n. (3.27)

Here, α is the intercept and β is the slope of the line. The errors (or deviations from the
line) are denoted as εi and are assumed to have zero mean and finite variance σ2. The task
of finding (α, β) in (3.27) is referred to as a linear adjustment.

In Section 3.6 we shall derive estimators for α and β more formally, as well as accurately
describe what a “good” estimator is. For now, one may try to find a “good” estimator (α̂, β̂)
via graphical techniques. A very common numerical and statistical technique is to use those
α̂ and β̂ that minimize:

(α̂, β̂) = arg min
(α,β)

n∑
i=1

(yi − α− βxi)2. (3.28)

The solutions to this task are the estimators:

β̂ =
sXY
sXX

(3.29)

α̂ = y − β̂x. (3.30)

The variance of β̂ is:

V ar(β̂) =
σ2

n · sXX
. (3.31)

The standard error (SE) of the estimator is the square root of (3.31),

SE(β̂) = {V ar(β̂)}1/2 =
σ

(n · sXX)1/2
. (3.32)

We can use this formula to test the hypothesis that β=0. In an application the variance
σ2 has to be estimated by an estimator σ̂2 that will be given below. Under a normality
assumption of the errors, the t-test for the hypothesis β = 0 works as follows.

One computes the statistic

t =
β̂

SE(β̂)
(3.33)

and rejects the hypothesis at a 5% significance level if | t |≥ t0.975;n−2, where the 97.5%
quantile of the Student’s tn−2 distribution is clearly the 95% critical value for the two-sided
test. For n ≥ 30, this can be replaced by 1.96, the 97.5% quantile of the normal distribution.
An estimator σ̂2 of σ2 will be given in the following.
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Figure 3.5. Regression of sales (X1) on price (X2) of pullovers.
MVAregpull.xpl

EXAMPLE 3.10 Let us apply the linear regression model (3.27) to the “classic blue” pullovers.
The sales manager believes that there is a strong dependence on the number of sales as a
function of price. He computes the regression line as shown in Figure 3.5.

How good is this fit? This can be judged via goodness-of-fit measures. Define

ŷi = α̂ + β̂xi, (3.34)

as the predicted value of y as a function of x. With ŷ the textile shop manager in the above
example can predict sales as a function of prices x. The variation in the response variable
is:

nsY Y =
n∑
i=1

(yi − y)2. (3.35)

http://www.quantlet.org/mdstat/codes/mva/MVAregpull.html
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The variation explained by the linear regression (3.27) with the predicted values (3.34) is:

n∑
i=1

(ŷi − y)2. (3.36)

The residual sum of squares, the minimum in (3.28), is given by:

RSS =
n∑
i=1

(yi − ŷi)2. (3.37)

An unbiased estimator σ̂2 of σ2 is given by RSS/(n− 2).
The following relation holds between (3.35)–(3.37):

n∑
i=1

(yi − y)2 =
n∑
i=1

(ŷi − y)2 +
n∑
i=1

(yi − ŷi)2, (3.38)

total variation = explained variation + unexplained variation.

The coefficient of determination is r2:

r2 =

n∑
i=1

(ŷi − y)2

n∑
i=1

(yi − y)2

=
explained variation

total variation
· (3.39)

The coefficient of determination increases with the proportion of explained variation by the
linear relation (3.27). In the extreme cases where r2 = 1, all of the variation is explained by
the linear regression (3.27). The other extreme, r2 = 0, is where the empirical covariance is
sXY = 0. The coefficient of determination can be rewritten as

r2 = 1−

n∑
i=1

(yi − ŷi)2

n∑
i=1

(yi − y)2

. (3.40)

From (3.39), it can be seen that in the linear regression (3.27), r2 = r2
XY is the square of

the correlation between X and Y .

EXAMPLE 3.11 For the above pullover example, we estimate

α̂ = 210.774 and β̂ = −0.364.

The coefficient of determination is
r2 = 0.028.

The textile shop manager concludes that sales are not influenced very much by the price (in
a linear way).
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Figure 3.6. Regression of sales (X1) on price (X2) of pullovers. The overall
mean is given by the dashed line. MVAregzoom.xpl

The geometrical representation of formula (3.38) can be graphically evaluated using Fig-
ure 3.6. This plot shows a section of the linear regression of the “sales” on “price” for the
pullovers data. The distance between any point and the overall mean is given by the distance
between the point and the regression line and the distance between the regression line and
the mean. The sums of these two distances represent the total variance (solid blue lines
from the observations to the overall mean), i.e., the explained variance (distance from the
regression curve to the mean) and the unexplained variance (distance from the observation
to the regression line), respectively.

In general the regression of Y on X is different from that of X on Y . We will demonstrate
this using once again the Swiss bank notes data.

EXAMPLE 3.12 The least squares fit of the variables X4 (X) and X5 (Y ) from the genuine
bank notes are calculated. Figure 3.7 shows the fitted line if X5 is approximated by a linear

http://www.quantlet.org/mdstat/codes/mva/MVAregzoom.html
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Swiss bank notes
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Figure 3.7. Regression of X5 (upper inner frame) on X4 (lower inner
frame) for genuine bank notes. MVAregbank.xpl

function of X4. In this case the parameters are

α̂ = 15.464 and β̂ = −0.638.

If we predict X4 by a function of X5 instead, we would arrive at a different intercept and
slope

α̂ = 14.666 and β̂ = −0.626.

The linear regression of Y on X is given by minimizing (3.28), i.e., the vertical errors εi. The
linear regression of X on Y does the same but here the errors to be minimized in the least
squares sense are measured horizontally. As seen in Example 3.12, the two least squares lines
are different although both measure (in a certain sense) the slope of the cloud of points.

As shown in the next example, there is still one other way to measure the main direction of
a cloud of points: it is related to the spectral decomposition of covariance matrices.

http://www.quantlet.org/mdstat/codes/mva/MVAregbank.html
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normal sample, n=150
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Figure 3.8. Scatterplot for a sample of two correlated normal random
variables (sample size n = 150, ρ = 0.8). MVAcorrnorm.xpl

EXAMPLE 3.13 Suppose that we have the following covariance matrix:

Σ =

(
1 ρ
ρ 1

)
.

Figure 3.8 shows a scatterplot of a sample of two normal random variables with such a
covariance matrix (with ρ = 0.8).

The eigenvalues of Σ are, as was shown in Example 2.4, solutions to:∣∣∣∣ 1− λ ρ
ρ 1− λ

∣∣∣∣ = 0.

Hence, λ1 = 1 + ρ and λ2 = 1 − ρ. Therefore Λ = diag(1 + ρ, 1 − ρ). The eigenvector
corresponding to λ1 = 1 + ρ can be computed from the system of linear equations:(

1 ρ
ρ 1

)(
x1

x2

)
= (1 + ρ)

(
x1

x2

)

http://www.quantlet.org/mdstat/codes/mva/MVAcorrnorm.html
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or
x1 + ρx2 = x1 + ρx1

ρx1 + x2 = x2 + ρx2

and thus
x1 = x2.

The first (standardized) eigenvector is

γ1 =

(
1
/√

2

1
/√

2

)
.

The direction of this eigenvector is the diagonal in Figure 3.8 and captures the main variation
in this direction. We shall come back to this interpretation in Chapter 9. The second
eigenvector (orthogonal to γ1) is

γ2 =

(
1
/√

2

−1
/√

2

)
.

So finally

Γ = (γ1 , γ2) =

(
1
/√

2 1
/√

2

1
/√

2 −1
/√

2

)
and we can check our calculation by

Σ = Γ Λ Γ> .

The first eigenvector captures the main direction of a point cloud. The linear regression of
Y on X and X on Y accomplished, in a sense, the same thing. In general the direction of
the eigenvector and the least squares slope are different. The reason is that the least squares
estimator minimizes either vertical or horizontal errors (in 3.28), whereas the first eigenvector
corresponds to a minimization that is orthogonal to the eigenvector (see Chapter 9).

Summary
↪→ The linear regression y = α+βx+ ε models a linear relation between two

one-dimensional variables.

↪→ The sign of the slope β̂ is the same as that of the covariance and the
correlation of x and y.

↪→ A linear regression predicts values of Y given a possible observation x of
X.
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Summary (continued)

↪→ The coefficient of determination r2 measures the amount of variation in
Y which is explained by a linear regression on X.

↪→ If the coefficient of determination is r2 = 1, then all points lie on one line.

↪→ The regression line of X on Y and the regression line of Y on X are in
general different.

↪→ The t-test for the hypothesis β = 0 is t = β̂

SE(β̂)
, where SE(β̂) = σ̂

(n·sXX)1/2 .

↪→ The t-test rejects the null hypothesis β = 0 at the level of significance α
if | t |≥ t1−α/2;n−2 where t1−α;n−2 is the 1− α/2 quantile of the Student’s
t-distribution with (n− 2) degrees of freedom.

↪→ The standard error SE(β̂) increases/decreases with less/more spread in
the X variables.

↪→ The direction of the first eigenvector of the covariance matrix of a two-
dimensional point cloud is different from the least squares regression line.

3.5 Simple Analysis of Variance

In a simple (i.e., one–factorial) analysis of variance (ANOVA), it is assumed that the average
values of the response variable y are induced by one simple factor. Suppose that this factor
takes on p values and that for each factor level, we have m = n/p observations. The sample
is of the form given in Table 3.5, where all of the observations are independent.

sample element factor levels l
1 y11 · · · y1l · · · y1p

2
...

...
...

...
...

...
...

k yk1 · · · ykl · · · ykp
...

...
...

...
m = n/p ym1 · · · yml · · · ymp

Table 3.5. Observation structure of a simple ANOVA.

The goal of a simple ANOVA is to analyze the observation structure

ykl = µl + εkl for k = 1, . . . ,m, and l = 1, . . . , p. (3.41)
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shop marketing strategy
k factor l

1 2 3
1 9 10 18
2 11 15 14
3 10 11 17
4 12 15 9
5 7 15 14
6 11 13 17
7 12 7 16
8 10 15 14
9 11 13 17
10 13 10 15

Table 3.6. Pullover sales as function of marketing strategy.

Each factor has a mean value µl. Each observation ykl is assumed to be a sum of the
corresponding factor mean value µl and a zero mean random error εkl. The linear regression
model falls into this scheme with m = 1, p = n and µi = α + βxi, where xi is the i-th level
value of the factor.

EXAMPLE 3.14 The “classic blue” pullover company analyzes the effect of three marketing
strategies

1 advertisement in local newspaper,
2 presence of sales assistant,
3 luxury presentation in shop windows.

All of these strategies are tried in 10 different shops. The resulting sale observations are
given in Table 3.6.

There are p = 3 factors and n = mp = 30 observations in the data. The “classic blue”
pullover company wants to know whether all three marketing strategies have the same mean
effect or whether there are differences. Having the same effect means that all µl in (3.41)
equal one value, µ. The hypothesis to be tested is therefore

H0 : µl = µ for l = 1, . . . , p.

The alternative hypothesis, that the marketing strategies have different effects, can be formu-
lated as

H1 : µl 6= µl′ for some l and l′.

This means that one marketing strategy is better than the others.
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The method used to test this problem is to compute as in (3.38) the total variation and to
decompose it into the sources of variation. This gives:

p∑
l=1

m∑
k=1

(ykl − ȳ)2 = m

p∑
l=1

(ȳl − ȳ)2 +

p∑
l=1

m∑
k=1

(ykl − ȳl)2 (3.42)

The total variation (sum of squares=SS) is:

SS(reduced) =

p∑
l=1

m∑
k=1

(ykl − ȳ)2 (3.43)

where ȳ = n−1
∑p

l=1

∑m
k=1 ykl is the overall mean. Here the total variation is denoted as

SS(reduced), since in comparison with the model under the alternativeH1, we have a reduced
set of parameters. In fact there is 1 parameter µ = µl under H0. Under H1, the “full” model,
we have three parameters, namely the three different means µl.

The variation under H1 is therefore:

SS(full) =

p∑
l=1

m∑
k=1

(ykl − ȳl)2 (3.44)

where ȳl = m−1
∑m

k=1 ykl is the mean of each factor l. The hypothetical model H0 is called
reduced, since it has (relative to H1) fewer parameters.

The F -test of the linear hypothesis is used to compare the difference in the variations under
the reduced model H0 (3.43) and the full model H1 (3.44) to the variation under the full
model H1:

F =
{SS(reduced)− SS(full)}/{df(r)− df(f)}

SS(full)/df(f)
. (3.45)

Here df(f) and df(r) denote the degrees of freedom under the full model and the reduced
model respectively. The degrees of freedom are essential in specifying the shape of the F -
distribution. They have a simple interpretation: df(·) is equal to the number of observations
minus the number of parameters in the model.

From Example 3.14, p = 3 parameters are estimated under the full model, i.e., df(f) =
n− p = 30− 3 = 27. Under the reduced model, there is one parameter to estimate, namely
the overall mean, i.e., df(r) = n− 1 = 29. We can compute

SS(reduced) = 260.3

and
SS(full) = 157.7.

The F -statistic (3.45) is therefore

F =
(260.3− 157.7)/2

157.7/27
= 8.78.
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This value needs to be compared to the quantiles of the F2,27 distribution. Looking up the
critical values in a F -distribution shows that the test statistic above is highly significant.
We conclude that the marketing strategies have different effects.

The F -test in a linear regression model

The t-test of a linear regression model can be put into this framework. For a linear regression
model (3.27), the reduced model is the one with β = 0:

yi = α + 0 · xi + εi.

The reduced model has n− 1 degrees of freedom and one parameter, the intercept α.

The full model is given by β 6= 0,

yi = α + β · xi + εi,

and has n− 2 degrees of freedom, since there are two parameters (α, β).

The SS(reduced) equals

SS(reduced) =
n∑
i=1

(yi − ȳ)2 = total variation.

The SS(full) equals

SS(full) =
n∑
i=1

(yi − ŷi)2 = RSS = unexplained variation.

The F -test is therefore, from (3.45),

F =
(total variation - unexplained variation) /1

(unexplained variation)/(n− 2)
(3.46)

=
explained variation

(unexplained variation)/(n− 2)
. (3.47)

Using the estimators α̂ and β̂ the explained variation is:
n∑
i=1

(ŷi − ȳ)2 =
n∑
i=1

(
α̂ + β̂xi − ȳ

)2

=
n∑
i=1

{
(ȳ − β̂x̄) + β̂xi − ȳ

}2

=
n∑
i=1

β̂2(xi − x̄)2

= β̂2nsXX .
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From (3.32) the F -ratio (3.46) is therefore:

F =
β̂2nsXX

RSS/(n− 2)
(3.48)

=

(
β̂

SE(β̂)

)2

. (3.49)

The t-test statistic (3.33) is just the square root of the F - statistic (3.49).

Note, using (3.39) the F -statistic can be rewritten as

F =
r2/1

(1− r2)/(n− 2)
.

In the pullover Example 3.11, we obtain F = 0.028
0.972

8
1

= 0.2305, so that the null hypothesis
β = 0 cannot be rejected. We conclude therefore that there is only a minor influence of
prices on sales.

Summary
↪→ Simple ANOVA models an output Y as a function of one factor.

↪→ The reduced model is the hypothesis of equal means.

↪→ The full model is the alternative hypothesis of different means.

↪→ The F -test is based on a comparison of the sum of squares under the full
and the reduced models.

↪→ The degrees of freedom are calculated as the number of observations minus
the number of parameters.

↪→ The F -statistic is

F =
{SS(reduced)− SS(full)}/{df(r)− df(f)}

SS(full)/df(f)
.

↪→ The F -test rejects the null hypothesis if the F -statistic is larger than the
95% quantile of the Fdf(r)−df(f),df(f) distribution.

↪→ The F -test statistic for the slope of the linear regression model yi = α +
βxi + εi is the square of the t-test statistic.
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3.6 Multiple Linear Model

The simple linear model and the analysis of variance model can be viewed as a particular
case of a more general linear model where the variations of one variable y are explained by p
explanatory variables x respectively. Let y (n× 1) and X (n× p) be a vector of observations
on the response variable and a data matrix on the p explanatory variables. An important
application of the developed theory is the least squares fitting. The idea is to approximate
y by a linear combination ŷ of columns of X , i.e., ŷ ∈ C(X ). The problem is to find β̂ ∈ Rp
such that ŷ = X β̂ is the best fit of y in the least-squares sense. The linear model can be
written as

y = Xβ + ε, (3.50)

where ε are the errors. The least squares solution is given by β̂:

β̂ = arg min
β

(y −Xβ)>(y −Xβ) = arg min
β

ε>ε. (3.51)

Suppose that (X>X ) is of full rank and thus invertible. Minimizing the expression (3.51)
with respect to β yields:

β̂ = (X>X )−1X>y. (3.52)

The fitted value ŷ = X β̂ = X (X>X )−1X>y = Py is the projection of y onto C(X ) as
computed in (2.47).

The least squares residuals are

e = y − ŷ = y −X β̂ = Qy = (In − P)y.

The vector e is the projection of y onto the orthogonal complement of C(X ).

REMARK 3.5 A linear model with an intercept α can also be written in this framework.
The approximating equation is:

yi = α + β1xi1 + . . .+ βpxip + εi ; i = 1, . . . , n.

This can be written as:
y = X ∗β∗ + ε

where X ∗ = (1n X ) (we add a column of ones to the data). We have by (3.52):

β̂∗ =

(
α̂

β̂

)
= (X ∗>X ∗)−1X ∗>y.

EXAMPLE 3.15 Let us come back to the “classic blue” pullovers example. In Example 3.11,
we considered the regression fit of the sales X1 on the price X2 and concluded that there was
only a small influence of sales by changing the prices. A linear model incorporating all three
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variables allows us to approximate sales as a linear function of price (X2), advertisement
(X3) and presence of sales assistants (X4) simultaneously. Adding a column of ones to the
data (in order to estimate the intercept α) leads to

α̂ = 65.670 and β̂1 = −0.216, β̂2 = 0.485, β̂3 = 0.844.

The coefficient of determination is computed as before in (3.40) and is:

r2 = 1− e>e∑
(yi − y)2 = 0.907.

We conclude that the variation of X1 is well approximated by the linear relation.

REMARK 3.6 The coefficient of determination is influenced by the number of regressors.
For a given sample size n, the r2 value will increase by adding more regressors into the
linear model. The value of r2 may therefore be high even if possibly irrelevant regressors are
included. A corrected coefficient of determination for p regressors and a constant intercept
(p+ 1 parameters) is

r2
adj = r2 − p(1− r2)

n− (p+ 1)
. (3.53)

EXAMPLE 3.16 The corrected coefficient of determination for Example 3.15 is

r2
adj = 0.907− 3(1− 0.9072)

10− 3− 1
= 0.818.

This means that 81.8% of the variation of the response variable is explained by the explanatory
variables.

Note that the linear model (3.50) is very flexible and can model nonlinear relationships
between the response y and the explanatory variables x. For example, a quadratic relation
in one variable x could be included. Then yi = α + β1xi + β2x

2
i + εi could be written in

matrix notation as in (3.50), y = Xβ + ε where

X =


1 x1 x2

1

1 x2 x2
2

...
...

...
1 xn x2

n

 .
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Properties of β̂

When yi is the i-th observation of a random variable Y , the errors are also random. Under
standard assumptions (independence, zero mean and constant variance σ2), inference can be
conducted on β. Using the properties of Chapter 4, it is easy to prove:

E(β̂) = β

Var(β̂) = σ2(X>X )−1.

The analogue of the t-test for the multivariate linear regression situation is

t =
β̂j

SE(β̂j)
.

The standard error of each coefficient β̂j is given by the square root of the diagonal elements

of the matrix Var(β̂). In standard situations, the variance σ2 of the error ε is not known.
One may estimate it by

σ̂2 =
1

n− (p+ 1)
(y − ŷ)>(y − ŷ),

where (p + 1) is the dimension of β. In testing βj = 0 we reject the hypothesis at the
significance level α if |t| ≥ t1−α/2;n−(p+1). More general issues on testing linear models are
addressed in Chapter 7.

The ANOVA Model in Matrix Notation

The simple ANOVA problem (Section 3.5) may also be rewritten in matrix terms. Recall the
definition of a vector of ones from (2.1) and define a vector of zeros as 0n. Then construct
the following (n× p) matrix, (here p = 3),

X =

 1m 0m 0m
0m 1m 0m
0m 0m 1m

 , (3.54)

where m = 10. Equation (3.41) then reads as follows.

The parameter vector is β = (µ1, µ2, µ3)>. The data set from Example 3.14 can therefore
be written as a linear model y = Xβ + ε where y ∈ Rn with n = m · p is the stacked vector
of the columns of Table 3.5. The projection into the column space C(X ) of (3.54) yields the
least-squares estimator β̂ = (X>X )−1X>y. Note that (X>X )−1 = (1/10)I3 and that X>y =
(106, 124, 151)> is the sum

∑m
k=1 ykj for each factor, i.e., the 3 column sums of Table 3.5.

The least squares estimator is therefore the vector β̂H1 = (µ̂1, µ̂2, µ̂3) = (10.6, 12.4, 15.1)>

of sample means for each factor level j = 1, 2, 3. Under the null hypothesis of equal mean
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values µ1 = µ2 = µ3 = µ, we estimate the parameters under the same constraints. This can
be put into the form of a linear constraint:

−µ1 + µ2 = 0

−µ1 + µ3 = 0.

This can be written as Aβ = a, where

a =

(
0
0

)
and

A =

(
−1 1 0
−1 0 1

)
.

The constrained least-squares solution can be shown (Exercise 3.24) to be given by:

β̂H0 = β̂H1 − (X>X )−1A>{A(X>X )−1A>}−1(Aβ̂H1 − a). (3.55)

It turns out that (3.55) amounts to simply calculating the overall mean ȳ = 12.7 of the
response variable y: β̂H0 = (12.7, 12.7, 12.7)>.

The F-test that has already been applied in Example 3.14 can be written as

F =
{||y −X β̂H0||2 − ||y −X β̂H1||2}/2

||y −X β̂H1 ||2/27
(3.56)

which gives the same significant value 8.78. Note that again we compare the RSSH0 of the
reduced model to the RSSH1 of the full model. It corresponds to comparing the lengths of
projections into different column spaces. This general approach in testing linear models is
described in detail in Chapter 7.

Summary
↪→ The relation y = Xβ + e models a linear relation between a one-

dimensional variable Y and a p-dimensional variable X. Py gives the
best linear regression fit of the vector y onto C(X ). The least squares

parameter estimator is β̂ = (X>X )−1X>y.

↪→ The simple ANOVA model can be written as a linear model.

↪→ The ANOVA model can be tested by comparing the length of the projec-
tion vectors.
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Summary (continued)

↪→ The test statistic of the F-Test can be written as

{||y −X β̂H0||2 − ||y −X β̂H1||2}/{df(r)− df(f)}
||y −X β̂H1||2/df(f)

.

↪→ The adjusted coefficient of determination is

r2
adj = r2 − p(1− r2)

n− (p+ 1)
.

3.7 Boston Housing

X x median(X) Var(X) std(X)
X1 3.61 0.26 73.99 8.60
X2 11.36 0.00 543.94 23.32
X3 11.14 9.69 47.06 6.86
X4 0.07 0.00 0.06 0.25
X5 0.55 0.54 0.01 0.12
X6 6.28 6.21 0.49 0.70
X7 68.57 77.50 792.36 28.15
X8 3.79 3.21 4.43 2.11
X9 9.55 5.00 75.82 8.71
X10 408.24 330.00 28405.00 168.54
X11 18.46 19.05 4.69 2.16
X12 356.67 391.44 8334.80 91.29
X13 12.65 11.36 50.99 7.14
X14 22.53 21.20 84.59 9.20

Table 3.9. Descriptive statistics for the Boston Housing data set.
MVAdescbh.xpl

The main statistics presented so far can be computed for the data matrix X (506× 14) from
our Boston Housing data set. The sample means and the sample medians of each variable
are displayed in Table 3.9. The table also provides the unbiased estimates of the variance
of each variable and the corresponding standard deviations. The comparison of the means

http://www.quantlet.org/mdstat/codes/mva/MVAdescbh.html
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and the medians confirms the assymmetry of the components of X that was pointed out in
Section 1.8.

The (unbiased) sample covariance matrix is given by the following (14× 14) matrix Sn:



73.99 −40.22 23.99−0.12 0.42 −1.33 85.41 −6.88 46.85 844.82 5.40 −302.38 27.99 −30.72
−40.22 543.94 −85.41−0.25−1.40 5.11−373.90 32.63 −63.35−1236.45−19.78 373.72 −68.78 77.32

23.99 −85.41 47.06 0.11 0.61 −1.89 124.51 −10.23 35.55 833.36 5.69 −223.58 29.58 −30.52
−0.12 −0.25 0.11 0.06 0.00 0.02 0.62 −0.05 −0.02 −1.52 −0.07 1.13 −0.10 0.41

0.42 −1.40 0.61 0.00 0.01 −0.02 2.39 −0.19 0.62 13.05 0.05 −4.02 0.49 −0.46
−1.33 5.11 −1.89 0.02−0.02 0.49 −4.75 0.30 −1.28 −34.58 −0.54 8.22 −3.08 4.49
85.41 −373.90 124.51 0.62 2.39 −4.75 792.36 −44.33 111.77 2402.69 15.94 −702.94 121.08 −97.59
−6.88 32.63 −10.23−0.05−0.19 0.30 −44.33 4.43 −9.07 −189.66 −1.06 56.04 −7.47 4.84
46.85 −63.35 35.55−0.02 0.62 −1.28 111.77 −9.07 75.82 1335.76 8.76 −353.28 30.39 −30.56

844.82−1236.45 833.36−1.52 13.05−34.58 2402.69−189.66 1335.76 28404.76 168.15−6797.91 654.71−726.26
5.40 −19.78 5.69−0.07 0.05 −0.54 15.94 −1.06 8.76 168.15 4.69 −35.06 5.78 −10.11

−302.38 373.72−223.58 1.13−4.02 8.22−702.94 56.04−353.28−6797.91−35.06 8334.75−238.67 279.99
27.99 −68.78 29.58−0.10 0.49 −3.08 121.08 −7.47 30.39 654.71 5.78 −238.67 50.99 −48.45
−30.72 77.32 −30.52 0.41−0.46 4.49 −97.59 4.84 −30.56 −726.26−10.11 279.99 −48.45 84.59



,

and the corresponding correlation matrix R(14× 14) is:

1.00−0.20 0.41−0.06 0.42−0.22 0.35−0.38 0.63 0.58 0.29−0.39 0.46−0.39
−0.20 1.00−0.53−0.04−0.52 0.31−0.57 0.66−0.31−0.31−0.39 0.18−0.41 0.36

0.41−0.53 1.00 0.06 0.76−0.39 0.64−0.71 0.60 0.72 0.38−0.36 0.60−0.48
−0.06−0.04 0.06 1.00 0.09 0.09 0.09−0.10−0.01−0.04−0.12 0.05−0.05 0.18

0.42−0.52 0.76 0.09 1.00−0.30 0.73−0.77 0.61 0.67 0.19−0.38 0.59−0.43
−0.22 0.31−0.39 0.09−0.30 1.00−0.24 0.21−0.21−0.29−0.36 0.13−0.61 0.70

0.35−0.57 0.64 0.09 0.73−0.24 1.00−0.75 0.46 0.51 0.26−0.27 0.60−0.38
−0.38 0.66−0.71−0.10−0.77 0.21−0.75 1.00−0.49−0.53−0.23 0.29−0.50 0.25

0.63−0.31 0.60−0.01 0.61−0.21 0.46−0.49 1.00 0.91 0.46−0.44 0.49−0.38
0.58−0.31 0.72−0.04 0.67−0.29 0.51−0.53 0.91 1.00 0.46−0.44 0.54−0.47
0.29−0.39 0.38−0.12 0.19−0.36 0.26−0.23 0.46 0.46 1.00−0.18 0.37−0.51
−0.39 0.18−0.36 0.05−0.38 0.13−0.27 0.29−0.44−0.44−0.18 1.00−0.37 0.33

0.46−0.41 0.60−0.05 0.59−0.61 0.60−0.50 0.49 0.54 0.37−0.37 1.00−0.74
−0.39 0.36−0.48 0.18−0.43 0.70−0.38 0.25−0.38−0.47−0.51 0.33−0.74 1.00



.

Analyzing R confirms most of the comments made from examining the scatterplot matrix
in Chapter 1. In particular, the correlation between X14 (the value of the house) and all
the other variables is given by the last row (or column) of R. The highest correlations (in
absolute values) are in decreasing order X13, X6, X11, X10, etc.

Using the Fisher’s Z-transform on each of the correlations between X14 and the other vari-
ables would confirm that all are significantly different from zero, except the correlation
between X14 and X4 (the indicator variable for the Charles River). We know, however, that
the correlation and Fisher’s Z-transform are not appropriate for binary variable.

The same descriptive statistics can be calculated for the transformed variables (transforma-
tions were motivated in Section 1.8). The results are given in Table 3.10 and as can be seen
most of the variables are now more symmetric. Note that the covariances and the correla-
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X̃ x̃ median(X̃) Var(X̃) std(X̃)

X̃1 −0.78 −1.36 4.67 2.16

X̃2 1.14 0.00 5.44 2.33

X̃3 2.16 2.27 0.60 0.78

X̃4 0.07 0.00 0.06 0.25

X̃5 −0.61 −0.62 0.04 0.20

X̃6 1.83 1.83 0.01 0.11

X̃7 5.06 5.29 12.72 3.57

X̃8 1.19 1.17 0.29 0.54

X̃9 1.87 1.61 0.77 0.87

X̃10 5.93 5.80 0.16 0.40

X̃11 2.15 2.04 1.86 1.36

X̃12 3.57 3.91 0.83 0.91

X̃13 3.42 3.37 0.97 0.99

X̃14 3.03 3.05 0.17 0.41

Table 3.10. Descriptive statistics for the Boston Housing data set after
the transformation. MVAdescbh.xpl

tions are sensitive to these nonlinear transformations. For example, the correlation matrix
is now

1.00−0.52 0.74 0.03 0.81−0.32 0.70−0.74 0.84 0.81 0.45−0.48 0.62−0.57
−0.52 1.00−0.66−0.04−0.57 0.31−0.53 0.59−0.35−0.31−0.35 0.18−0.45 0.36

0.74−0.66 1.00 0.08 0.75−0.43 0.66−0.73 0.58 0.66 0.46−0.33 0.62−0.55
0.03−0.04 0.08 1.00 0.08 0.08 0.07−0.09 0.01−0.04−0.13 0.05−0.06 0.16
0.81−0.57 0.75 0.08 1.00−0.32 0.78−0.86 0.61 0.67 0.34−0.38 0.61−0.52
−0.32 0.31−0.43 0.08−0.32 1.00−0.28 0.28−0.21−0.31−0.32 0.13−0.64 0.61

0.70−0.53 0.66 0.07 0.78−0.28 1.00−0.80 0.47 0.54 0.38−0.29 0.64−0.48
−0.74 0.59−0.73−0.09−0.86 0.28−0.80 1.00−0.54−0.60−0.32 0.32−0.56 0.41

0.84−0.35 0.58 0.01 0.61−0.21 0.47−0.54 1.00 0.82 0.40−0.41 0.46−0.43
0.81−0.31 0.66−0.04 0.67−0.31 0.54−0.60 0.82 1.00 0.48−0.43 0.53−0.56
0.45−0.35 0.46−0.13 0.34−0.32 0.38−0.32 0.40 0.48 1.00−0.20 0.43−0.51
−0.48 0.18−0.33 0.05−0.38 0.13−0.29 0.32−0.41−0.43−0.20 1.00−0.36 0.40

0.62−0.45 0.62−0.06 0.61−0.64 0.64−0.56 0.46 0.53 0.43−0.36 1.00−0.83
−0.57 0.36−0.55 0.16−0.52 0.61−0.48 0.41−0.43−0.56−0.51 0.40−0.83 1.00



.

Notice that some of the correlations between X̃14 and the other variables have increased.

http://www.quantlet.org/mdstat/codes/mva/MVAdescbh.html
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Variable β̂j SE(β̂j) t p-value
constant 4.1769 0.3790 11.020 0.0000

X̃1 −0.0146 0.0117 −1.254 0.2105

X̃2 0.0014 0.0056 0.247 0.8051

X̃3 −0.0127 0.0223 −0.570 0.5692

X̃4 0.1100 0.0366 3.002 0.0028

X̃5 −0.2831 0.1053 −2.688 0.0074

X̃6 0.4211 0.1102 3.822 0.0001

X̃7 0.0064 0.0049 1.317 0.1885

X̃8 −0.1832 0.0368 −4.977 0.0000

X̃9 0.0684 0.0225 3.042 0.0025

X̃10 −0.2018 0.0484 −4.167 0.0000

X̃11 −0.0400 0.0081 −4.946 0.0000

X̃12 0.0445 0.0115 3.882 0.0001

X̃13 −0.2626 0.0161 −16.320 0.0000

Table 3.11. Linear regression results for all variables of Boston Housing
data set. MVAlinregbh.xpl

If we want to explain the variations of the price X̃14 by the variation of all the other variables
X̃1, . . . , X̃13 we could estimate the linear model

X̃14 = β0 −
13∑
j=1

βjX̃j + ε. (3.57)

The result is given in Table 3.11.

The value of r2 (0.765) and r2
adj (0.759) show that most of the variance of X14 is explained

by the linear model (3.57).

Again we see that the variations of X̃14 are mostly explained by (in decreasing order of

the absolute value of the t-statistic) X̃13, X̃8, X̃11, X̃10, X̃12, X̃6, X̃9, X̃4 and X̃5. The other

variables X̃1, X̃2, X̃3 and X̃7 seem to have little influence on the variations of X̃14. This will
be confirmed by the testing procedures that will be developed in Chapter 7.

3.8 Exercises

EXERCISE 3.1 The covariance sX4X5 between X4 and X5 for the entire bank data set is
positive. Given the definitions of X4 and X5, we would expect a negative covariance. Using
Figure 3.1 can you explain why sX4X5 is positive?

http://www.quantlet.org/mdstat/codes/mva/MVAlinregbh.html
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EXERCISE 3.2 Consider the two sub-clouds of counterfeit and genuine bank notes in Fig-
ure 3.1 separately. Do you still expect sX4X5 (now calculated separately for each cloud) to be
positive?

EXERCISE 3.3 We remarked that for two normal random variables, zero covariance implies
independence. Why does this remark not apply to Example 3.4?

EXERCISE 3.4 Compute the covariance between the variables

X2 = miles per gallon,

X8 = weight

from the car data set (Table B.3). What sign do you expect the covariance to have?

EXERCISE 3.5 Compute the correlation matrix of the variables in Example 3.2. Comment
on the sign of the correlations and test the hypothesis

ρX1X2 = 0.

EXERCISE 3.6 Suppose you have observed a set of observations {xi}ni=1 with x = 0, sXX =
1 and n−1

∑n
i=1(xi−x)3 = 0. Define the variable yi = x2

i . Can you immediately tell whether
rXY 6= 0?

EXERCISE 3.7 Find formulas (3.29) and (3.30) for α̂ and β̂ by differentiating the objective
function in (3.28) w.r.t. α and β.

EXERCISE 3.8 How many sales does the textile manager expect with a “classic blue” pullover
price of x = 105?

EXERCISE 3.9 What does a scatterplot of two random variables look like for r2 = 1 and
r2 = 0?

EXERCISE 3.10 Prove the variance decomposition (3.38) and show that the coefficient of
determination is the square of the simple correlation between X and Y .

EXERCISE 3.11 Make a boxplot for the residuals εi = yi − α̂ − β̂xi for the “classic blue”
pullovers data. If there are outliers, identify them and run the linear regression again without
them. Do you obtain a stronger influence of price on sales?

EXERCISE 3.12 Under what circumstances would you obtain the same coefficients from the
linear regression lines of Y on X and of X on Y ?
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EXERCISE 3.13 Treat the design of Example 3.14 as if there were thirty shops and not ten.
Define xi as the index of the shop, i.e., xi = i, i = 1, 2, . . . , 30. The null hypothesis is a
constant regression line, EY = µ. What does the alternative regression curve look like?

EXERCISE 3.14 Perform the test in Exercise 3.13 for the shop example with a 0.99 signif-
icance level. Do you still reject the hypothesis of equal marketing strategies?

EXERCISE 3.15 Compute an approximate confidence interval for ρX2X8 in Example (3.2).
Hint: start from a confidence interval for tanh−1(ρX2X8) and then apply the inverse trans-
formation.

EXERCISE 3.16 In Example 3.2, using the exchange rate of 1 EUR = 106 JPY, compute
the same empirical covariance using prices in Japanese Yen rather than in Euros. Is there
a significant difference? Why?

EXERCISE 3.17 Why does the correlation have the same sign as the covariance?

EXERCISE 3.18 Show that rank(H) = tr(H) = n− 1.

EXERCISE 3.19 Show that X∗ = HXD−1/2 is the standardized data matrix, i.e.,
x∗ = 0 and SX∗ = RX .

EXERCISE 3.20 Compute for the pullovers data the regression of X1 on X2, X3 and of X1

on X2, X4. Which one has the better coefficient of determination?

EXERCISE 3.21 Compare for the pullovers data the coefficient of determination for the
regression of X1 on X2 (Example 3.11), of X1 on X2, X3 (Exercise 3.20) and of X1 on
X2, X3, X4 (Example 3.15). Observe that this coefficient is increasing with the number of
predictor variables. Is this always the case?

EXERCISE 3.22 Consider the ANOVA problem (Section 3.5) again. Establish the con-
straint Matrix A for testing µ1 = µ2. Test this hypothesis via an analog of (3.55) and
(3.56).

EXERCISE 3.23 Prove (3.52). (Hint, let f(β) = (y − xβ)>(y − xβ) and solve ∂f(β)
∂β

= 0).

EXERCISE 3.24 Consider the linear model Y = Xβ + ε where β̂ = arg min
β
ε>ε is subject

to the linear constraints Aβ̂ = a where A(q × p), (q ≤ p) is of rank q and a is of dimension

(q×1). Show that β̂ = β̂OLS−(X>X )−1A>
(
A(X>X )−1A>

)−1
(
Aβ̂OLS − a

)
where β̂OLS =

(X>X )−1X>y. (Hint, let f(β, λ) = (y−xβ)>(y−xβ)−λ>(Aβ−a) where λ ∈ Rq and solve
∂f(β,λ)
∂β

= 0 and ∂f(β,λ)
∂λ

= 0).
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EXERCISE 3.25 Compute the covariance matrix S = Cov(X ) where X denotes the matrix
of observations on the counterfeit bank notes. Make a Jordan decomposition of S. Why are
all of the eigenvalues positive?

EXERCISE 3.26 Compute the covariance of the counterfeit notes after they are linearly
transformed by the vector a = (1, 1, 1, 1, 1, 1)>.



4 Multivariate Distributions

The preceeding chapter showed that by using the two first moments of a multivariate dis-
tribution (the mean and the covariance matrix), a lot of information on the relationship
between the variables can be made available. Only basic statistical theory was used to de-
rive tests of independence or of linear relationships. In this chapter we give an introduction
to the basic probability tools useful in statistical multivariate analysis.

Means and covariances share many interesting and useful properties, but they represent
only part of the information on a multivariate distribution. Section 4.1 presents the basic
probability tools used to describe a multivariate random variable, including marginal and
conditional distributions and the concept of independence. In Section 4.2, basic properties
on means and covariances (marginal and conditional ones) are derived.

Since many statistical procedures rely on transformations of a multivariate random variable,
Section 4.3 proposes the basic techniques needed to derive the distribution of transformations
with a special emphasis on linear transforms. As an important example of a multivariate
random variable, Section 4.4 defines the multinormal distribution. It will be analyzed in
more detail in Chapter 5 along with most of its “companion” distributions that are useful
in making multivariate statistical inferences.

The normal distribution plays a central role in statistics because it can be viewed as an
approximation and limit of many other distributions. The basic justification relies on the
central limit theorem presented in Section 4.5. We present this central theorem in the frame-
work of sampling theory. A useful extension of this theorem is also given: it is an approximate
distribution to transformations of asymptotically normal variables. The increasing power of
the computers today makes it possible to consider alternative approximate sampling dis-
tributions. These are based on resampling techniques and are suitable for many general
situations. Section 4.6 gives an introduction to the ideas behind bootstrap approximations.
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4.1 Distribution and Density Function

Let X = (X1, X2, . . . , Xp)
> be a random vector. The cumulative distribution function (cdf)

of X is defined by

F (x) = P (X ≤ x) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xp ≤ xp).

For continuous X, there exists a nonnegative probability density function (pdf) f , such that

F (x) =

∫ x

−∞
f(u)du. (4.1)

Note that ∫ ∞
−∞

f(u) du = 1.

Most of the integrals appearing below are multidimensional. For instance,
∫ x
−∞ f(u)du means∫ xp

−∞ · · ·
∫ x1

−∞ f(u1, . . . , up)du1 · · · dup. Note also that the cdf F is differentiable with

f(x) =
∂pF (x)

∂x1 · · · ∂xp
.

For discrete X, the values of this random variable are concentrated on a countable or finite
set of points {cj}j∈J , the probability of events of the form {X ∈ D} can then be computed
as

P (X ∈ D) =
∑

{j:cj∈D}

P (X = cj).

If we partition X as X = (X1, X2)> with X1 ∈ Rk and X2 ∈ Rp−k, then the function

FX1(x1) = P (X1 ≤ x1) = F (x11, . . . , x1k,∞, . . . ,∞) (4.2)

is called the marginal cdf. F = F (x) is called the joint cdf. For continuous X the marginal
pdf can be computed from the joint density by “integrating out” the variable not of interest.

fX1(x1) =

∫ ∞
−∞

f(x1, x2)dx2. (4.3)

The conditional pdf of X2 given X1 = x1 is given as

f(x2 | x1) =
f(x1, x2)

fX1(x1)
· (4.4)

EXAMPLE 4.1 Consider the pdf

f(x1, x2) =

{
1
2
x1 + 3

2
x2 0 ≤ x1, x2 ≤ 1,

0 otherwise.
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f(x1, x2) is a density since∫
f(x1, x2)dx1dx2 =

1

2

[
x2

1

2

]1

0

+
3

2

[
x2

2

2

]1

0

=
1

4
+

3

4
= 1.

The marginal densities are

fX1(x1) =

∫
f(x1, x2)dx2 =

∫ 1

0

(
1

2
x1 +

3

2
x2

)
dx2 =

1

2
x1 +

3

4
;

fX2(x2) =

∫
f(x1, x2)dx1 =

∫ 1

0

(
1

2
x1 +

3

2
x2

)
dx1 =

3

2
x2 +

1

4
·

The conditional densities are therefore

f(x2 | x1) =
1
2
x1 + 3

2
x2

1
2
x1 + 3

4

and f(x1 | x2) =
1
2
x1 + 3

2
x2

3
2
x2 + 1

4

·

Note that these conditional pdf ’s are nonlinear in x1 and x2 although the joint pdf has a
simple (linear) structure.

Independence of two random variables is defined as follows.

DEFINITION 4.1 X1 and X2 are independent iff f(x) = f(x1, x2) = fX1(x1)fX2(x2).

That is, X1 and X2 are independent if the conditional pdf’s are equal to the marginal densi-
ties, i.e., f(x1 | x2) = fX1(x1) and f(x2 | x1) = fX2(x2). Independence can be interpreted as
follows: knowing X2 = x2 does not change the probability assessments on X1, and conversely.

�
�
�A
A
A! Different joint pdf’s may have the same marginal pdf’s.

EXAMPLE 4.2 Consider the pdf’s

f(x1, x2) = 1, 0 < x1, x2 < 1,

and
f(x1, x2) = 1 + α(2x1 − 1)(2x2 − 1), 0 < x1, x2 < 1, −1 ≤ α ≤ 1.

We compute in both cases the marginal pdf ’s as

fX1(x1) = 1, fX2(x2) = 1.

Indeed ∫ 1

0

1 + α(2x1 − 1)(2x2 − 1)dx2 = 1 + α(2x1 − 1)[x2
2 − x2]10 = 1.

Hence we obtain identical marginals from different joint distributions!
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Figure 4.1. Univariate estimates of the density of X4 (left) and X5 (right)
of the bank notes. MVAdenbank2.xpl

Let us study the concept of independence using the bank notes example. Consider the
variables X4 (lower inner frame) and X5 (upper inner frame). From Chapter 3, we already
know that they have significant correlation, so they are almost surely not independent.
Kernel estimates of the marginal densities, f̂X4 and f̂X5 , are given in Figure 4.1. In Figure
4.2 (left) we show the product of these two densities. The kernel density technique was

presented in Section 1.3. If X4 and X5 are independent, this product f̂X4 · f̂X5 should be

roughly equal to f̂(x4, x5), the estimate of the joint density of (X4, X5). Comparing the two
graphs in Figure 4.2 reveals that the two densities are different. The two variables X4 and
X5 are therefore not independent.

An elegant concept of connecting marginals with joint cdfs is given by copulas. Copulas
are important in Value-at-Risk calculations and are an essential tool in quantitative finance
(Härdle, Kleinow and Stahl, 2002).

For simplicity of presentation we concentrate on the p = 2 dimensional case. A 2-dimensional
copula is a function C : [0, 1]2 → [0, 1] with the following properties:

• For every u ∈ [0, 1]: C(0, u) = C(u, 0) = 0.

• For every u ∈ [0, 1]: C(u, 1) = u and C(1, u) = u.

• For every (u1, u2), (v1, v2) ∈ [0, 1]× [0, 1] with u1 ≤ v1 and u2 ≤ v2:

C(v1, v2)− C(v1, u2)− C(u1, v2) + C(u1, u2) ≥ 0 .

http://www.quantlet.org/mdstat/codes/mva/MVAdenbank2.html
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Swiss bank notes
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Figure 4.2. The product of univariate density estimates (left) and the
joint density estimate (right) for X4 (left) and X5 of the bank notes.

MVAdenbank3.xpl

The usage of the name “copula” for the function C is explained by the following theorem.

THEOREM 4.1 (Sklar’s theorem) Let F be a joint distribution function with marginal
distribution functions FX1 and FX2. Then there exists a copula C with

F (x1, x2) = C{FX1(x1), FX2(x2)} (4.5)

for every x1, x2 ∈ R. If FX1 and FX2 are continuous, then C is unique. On the other hand,
if C is a copula and FX1 and FX2 are distribution functions, then the function F defined
by (4.5) is a joint distribution function with marginals FX1 and FX2.

With Sklar’s Theorem, the use of the name “copula” becomes obvious. It was chosen to de-
scribe “a function that links a multidimensional distribution to its one-dimensional margins”
and appeared in the mathematical literature for the first time in Sklar (1959).

EXAMPLE 4.3 The structure of independence implies that the product of the distribution
functions FX1 and FX2 equals their joint distribution function F ,

F (x1, x2) = FX1(x1) · FX2(x2). (4.6)

Thus, we obtain the independence copula C = Π from

Π(u1, . . . , un) =
n∏
i=1

ui .

http://www.quantlet.org/mdstat/codes/mva/MVAdenbank3.html
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THEOREM 4.2 Let X1 and X2 be random variables with continuous distribution functions
FX1 and FX2 and the joint distribution function F . Then X1 and X2 are independent if and
only if CX1,X2 = Π.

Proof:
From Sklar’s Theorem we know that there exists an unique copula C with

P (X1 ≤ x1, X2 ≤ x2) = F (x1, x2) = C{FX1(x1), FX2(x2)} . (4.7)

Independence can be seen using (4.5) for the joint distribution function F and the definition
of Π,

F (x1, x2) = C{FX1(x1), FX2(x2)} = FX1(x1)FX2(x2) . (4.8)

2

EXAMPLE 4.4 The Gumbel-Hougaard family of copulas (Nelsen, 1999) is given by the func-
tion

Cθ(u, v) = exp
{
−
[
(− lnu)θ + (− ln v)θ

]1/θ}
. (4.9)

The parameter θ may take all values in the interval [1,∞). The Gumbel-Hougaard copulas
are suited to describe bivariate extreme value distributions.

For θ = 1, the expression (4.9) reduces to the product copula, i.e., C1(u, v) = Π(u, v) = u v.
For θ →∞ one finds for the Gumbel-Hougaard copula:

Cθ(u, v)−→min(u, v) = M(u, v),

where the function M is also a copula such that C(u, v) ≤ M(u, v) for arbitrary copula C.
The copula M is called the Fréchet-Hoeffding upper bound.

Similarly, we obtain the Fréchet-Hoeffding lower bound W (u, v) = max(u + v − 1, 0) which
satisfies W (u, v) ≤ C(u, v) for any other copula C.

Summary
↪→ The cumulative distribution function (cdf) is defined as F (x) = P (X < x).

↪→ If a probability density function (pdf) f exists then F (x) =
∫ x
−∞ f(u)du.

↪→ The pdf integrates to one, i.e.,
∫∞
−∞ f(x)dx = 1.
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Summary (continued)

↪→ Let X = (X1, X2)> be partitioned into sub-vectors X1 and X2 with joint
cdf F . Then FX1(x1) = P (X1 ≤ x1) is the marginal cdf of X1. The
marginal pdf of X1 is obtained by fX1(x1) =

∫∞
−∞ f(x1, x2)dx2. Different

joint pdf’s may have the same marginal pdf’s.

↪→ The conditional pdf of X2 given X1 = x1 is defined as f(x2 | x1) =
f(x1, x2)
fX1(x1)

·
↪→ Two random variables X1 and X2 are called independent iff

f(x1, x2) = fX1(x1)fX2(x2). This is equivalent to f(x2 | x1) = fX2(x2).

↪→ Different joint pdf’s may have identical marginal pdf’s.

4.2 Moments and Characteristic Functions

Moments—Expectation and Covariance Matrix

If X is a random vector with density f(x) then the expectation of X is

EX =

 EX1
...

EXp

 =

∫
xf(x)dx =


∫
x1f(x)dx

...∫
xpf(x)dx

 = µ. (4.10)

Accordingly, the expectation of a matrix of random elements has to be understood component
by component. The operation of forming expectations is linear:

E (αX + βY ) = αEX + βEY. (4.11)

If A(q × p) is a matrix of real numbers, we have:

E(AX) = AEX. (4.12)

When X and Y are independent,

E(XY >) = EXEY >. (4.13)

The matrix
Var(X) = Σ = E(X − µ)(X − µ)> (4.14)

is the (theoretical) covariance matrix. We write for a vector X with mean vector µ and
covariance matrix Σ,

X ∼ (µ,Σ). (4.15)
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The (p× q) matrix

ΣXY = Cov(X, Y ) = E(X − µ)(Y − ν)> (4.16)

is the covariance matrix of X ∼ (µ,ΣXX) and Y ∼ (ν,ΣY Y ). Note that ΣXY = Σ>Y X and

that Z =
(
X
Y

)
has covariance ΣZZ =

(
ΣXX
ΣY X

ΣXY
ΣY Y

)
. From

Cov(X, Y ) = E(XY >)− µν> = E(XY >)− EXEY > (4.17)

it follows that Cov(X,Y ) = 0 in the case where X and Y are independent. We often say
that µ = E(X) is the first order moment of X and that E(XX>) provides the second order
moments of X:

E(XX>) = {E(XiXj)}, for i = 1, . . . , p and j = 1, . . . , p. (4.18)

Properties of the Covariance Matrix Σ = Var(X)

Σ = (σXiXj), σXiXj = Cov(Xi, Xj), σXiXi = Var(Xi) (4.19)

Σ = E(XX>)− µµ> (4.20)

Σ ≥ 0 (4.21)

Properties of Variances and Covariances

Var(a>X) = a>Var(X)a =
∑
i,j

aiajσXiXj (4.22)

Var(AX + b) = AVar(X)A> (4.23)

Cov(X + Y, Z) = Cov(X,Z) + Cov(Y, Z) (4.24)

Var(X + Y ) = Var(X) + Cov(X, Y ) + Cov(Y,X) + Var(Y ) (4.25)

Cov(AX,BY ) = ACov(X, Y )B>. (4.26)

Let us compute these quantities for a specific joint density.
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EXAMPLE 4.5 Consider the pdf of Example 4.1. The mean vector µ =
(
µ1

µ2

)
is

µ1 =

∫ ∫
x1f(x1, x2)dx1dx2 =

∫ 1

0

∫ 1

0

x1

(
1

2
x1 +

3

2
x2

)
dx1dx2

=

∫ 1

0

x1

(
1

2
x1 +

3

4

)
dx1 =

1

2

[
x3

1

3

]1

0

+
3

4

[
x2

1

2

]1

0

=
1

6
+

3

8
=

4 + 9

24
=

13

24
,

µ2 =

∫ ∫
x2f(x1, x2)dx1dx2 =

∫ 1

0

∫ 1

0

x2

(
1

2
x1 +

3

2
x2

)
dx1dx2

=

∫ 1

0

x2

(
1

4
+

3

2
x2

)
dx2 =

1

4

[
x2

2

2

]1

0

+
3

2

[
x3

2

3

]1

0

=
1

8
+

1

2
=

1 + 4

8
=

5

8
·

The elements of the covariance matrix are

σX1X1 = EX2
1 − µ2

1 with

EX2
1 =

∫ 1

0

∫ 1

0

x2
1

(
1

2
x1 +

3

2
x2

)
dx1dx2 =

1

2

[
x4

1

4

]1

0

+
3

4

[
x3

1

3

]1

0

=
3

8

σX2X2 = EX2
2 − µ2

2 with

EX2
2 =

∫ 1

0

∫ 1

0

x2
2

(
1

2
x1 +

3

2
x2

)
dx1dx2 =

1

4

[
x3

2

3

]1

0

+
3

2

[
x4

2

4

]1

0

=
11

24

σX1X2 = E(X1X2)− µ1µ2 with

E(X1X2) =

∫ 1

0

∫ 1

0

x1x2

(
1

2
x1 +

3

2
x2

)
dx1dx2 =

∫ 1

0

(
1

6
x2 +

3

4
x2

2

)
dx2

=
1

6

[
x2

2

2

]1

0

+
3

4

[
x3

2

3

]1

0

=
1

3
.

Hence the covariance matrix is

Σ =

(
0.0815 0.0052
0.0052 0.0677

)
.

Conditional Expectations

The conditional expectations are

E(X2 | x1) =

∫
x2f(x2 | x1) dx2 and E(X1 | x2) =

∫
x1f(x1 | x2) dx1. (4.27)
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E(X2|x1) represents the location parameter of the conditional pdf of X2 given that X1 = x1.
In the same way, we can define Var(X2|X1 = x1) as a measure of the dispersion of X2 given
that X1 = x1. We have from (4.20) that

Var(X2|X1 = x1) = E(X2 X
>
2 |X1 = x1)− E(X2|X1 = x1)E(X>2 |X1 = x1).

Using the conditional covariance matrix, the conditional correlations may be defined as:

ρX2 X3|X1=x1 =
Cov(X2, X3|X1 = x1)√

Var(X2|X1 = x1) Var(X3|X1 = x1)
.

These conditional correlations are known as partial correlations between X2 and X3, condi-
tioned on X1 being equal to x1.

EXAMPLE 4.6 Consider the following pdf

f(x1, x2, x3) =
2

3
(x1 + x2 + x3) where 0 < x1, x2, x3 < 1.

Note that the pdf is symmetric in x1, x2 and x3 which facilitates the computations. For
instance,

f(x1, x2) = 2
3
(x1 + x2 + 1

2
) 0 < x1, x2 < 1

f(x1) = 2
3
(x1 + 1) 0 < x1 < 1

and the other marginals are similar. We also have

f(x1, x2|x3) =
x1 + x2 + x3

x3 + 1
, 0 < x1, x2 < 1

f(x1|x3) =
x1 + x3 + 1

2

x3 + 1
, 0 < x1 < 1.

It is easy to compute the following moments:

E(Xi) = 5
9
; E(X2

i ) = 7
18

; E(XiXj) = 11
36

(i 6= j and i, j = 1, 2, 3)

E(X1|X3 = x3) = E(X2|X3 = x3) = 1
12

(
6x3+7
x3+1

)
;

E(X2
1 |X3 = x3) = E(X2

2 |X3 = x3) = 1
12

(
4x3+5
x3+1

)
and

E(X1X2|X3 = x3) = 1
12

(
3x3+4
x3+1

)
.

Note that the conditional means of X1 and of X2, given X3 = x3, are not linear in x3. From
these moments we obtain:

Σ =

 13
162
− 1

324
− 1

324

− 1
324

13
162
− 1

324

− 1
324
− 1

324
13
162

 in particular ρX1X2 = − 1

26
≈ −0.0385.
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The conditional covariance matrix of X1 and X2, given X3 = x3 is

Var

((
X1

X2

)
| X3 = x3

)
=

(
12x2

3+24x3+11

144(x3+1)2
−1

144(x3+1)2

−1
144(x3+1)2

12x2
3+24x3+11

144(x3+1)2

)
.

In particular, the partial correlation between X1 and X2, given that X3 is fixed at x3, is given
by ρX1X2|X3=x3 = − 1

12x2
3+24x3+11

which ranges from −0.0909 to −0.0213 when x3 goes from 0

to 1. Therefore, in this example, the partial correlation may be larger or smaller than the
simple correlation, depending on the value of the condition X3 = x3.

EXAMPLE 4.7 Consider the following joint pdf

f(x1, x2, x3) = 2x2(x1 + x3); 0 < x1, x2, x3 < 1.

Note the symmetry of x1 and x3 in the pdf and that X2 is independent of (X1, X3). It
immediately follows that

f(x1, x3) = (x1 + x3) 0 < x1, x3 < 1

f(x1) = x1 +
1

2
;

f(x2) = 2x2;

f(x3) = x3 +
1

2
.

Simple computations lead to

E(X) =


7
12

2
3

7
12

 and Σ =

 11
144

0 − 1
144

0 1
18

0
− 1

144
0 11

144

 .

Let us analyze the conditional distribution of (X1, X2) given X3 = x3. We have

f(x1, x2|x3) =
4(x1 + x3)x2

2x3 + 1
0 < x1, x2 < 1

f(x1|x3) = 2

(
x1 + x3

2x3 + 1

)
0 < x1 < 1

f(x2|x3) = f(x2) = 2x2 0 < x2 < 1

so that again X1 and X2 are independent conditional on X3 = x3. In this case

E

((
X1

X2

)
|X3 = x3

)
=

(
1
3

(
2+3x3

1+2x3

)
2
3

)

Var

((
X1

X2

)
|X3 = x3

)
=

(
1
18

(
6x2

3+6x3+1

(2x3+1)2

)
0

0 1
18

)
.
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Properties of Conditional Expectations

Since E(X2|X1 = x1) is a function of x1, say h(x1), we can define the random variable
h(X1) = E(X2|X1). The same can be done when defining the random variable Var(X2|X1).
These two random variables share some interesting properties:

E(X2) = E{E(X2|X1)} (4.28)

Var(X2) = E{Var(X2|X1)}+ Var{E(X2|X1)}. (4.29)

EXAMPLE 4.8 Consider the following pdf

f(x1, x2) = 2e
−x2
x1 ; 0 < x1 < 1, x2 > 0.

It is easy to show that

f(x1) = 2x1 for 0 < x1 < 1; E(X1) =
2

3
and Var(X1) =

1

18

f(x2|x1) =
1

x1

e
−x2
x1 for x2 > 0; E(X2|X1) = X1 and Var(X2|X1) = X2

1 .

Without explicitly computing f(x2), we can obtain:

E(X2) = E (E(X2|X1)) = E(X1) =
2

3

Var(X2) = E (Var(X2|X1)) + Var (E(X2|X1)) = E(X2
1 ) + Var(X1) =

2

4
+

1

18
=

10

18
.

The conditional expectation E(X2|X1) viewed as a function h(X1) of X1 (known as the
regression function of X2 on X1), can be interpreted as a conditional approximation of X2

by a function of X1. The error term of the approximation is then given by:

U = X2 − E(X2|X1).

THEOREM 4.3 Let X1 ∈ Rk and X2 ∈ Rp−k and U = X2 − E(X2|X1). Then we have:

(1) E(U) = 0

(2) E(X2|X1) is the best approximation of X2 by a function h(X1) of X1 where h : Rk −→
R
p−k. “Best” is the minimum mean squared error (MSE), where

MSE(h) = E[{X2 − h(X1)}> {X2 − h(X1)}].
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Characteristic Functions

The characteristic function (cf) of a random vector X ∈ Rp (respectively its density f(x))
is defined as

ϕX(t) = E(eit>X) =

∫
eit>xf(x) dx, t ∈ Rp,

where i is the complex unit: i2 = −1. The cf has the following properties:

ϕX(0) = 1 and |ϕX(t)| ≤ 1. (4.30)

If ϕ is absolutely integrable, i.e., the integral
∫∞
−∞ |ϕ(x)|dx exists and is finite, then

f(x) =
1

(2π)p

∫ ∞
−∞

e−it>xϕX(t) dt. (4.31)

If X = (X1, X2, . . . , Xp)
>, then for t = (t1, t2, . . . , tp)

>

ϕX1(t1) = ϕX(t1, 0, . . . , 0), . . . , ϕXp(tp) = ϕX(0, . . . , 0, tp). (4.32)

If X1, . . . , Xp are independent random variables, then for t = (t1, t2, . . . , tp)
>

ϕX(t) = ϕX1(t1)· . . . ·ϕXp(tp). (4.33)

If X1, . . . , Xp are independent random variables, then for t ∈ R

ϕX1+...+Xp(t) = ϕX1(t)· . . . ·ϕXp(t). (4.34)

The characteristic function can recover all the cross-product moments of any order: ∀jk ≥
0, k = 1, . . . , p and for t = (t1, . . . , tp)

> we have

E
(
Xj1

1 · . . . ·Xjp
p

)
=

1

ij1+...+jp

[
∂ϕX(t)

∂tj11 . . . ∂t
jp
p

]
t=0

. (4.35)

EXAMPLE 4.9 The cf of the density in example 4.5 is given by

ϕX(t) =

∫ 1

0

∫ 1

0

eit>xf(x)dx

=

∫ 1

0

∫ 1

0

{cos(t1x1 + t2x2) + i sin(t1x1 + t2x2)}
(

1

2
x1 +

3

2
x2

)
dx1dx2,

=
0.5 ei t1

(
3 i t1 − 3 i ei t2 t1 + i t2 − i ei t2 t2 + t1 t2 − 4 ei t2 t1 t2

)
t1

2 t2
2

−
0.5

(
3 i t1 − 3 i ei t2 t1 + i t2 − i ei t2 t2 − 3 ei t2 t1 t2

)
t1

2 t2
2

.
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pdf cf
Uniform f(x) = I(x ∈ [a, b])/(b− a) ϕX(t) = (eibt − eiat)/(b− a)it

N1(µ, σ2) f(x) = (2πσ2)−1/2exp{−(x− µ)2/2σ2} ϕX(t) = eiµt−σ2t2/2

χ2(n) f(x) = I(x > 0)xn/2−1e−x/2/{Γ(n/2)2n/2} ϕX(t) = (1− 2it)−n/2

Np(µ,Σ) f(x) = |2πΣ|−1/2exp{−(x− µ)>Σ(x− µ)/2} ϕX(t) = eit>µ−t>Σt/2

Table 4.2. Characteristic functions for some common distributions.

EXAMPLE 4.10 Suppose X ∈ R1 follows the density of the standard normal distribution

fX(x) =
1√
2π

exp

(
−x

2

2

)
(see Section 4.4) then the cf can be computed via

ϕX(t) =
1√
2π

∫ ∞
−∞

eitx exp

(
−x

2

2

)
dx

=
1√
2π

∫ ∞
−∞

exp

{
−1

2
(x2 − 2itx+ i2t2)

}
exp

{
1

2
i2t2
}
dx

= exp

(
−t

2

2

) ∫ ∞
−∞

1√
2π

exp

{
−(x− it)2

2

}
dx

= exp

(
−t

2

2

)
,

since i2 = −1 and
∫

1√
2π

exp
{
− (x−it)2

2

}
dx = 1.

A variety of distributional characteristics can be computed from ϕX(t). The standard normal
distribution has a very simple cf, as was seen in Example 4.10. Deviations from normal
covariance structures can be measured by the deviations from the cf (or characteristics of
it). In Table 4.2 we give an overview of the cf’s for a variety of distributions.

THEOREM 4.4 (Cramer-Wold) The distribution of X ∈ Rp is completely determined by
the set of all (one-dimensional) distributions of t>X where t ∈ Rp.

This theorem says that we can determine the distribution of X in Rp by specifying all of the
one-dimensional distributions of the linear combinations

p∑
j=1

tjXj = t>X, t = (t1, t2, . . . , tp)
>.
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Cumulant functions

Moments mk =
∫
xkf(x)dx often help in describing distributional characteristics. The nor-

mal distribution in d = 1 dimension is completely characterized by its standard normal
density f = ϕ and the moment parameters are µ = m1 and σ2 = m2 − m2

1 . Another
helpful class of parameters are the cumulants or semi-invariants of a distribution. In order
to simplify notation we concentrate here on the one-dimensional (d = 1) case.

For a given random variable X with density f and finite moments of order k the characteristic
function ϕX(t) = E(eitX) has the derivative

1

ij

[
∂jϕX(t)

∂tj

]
t=0

= κj, j = 1, . . . , k.

The values κj are called cumulants or semi-invariants since κj does not change (for j >
1) under a shift transformation X 7→ X + a. The cumulants are natural parameters for
dimension reduction methods, in particular the Projection Pursuit method (see Section 18.2).

The relationship between the first k moments m1, . . . ,mk and the cumulants is given by

κk = (−1)k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

m1 1 . . . 0

m2

(
1
0

)
. . .

...
...

. . .
...

mk

(
k − 1

0

)
. . .

(
k − 1
k − 2

)
m1

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4.36)

EXAMPLE 4.11 Suppose that k = 1, then formula (4.36) above yields

κ1 = m1.

For k = 2 we obtain

κ2 = −

∣∣∣∣∣∣
m1 1

m2

(
1
0

)
m1

∣∣∣∣∣∣ = m2 −m2
1.

For k = 3 we have to calculate

κ3 =

∣∣∣∣∣∣
m1 1 0
m2 m1 1
m3 m2 2m1

∣∣∣∣∣∣ .
Calculating the determinant we have:

κ3 = m1

∣∣∣∣ m1 1
m2 2m1

∣∣∣∣−m2

∣∣∣∣ 1 0
m2 2m1

∣∣∣∣+m3

∣∣∣∣ 1 0
m1 1

∣∣∣∣
= m1(2m2

1 −m2)−m2(2m1) +m3

= m3 − 3m1m2 + 2m3
1. (4.37)
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Similarly one calculates

κ4 = m4 − 4m3m1 − 3m2
2 + 12m2m

2
1 − 6m4

1. (4.38)

The same type of process is used to find the moments of the cumulants:

m1 = κ1

m2 = κ2 + κ2
1

m3 = κ3 + 3κ2κ1 + κ3
1

m4 = κ4 + 4κ3κ1 + 3κ2
2 + 6κ2κ

2
1 + κ4

1. (4.39)

A very simple relationship can be observed between the semi-invariants and the central
moments µk = E(X − µ)k, where µ = m1 as defined before. In fact, κ2 = µ2, κ3 = µ3 and
κ4 = µ4 − 3µ2

2.

Skewness γ3 and kurtosis γ4 are defined as:

γ3 = E(X − µ)3/σ3

γ4 = E(X − µ)4/σ4. (4.40)

The skewness and kurtosis determine the shape of one-dimensional distributions. The skew-
ness of a normal distribution is 0 and the kurtosis equals 3. The relation of these parameters
to the cumulants is given by:

γ3 =
κ3

κ
3/2
2

(4.41)

γ4 =
κ4

κ2
2

. (4.42)

These relations will be used later in Section 18.2 on Projection Pursuit to determine devia-
tions from normality.

Summary
↪→ The expectation of a random vector X is µ =

∫
xf(x) dx, the covariance

matrix Σ = Var(X) = E(X − µ)(X − µ)>. We denote X ∼ (µ,Σ).

↪→ Expectations are linear, i.e., E(αX + βY ) = αEX + βEY . If X and Y
are independent, then E(XY >) = EXEY >.

↪→ The covariance between two random vectors X and Y is ΣXY =
Cov(X,Y ) = E(X − EX)(Y − EY )> = E(XY >) − EXEY >. If X and
Y are independent, then Cov(X, Y ) = 0.
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Summary (continued)

↪→ The characteristic function (cf) of a random vector X is ϕX(t) = E(eit>X).

↪→ The distribution of a p-dimensional random variableX is completely deter-
mined by all one-dimensional distributions of t>X where t ∈ Rp (Theorem
of Cramer-Wold).

↪→ The conditional expectation E(X2|X1) is the MSE best approximation of
X2 by a function of X1.

4.3 Transformations

Suppose that X has pdf fX(x). What is the pdf of Y = 3X? Or if X = (X1, X2, X3)>, what
is the pdf of

Y =

 3X1

X1 − 4X2

X3

?

This is a special case of asking for the pdf of Y when

X = u(Y ) (4.43)

for a one-to-one transformation u: Rp → R
p. Define the Jacobian of u as

J =

(
∂xi
∂yj

)
=

(
∂ui(y)

∂yj

)
and let abs(|J |) be the absolute value of the determinant of this Jacobian. The pdf of Y is
given by

fY (y) = abs(|J |) · fX{u(y)}. (4.44)

Using this we can answer the introductory questions, namely

(x1, . . . , xp)
> = u(y1, . . . , yp) =

1

3
(y1, . . . , yp)

>

with

J =


1
3

0
. . .

0 1
3


and hence abs(|J |) =

(
1
3

)p
. So the pdf of Y is

1

3p
fX

(y
3

)
.

This introductory example is a special case of

Y = AX + b, where A is nonsingular.
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The inverse transformation is
X = A−1(Y − b).

Therefore
J = A−1,

and hence
fY (y) = abs(|A|−1)fX{A−1(y − b)}. (4.45)

EXAMPLE 4.12 Consider X = (X1, X2) ∈ R2 with density fX(x) = fX(x1, x2),

A =

(
1 1
1 −1

)
, b =

(
0

0

)
.

Then

Y = AX + b =

(
X1 +X2

X1 −X2

)
and

|A| = −2, abs(|A|−1) =
1

2
, A−1 = −1

2

(
−1 −1
−1 1

)
.

Hence

fY (y) = abs(|A|−1) · fX(A−1y)

=
1

2
fX

{
1

2

(
1 1
1 −1

)(
y1

y2

)}
=

1

2
fX

{
1

2
(y1 + y2),

1

2
(y1 − y2)

}
. (4.46)

EXAMPLE 4.13 Consider X ∈ R1 with density fX(x) and Y = exp(X). According to (4.43)
x = u(y) = log(y) and hence the Jacobian is

J =
dx

dy
=

1

y
.

The pdf of Y is therefore:

fY (y) =
1

y
fX{log(y)}.
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Summary
↪→ If X has pdf fX(x), then a transformed random vector Y , i.e., X = u(Y ),

has pdf fY (y) = abs(|J |) · fX{u(y)}, where J denotes the Jacobian J =(
∂u(yi)
∂yj

)
.

↪→ In the case of a linear relation Y = AX + b the pdf’s of X and Y are
related via fY (y) = abs(|A|−1)fX{A−1(y − b)}.

4.4 The Multinormal Distribution

The multinormal distribution with mean µ and covariance Σ > 0 has the density

f(x) = |2πΣ|−1/2 exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}
. (4.47)

We write X ∼ Np(µ,Σ).

How is this multinormal distribution with mean µ and covariance Σ related to the multivari-
ate standard normal Np(0, Ip)? Through a linear transformation using the results of Section
4.3, as shown in the next theorem.

THEOREM 4.5 Let X ∼ Np(µ,Σ) and Y = Σ−1/2(X − µ) (Mahalanobis transformation).
Then

Y ∼ Np(0, Ip),

i.e., the elements Yj ∈ R are independent, one-dimensional N(0, 1) variables.

Proof:
Note that (X − µ)>Σ−1(X − µ) = Y >Y . Application of (4.45) gives J = Σ1/2, hence

fY (y) = (2π)−p/2 exp

(
−1

2
y>y

)
(4.48)

which is by (4.47) the pdf of a Np(0, Ip). 2
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Note that the above Mahalanobis transformation yields in fact a random variable Y =
(Y1, . . . , Yp)

> composed of independent one-dimensional Yj ∼ N1(0, 1) since

fY (y) =
1

(2π)p/2
exp

(
−1

2
y>y

)
=

p∏
j=1

1√
2π

exp

(
−1

2
y2
j

)

=

p∏
j=1

fYj(yj).

Here each fYj(y) is a standard normal density 1√
2π

exp
(
−y2

2

)
. From this it is clear that

E(Y ) = 0 and Var(Y ) = Ip.

How can we create Np(µ,Σ) variables on the basis of Np(0, Ip) variables? We use the inverse
linear transformation

X = Σ1/2Y + µ. (4.49)

Using (4.11) and (4.23) we can also check that E(X) = µ and Var(X) = Σ. The following
theorem is useful because it presents the distribution of a variable after it has been linearly
transformed. The proof is left as an exercise.

THEOREM 4.6 Let X ∼ Np(µ,Σ) and A(p× p), c ∈ Rp, where A is nonsingular.

Then Y = AX + c is again a p-variate Normal, i.e.,

Y ∼ Np(Aµ+ c,AΣA>). (4.50)

Geometry of the Np(µ,Σ) Distribution

From (4.47) we see that the density of the Np(µ,Σ) distribution is constant on ellipsoids of
the form

(x− µ)>Σ−1(x− µ) = d2. (4.51)

EXAMPLE 4.14 Figure 4.3 shows the contour ellipses of a two-dimensional normal distri-
bution. Note that these contour ellipses are the iso-distance curves (2.34) from the mean of
this normal distribution corresponding to the metric Σ−1.

According to Theorem 2.7 in Section 2.6 the half-lengths of the axes in the contour ellipsoid

are
√

d2

νi
where νi = 1

λi
are the eigenvalues of Σ−1 and λi are the eigenvalues of Σ. The

rectangle inscribing an ellipse has sides with length 2dσi and is thus naturally proportional
to the standard deviations of Xi (i = 1, 2).

The distribution of the quadratic form in (4.51) is given in the next theorem.
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Figure 4.3. Scatterplot of a normal sample and contour ellipses for µ =
(

3
2

)
and Σ =

(
1
−1.5

−1.5
4

)
. MVAcontnorm.xpl

THEOREM 4.7 If X ∼ Np(µ,Σ), then the variable U = (X − µ)>Σ−1(X − µ) has a χ2
p

distribution.

THEOREM 4.8 The characteristic function (cf) of a multinormal Np(µ,Σ) is given by

ϕX(t) = exp(i t>µ− 1

2
t>Σt). (4.52)

http://www.quantlet.org/mdstat/codes/mva/MVAcontnorm.html
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We can check Theorem 4.8 by transforming the cf back:

f(x) =
1

(2π)p

∫
exp

(
−it>x+ it>µ− 1

2
t>Σt

)
dt

=
1

|2πΣ−1|1/2|2πΣ|1/2

∫
exp

[
−1

2
{t>Σt+ 2it>(x− µ)− (x− µ)>Σ−1(x− µ)}

]
· exp

[
−1

2
{(x− µ)>Σ−1(x− µ)}

]
dt

=
1

|2πΣ|1/2
exp

[
−1

2
{(x− µ)>Σ(x− µ)}

]
since ∫

1

|2πΣ−1|1/2
exp

[
−1

2
{t>Σt+ 2it>(x− µ)− (x− µ)>Σ−1(x− µ)}

]
dt

=

∫
1

|2πΣ−1|1/2
exp

[
−1

2
{(t+ iΣ−1(x− µ))>Σ(t+ iΣ−1(x− µ))}

]
dt

= 1.

Note that if Y ∼ Np(0, Ip) (e.g., the Mahalanobis-transform), then

ϕY (t) = exp

(
−1

2
t>Ipt

)
= exp

(
−1

2

p∑
i=1

t2i

)
= ϕY1(t1) · . . . · ϕYp(tp)

which is consistent with (4.33).

Singular Normal Distribution

Suppose that we have rank(Σ) = k < p, where p is the dimension of X. We define the
(singular) density of X with the aid of the G-Inverse Σ− of Σ,

f(x) =
(2π)−k/2

(λ1 · · ·λk)1/2
exp

{
−1

2
(x− µ)>Σ−(x− µ)

}
(4.53)

where

(1) x lies on the hyperplaneN>(x−µ) = 0 withN (p×(p−k)) : N>Σ = 0 andN>N = Ik.

(2) Σ− is the G-Inverse of Σ, and λ1, . . . , λk are the nonzero eigenvalues of Σ.

What is the connection to a multinormal with k-dimensions? If

Y ∼ Nk(0,Λ1) and Λ1 = diag(λ1, . . . , λk), (4.54)

then there exists an orthogonal matrix B(p× k) with B>B = Ik so that X = BY + µ where
X has a singular pdf of the form (4.53).
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Gaussian Copula

The second important copula that we want to present is the Gaussian or normal copula,

Cρ(u, v) =

∫ Φ−1
1 (u)

−∞

∫ Φ−1
2 (v)

−∞
fρ(x1, x2)dx2dx1 , (4.55)

see Embrechts, McNeil and Straumann (1999). In (4.55), fρ denotes the bivariate normal
density function with correlation ρ for n = 2. The functions Φ1 and Φ2 in (4.55) refer to the
corresponding one-dimensional standard normal cdfs of the margins.

In the case of vanishing correlation, ρ = 0, the Gaussian copula becomes

C0(u, v) =

∫ Φ−1
1 (u)

−∞
fX1(x1)dx1

∫ Φ−1
2 (v)

−∞
fX2(x2)dx2

= u v

= Π(u, v) .

Summary
↪→ The pdf of a p-dimensional multinormal X ∼ Np(µ,Σ) is

f(x) = |2πΣ|−1/2 exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}
.

The contour curves of a multinormal are ellipsoids with half-lengths pro-
portional to

√
λi, where λi denotes the eigenvalues of Σ (i = 1, . . . , p).

↪→ The Mahalanobis transformation transforms X ∼ Np(µ,Σ) to Y =
Σ−1/2(X − µ) ∼ Np(0, Ip). Going the other direction, one can create
a X ∼ Np(µ,Σ) from Y ∼ Np(0, Ip) via X = Σ1/2Y + µ.

↪→ If the covariance matrix Σ is singular (i.e., rank(Σ) < p), then it defines
a singular normal distribution.

↪→ The density of a singular normal distribution is given by

(2π)−k/2

(λ1 · · ·λk)1/2
exp

{
−1

2
(x− µ)>Σ−(x− µ)

}
.
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4.5 Sampling Distributions and Limit Theorems

In multivariate statistics, we observe the values of a multivariate random variable X and
obtain a sample {xi}ni=1, as described in Chapter 3. Under random sampling, these obser-
vations are considered to be realizations of a sequence of i.i.d. random variables X1, . . . , Xn,
where each Xi is a p-variate random variable which replicates the parent or population ran-
dom variable X. Some notational confusion is hard to avoid: Xi is not the ith component
of X, but rather the ith replicate of the p-variate random variable X which provides the ith
observation xi of our sample.

For a given random sample X1, . . . , Xn, the idea of statistical inference is to analyze the
properties of the population variable X. This is typically done by analyzing some charac-
teristic θ of its distribution, like the mean, covariance matrix, etc. Statistical inference in a
multivariate setup is considered in more detail in Chapters 6 and 7.

Inference can often be performed using some observable function of the sample X1, . . . , Xn,
i.e., a statistics. Examples of such statistics were given in Chapter 3: the sample mean x̄,
the sample covariance matrix S. To get an idea of the relationship between a statistics and
the corresponding population characteristic, one has to derive the sampling distribution of
the statistic. The next example gives some insight into the relation of (x, S) to (µ,Σ).

EXAMPLE 4.15 Consider an iid sample of n random vectors Xi ∈ Rp where E(Xi) = µ
and Var(Xi) = Σ. The sample mean x̄ and the covariance matrix S have already been defined
in Section 3.3. It is easy to prove the following results

E(x̄) = 1
n

n∑
i=1

E(Xi) = µ

Var(x̄) = 1
n2

n∑
i=1

Var(Xi) = 1
n
Σ = E(x̄x̄>)− µµ>

E(S) = 1
n
E

{
n∑
i=1

(Xi − x̄)(Xi − x̄)>
}

= 1
n
E

{
n∑
i=1

XiX
>
i − nx̄x̄>

}
= 1

n

{
n
(
Σ + µµ>

)
− n

(
Σ
n

+ µµ>
)}

= n−1
n

Σ.

This shows in particular that S is a biased estimator of Σ. By contrast, Su = n
n−1
S is an

unbiased estimator of Σ.

Statistical inference often requires more than just the mean and/or the variance of a statistic.
We need the sampling distribution of the statistics to derive confidence intervals or to define
rejection regions in hypothesis testing for a given significance level. Theorem 4.9 gives the
distribution of the sample mean for a multinormal population.
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THEOREM 4.9 Let X1, . . . , Xn be i.i.d. with Xi ∼ Np(µ,Σ). Then x̄ ∼ Np(µ,
1
n
Σ).

Proof:
x̄ = (1/n)

∑n
i=1 Xi is a linear combination of independent normal variables, so it has a nor-

mal distribution (see chapter 5). The mean and the covariance matrix were given in the
preceding example. 2

With multivariate statistics, the sampling distributions of the statistics are often more dif-
ficult to derive than in the preceding Theorem. In addition they might be so complicated
that approximations have to be used. These approximations are provided by limit theorems.
Since they are based on asymptotic limits, the approximations are only valid when the sam-
ple size is large enough. In spite of this restriction, they make complicated situations rather
simple. The following central limit theorem shows that even if the parent distribution is
not normal, when the sample size n is large, the sample mean x̄ has an approximate normal
distribution.

THEOREM 4.10 (Central Limit Theorem (CLT)) Let X1, X2, . . . , Xn be i.i.d. with
Xi ∼ (µ,Σ). Then the distribution of

√
n(x− µ) is asymptotically Np(0,Σ), i.e.,

√
n(x− µ)

L−→ Np(0,Σ) as n −→∞.

The symbol “
L−→” denotes convergence in distribution which means that the distribution

function of the random vector
√
n(x̄− µ) converges to the distribution function of Np(0,Σ).

EXAMPLE 4.16 Assume that X1, . . . , Xn are i.i.d. and that they have Bernoulli distribu-
tions where p = 1

2
(this means that P (Xi = 1) = 1

2
, P (Xi = 0) = 1

2
). Then µ = p = 1

2
and

Σ = p(1− p) = 1
4
. Hence,

√
n

(
x− 1

2

)
L−→ N1

(
0,

1

4

)
as n −→∞.

The results are shown in Figure 4.4 for varying sample sizes.

EXAMPLE 4.17 Now consider a two-dimensional random sample X1, . . . , Xn that is i.i.d.
and created from two independent Bernoulli distributions with p = 0.5. The joint distribution
is given by P (Xi = (0, 0)>) = 1

4
, P (Xi = (0, 1)>) = 1

4
, P (Xi = (1, 0)>) = 1

4
, P (Xi =

(1, 1)>) = 1
4
. Here we have

√
n

{
x̄−

(1
2
1
2

)}
= N2

((
0

0

)
,

(
1
4

0

0
1
4

))
as n −→∞.

Figure 4.5 displays the estimated two-dimensional density for different sample sizes.
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Asymptotic Distribution, N=5
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Asymptotic Distribution, N=35
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Figure 4.4. The CLT for Bernoulli distributed random variables. Sample
size n = 5 (left) and n = 35 (right). MVAcltbern.xpl

Figure 4.5. The CLT in the two-dimensional case. Sample size n = 5
(left) and n = 85 (right). MVAcltbern2.xpl

The asymptotic normal distribution is often used to construct confidence intervals for the
unknown parameters. A confidence interval at the level 1− α, α ∈ (0, 1), is an interval that
covers the true parameter with probability 1− α:

P (θ ∈ [θ̂l, θ̂u]) = 1− α,

http://www.quantlet.org/mdstat/codes/mva/MVAcltbern.html
http://www.quantlet.org/mdstat/codes/mva/MVAcltbern2.html
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where θ denotes the (unknown) parameter and θ̂l and θ̂u are the lower and upper confidence
bounds respectively.

EXAMPLE 4.18 Consider the i.i.d. random variables X1, . . . , Xn with Xi ∼ (µ, σ2) and σ2

known. Since we have
√
n(x̄− µ)

L→ N(0, σ2) from the CLT, it follows that

P (−u1−α/2 ≤
√
n

(x̄− µ)

σ
≤ u1−α/2) −→ 1− α, as n −→∞

where u1−α/2 denotes the (1− α/2)-quantile of the standard normal distribution. Hence the
interval [

x̄− σ√
n
u1−α/2, x̄+

σ√
n
u1−α/2

]
is an approximate (1− α)-confidence interval for µ.

But what can we do if we do not know the variance σ2? The following corollary gives the
answer.

COROLLARY 4.1 If Σ̂ is a consistent estimate for Σ, then the CLT still holds, namely

√
n Σ̂−1/2(x̄− µ)

L−→ Np(0, I) as n −→∞.

EXAMPLE 4.19 Consider the i.i.d. random variables X1, . . . , Xn with Xi ∼ (µ, σ2), and
now with an unknown variance σ2. From Corollary 4.1 using σ̂2 = 1

n

∑n
i=1(xi− x̄)2 we obtain

√
n

(
x̄− µ
σ̂

)
L−→ N(0, 1) as n −→∞.

Hence we can construct an approximate (1− α)-confidence interval for µ using the variance
estimate σ̂2:

C1−α =

[
x̄− σ̂√

n
u1−α/2, x̄+

σ̂√
n
u1−α/2

]
.

Note that by the CLT

P (µ ∈ C1−α) −→ 1− α as n −→∞.

REMARK 4.1 One may wonder how large should n be in practice to provide reasonable
approximations. There is no definite answer to this question: it mainly depends on the
problem at hand (the shape of the distribution of the Xi and the dimension of Xi). If the
Xi are normally distributed, the normality of x̄ is achieved from n = 1. In most situations,
however, the approximation is valid in one-dimensional problems for n larger than, say, 50.
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Transformation of Statistics

Often in practical problems, one is interested in a function of parameters for which one has
an asymptotically normal statistic. Suppose for instance that we are interested in a cost
function depending on the mean µ of the process: f(µ) = µ>Aµ where A > 0 is given. To
estimate µ we use the asymptotically normal statistic x̄. The question is: how does f(x̄)
behave? More generally, what happens to a statistic t that is asymptotically normal when
we transform it by a function f(t)? The answer is given by the following theorem.

THEOREM 4.11 If
√
n(t − µ)

L−→ Np(0,Σ) and if f = (f1, . . . , fq)
> : Rp → R

q are real
valued functions which are differentiable at µ ∈ Rp, then f(t) is asymptotically normal with
mean f(µ) and covariance D>ΣD, i.e.,

√
n{f(t)− f(µ)} L−→ Nq(0,D>ΣD) for n −→∞, (4.56)

where

D =

(
∂fj
∂ti

)
(t)

∣∣∣∣
t=µ

is the (p× q) matrix of all partial derivatives.

EXAMPLE 4.20 We are interested in seeing how f(x̄) = x̄>Ax̄ behaves asymptotically with
respect to the quadratic cost function of µ, f(µ) = µ>Aµ, where A > 0.

D =
∂f(x̄)

∂x̄

∣∣∣∣
x̄=µ

= 2Aµ.

By Theorem 4.11 we have

√
n(x̄>Ax̄− µ>Aµ)

L−→ N1 (0, 4µ>AΣAµ).

EXAMPLE 4.21 Suppose

Xi ∼ (µ,Σ); µ =

(
0

0

)
, Σ =

(
1 0.5

0.5 1

)
, p = 2.

We have by the CLT (Theorem 4.10) for n→∞ that

√
n(x− µ)

L−→ N(0,Σ).

Suppose that we would like to compute the distribution of

(
x2

1 − x2

x1 + 3x2

)
. According to The-

orem 4.11 we have to consider f = (f1, f2)> with

f1(x1, x2) = x2
1 − x2, f2(x1, x2) = x1 + 3x2, q = 2.
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Given this f(µ) =
(

0
0

)
and

D = (dij), dij =

(
∂fj
∂xi

)∣∣∣∣
x=µ

=

(
2x1 1
−1 3

)∣∣∣∣
x=0

.

Thus

D =

(
0 1
−1 3

)
.

The covariance is(
0 −1
1 3

) (
1 1

2
1
2

1

) (
0 1
−1 3

)
=

(
0 −1
1 3

) (
−1

2
5
2

−1 7
2

)
=

(
1 −7

2

−7
2

13

)
D> Σ D D> ΣD D>ΣD

,

which yields
√
n

(
x2

1 − x2

x1 + 3x2

)
L−→ N2

((
0

0

)
,

(
1 −7

2

−7
2

13

))
.

EXAMPLE 4.22 Let us continue the previous example by adding one more component to the
function f . Since q = 3 > p = 2, we might expect a singular normal distribution. Consider
f = (f1, f2, f3)> with

f1(x1, x2) = x2
1 − x2, f2(x1, x2) = x1 + 3x2, f3 = x3

2, q = 3.

From this we have that

D =

(
0 1 0
−1 3 0

)
and thus D>ΣD =

 1 −7
2

0
−7

2
13 0

0 0 0

 .

The limit is in fact a singular normal distribution!

Summary
↪→ If X1, . . . , Xn are i.i.d. random vectors with Xi ∼ Np(µ,Σ), then x̄ ∼

Np(µ,
1
n
Σ).

↪→ If X1, . . . , Xn are i.i.d. random vectors with Xi ∼ (µ,Σ), then the distri-
bution of

√
n(x− µ) is asymptotically N(0,Σ) (Central Limit Theorem).

↪→ If X1, . . . , Xn are i.i.d. random variables with Xi ∼ (µ, σ), then an asymp-
totic confidence interval can be constructed by the CLT: x̄± σ̂√

n
u1−α/2.

↪→ If t is a statistic that is asymptotically normal, i.e.,
√
n(t−µ)

L−→ Np(0,Σ),

then this holds also for a function f(t), i.e.,
√
n{f(t) − f(µ)} is asymp-

totically normal.
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4.6 Bootstrap

Recall that we need a large sample sizes in order to sufficiently approximate the critical
values computable by the CLT. Here large means n= 50 for one-dimensional data. How can
we construct confidence intervals in the case of smaller sample sizes? One way is to use a
method called the Bootstrap. The Bootstrap algorithm uses the data twice:

1. estimate the parameter of interest,

2. simulate from an estimated distribution to approximate the asymptotic distribution of
the statistics of interest.

In detail, bootstrap works as follows. Consider the observations x1, . . . , xn of the sample
X1, . . . , Xn and estimate the empirical distribution function (edf) Fn. In the case of one-
dimensional data

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x). (4.57)

This is a step function which is constant between neighboring data points.

EXAMPLE 4.23 Suppose that we have n = 100 standard normal N(0, 1) data points Xi,
i = 1, . . . , n. The cdf of X is Φ(x) =

∫ x
−∞ ϕ(u)du and is shown in Figure 4.6 as the thin,

solid line. The empirical distribution function (edf) is displayed as a thick step function line.
Figure 4.7 shows the same setup for n = 1000 observations.

Now draw with replacement a new sample from this empirical distribution. That is we
sample with replacement n∗ observations X∗1 , . . . , X

∗
n∗ from the original sample. This is

called a Bootstrap sample. Usually one takes n∗ = n.

Since we sample with replacement, a single observation from the original sample may ap-
pear several times in the Bootstrap sample. For instance, if the original sample consists of
the three observations x1, x2, x3, then a Bootstrap sample might look like X∗1 = x3, X

∗
2 =

x2, X
∗
3 = x3. Computationally, we find the Bootstrap sample by using a uniform random

number generator to draw from the indices 1, 2, . . . , n of the original samples.

The Bootstrap observations are drawn randomly from the empirical distribution, i.e., the
probability for each original observation to be selected into the Bootstrap sample is 1/n for
each draw. It is easy to compute that

EFn(X∗i ) =
1

n

n∑
i=1

xi = x̄.
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EDF and CDF, n=100
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Figure 4.6. The standard normal cdf (thin line) and the empirical distri-
bution function (thick line) for n = 100. MVAedfnormal.xpl

This is the expected value given that the cdf is the original mean of the sample x1. . . . , xn.
The same holds for the variance, i.e.,

Var
Fn

(X∗i ) = σ̂2,

where σ̂2 = 1
n

∑
(xi − x̄)2. The cdf of the bootstrap observations is defined as in (4.57).

Figure 4.8 shows the cdf of the n = 100 original observations as a solid line and two bootstrap
cdf’s as thin lines.

The CLT holds for the bootstrap sample. Analogously to Corollary 4.1 we have the following
corollary.

http://www.quantlet.org/mdstat/codes/mva/MVAedfnormal.html
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EDF and CDF, n=1000
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Figure 4.7. The standard normal cdf (thin line) and the empirical distri-
bution function (thick line) for n = 1000. MVAedfnormal.xpl

COROLLARY 4.2 If X∗1 , . . . , X
∗
n is a bootstrap sample from X1, . . . , Xn, then the distribu-

tion of
√
n

(
x̄∗ − x̄
σ̂∗

)
also becomes N(0, 1) asymptotically, where x∗ = 1

n

∑n
i=1 X

∗
i and (σ̂∗)2 = 1

n

∑n
i=1(X∗i − x̄∗)2.

How do we find a confidence interval for µ using the Bootstrap method? Recall that the
quantile u1−α/2 might be bad for small sample sizes because the true distribution of

√
n
(
x̄−µ
σ̂

)
might be far away from the limit distribution N(0, 1). The Bootstrap idea enables us to “sim-
ulate” this distribution by computing

√
n
(
x̄∗−x̄
σ̂∗

)
for many Bootstrap samples. In this way

we can estimate an empirical (1−α/2)-quantile u∗1−α/2. The bootstrap improved confidence
interval is then

C∗1−α =

[
x̄− σ̂√

n
u∗1−α/2, x̄+

σ̂√
n
u∗1−α/2

]
.

http://www.quantlet.org/mdstat/codes/mva/MVAedfnormal.html
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EDF and 2 bootstrap EDF’s, n=100
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Figure 4.8. The cdf Fn (thick line) and two bootstrap cdf‘s F ∗n (thin lines).
MVAedfbootstrap.xpl

By Corollary 4.2 we have

P (µ ∈ C∗1−α) −→ 1− α as n→∞,

but with an improved speed of convergence, see Hall (1992).

Summary
↪→ For small sample sizes the bootstrap improves the precision of the confi-

dence interval.

↪→ The bootstrap distribution L(
√
n(x∗ − x)/σ̂∗) converges to the same

asymptotic limit as the distribution L(
√
n(x− µ)/σ̂).

http://www.quantlet.org/mdstat/codes/mva/MVAedfbootstrap.html
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4.7 Exercises

EXERCISE 4.1 Assume that the random vector Y has the following normal distribution:
Y ∼ Np(0, I). Transform it according to (4.49) to create X ∼ N(µ,Σ) with mean µ = (3, 2)>

and Σ =
(

1
−1.5

−1.5
4

)
. How would you implement the resulting formula on a computer?

EXERCISE 4.2 Prove Theorem 4.7 using Theorem 4.5.

EXERCISE 4.3 Suppose that X has mean zero and covariance Σ =
(

1
0

0
2

)
. Let Y = X1 +X2.

Write Y as a linear transformation, i.e., find the transformation matrix A. Then compute
V ar(Y ) via (4.26). Can you obtain the result in another fashion?

EXERCISE 4.4 Calculate the mean and the variance of the estimate β̂ in (3.50).

EXERCISE 4.5 Compute the conditional moments E(X2 | x1) and E(X1 | x2) for the pdf
of Example 4.5.

EXERCISE 4.6 Prove the relation (4.28).

EXERCISE 4.7 Prove the relation (4.29). Hint: Note that Var(E(X2|X1)) =
E(E(X2|X1)E(X>2 |X1)) − E(X2)E(X>2 )) and that E(Var(X2|X1)) = E[E(X2X

>
2 |X1) −

E(X2|X1)E(X>2 |X1)].

EXERCISE 4.8 Compute (4.46) for the pdf of Example 4.5.

EXERCISE 4.9

Show that fY (y) =

{
1
2
y1 − 1

4
y2 0 ≤ y1 ≤ 2, |y2| ≤ 1− |1− y1|

0 otherwise
is a pdf !

EXERCISE 4.10 Compute (4.46) for a two-dimensional standard normal distribution. Show
that the transformed random variables Y1 and Y2 are independent. Give a geometrical inter-
pretation of this result based on iso-distance curves.

EXERCISE 4.11 Consider the Cauchy distribution which has no moment, so that the CLT
cannot be applied. Simulate the distribution of x (for different n’s). What can you expect
for n→∞?
Hint: The Cauchy distribution can be simulated by the quotient of two independent standard
normally distributed random variables.
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EXERCISE 4.12 A European car company has tested a new model and reports the con-
sumption of gasoline (X1) and oil (X2). The expected consumption of gasoline is 8 liters per
100 km (µ1) and the expected consumption of oil is 1 liter per 10.000 km (µ2). The mea-
sured consumption of gasoline is 8.1 liters per 100 km (x1) and the measured consumption

of oil is 1.1 liters per 10,000 km (x2). The asymptotic distribution of
√
n
{(

x1

x2

)
−
(
µ1

µ2

)}
is

N
((

0
0

)
,
(

0.1
0.05

0.05
0.1

))
.

For the American market the basic measuring units are miles (1 mile ≈ 1.6 km) and gallons
(1 gallon ≈ 3.8 liter). The consumptions of gasoline (Y1) and oil (Y2) are usually reported
in miles per gallon. Can you express y1 and y2 in terms of x1 and x2? Recompute the
asymptotic distribution for the American market!

EXERCISE 4.13 Consider the pdf f(x1, x2) = e−(x1+x2), x1, x2 > 0 and let U1 = X1 + X2

and U2 = X1 −X2. Compute f(u1, u2).

EXERCISE 4.14 Consider the pdf‘s

f(x1, x2) = 4x1x2e
−x2

1 x1, x2 > 0,
f(x1, x2) = 1 0 < x1, x2 < 1 and x1 + x2 < 1
f(x1, x2) = 1

2
e−x1 x1 > |x2|.

For each of these pdf‘s compute E(X),Var(X), E(X1|X2), E(X2|X1), V (X1|X2) and V (X2|X1).

EXERCISE 4.15 Consider the pdf f(x1, x2) = 3
2
x
− 1

2
1 , 0 < x1 < x2 < 1. Compute P (X1 <

0.25), P (X2 < 0.25) and P (X2 < 0.25|X1 < 0.25).

EXERCISE 4.16 Consider the pdf f(x1, x2) = 1
2π
, 0 < x1 < 2π, 0 < x2 < 1.

Let U1 = sinX1

√
−2 logX2 and U2 = cosX1

√
−2 logX2. Compute f(u1, u2).

EXERCISE 4.17 Consider f(x1, x2, x3) = k(x1 + x2x3); 0 < x1, x2, x3 < 1.

a) Determine k so that f is a valid pdf of (X1, X2, X3) = X.

b) Compute the (3× 3) matrix ΣX .

c) Compute the (2× 2) matrix of the conditional variance of (X2, X3) given X1 = x1.

EXERCISE 4.18 Let X ∼ N2

((
1
2

)
,

(
2 a
a 2

))
.

a) Represent the contour ellipses for a = 0; −1
2
; +1

2
; 1.
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b) For a = 1
2

find the regions of X centered on µ which cover the area of the true parameter
with probability 0.90 and 0.95.

EXERCISE 4.19 Consider the pdf

f(x1, x2) =
1

8x2

e
−
(
x1
2x2

+
x2
4

)
x1, x2 > 0.

Compute f(x2) and f(x1|x2). Also give the best approximation of X1 by a function of X2.
Compute the variance of the error of the approximation.

EXERCISE 4.20 Prove Theorem 4.6.



5 Theory of the Multinormal

In the preceeding chapter we saw how the multivariate normal distribution comes into play
in many applications. It is useful to know more about this distribution, since it is often
a good approximate distribution in many situations. Another reason for considering the
multinormal distribution relies on the fact that it has many appealing properties: it is stable
under linear transforms, zero correlation corresponds to independence, the marginals and all
the conditionals are also multivariate normal variates, etc. The mathematical properties of
the multinormal make analyses much simpler.

In this chapter we will first concentrate on the probabilistic properties of the multinormal,
then we will introduce two “companion” distributions of the multinormal which naturally
appear when sampling from a multivariate normal population: the Wishart and the Hotelling
distributions. The latter is particularly important for most of the testing procedures pro-
posed in Chapter 7.

5.1 Elementary Properties of the Multinormal

Let us first summarize some properties which were already derived in the previous chapter.

• The pdf of X ∼ Np(µ,Σ) is

f(x) = |2πΣ|−1/2 exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}
. (5.1)

The expectation is E(X) = µ, the covariance can be calculated as Var(X) =
E(X − µ)(X − µ)> = Σ.

• Linear transformations turn normal random variables into normal random variables.
If X ∼ Np(µ,Σ) and A(p× p), c ∈ Rp, then Y = AX + c is p-variate Normal, i.e.,

Y ∼ Np(Aµ+ c,AΣA>). (5.2)

• If X ∼ Np(µ,Σ), then the Mahalanobis transformation is

Y = Σ−1/2(X − µ) ∼ Np(0, Ip) (5.3)
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and it holds that

Y >Y = (X − µ)> Σ−1(X − µ) ∼ χ2
p. (5.4)

Often it is interesting to partition X into sub-vectors X1 and X2. The following theorem
tells us how to correct X2 to obtain a vector which is independent of X1.

THEOREM 5.1 Let X =
(
X1

X2

)
∼ Np(µ,Σ), X1 ∈ Rr, X2 ∈ Rp−r. Define X2.1 = X2 −

Σ21Σ−1
11 X1 from the partitioned covariance matrix

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Then

X1 ∼ Nr(µ1,Σ11), (5.5)

X2.1 ∼ Np−r(µ2.1,Σ22.1) (5.6)

are independent with

µ2.1 = µ2 − Σ21Σ−1
11 µ1, Σ22.1 = Σ22 − Σ21Σ−1

11 Σ12. (5.7)

Proof:

X1 = AX with A = [ Ir , 0 ]

X2.1 = BX with B = [ −Σ21Σ−1
11 , Ip−r ].

Then, by (5.2) X1 and X2.1 are both normal. Note that

Cov(X1, X2.1) = AΣB> =

 1 0
. . .

0 1

0

( Σ11 Σ12

Σ21 Σ22

)


(−Σ21Σ−1
11 )>

1 0
. . .

0 1

 ,

AΣ = (I 0)

(
Σ11 Σ12

Σ21 Σ22

)
= (Σ11 Σ12) ,

⇒ AΣB> = (Σ11 Σ12)

( (
−Σ21Σ−1

11

)>
I

)
=
(
−Σ11

(
Σ21Σ−1

11

)>
+ Σ12

)
.

Recall that Σ21 = (Σ12)>. Hence AΣB> = −Σ11Σ−1
11 Σ12 + Σ12 ≡ 0 !
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Using (5.2) again we also have the joint distribution of (X1, X2.1), namely(
X1

X2.1

)
=

(
A
B

)
X ∼ Np

((
µ1

µ2.1

)
,

(
Σ11 0
0 Σ22.1

))
.

With this block diagonal structure of the covariance matrix, the joint pdf of (X1, X2.1) can
easily be factorized into

f(x1, x2.1) = |2πΣ11|−
1
2 exp

{
−1

2
(x1 − µ1)>Σ−1

11 (x1 − µ1)

}
×

|2πΣ22.1|−
1
2 exp

{
−1

2
(x2.1 − µ2.1)>Σ−1

22.1(x2.1 − µ2.1)

}
from which the independence between X1 and X2.1 follows. 2

The next two corollaries are direct consequences of Theorem 5.1.

COROLLARY 5.1 Let X =

(
X1

X2

)
∼ Np(µ,Σ), Σ =

(
Σ11 Σ12

Σ21 Σ22

)
. Σ12 = 0 if and only if

X1 is independent of X2.

The independence of two linear transforms of a multinormal X can be shown via the following
corollary.

COROLLARY 5.2 If X ∼ Np(µ,Σ) and given some matrices A and B , then AX and BX
are independent if and only if AΣB> = 0.

The following theorem is also useful. It generalizes Theorem 4.6. The proof is left as an
exercise.

THEOREM 5.2 If X ∼ Np(µ,Σ), A(q × p), c ∈ Rq and q ≤ p, then Y = AX + c is a
q-variate Normal, i.e.,

Y ∼ Nq(Aµ+ c,AΣA>).

The conditional distribution of X2 given X1 is given by the next theorem.

THEOREM 5.3 The conditional distribution of X2 given X1 = x1 is normal with mean
µ2 + Σ21Σ−1

11 (x1 − µ1) and covariance Σ22.1, i.e.,

(X2 | X1 = x1) ∼ Np−r(µ2 + Σ21Σ−1
11 (x1 − µ1),Σ22.1). (5.8)
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Proof:
Since X2 = X2.1 + Σ21Σ−1

11 X1, for a fixed value of X1 = x1, X2 is equivalent to X2.1 plus a
constant term:

(X2|X1 = x1) = (X2.1 + Σ21Σ−1
11 x1),

which has the normal distribution N(µ2.1 + Σ21Σ−1
11 x1,Σ22.1). 2

Note that the conditional mean of (X2 | X1) is a linear function ofX1 and that the conditional
variance does not depend on the particular value of X1. In the following example we consider
a specific distribution.

EXAMPLE 5.1 Suppose that p = 2, r = 1, µ =

(
0

0

)
and Σ =

(
1

−0.8

−0.8

2

)
. Then

Σ11 = 1, Σ21 = −0.8 and Σ22.1 = Σ22 − Σ21Σ−1
11 Σ12 = 2− (0.8)2 = 1.36. Hence the marginal

pdf of X1 is

fX1(x1) =
1√
2π

exp

(
−x

2
1

2

)
and the conditional pdf of (X2 | X1 = x1) is given by

f(x2 | x1) =
1√

2π(1.36)
exp

{
−(x2 + 0.8x1)2

2× (1.36)

}
.

As mentioned above, the conditional mean of (X2 | X1) is linear in X1. The shift in the
density of (X2 | X1) can be seen in Figure 5.1.

Sometimes it will be useful to reconstruct a joint distribution from the marginal distribution
of X1 and the conditional distribution (X2|X1). The following theorem shows under which
conditions this can be easily done in the multinormal framework.

THEOREM 5.4 If X1 ∼ Nr(µ1,Σ11) and (X2|X1 = x1) ∼ Np−r(Ax1 + b,Ω) where Ω does
not depend on x1, then X =

(
X1

X2

)
∼ Np(µ,Σ), where

µ =

(
µ1

Aµ1 + b

)
Σ =

(
Σ11 Σ11A>
AΣ11 Ω +AΣ11A>

)
.

EXAMPLE 5.2 Consider the following random variables

X1 ∼ N1(0, 1),

X2|X1 = x1 ∼ N2

((
2x1

x1 + 1

)
,

(
1 0
0 1

))
.
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conditional normal densities f(x2|x1)

-0.45
1.35

3.15
4.95

6.75

-10.00
-7.01

-4.02
-1.03

1.96

0.07

0.14

0.21

0.27

0.34

Figure 5.1. Shifts in the conditional density. MVAcondnorm.xpl

Using Theorem (5.4), where A = (2 1)>, b = (0 1)> and Ω = I2, we easily obtain the
following result:

X =

(
X1

X2

)
∼ N3

 0
0
1

 ,

 1 2 1
2 5 2
1 2 2

 .

In particular, the marginal distribution of X2 is

X2 ∼ N2

((
0
1

)
,

(
5 2
2 2

))
,

thus conditional on X1, the two components of X2 are independent but marginally they are
not!

Note that the marginal mean vector and covariance matrix of X2 could have also been com-
puted directly by using (4.28)–(4.29). Using the derivation above, however, provides us with
useful properties: we have multinormality!

http://www.quantlet.org/mdstat/codes/mva/MVAcondnorm.html
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Conditional Approximations

As we saw in Chapter 4 (Theorem 4.3), the conditional expectation E(X2|X1) is the mean
squared error (MSE) best approximation of X2 by a function of X1. We have in this case
that

X2 = E(X2|X1) + U = µ2 + Σ21Σ−1
11 (X1 − µ1) + U. (5.9)

Hence, the best approximation of X2 ∈ Rp−r by X1 ∈ Rr is the linear approximation that
can be written as:

X2 = β0 + BX1 + U (5.10)

with B = Σ21Σ−1
11 , β0 = µ2 −Bµ1 and U ∼ N(0,Σ22.1).

Consider now the particular case where r = p− 1. Now X2 ∈ R and B is a row vector β> of
dimension (1× r)

X2 = β0 + β>X1 + U. (5.11)

This means, geometrically speaking, that the best MSE approximation of X2 by a function
of X1 is hyperplane. The marginal variance of X2 can be decomposed via (5.11):

σ22 = β>Σ11β + σ22.1 = σ21Σ−1
11 σ12 + σ22.1. (5.12)

The ratio

ρ2
2.1...r =

σ21Σ−1
11 σ12

σ22

(5.13)

is known as the square of the multiple correlation between X2 and the r variables X1. It is the
percentage of the variance of X2 which is explained by the linear approximation β0 + β>X1.
The last term in (5.12) is the residual variance of X2. The square of the multiple correlation
corresponds to the coefficient of determination introduced in Section 3.4, see (3.39), but
here it is defined in terms of the r.v. X1 and X2. It can be shown that ρ2.1...r is also the
maximum correlation attainable between X2 and a linear combination of the elements of X1,
the optimal linear combination being precisely given by β>X1. Note, that when r = 1, the
multiple correlation ρ2.1 coincides with the usual simple correlation ρX2X1 between X2 and
X1.

EXAMPLE 5.3 Consider the “classic blue” pullover example (Example 3.15) and suppose
that X1 (sales), X2 (price), X3 (advertisement) and X4 (sales assistants) are normally dis-
tributed with

µ =


172.7
104.6
104.0
93.8

 and Σ =


1037.21
−80.02 219.84
1430.70 92.10 2624.00
271, 44 −91.58 210.30 177.36

 .

(These are in fact the sample mean and the sample covariance matrix but in this example
we pretend that they are the true parameter values.)
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The conditional distribution of X1 given (X2, X3, X4) is thus an univariate normal with mean

µ1 + σ12Σ−1
22

 X2 − µ2

X3 − µ3

X4 − µ4

 = 65.670− 0.216X2 + 0.485X3 + 0.844X4

and variance
σ11.2 = σ11 − σ12Σ−1

22 σ21 = 96.761

The linear approximation of the sales (X1) by the price (X2), advertisement (X3) and sales
assistants (X4) is provided by the conditional mean above.(Note that this coincides with
the results of Example 3.15 due to the particular choice of µ and Σ). The quality of the

approximation is given by the multiple correlation ρ2
1.234 =

σ12Σ−1
22 σ21

σ11
= 0.907. (Note again

that this coincides with the coefficient of determination r2 found in Example 3.15).

This example also illustrates the concept of partial correlation. The correlation matrix be-
tween the 4 variables is given by

P =


1 −0.168 0.867 0.633

−0.168 1 0.121 −0.464
0.867 0.121 1 0.308
0.633 −0.464 0.308 1

 ,

so that the correlation between X1 (sales) and X2 (price) is −0.168. We can compute the
conditional distribution of (X1, X2) given (X3, X4), which is a bivariate normal with mean:(
µ1

µ2

)
+

(
σ13 σ14

σ23 σ24

)(
σ33 σ34

σ43 σ44

)−1(
X3 − µ3

X4 − µ4

)
=

(
32.516 + 0.467X3 + 0.977X4

153.644 + 0.085X3 − 0.617X4

)
and covariance matrix:(

σ11 σ12

σ21 σ22

)
−
(
σ13 σ14

σ23 σ24

)(
σ33 σ34

σ43 σ44

)−1(
σ31 σ32

σ41 σ42

)
=

(
104.006
−33.574 155.592

)
.

In particular, the last covariance matrix allows the partial correlation between X1 and X2 to
be computed for a fixed level of X3 and X4:

ρX1X2|X3X4 =
−33.574√

104.006 ∗ 155.592
= −0.264,

so that in this particular example with a fixed level of advertisement and sales assistance, the
negative correlation between price and sales is more important than the marginal one.
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Summary
↪→ If X ∼ Np(µ,Σ), then a linear transformation AX + c, A(q × p), where

c ∈ Rq, has distribution Nq(Aµ+ c,AΣA>).

↪→ Two linear transformations AX and BX with X ∼ Np(µ,Σ) are indepen-
dent if and only if AΣB> = 0.

↪→ If X1 and X2 are partitions of X ∼ Np(µ,Σ), then the conditional distri-
bution of X2 given X1 = x1 is again normal.

↪→ In the multivariate normal case, X1 is independent of X2 if and only if
Σ12 = 0.

↪→ The conditional expectation of (X2|X1) is a linear function if
(
X1

X2

)
∼

Np(µ,Σ).

↪→ The multiple correlation coefficient is defined as ρ2
2.1...r =

σ21Σ−1
11 σ12

σ22
.

↪→ The multiple correlation coefficient is the percentage of the variance of X2

explained by the linear approximation β0 + β>X1.

5.2 The Wishart Distribution

The Wishart distribution (named after its discoverer) plays a prominent role in the analysis
of estimated covariance matrices. If the mean of X ∼ Np(µ,Σ) is known to be µ = 0, then
for a data matrix X (n×p) the estimated covariance matrix is proportional to X>X . This is
the point where the Wishart distribution comes in, becauseM(p× p) = X>X =

∑n
i=1 xix

>
i

has a Wishart distribution Wp(Σ, n).

EXAMPLE 5.4 Set p = 1, then for X ∼ N1(0, σ2) the data matrix of the observations

X = (x1, . . . , xn)> with M = X>X =
n∑
i=1

xixi

leads to the Wishart distribution W1(σ2, n) = σ2χ2
n. The one-dimensional Wishart distribu-

tion is thus in fact a χ2 distribution.

When we talk about the distribution of a matrix, we mean of course the joint distribution
of all its elements. More exactly: since M = X>X is symmetric we only need to consider
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the elements of the lower triangular matrix

M =


m11

m21 m22
...

...
. . .

mp1 mp2 . . . mpp

 . (5.14)

Hence the Wishart distribution is defined by the distribution of the vector

(m11, . . . ,mp1,m22, . . . ,mp2, . . . ,mpp)
>. (5.15)

Linear transformations of the data matrix X also lead to Wishart matrices.

THEOREM 5.5 If M∼ Wp(Σ, n) and B(p× q), then the distribution of B>MB is Wishart
Wq(B>ΣB, n).

With this theorem we can standardize Wishart matrices since with B = Σ−1/2 the distribu-
tion of Σ−1/2MΣ−1/2 is Wp(I, n). Another connection to the χ2-distribution is given by the
following theorem.

THEOREM 5.6 If M ∼ Wp(Σ,m), and a ∈ Rp with a>Σa 6= 0, then the distribution of
a>Ma

a>Σa
is χ2

m.

This theorem is an immediate consequence of Theorem 5.5 if we apply the linear transfor-
mation x 7→ a>x. Central to the analysis of covariance matrices is the next theorem.

THEOREM 5.7 (Cochran) Let X (n×p) be a data matrix from a Np(0,Σ) distribution and
let C(n× n) be a symmetric matrix.

(a) X>CX has the distribution of weighted Wishart random variables, i.e.

X>CX =
n∑
i=1

λiWp(Σ, 1),

where λi, i = 1, . . . , n, are the eigenvalues of C.

(b) X>CX is Wishart if and only if C2 = C. In this case

X>CX ∼ Wp(Σ, r),

and r = rank(C) = tr(C).
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(c) nS = X>HX is distributed as Wp(Σ, n − 1) (note that S is the sample covariance
matrix).

(d) x̄ and S are independent.

The following properties are useful:

1. If M∼ Wp(Σ, n), then E(M) = nΣ.

2. IfMi are independent WishartWp(Σ, ni) i = 1, · · · , k, thenM =
∑k

i=1Mi ∼ Wp(Σ, n)

where n =
∑k

i=1 ni.

3. The density of Wp(Σ, n− 1) for a positive definite M is given by:

fΣ,n−1(M) =
|M| 12 (n−p−2)e−

1
2
tr(MΣ−1)

2
1
2
p(n−1)π

1
4
p(p−1)|Σ| 12 (n−1)

∏p
i=1 Γ{n−i

2
}
, (5.16)

where Γ is the gamma function, see Feller (1966).

For further details on the Wishart distribution see Mardia, Kent and Bibby (1979).

Summary
↪→ The Wishart distribution is a generalization of the χ2-distribution. In

particular W1(σ2, n) = σ2χ2
n.

↪→ The empirical covariance matrix S has a 1
n
Wp(Σ, n− 1) distribution.

↪→ In the normal case, x̄ and S are independent.

↪→ For M∼ Wp(Σ,m), a>Ma
a>Σa

∼ χ2
m.
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5.3 Hotelling T 2-Distribution

Suppose that Y ∈ Rp is a standard normal random vector, i.e., Y ∼ Np(0, I), independent
of the random matrix M ∼ Wp(I, n). What is the distribution of Y >M−1Y ? The answer
is provided by the Hotelling T 2-distribution: n Y >M−1Y is Hotelling T 2 (p, n) distributed.

The Hotelling T 2-distribution is a generalization of the Student t-distribution. The gen-
eral multinormal distribution N(µ,Σ) is considered in Theorem 5.8. The Hotelling T 2-
distribution will play a central role in hypothesis testing in Chapter 7.

THEOREM 5.8 If X ∼ Np(µ,Σ) is independent of M∼ Wp(Σ, n), then

n(X − µ)>M−1(X − µ) ∼ T 2(p, n).

COROLLARY 5.3 If x is the mean of a sample drawn from a normal population Np(µ,Σ)
and S is the sample covariance matrix, then

(n− 1)(x− µ)>S−1(x− µ) = n(x− µ)>S−1
u (x− µ) ∼ T 2(p, n− 1). (5.17)

Recall that Su = n
n−1
S is an unbiased estimator of the covariance matrix. A connection

between the Hotelling T 2- and the F -distribution is given by the next theorem.

THEOREM 5.9
T 2(p, n) =

np

n− p+ 1
Fp,n−p+1.

EXAMPLE 5.5 In the univariate case (p=1), this theorem boils down to the well known
result: (

x̄− µ√
Su/
√
n

)2

∼ T 2(1, n− 1) = F1,n−1 = t2n−1

For further details on Hotelling T 2-distribution see Mardia et al. (1979). The next corollary
follows immediately from (3.23),(3.24) and from Theorem 5.8. It will be useful for testing
linear restrictions in multinormal populations.

COROLLARY 5.4 Consider a linear transform of X ∼ Np(µ,Σ), Y = AX where
A(q× p) with (q ≤ p). If x and SX are the sample mean and the covariance matrix, we have

y = Ax ∼ Nq(Aµ,
1

n
AΣA>)

nSY = nASXA> ∼ Wq(AΣA>, n− 1)

(n− 1)(Ax−Aµ)>(ASXA>)−1(Ax−Aµ) ∼ T 2(q, n− 1)
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The T 2 distribution is closely connected to the univariate t-statistic. In Example 5.4 we
described the manner in which the Wishart distribution generalizes the χ2-distribution. We
can write (5.17) as:

T 2 =
√
n(x− µ)>

(∑n
j=1(xj − x)(xj − x)>

n− 1

)−1
√
n(x− µ)

which is of the form

(
multivariate normal

random vector

)>
Wishart random

matrix

degrees of freedom


−1(

multivariate normal
random vector

)
.

This is analogous to
t2 =

√
n(x− µ)(s2)−1

√
n(x− µ)

or (
normal

random variable

)
χ2-random

variable

degrees of freedom


−1(

normal
random variable

)

for the univariate case. Since the multivariate normal and Wishart random variables are
independently distributed, their joint distribution is the product of the marginal normal and
Wishart distributions. Using calculus, the distribution of T 2 as given above can be derived
from this joint distribution.

Summary
↪→ Hotelling’s T 2-distribution is a generalization of the t-distribution. In

particular T (1, n) = tn.

↪→ (n− 1)(x− µ)>S−1(x− µ) has a T 2(p, n− 1) distribution.

↪→ The relation between Hotelling’s T 2− and Fisher’s F -distribution is given
by T 2(p, n) = np

n−p+1
Fp,n−p+1.
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5.4 Spherical and Elliptical Distributions

The multinormal distribution belongs to the large family of elliptical distributions which has
recently gained a lot of attention in financial mathematics. Elliptical distributions are often
used, particularly in risk management.

DEFINITION 5.1 A (p× 1) random vector Y is said to have a spherical distribution Sp(φ)
if its characteristic function ψY (t) satisfies: ψY (t) = φ(t>t) for some scalar function φ(.)
which is then called the characteristic generator of the spherical distribution Sp(φ). We will
write Y ∼ Sp(φ).

This is only one of several possible ways to define spherical distributions. We can see spherical
distributions as an extension of the standard multinormal distribution Np(0, Ip).

THEOREM 5.10 Spherical random variables have the following properties:

1. All marginal distributions of a spherical distributed random vector are spherical.

2. All the marginal characteristic functions have the same generator.

3. Let X ∼ Sp(φ), then X has the same distribution as ru(p) where u(p) is a random vector
distributed uniformly on the unit sphere surface in Rp and r ≥ 0 is a random variable
independent of u(p). If E(r2) <∞, then

E(X) = 0 , Cov(X) =
E(r2)

p
Ip.

The random radius r is related to the generator φ by a relation described in Fang, Kotz and
Ng (1990, p.29). The moments of X ∼ Sp(φ), provided that they exist, can be expressed in
terms of one-dimensional integrals (Fang et al., 1990).

A spherically distributed random vector does not, in general, necessarily possess a density.
However, if it does, the marginal densities of dimension smaller than p−1 are continuous and
the marginal densities of dimension smaller than p− 2 are differentiable (except possibly at
the origin in both cases). Univariate marginal densities for p greater than 2 are nondecreasing
on (−∞, 0) and nonincreasing on (0,∞).

DEFINITION 5.2 A (p× 1) random vector X is said to have an elliptical distribution with
parameters µ(p × 1) and Σ(p × p) if X has the same distribution as µ + A>Y , where Y ∼
Sk(φ) and A is a (k × p) matrix such that A>A = Σ with rank(Σ) = k. We shall write
X ∼ ECp(µ,Σ, φ).
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REMARK 5.1 The elliptical distribution can be seen as an extension of Np(µ,Σ).

EXAMPLE 5.6 The multivariate t-distribution. Let Z ∼ Np(0, Ip) and s ∼ χ2
m be inde-

pendent. The random vector

Y =
√
m

Z

s
has a multivariate t-distribution with m degrees of freedom. Moreover the t-distribution
belongs to the family of p-dimensioned spherical distributions.

EXAMPLE 5.7 The multinormal distribution. Let X ∼ Np(µ,Σ). Then X ∼ ECp(µ,Σ, φ)
and φ(u) = exp (−u/2). Figure 4.3 shows a density surface of the multivariate normal distri-

bution: f(x) = det(2πΣ)−
1
2 exp{−1

2
(x−µ)>Σ−1(x−µ)} with Σ =

(
1 0.6

0.6 1

)
and µ =

(
0
0

)
Notice that the density is constant on ellipses. This is the reason for calling this family of
distributions “elliptical”.

THEOREM 5.11 Elliptical random vectors X have the following properties:

1. Any linear combination of elliptically distributed variables are elliptical.

2. Marginal distributions of elliptically distributed variables are elliptical.

3. A scalar function φ(.) can determine an elliptical distribution ECp(µ,Σ, φ) for every
µ ∈ Rp and Σ ≥ 0 with rank(Σ) = k iff φ(t>t) is a p-dimensional characteristic
function.

4. Assume that X is nondegenerate. If X ∼ ECp(µ,Σ, φ) and X ∼ ECp(µ
∗,Σ∗, φ∗), then

there exists a constant c > 0 such that

µ = µ∗, Σ = cΣ∗, φ∗(.) = φ(c−1.).

In other words Σ, φ,A are not unique, unless we impose the condition that det(Σ) = 1.

5. The characteristic function of X,ψ(t) = E(eit>X) is of the form

ψ(t) = eit>µφ(t>Σt)

for a scalar function φ.

6. X ∼ ECp(µ,Σ, φ) with rank(Σ) = k iff X has the same distribution as:

µ+ rA>u(k) (5.18)

where r ≥ 0 is independent of u(k) which is a random vector distributed uniformly on
the unit sphere surface in Rk and A is a (k × p) matrix such that A>A = Σ.
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7. Assume that X ∼ ECp(µ,Σ, φ) and E(r2) <∞. Then

E(X) = µ Cov(X) =
E(r2)

rank(Σ)
Σ = −2φ>(0)Σ.

8. Assume that X ∼ ECp(µ,Σ, φ) with rank(Σ) = k. Then

Q(X) = (X − µ)>Σ−(X − µ)

has the same distribution as r2 in equation (5.18).

5.5 Exercises

EXERCISE 5.1 Consider X ∼ N2(µ,Σ) with µ = (2, 2)> and Σ =

(
1

0

0

1

)
and the matrices

A =

(
1

1

)>
, B =

(
1

−1

)>
. Show that AX and BX are independent.

EXERCISE 5.2 Prove Theorem 5.4.

EXERCISE 5.3 Prove proposition (c) of Theorem 5.7.

EXERCISE 5.4 Let

X ∼ N2

((
1
2

)
,

(
2 1
1 2

))
and

Y | X ∼ N2

((
X1

X1 +X2

)
,

(
1 0
0 1

))
.

a) Determine the distribution of Y2 | Y1.

b) Determine the distribution of W = X − Y .

EXERCISE 5.5 Consider

 X
Y
Z

 ∼ N3(µ,Σ). Compute µ and Σ knowing that

Y | Z ∼ N1(−Z, 1)

µZ|Y = −1

3
− 1

3
Y

X | Y, Z ∼ N1(2 + 2Y + 3Z, 1).

Determine the distributions of X | Y and of X | Y + Z.
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EXERCISE 5.6 Knowing that

Z ∼ N1(0, 1)

Y | Z ∼ N1(1 + Z, 1)

X | Y, Z ∼ N1(1− Y, 1)

a) find the distribution of

 X
Y
Z

 and of Y | X,Z.

b) find the distribution of (
U
V

)
=

(
1 + Z
1− Y

)
.

c) compute E(Y | U = 2).

EXERCISE 5.7 Suppose

(
X
Y

)
∼ N2(µ,Σ) with Σ positive definite. Is it possible that

a) µX|Y = 3Y 2,

b) σXX|Y = 2 + Y 2,

c) µX|Y = 3− Y , and

d) σXX|Y = 5 ?

EXERCISE 5.8 Let X ∼ N3

 1
2
3

 ,

 11 −6 2
−6 10 −4

2 −4 6

.

a) Find the best linear approximation of X3 by a linear function of X1 and X2 and compute
the multiple correlation between X3 and (X1, X2).

b) Let Z1 = X2 −X3, Z2 = X2 + X3 and (Z3 | Z1, Z2) ∼ N1(Z1 + Z2, 10). Compute the

distribution of

 Z1

Z2

Z3

.
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EXERCISE 5.9 Let (X, Y, Z)> be a trivariate normal r.v. with

Y | Z ∼ N1(2Z, 24)

Z | X ∼ N1(2X + 3, 14)

X ∼ N1(1, 4)

and ρXY = 0.5.

Find the distribution of (X, Y, Z)> and compute the partial correlation between X and Y for
fixed Z. Do you think it is reasonable to approximate X by a linear function of Y and Z?

EXERCISE 5.10 Let X ∼ N4




1
2
3
4

 ,


4 1 2 4
1 4 2 1
2 2 16 1
4 1 1 9


 .

a) Give the best linear approximation of X2 as a function of (X1, X4) and evaluate the
quality of the approximation.

b) Give the best linear approximation of X2 as a function of (X1, X3, X4) and compare
your answer with part a).

EXERCISE 5.11 Prove Theorem 5.2.
(Hint: complete the linear transformation Z =

(
A
Ip−q

)
X +

(
c

0p−q

)
and then use Theorem

5.1 to get the marginal of the first q components of Z.)

EXERCISE 5.12 Prove Corollaries 5.1 and 5.2.





6 Theory of Estimation

We know from our basic knowledge of statistics that one of the objectives in statistics is to
better understand and model the underlying process which generates the data. This is known
as statistical inference: we infer from information contained in a sample properties of the
population from which the observations are taken. In multivariate statistical inference, we
do exactly the same. The basic ideas were introduced in Section 4.5 on sampling theory: we
observed the values of a multivariate random variable X and obtained a sample X = {xi}ni=1.
Under random sampling, these observations are considered to be realizations of a sequence
of i.i.d. random variables X1, . . . , Xn where each Xi is a p-variate random variable which
replicates the parent or population random variable X. In this chapter, for notational
convenience, we will no longer differentiate between a random variable Xi and an observation
of it, xi, in our notation. We will simply write xi and it should be clear from the context
whether a random variable or an observed value is meant.

Statistical inference infers from the i.i.d. random sample X the properties of the population:
typically, some unknown characteristic θ of its distribution. In parametric statistics, θ is a
k-variate vector θ ∈ Rk characterizing the unknown properties of the population pdf f(x; θ):
this could be the mean, the covariance matrix, kurtosis, etc.

The aim will be to estimate θ from the sample X through estimators θ̂ which are functions
of the sample: θ̂ = θ̂(X ). When an estimator θ̂ is proposed, we must derive its sampling
distribution to analyze its properties (is it related to the unknown quantity θ it is supposed
to estimate?).

In this chapter the basic theoretical tools are developed which are needed to derive estima-
tors and to determine their properties in general situations. We will basically rely on the
maximum likelihood theory in our presentation. In many situations, the maximum likeli-
hood estimators indeed share asymptotic optimal properties which make their use easy and
appealing.

We will illustrate the multivariate normal population and also the linear regression model
where the applications are numerous and the derivations are easy to do. In multivariate
setups, the maximum likelihood estimator is at times too complicated to be derived ana-
lytically. In such cases, the estimators are obtained using numerical methods (nonlinear
optimization). The general theory and the asymptotic properties of these estimators remain
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simple and valid. The following chapter, Chapter 7, concentrates on hypothesis testing and
confidence interval issues.

6.1 The Likelihood Function

Suppose that {xi}ni=1 is an i.i.d. sample from a population with pdf f(x; θ). The aim is to
estimate θ ∈ Rk which is a vector of unknown parameters. The likelihood function is defined
as the joint density L(X ; θ) of the observations xi considered as a function of θ:

L(X ; θ) =
n∏
i=1

f(xi; θ), (6.1)

where X denotes the sample of the data matrix with the observations x>1 , . . . , x
>
n in each

row. The maximum likelihood estimator (MLE) of θ is defined as

θ̂ = arg max
θ
L(X ; θ).

Often it is easier to maximize the log-likelihood function

`(X ; θ) = logL(X ; θ), (6.2)

which is equivalent since the logarithm is a monotone one-to-one function. Hence

θ̂ = arg max
θ
L(X ; θ) = arg max

θ
`(X ; θ).

The following examples illustrate cases where the maximization process can be performed
analytically, i.e., we will obtain an explicit analytical expression for θ̂. Unfortunately, in other
situations, the maximization process can be more intricate, involving nonlinear optimization
techniques. In the latter case, given a sample X and the likelihood function, numerical
methods will be used to determine the value of θ maximizing L(X ; θ) or `(X ; θ). These
numerical methods are typically based on Newton-Raphson iterative techniques.

EXAMPLE 6.1 Consider a sample {xi}ni=1 from Np(µ, I), i.e., from the pdf

f(x; θ) = (2π)−p/2 exp

{
−1

2
(x− θ)>(x− θ)

}
where θ = µ ∈ Rp is the mean vector parameter. The log-likelihood is in this case

`(X ; θ) =
n∑
i=1

log{f(xi; θ)} = log (2π)−np/2 − 1

2

n∑
i=1

(xi − θ)>(xi − θ). (6.3)
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The term (xi − θ)>(xi − θ) equals

(xi − x)>(xi − x) + (x− θ)>(x̄− θ) + 2(x− θ)>(xi − x).

Summing this term over i = 1, . . . , n we see that

n∑
i=1

(xi − θ)>(xi − θ) =
n∑
i=1

(xi − x)>(xi − x) + n(x− θ)>(x− θ).

Hence

`(X ; θ) = log(2π)−np/2 − 1

2

n∑
i=1

(xi − x)>(xi − x)− n

2
(x− θ)>(x̄− θ).

Only the last term depends on θ and is obviously maximized for

θ̂ = µ̂ = x.

Thus x is the MLE of θ for this family of pdfs f(x, θ).

A more complex example is the following one where we derive the MLE’s for µ and Σ.

EXAMPLE 6.2 Suppose {xi}ni=1 is a sample from a normal distribution Np(µ,Σ). Here
θ = (µ,Σ) with Σ interpreted as a vector. Due to the symmetry of Σ the unknown parameter
θ is in fact {p+ 1

2
p(p+ 1)}-dimensional. Then

L(X ; θ) = |2πΣ|−n/2 exp

{
−1

2

n∑
i=1

(xi − µ)>Σ−1(xi − µ)

}
(6.4)

and

`(X ; θ) = −n
2

log |2πΣ| − 1

2

n∑
i=1

(xi − µ)>Σ−1(xi − µ). (6.5)

The term (xi − µ)>Σ−1(xi − µ) equals

(xi − x)>Σ−1(xi − x) + (x− µ)>Σ−1(x̄− µ) + 2(x− µ)>Σ−1(xi − x).

Summing this term over i = 1, . . . , n we see that

n∑
i=1

(xi − µ)>Σ−1(xi − µ) =
n∑
i=1

(xi − x)>Σ−1(xi − x) + n(x− µ)>Σ−1(x− µ).

Note that from (2.14)

(xi − x)>Σ−1(xi − x) = tr
{

(xi − x)>Σ−1(xi − x)
}

= tr
{

Σ−1(xi − x)(xi − x)>
}
.
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Therefore, by summing over the index i we finally arrive at

n∑
i=1

(xi − µ)>Σ−1(xi − µ) = tr{Σ−1

n∑
i=1

(xi − x)(xi − x)>}+ n(x− µ)>Σ−1(x− µ)

= tr{Σ−1nS}+ n(x− µ)>Σ−1(x− µ).

Thus the log-likelihood function for Np(µ,Σ) is

`(X ; θ) = −n
2

log |2πΣ| − n

2
tr{Σ−1S} − n

2
(x− µ)>Σ−1(x− µ). (6.6)

We can easily see that the third term is maximized by µ = x̄. In fact the MLE’s are given by

µ̂ = x, Σ̂ = S.

The derivation of Σ̂ is a lot more complicated. It involves derivatives with respect to matrices
with their notational complexities and will not be presented here: for a more elaborate proof
see Mardia et al. (1979, p.103-104). Note that the unbiased covariance estimator Su = n

n−1
S

is not the MLE of Σ!

EXAMPLE 6.3 Consider the linear regression model yi = β>xi + εi for i = 1, . . . , n, where
εi is i.i.d. and N(0, σ2) and where xi ∈ Rp. Here θ = (β>, σ) is a (p + 1)-dimensional
parameter vector. Denote

y =

 y1
...
yn

 , X =

 x>1
...
x>n

 .

Then

L(y,X ; θ) =
n∏
i=1

1√
2πσ

exp

{
− 1

2σ2
(yi − β>xi)2

}
and

`(y,X ; θ) = log

(
1

(2π)n/2σn

)
− 1

2σ2

n∑
i=1

(yi − β>xi)2

= −n
2

log(2π)− n log σ − 1

2σ2
(y −Xβ)>(y −Xβ)

= −n
2

log(2π)− n log σ − 1

2σ2
(y>y + β>X>Xβ − 2β>X>y).

Differentiating w.r.t. the parameters yields

∂

∂β
` = − 1

2σ2
(2X>Xβ − 2X>y)

∂

∂σ
` = −n

σ
+

1

σ3

{
(y −Xβ)>(y −Xβ)

}
.
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Note that ∂
∂β
` denotes the vector of the derivatives w.r.t. all components of β (the gradient).

Since the first equation only depends on β, we start with deriving β̂.

X>X β̂ = X>y =⇒ β̂ = (X>X )−1X>y

Plugging β̂ into the second equation gives

n

σ̂
=

1

σ̂3
(y −X β̂)>(y −X β̂) =⇒ σ̂2 =

1

n
||y −X β̂||2,

where || • ||2 denotes the Euclidean vector norm from Section 2.6. We see that the MLE β̂
is identical with the least squares estimator (3.52). The variance estimator

σ̂2 =
1

n

n∑
i=1

(yi − β̂>xi)2

is nothing else than the residual sum of squares (RSS) from (3.37) generalized to the case of
multivariate xi.

Note that when the xi are considered to be fixed we have

E(y) = Xβ and Var(y) = σ2In.

Then, using the properties of moments from Section 4.2 we have

E(β̂) = (X>X )−1X>E(y) = β, (6.7)

Var(β̂) = σ2(X>X )−1. (6.8)

Summary
↪→ If {xi}ni=1 is an i.i.d. sample from a distribution with pdf f(x; θ), then

L(X ; θ) =
∏n

i=1 f(xi; θ) is the likelihood function. The maximum likeli-
hood estimator (MLE) is that value of θ which maximizes L(X ; θ). Equiv-
alently one can maximize the log-likelihood `(X ; θ).

↪→ The MLE’s of µ and Σ from a Np(µ,Σ) distribution are µ̂ = x and Σ̂ = S.
Note that the MLE of Σ is not unbiased.

↪→ The MLE’s of β and σ in the linear model y = Xβ + ε, ε ∼ Nn(0, σ2I)

are given by the least squares estimator β̂ = (X>X )−1X>y and σ̂2 =
1
n
||y −X β̂||2. E(β̂) = β and Var(β̂) = σ2(X>X )−1.
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6.2 The Cramer-Rao Lower Bound

As pointed out above, an important question in estimation theory is whether an estimator
θ̂ has certain desired properties, in particular, if it converges to the unknown parameter θ
it is supposed to estimate. One typical property we want for an estimator is unbiasedness,
meaning that on the average, the estimator hits its target: E(θ̂) = θ. We have seen for
instance (see Example 6.2) that x̄ is an unbiased estimator of µ and S is a biased estimator
of Σ in finite samples. If we restrict ourselves to unbiased estimation then the natural
question is whether the estimator shares some optimality properties in terms of its sampling
variance. Since we focus on unbiasedness, we look for an estimator with the smallest possible
variance.

In this context, the Cramer-Rao lower bound will give the minimal achievable variance
for any unbiased estimator. This result is valid under very general regularity conditions
(discussed below). One of the most important applications of the Cramer-Rao lower bound
is that it provides the asymptotic optimality property of maximum likelihood estimators.
The Cramer-Rao theorem involves the score function and its properties which will be derived
first.

The score function s(X ; θ) is the derivative of the log likelihood function w.r.t. θ ∈ Rk

s(X ; θ) =
∂

∂θ
`(X ; θ) =

1

L(X ; θ)

∂

∂θ
L(X ; θ). (6.9)

The covariance matrix Fn = Var{s(X ; θ)} is called the Fisher information matrix. In what
follows, we will give some interesting properties of score functions.

THEOREM 6.1 If s = s(X ; θ) is the score function and if θ̂ = t = t(X , θ) is any function
of X and θ, then under regularity conditions

E(st>) =
∂

∂θ
E(t>)− E

(
∂t>

∂θ

)
· (6.10)

The proof is left as an exercise (see Exercise 6.9). The regularity conditions required for this
theorem are rather technical and ensure that the expressions (expectations and derivations)
appearing in (6.10) are well defined. In particular, the support of the density f(x; θ) should
not depend on θ. The next corollary is a direct consequence.

COROLLARY 6.1 If s = s(X ; θ) is the score function, and θ̂ = t = t(X ) is any unbiased
estimator of θ (i.e., E(t) = θ), then

E(st>) = Cov(s, t) = Ik. (6.11)
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Note that the score function has mean zero (see Exercise 6.10).

E{s(X ; θ)} = 0. (6.12)

Hence, E(ss>) = Var(s) = Fn and by setting s = t in Theorem 6.1 it follows that

Fn = −E
{

∂2

∂θ∂θ>
`(X ; θ)

}
.

REMARK 6.1 If x1, · · · , xn are i.i.d., Fn = nF1 where F1 is the Fisher information matrix
for sample size n=1.

EXAMPLE 6.4 Consider an i.i.d. sample {xi}ni=1 from Np(θ, I). In this case the parameter
θ is the mean µ. It follows from (6.3) that:

s(X ; θ) =
∂

∂θ
`(X ; θ)

= −1

2

∂

∂θ

{
n∑
i=1

(xi − θ)>(xi − θ)

}
= n(x− θ).

Hence, the information matrix is

Fn = Var{n(x− θ)} = nIp.

How well can we estimate θ? The answer is given in the following theorem which is due
to Cramer and Rao. As pointed out above, this theorem gives a lower bound for unbiased
estimators. Hence, all estimators, which are unbiased and attain this lower bound, are
minimum variance estimators.

THEOREM 6.2 (Cramer-Rao) If θ̂ = t = t(X ) is any unbiased estimator for θ, then under
regularity conditions

Var(t) ≥ F−1
n , (6.13)

where
Fn = E{s(X ; θ)s(X ; θ)>} = Var{s(X ; θ)} (6.14)

is the Fisher information matrix.

Proof:
Consider the correlation ρY,Z between Y and Z where Y = a>t, Z = c>s. Here s is the score
and the vectors a, c ∈ Rp. By Corollary 6.1 Cov(s, t) = I and thus

Cov(Y, Z) = a>Cov(t, s)c = a>c

Var(Z) = c>Var(s)c = c>Fnc.
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Hence,

ρ2
Y,Z =

Cov 2(Y, Z)

Var(Y ) Var(Z)
=

(a>c)2

a>Var(t)a· c>Fnc
≤ 1. (6.15)

In particular, this holds for any c 6= 0. Therefore it holds also for the maximum of the
left-hand side of (6.15) with respect to c. Since

max
c

c>aa>c

c>Fnc
= max

c>Fnc=1
c>aa>c

and
max

c>Fnc=1
c>aa>c = a>F−1

n a

by our maximization Theorem 2.5 we have

a>F−1
n a

a>Var(t)a
≤ 1 ∀ a ∈ Rp, a 6= 0,

i.e.,
a>{Var(t)−F−1

n }a ≥ 0 ∀ a ∈ Rp, a 6= 0,

which is equivalent to Var(t) ≥ F−1
n . 2

Maximum likelihood estimators (MLE’s) attain the lower bound if the sample size n goes to
infinity. The next Theorem 6.3 states this and, in addition, gives the asymptotic sampling
distribution of the maximum likelihood estimation, which turns out to be multinormal.

THEOREM 6.3 Suppose that the sample {xi}ni=1 is i.i.d. If θ̂ is the MLE for θ ∈ Rk , i.e.,

θ̂ = arg max
θ
L(X ; θ), then under some regularity conditions, as n→∞:

√
n(θ̂ − θ) L−→ Nk(0,F−1

1 ) (6.16)

where F1 denotes the Fisher information for sample size n = 1.

As a consequence of Theorem 6.3 we see that under regularity conditions the MLE is asymp-
totically unbiased, efficient (minimum variance) and normally distributed. Also it is a con-
sistent estimator of θ.

Note that from property (5.4) of the multinormal it follows that asymptotically

n(θ̂ − θ)>F1(θ̂ − θ) L→ χ2
p. (6.17)

If F̂1 is a consistent estimator of F1 (e.g. F̂1 = F1(θ̂)), we have equivalently

n(θ̂ − θ)>F̂1(θ̂ − θ) L→ χ2
p. (6.18)
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This expression is sometimes useful in testing hypotheses about θ and in constructing con-
fidence regions for θ in a very general setup. These issues will be raised in more details in
the next chapter but from (6.18) it can be seen, for instance, that when n is large,

P
(
n(θ̂ − θ)>F̂1(θ̂ − θ) ≤ χ2

1−α;p

)
≈ 1− α,

where χ2
ν;p denotes the ν-quantile of a χ2

p random variable. So, the ellipsoid n(θ̂− θ)>F̂1(θ̂−
θ) ≤ χ2

1−α;p provides in Rp an asymptotic (1− α)-confidence region for θ.

Summary

↪→ The score function is the derivative s(X ; θ) = ∂
∂θ
`(X ; θ) of the log-

likelihood with respect to θ. The covariance matrix of s(X ; θ) is the Fisher
information matrix.

↪→ The score function has mean zero: E{s(X ; θ)} = 0.

↪→ The Cramer-Rao bound says that any unbiased estimator θ̂ = t = t(X )
has a variance that is bounded from below by the inverse of the Fisher
information. Thus, an unbiased estimator, which attains this lower bound,
is a minimum variance estimator.

↪→ For i.i.d. data {xi}ni=1 the Fisher information matrix is: Fn = nF1.

↪→ MLE’s attain the lower bound in an asymptotic sense, i.e.,

√
n(θ̂ − θ) L−→ Nk(0,F−1

1 )

if θ̂ is the MLE for θ ∈ Rk, i.e., θ̂ = arg max
θ
L(X ; θ).

6.3 Exercises

EXERCISE 6.1 Consider an uniform distribution on the interval [0, θ]. What is the MLE
of θ? (Hint: the maximization here cannot be performed by means of derivatives. Here the
support of x depends on θ!)

EXERCISE 6.2 Consider an i.i.d. sample of size n from the bivariate population with pdf

f(x1, x2) = 1
θ1θ2

e
−(

x1
θ1

+
x2
θ2

)
, x1, x2 > 0. Compute the MLE of θ = (θ1, θ2). Find the Cramer-

Rao lower bound. Is it possible to derive a minimal variance unbiased estimator of θ?
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EXERCISE 6.3 Show that the MLE of Example 6.1, µ̂ = x, is a minimal variance estimator
for any finite sample size n (i.e., without applying Theorem 6.3).

EXERCISE 6.4 We know from Example 6.4 that the MLE of Example 6.1 has F1 = Ip.
This leads to √

n(x− µ)
L−→ Np(0, I)

by Theorem 6.3. Can you give an analogous result for the square x2 for the case p = 1?

EXERCISE 6.5 Consider an i.i.d. sample of size n from the bivariate population with pdf

f(x1, x2) = 1
θ2
1θ2

1
x2
e
−(

x1
θ1x2

+
x2
θ1θ2

)
, x1, x2 > 0. Compute the MLE of θ = (θ1, θ2). Find the

Cramer-Rao lower bound and the asymptotic variance of θ̂.

EXERCISE 6.6 Consider a sample {xi}ni=1 from Np(µ,Σ0) where Σ0 is known. Compute
the Cramer-Rao lower bound for µ. Can you derive a minimal unbiased estimator for µ?

EXERCISE 6.7 Let X ∼ Np(µ,Σ) where Σ is unknown but we know
Σ = diag(σ11, σ22, . . . , σpp). From an i.i.d. sample of size n, find the MLE of µ and of Σ.

EXERCISE 6.8 Reconsider the setup of the previous exercise. Suppose that

Σ = diag(σ11, σ22, . . . , σpp).

Can you derive in this case the Cramer-Rao lower bound for θ> = (µ1 . . . µp, σ11 . . . σpp)?

EXERCISE 6.9 Prove Theorem 6.1. Hint: start from ∂
∂θ
E(t>) = ∂

∂θ

∫
t>(X ; θ)L(X ; θ)dX ,

then permute integral and derivatives and note that s(X ; θ) = 1
L(X ;θ)

∂
∂θ
L(X ; θ).

EXERCISE 6.10 Prove expression (6.12).
(Hint: start from E(s(X ; θ)) =

∫
1

L(X ;θ)
∂
∂θ
L(X ; θ)L(X ; θ)∂X and then permute integral and

derivative.)



7 Hypothesis Testing

In the preceding chapter, the theoretical basis of estimation theory was presented. Now we
turn our interest towards testing issues: we want to test the hypothesis H0 that the unknown
parameter θ belongs to some subspace of Rq. This subspace is called the null set and will
be denoted by Ω0 ⊂ Rq.

In many cases, this null set corresponds to restrictions which are imposed on the parameter
space: H0 corresponds to a “reduced model”. As we have already seen in Chapter 3, the
solution to a testing problem is in terms of a rejection region R which is a set of values in
the sample space which leads to the decision of rejecting the null hypothesis H0 in favor of
an alternative H1, which is called the “full model”.

In general, we want to construct a rejection region R which controls the size of the type I
error, i.e. the probability of rejecting the null hypothesis when it is true. More formally, a
solution to a testing problem is of predetermined size α if:

P (Rejecting H0 | H0 is true) = α.

In fact, since H0 is often a composite hypothesis, it is achieved by finding R such that

sup
θ∈Ω0

P (X ∈ R | θ) = α.

In this chapter we will introduce a tool which allows us to build a rejection region in general
situations: it is based on the likelihood ratio principle. This is a very useful technique
because it allows us to derive a rejection region with an asymptotically appropriate size
α. The technique will be illustrated through various testing problems and examples. We
concentrate on multinormal populations and linear models where the size of the test will
often be exact even for finite sample sizes n.

Section 7.1 gives the basic ideas and Section 7.2 presents the general problem of testing linear
restrictions. This allows us to propose solutions to frequent types of analyses (including
comparisons of several means, repeated measurements and profile analysis). Each case can
be viewed as a simple specific case of testing linear restrictions. Special attention is devoted
to confidence intervals and confidence regions for means and for linear restrictions on means
in a multinormal setup.
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7.1 Likelihood Ratio Test

Suppose that the distribution of {xi}ni=1, xi ∈ Rp, depends on a parameter vector θ. We will
consider two hypotheses:

H0 : θ ∈ Ω0

H1 : θ ∈ Ω1.

The hypothesis H0 corresponds to the “reduced model” and H1 to the “full model”. This
notation was already used in Chapter 3.

EXAMPLE 7.1 Consider a multinormal Np(θ, I). To test if θ equals a certain fixed value
θ0 we construct the test problem:

H0 : θ = θ0

H1 : no constraints on θ

or, equivalently, Ω0 = {θ0}, Ω1 = Rp.

Define L∗j = max
θ∈Ωj

L(X ; θ), the maxima of the likelihood for each of the hypotheses. Consider

the likelihood ratio (LR)

λ(X ) =
L∗0
L∗1

(7.1)

One tends to favor H0 if the LR is high and H1 if the LR is low. The likelihood ratio test
(LRT) tells us when exactly to favor H0 over H1. A likelihood ratio test of size α for testing
H0 against H1 has the rejection region

R = {X : λ(X ) < c}

where c is determined so that sup
θ∈Ω0

Pθ(X ∈ R) = α. The difficulty here is to express c as a

function of α, because λ(X ) might be a complicated function of X .

Instead of λ we may equivalently use the log-likelihood

−2 log λ = 2(`∗1 − `∗0).

In this case the rejection region will be R = {X : −2 log λ(X ) > k}. What is the distribution
of λ or of −2 log λ from which we need to compute c or k?



7.1 Likelihood Ratio Test 185

THEOREM 7.1 If Ω1 ⊂ Rq is a q-dimensional space and if Ω0 ⊂ Ω1 is an r-dimensional
subspace, then under regularity conditions

∀ θ ∈ Ω0 : −2 log λ
L−→ χ2

q−r as n→∞.

An asymptotic rejection region can now be given by simply computing the 1 − α quantile
k = χ2

1−α;q−r. The LRT rejection region is therefore

R = {X : −2 log λ(X ) > χ2
1−α;q−r}.

The Theorem 7.1 is thus very helpful: it gives a general way of building rejection regions in
many problems. Unfortunately, it is only an asymptotic result, meaning that the size of the
test is only approximately equal to α, although the approximation becomes better when the
sample size n increases. The question is “how large should n be?”. There is no definite rule:
we encounter here the same problem that was already discussed with respect to the Central
Limit Theorem in Chapter 4.

Fortunatelly, in many standard circumstances, we can derive exact tests even for finite
samples because the test statistic −2 log λ(X ) or a simple transformation of it turns out to
have a simple form. This is the case in most of the following standard testing problems. All
of them can be viewed as an illustration of the likelihood ratio principle.

Test Problem 1 is an amuse-bouche: in testing the mean of a multinormal population with a
known covariance matrix the likelihood ratio statistic has a very simple quadratic form with
a known distribution under H0.

TEST PROBLEM 1 Suppose that X1, . . . , Xn is an i.i.d. random sample from a Np(µ,Σ)
population.

H0 : µ = µ0, Σ known versus H1 : no constraints.

In this case H0 is a simple hypothesis, i.e., Ω0 = {µ0} and therefore the dimension r of Ω0

equals 0. Since we have imposed no constraints in H1, the space Ω1 is the whole Rp which
leads to q = p. From (6.6) we know that

`∗0 = `(µ0,Σ) = −n
2

log |2πΣ| − 1

2
n tr(Σ−1S)− 1

2
n(x− µ0)>Σ−1(x− µ0).

Under H1 the maximum of `(µ,Σ) is

`∗1 = `(x,Σ) = −n
2

log |2πΣ| − 1

2
n tr(Σ−1S).
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Therefore,
−2 log λ = 2(`∗1 − `∗0) = n(x− µ0)>Σ−1(x− µ0) (7.2)

which, by Theorem 4.7, has a χ2
p-distribution under H0.

EXAMPLE 7.2 Consider the bank data again. Let us test whether the population mean of
the forged bank notes is equal to

µ0 = (214.9, 129.9, 129.7, 8.3, 10.1, 141.5)>.

(This is in fact the sample mean of the genuine bank notes.) The sample mean of the forged
bank notes is

x = (214.8, 130.3, 130.2, 10.5, 11.1, 139.4)>.

Suppose for the moment that the estimated covariance matrix Sf given in (3.5) is the true
covariance matrix Σ. We construct the likelihood ratio test and obtain

−2 log λ = 2(`∗1 − `∗0) = n(x− µ0)>Σ−1(x− µ0)

= 7362.32,

the quantile k = χ2
0.95;6 equals 12.592. The rejection rejection consists of all values in the

sample space which lead to values of the likelihood ratio test statistic larger than 12.592.
Under H0 the value of −2 log λ is therefore highly significant. Hence, the true mean of the
forged bank notes is significantly different from µ0!

Test Problem 2 is the same as the preceding one but in a more realistic situation where
the covariance matrix is unknown: here the Hotelling’s T 2-distribution will be useful to
determine an exact test and a confidence region for the unknown µ.

TEST PROBLEM 2 Suppose that X1, . . . , Xn is an i.i.d. random sample from a Np(µ,Σ)
population.

H0 : µ = µ0, Σ unknown versus H1 : no constraints.

Under H0 it can be shown that

`∗0 = `(µ0,S + dd>), d = (x− µ0) (7.3)

and under H1 we have
`∗1 = `(x,S).

This leads after some calculation to

−2 log λ = 2(`∗1 − `∗0) = n log(1 + d>S−1d). (7.4)
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This statistic is a monotone function of (n− 1)d>S−1d. This means that −2 log λ > k if and
only if (n−1)d>S−1d > k′. The latter statistic has by Corollary 5.3, under H0, a Hotelling’s
T 2-distribution. Therefore,

(n− 1)(x̄− µ0)>S−1(x̄− µ0) ∼ T 2(p, n− 1), (7.5)

or equivalently (
n− p
p

)
(x̄− µ0)>S−1(x̄− µ0) ∼ Fp,n−p. (7.6)

In this case an exact rejection region may be defined as(
n− p
p

)
(x̄− µ0)>S−1(x̄− µ0) > F1−α;p,n−p.

Alternatively, we have from Theorem 7.1 that under H0 the asymptotic distribution of the
test statistic is

−2 log λ
L
−→ χ2

p, as n→∞

which leads to the (asymptotically valid) rejection region

n log{1 + (x̄− µ0)>S−1(x̄− µ0)} > χ2
1−α;p,

but of course, in this case, we would prefer to use the exact F -test provided just above.

EXAMPLE 7.3 Consider the problem of Example 7.2 again. We know that Sf is the empir-
ical analogue for Σf , the covariance matrix for the forged banknotes. The test statistic (7.5)
has the value 1153.4 or its equivalent for the F distribution in (7.6) is 182.5 which is highly
significant (F0.95;6,94 = 2.1966) so that we conclude that µf 6= µ0.

Confidence Region for µ

When estimating a multidimensional parameter θ ∈ Rk from a sample, we saw in Chapter 6
how to determine the estimator θ̂ = θ̂(X ). After the sample is observed we end up with a

point estimate, which is the corresponding observed value of θ̂. We know θ̂(X ) is a random
variable and we often prefer to determine a confidence region for θ. A confidence region (CR)
is a random subset of Rk (determined by appropriate statistics) such that we are “confident”,
at a certain given level 1− α, that this region contains θ:

P (θ ∈ CR) = 1− α.

This is just a multidimensional generalization of the basic univariate confidence interval.
Confidence regions are particularly useful when a hypothesis H0 on θ is rejected, because
they help in eventually identifying which component of θ is responsible for the rejection.
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There are only a few cases where confidence regions can be easily assessed, and include most
of the testing problems on mean presented in this section.

Corollary 5.3 provides a pivotal quantity which allows confidence regions for µ to be con-

structed. Since
(
n−p
p

)
(x̄− µ)>S−1(x̄− µ) ∼ Fp,n−p, we have

P

((
n− p
p

)
(µ− x̄)>S−1(µ− x̄) < F1−α;p,n−p

)
= 1− α.

Then,

CR =

{
µ ∈ Rp | (µ− x̄)>S−1(µ− x̄) ≤ p

n− p
F1−α;p,n−p

}
is a confidence region at level (1-α) for µ. It is the interior of an iso-distance ellipsoid in Rp

centered at x̄, with a scaling matrix S−1 and a distance constant
(

p
n−p

)
F1−α;p,n−p. When

p is large, ellipsoids are not easy to handle for practical purposes. One is thus interested
in finding confidence intervals for µ1, µ2, . . . , µp so that simultaneous confidence on all the
intervals reaches the desired level of say, 1− α.

In the following, we consider a more general problem. We construct simultaneous confidence
intervals for all possible linear combinations a>µ, a ∈ Rp of the elements of µ.

Suppose for a moment that we fix a particular projection vector a. We are back to a standard
univariate problem of finding a confidence interval for the mean a>µ of a univariate random
variable a>X. We can use the t-statistics and an obvious confidence interval for a>µ is given
by the values a>µ such that ∣∣∣∣√n− 1(a>µ− a>x̄)√

a>Sa

∣∣∣∣ ≤ t1−α
2

;n−1

or equivalently

t2(a) =
(n− 1)

{
a>(µ− x̄)

}2

a>Sa
≤ F1−α;1,n−1.

This provides the (1− α) confidence interval for a>µ:(
a>x̄−

√
F1−α;1,n−1

a>Sa
n− 1

≤ a>µ ≤ a>x̄+

√
F1−α;1,n−1

a>Sa
n− 1

)
.

Now it is easy to prove (using Theorem 2.5) that:

max
a
t2(a) = (n− 1)(x̄− µ)>S−1(x̄− µ) ∼ T 2(p, n− 1).

Therefore, simultaneously for all a ∈ Rp, the interval(
a>x̄−

√
Kαa>Sa, a>x̄+

√
Kαa>Sa

)
(7.7)
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where Kα = p
n−pF1−α;p,n−p, will contain a>µ with probability (1− α).

A particular choice of a are the columns of the identity matrix Ip, providing simultaneous
confidence intervals for µ1, . . . , µp. We have therefore with probability (1−α) for j = 1, . . . , p

x̄j −
√

p

n− p
F1−α;p,n−psjj ≤ µj ≤ x̄j +

√
p

n− p
F1−α;p,n−psjj. (7.8)

It should be noted that these intervals define a rectangle inscribing the confidence ellipsoid for
µ given above. They are particularly useful when a null hypothesis H0 of the type described
above is rejected and one would like to see which component(s) are mainly responsible for
the rejection.

EXAMPLE 7.4 The 95% confidence region for µf , the mean of the forged banknotes, is
given by the ellipsoid:{

µ ∈ R6
∣∣(µ− x̄f )>S−1

f (µ− x̄f ) ≤
6

94
F0.95;6,94

}
.

The 95% simultaneous confidence intervals are given by (we use F0.95;6,94 = 2.1966)

214.692 ≤ µ1 ≤ 214.954
130.205 ≤ µ2 ≤ 130.395
130.082 ≤ µ3 ≤ 130.304
10.108 ≤ µ4 ≤ 10.952
10.896 ≤ µ5 ≤ 11.370

139.242 ≤ µ6 ≤ 139.658.

Comparing the inequalities with µ0 = (214.9, 129.9, 129.7, 8.3, 10.1, 141.5)> shows that almost
all components (except the first one) are responsible for the rejection of µ0 in Example 7.2
and 7.3.

In addition, the method can provide other confidence intervals. We have at the same level
of confidence (choosing a> = (0, 0, 0, 1, −1, 0))

−1.211 ≤ µ4 − µ5 ≤ 0.005

showing that for the forged bills, the lower border is essentially smaller than the upper border.

REMARK 7.1 It should be noted that the confidence region is an ellipsoid whose charac-
teristics depend on the whole matrix S. In particular, the slope of the axis depends on the
eigenvectors of S and therefore on the covariances sij. However, the rectangle inscribing the
confidence ellipsoid provides the simultaneous confidence intervals for µj, j = 1, . . . , p. They
do not depend on the covariances sij, but only on the variances sjj (see (7.8)). In particular,
it may happen that a tested value µ0 is covered by the intervals (7.8) but not covered by the
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confidence ellipsoid. In this case, µ0 is rejected by a test based on the confidence ellipsoid
but not rejected by a test based on the simultaneous confidence intervals. The simultane-
ous confidence intervals are easier to handle than the full ellipsoid but we have lost some
information, namely the covariance between the components (see Exercise 7.14).

The following Problem concerns the covariance matrix in a multinormal population: in this
situation the test statistic has a slightly more complicated distribution. We will therefore
invoke the approximation of Theorem 7.1 in order to derive a test of approximate size α.

TEST PROBLEM 3 Suppose that X1, . . . , Xn is an i.i.d. random sample from a Np(µ,Σ)
population.

H0 : Σ = Σ0, µ unknown versus H1 : no constraints.

Under H0 we have µ̂ = x, and Σ = Σ0, whereas under H1 we have µ̂ = x, and Σ̂ = S. Hence

`∗0 = `(x,Σ0) = −1

2
n log |2πΣ0| −

1

2
n tr(Σ−1

0 S)

`∗1 = `(x,S) = −1

2
n log |2πS| − 1

2
np

and thus

−2 log λ = 2(`∗1 − `∗0)
= n tr(Σ−1

0 S)− n log |Σ−1
0 S| − np.

Note that this statistic is a function of the eigenvalues of Σ−1
0 S! Unfortunately, the exact

finite sample distribution of −2 log λ is very complicated. Asymptotically, we have under H0

−2 log λ
L→ χ2

m as n→∞

with m = 1
2
{p(p+ 1)}, since a (p× p) covariance matrix has only these m parameters as a

consequence of its symmetry.

EXAMPLE 7.5 Consider the US companies data set (Table B.5) and suppose we are inter-
ested in the companies of the energy sector, analyzing their assets (X1) and sales (X2). The

sample is of size 15 and provides the value of S = 107×
[

1.6635 1.2410
1.2410 1.3747

]
. We want to test

if Var
(
X1

X2

)
= 107×

[
1.2248 1.1425
1.1425 1.5112

]
= Σ0. (Σ0 is in fact the empirical variance matrix for

X1 and X2 for the manufacturing sector). The test statistic turns out to be −2 log λ = 2.7365
which is not significant for χ2

3 (p-value=0.4341). So we can not conclude that Σ 6= Σ0.
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In the next testing problem, we address a question that was already stated in Chapter 3,
Section 3.6: testing a particular value of the coefficients β in a linear model. The presentation
is done in general terms so that it can be built on in the next section where we will test
linear restrictions on β.

TEST PROBLEM 4 Suppose that Y1, . . . , Yn are independent r.v.’s with Yi ∼
N1(β>xi, σ

2), xi ∈ R
p.

H0 : β = β0, σ
2 unknown versus H1 : no constraints.

Under H0 we have β = β0, σ̂
2
0 = 1

n
||y−Xβ0||2 and under H1 we have β̂ = (X>X )−1X>y, σ̂2 =

1
n
||y −Xβ||2 (see Example 6.3). Hence by Theorem 7.1

−2 log λ = 2(`∗1 − `∗0)

= n log

(
||y −Xβ0||2

||y −X β̂||2

)
L−→ χ2

p.

We draw upon the result (3.45) which gives us:

F =
(n− p)

p

(
||y −Xβ0||2

||y −X β̂||2
− 1

)
∼ Fp,n−p,

so that in this case we again have an exact distribution.

EXAMPLE 7.6 Let us consider our “classic blue” pullovers again. In Example 3.11 we
tried to model the dependency of sales on prices. As we have seen in Figure 3.5 the slope of
the regression curve is rather small, hence we might ask if

(
α
β

)
=
(

211
0

)
. Here

y =

 y1
...
y10

 =

 x1,1
...

x10,1

 , X =

 1 x1,2
...

...
1 x10,2

 .

The test statistic for the LR test is

−2 log λ = 9.10

which under the χ2
2 distribution is significant. The exact F -test statistic

F = 5.93

is also significant under the F2,8 distribution (F2,8;0.95 = 4.46).
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Summary
↪→ The hypotheses H0 : θ ∈ Ω0 against H1 : θ ∈ Ω1 can be tested using

the likelihood ratio test (LRT). The likelihood ratio (LR) is the quotient
λ(X ) = L∗0/L

∗
1 where the L∗j are the maxima of the likelihood for each of

the hypotheses.

↪→ The test statistic in the LRT is λ(X ) or equivalently its logarithm
log λ(X ). If Ω1 is q-dimensional and Ω0 ⊂ Ω1 r-dimensional, then the
asymptotic distribution of −2 log λ is χ2

q−r. This allows H0 to be tested
against H1 by calculating the test statistic −2 log λ = 2(`∗1 − `∗0) where
`∗j = logL∗j .

↪→ The hypothesis H0 : µ = µ0 for X ∼ Np(µ,Σ), where Σ is known, leads
to −2 log λ = n(x− µ0)>Σ−1(x− µ0) ∼ χ2

p.

↪→ The hypothesis H0 : µ = µ0 for X ∼ Np(µ,Σ), where Σ is unknown, leads
to −2 log λ = n log{1 + (x− µ0)>S−1(x− µ0)} −→ χ2

p, and

(n− 1)(x̄− µ0)>S−1(x̄− µ0) ∼ T 2(p, n− 1).

↪→ The hypothesis H0 : Σ = Σ0 for X ∼ Np(µ,Σ), where µ is unknown, leads
to −2 log λ = n tr

(
Σ−1

0 S
)
− n log |Σ−1

0 S| − np −→ χ2
m, m = 1

2
p(p+ 1).

↪→ The hypothesis H0 : β = β0 for Yi ∼ N1(β>xi, σ
2), where σ2 is unknown,

leads to −2 log λ = n log
(
||y−Xβ0||2

||y−X β̂||2

)
−→ χ2

p.

7.2 Linear Hypothesis

In this section, we present a very general procedure which allows a linear hypothesis to be
tested, i.e., a linear restriction, either on a vector mean µ or on the coefficient β of a linear
model. The presented technique covers many of the practical testing problems on means or
regression coefficients.

Linear hypotheses are of the form Aµ = a with known matrices A(q × p) and a(q × 1) with
q ≤ p.

EXAMPLE 7.7 Let µ = (µ1, µ2)>. The hypothesis that µ1 = µ2 can be equivalently written
as:

Aµ =
(

1 −1
)( µ1

µ2

)
= 0 = a.

The general idea is to test a normal population H0 : Aµ = a (restricted model) against the
full model H1 where no restrictions are put on µ. Due to the properties of the multinormal,
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we can easily adapt the Test Problems 1 and 2 to this new situation. Indeed we know, from
Theorem 5.2, that yi = Axi ∼ Nq(µy,Σy), where µy = Aµ and Σy = AΣA>.

Testing the null H0 : Aµ = a, is the same as testing H0 : µy = a. The appropriate statistics
are ȳ and Sy which can be derived from the original statistics x̄ and S available from X :

ȳ = Ax̄, Sy = ASA>.

Here the difference between the sample mean and the tested value is d = Ax̄ − a. We are
now in the situation to proceed to Test Problem 5 and 6.

TEST PROBLEM 5 Suppose X1, . . . , Xn is an i.i.d. random sample from a Np(µ,Σ) pop-
ulation.

H0 : Aµ = a, Σ known versus H1 : no constraints.

By (7.2) we have that, under H0:

n(Ax̄− a)>(AΣA>)−1(Ax̄− a) ∼ X 2
q ,

and we reject H0 if this test statistic is too large at the desired significance level.

EXAMPLE 7.8 We consider hypotheses on partitioned mean vectors µ =
(
µ1

µ2

)
. Let us first

look at
H0 : µ1 = µ2, versus H1 : no constraints,

for N2p(
(
µ1

µ2

)
,
(

Σ
0

0
Σ

)
) with known Σ. This is equivalent to A = (I,−I), a = (0, . . . , 0)> ∈ Rp

and leads to:
−2 log λ = n(x1 − x2)(2Σ)−1(x1 − x2) ∼ χ2

p.

Another example is the test whether µ1 = 0, i.e.,

H0 : µ1 = 0, versus H1 : no constraints,

for N2p(
(
µ1

µ2

)
,
(

Σ
0

0
Σ

)
) with known Σ. This is equivalent to Aµ = a with A = (I, 0), and

a = (0, . . . , 0)> ∈ Rp. Hence:

−2 log λ = nx1Σ−1x1 ∼ χ2
p.

TEST PROBLEM 6 Suppose X1, . . . , Xn is an i.i.d. random sample from a Np(µ,Σ) pop-
ulation.

H0 : Aµ = a, Σ unknown versus H1 : no constraints.



194 7 Hypothesis Testing

From Corollary (5.4) and under H0 it follows immediately that

(n− 1)(Ax− a)>(ASA>)−1(Ax− a) ∼ T 2(q, n− 1) (7.9)

since indeed under H0,
Ax ∼ Nq(a, n

−1AΣA>)

is independent of
nASA> ∼ Wq(AΣA>, n− 1).

EXAMPLE 7.9 Let’s come back again to the bank data set and suppose that we want to test
if µ4 = µ5, i.e., the hypothesis that the lower border mean equals the larger border mean for
the forged bills. In this case:

A = (0 0 0 1− 1 0)

a = 0.

The test statistic is:

99(Ax̄)>(ASfA>)−1(Ax̄) ∼ T 2(1, 99) = F1,99.

The observed value is 13.638 which is significant at the 5% level.

Repeated Measurements

In many situations, n independent sampling units are observed at p different times or un-
der p different experimental conditions (different treatments,...). So here we repeat p one-
dimensional measurements on n different subjects. For instance, we observe the results from
n students taking p different exams. We end up with a (n×p) matrix. We can thus consider
the situation where we have X1, . . . , Xn i.i.d. from a normal distribution Np(µ,Σ) when there
are p repeated measurements. The hypothesis of interest in this case is that there are no
treatment effects, H0 : µ1 = µ2 = . . . = µp. This hypothesis is a direct application of Test
Problem 6. Indeed, introducing an appropriate matrix transform on µ we have:

H0 : Cµ = 0 where C((p− 1)× p) =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...
...

0 · · · 0 1 −1

 . (7.10)

Note that in many cases one of the experimental conditions is the “control” (a placebo,
standard drug or reference condition). Suppose it is the first component. In that case one
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is interested in studying differences to the control variable. The matrix C has therefore a
different form

C((p− 1)× p) =


1 −1 0 · · · 0
1 0 −1 · · · 0
...

...
...

...
...

1 0 0 · · · −1

 .

By (7.9) the null hypothesis will be rejected if:

(n− p+ 1)

p− 1
x̄>C>(CSC>)−1Cx̄ > F1−α;p−1,n−p+1.

As a matter of fact, Cµ is the mean of the random variable yi = Cxi

yi ∼ Np−1(Cµ, CΣC>).

Simultaneous confidence intervals for linear combinations of the mean of yi have been derived
above in (7.7). For all a ∈ Rp−1, with probability (1− α) we have:

a>Cµ ∈ a>Cx̄±

√
(p− 1)

n− p+ 1
F1−α;p−1,n−p+1a>CSC>a.

Due to the nature of the problem here, the row sums of the elements in C are zero: C1p = 0,
therefore a>C is a vector whose sum of elements vanishes. This is called a contrast . Let

b = C>a. We have b>1p =
p∑
j=1

bj = 0. The result above thus provides for all contrasts of µ,

and b>µ simultaneous confidence intervals at level (1− α)

b>µ ∈ b>x̄±

√
(p− 1)

n− p+ 1
F1−α;p−1,n−p+1b>Sb.

Examples of contrasts for p = 4 are b> = (1 − 1 0 0) or (1 0 0 − 1) or even (1 − 1
3
− 1

3
− 1

3
)

when the control is to be compared with the mean of 3 different treatments.

EXAMPLE 7.10 Bock (1975) considers the evolution of the vocabulary of children from
the eighth through eleventh grade. The data set contains the scores of a vocabulary test
of 40 randomly chosen children that are observed from grades 8 to 11. This is a repeated
measurement situation, (n = 40, p = 4), since the same children were observed from grades
8 to 11. The statistics of interest are:

x̄ = (1.086, 2.544, 2.851, 3.420)>

S =


2.902 2.438 2.963 2.183
2.438 3.049 2.775 2.319
2.963 2.775 4.281 2.939
2.183 2.319 2.939 3.162

 .
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Suppose we are interested in the yearly evolution of the children. Then the matrix C providing
successive differences of µj is:

C =

 1 −1 0 0
0 1 −1 0
0 0 1 −1

 .

The value of the test statistic is Fobs = 53.134 which is highly significant for F3.37. There are
significant differences between the successive means. However, the analysis of the contrasts
shows the following simultaneous 95% confidence intervals

−1.958 ≤ µ1 − µ2 ≤ −0.959
−0.949 ≤ µ2 − µ3 ≤ 0.335
−1.171 ≤ µ3 − µ4 ≤ 0.036.

Thus, the rejection of H0 is mainly due to the difference between the childrens’ performances
in the first and second year. The confidence intervals for the following contrasts may also be
of interest:

−2.283 ≤ µ1 − 1
3
(µ2 + µ3 + µ4) ≤ −1.423

−1.777 ≤ 1
3
(µ1 + µ2 + µ3)− µ4 ≤ −0.742

−1.479 ≤ µ2 − µ4 ≤ −0.272.

They show that µ1 is different from the average of the 3 other years (the same being true for
µ4) and µ4 turns out to be higher than µ2 (and of course higher than µ1).

Test Problem 7 illustrates how the likelihood ratio can be applied when testing a linear
restriction on the coefficient β of a linear model. It is also shown how a transformation of
the test statistic leads to an exact F test as presented in Chapter 3.

TEST PROBLEM 7 Suppose Y1, . . . , Yn, are independent with Yi ∼ N1(β>xi, σ
2), and

xi ∈ R
p.

H0 : Aβ = a, σ2 unknown versus H1 : no constraints.

The constrained maximum likelihood estimators under H0 are (Exercise 3.24):

β̃ = β̂ − (X>X )−1A>{A(X>X )−1A>}−1(Aβ̂ − a)

for β and σ̃2 = 1
n
(y − X β̃)>(y − X β̃). The estimate β̂ denotes the unconstrained MLE as

before. Hence, the LR statistic is

−2 log λ = 2(`∗1 − `∗0)

= n log

(
||y −X β̃||2

||y −X β̂||2

)
L−→ χ2

q
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where q is the number of elements of a. This problem also has an exact F -test since

n− p
q

(
||y −X β̃||2

||y −X β̂||2
− 1

)
=
n− p
q

(Aβ̂ − a)>{A(X>X )−1A>}−1(Aβ̂ − a)

(y −X β̂)>(y −X β̂)
∼ Fq,n−p.

EXAMPLE 7.11 Let us continue with the “classic blue” pullovers. We can once more test
if β = 0 in the regression of sales on prices. It holds that

β = 0 iff (0 1)

(
α

β

)
= 0.

The LR statistic here is
−2 log λ = 0.284

which is not significant for the χ2
1 distribution. The F -test statistic

F = 0.231

is also not significant. Hence, we can assume independence of sales and prices (alone). Recall
that this conclusion has to be revised if we consider the prices together with advertisement
costs and hours of sales managers.

Recall the different conclusion that was made in Example 7.6 when we rejected H0 : α = 211
and β = 0. The rejection there came from the fact that the pair of values was rejected.
Indeed, if β = 0 the estimator of α would be ȳ = 172.70 and this is too far from 211.

EXAMPLE 7.12 Let us now consider the multivariate regression in the “classic blue” pullovers
example. From Example 3.15 we know that the estimated parameters in the model

X1 = α + β1X2 + β2X3 + β3X4 + ε

are
α̂ = 65.670, β̂1 = −0.216, β̂2 = 0.485, β̂3 = 0.844.

Hence, we could postulate the approximate relation:

β1 ≈ −
1

2
β2,

which means in practice that augmenting the price by 20 EUR requires the advertisement costs
to increase by 10 EUR in order to keep the number of pullovers sold constant. Vice versa,
reducing the price by 20 EUR yields the same result as before if we reduced the advertisement
costs by 10 EUR. Let us now test whether the hypothesis

H0 : β1 = −1

2
β2
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is valid. This is equivalent to

(
0 1

1

2
0

)
α
β1

β2

β3

 = 0.

The LR statistic in this case is equal to ( MVAlrtest.xpl)

−2 log λ = 0.012,

the F statistic is
F = 0.007.

Hence, in both cases we will not reject the null hypothesis.

Comparison of Two Mean Vectors

In many situations, we want to compare two groups of individuals for whom a set of p
characteristics has been observed. We have two random samples {xi1}n1

i=1 and {xj2}n2
j=1 from

two distinct p-variate normal populations. Several testing issues can be addressed in this
framework. In Test Problem 8 we will first test the hypothesis of equal mean vectors in the
two groups under the assumption of equality of the two covariance matrices. This task can
be solved by adapting Test Problem 2.

In Test Problem 9 a procedure for testing the equality of the two covariance matrices is
presented. If the covariance matrices differ, the procedure of Test Problem 8 is no longer
valid. If the equality of the covariance matrices is rejected, an easy rule for comparing two
means with no restrictions on the covariance matrices is provided in Test Problem 10.

TEST PROBLEM 8 Assume that Xi1 ∼ Np(µ1,Σ), with i = 1, · · · , n1 and
Xj2 ∼ Np(µ2,Σ), with j = 1, · · · , n2, where all the variables are independent.

H0 : µ1 = µ2, versus H1 : no constraints.

Both samples provide the statistics x̄k and Sk, k = 1, 2. Let δ = µ1 − µ2. We have

(x̄1 − x̄2) ∼ Np

(
δ,
n1 + n2

n1n2

Σ

)
(7.11)

n1S1 + n2S2 ∼ Wp(Σ, n1 + n2 − 2). (7.12)

http://www.quantlet.org/mdstat/codes/mva/MVAlrtest.html
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Let S=(n1+n2)−1(n1S1+n2S2) be the weighted mean of S1 and S2. Since the two samples are
independent and since Sk is independent of x̄k (for k = 1, 2) it follows that S is independent
of (x̄1 − x̄2). Hence, Theorem 5.8 applies and leads to a T 2-distribution:

n1n2(n1 + n2 − 2)

(n1 + n2)2
{(x̄1 − x̄2)− δ}> S−1 {(x̄1 − x̄2)− δ}) ∼ T 2(p, n1 + n2 − 2) (7.13)

or

{(x̄1 − x̄2)− δ}> S−1 {(x̄1 − x̄2)− δ} ∼ p(n1 + n2)2

(n1 + n2 − p− 1)n1n2

Fp,n1+n2−p−1.

This result, as in Test Problem 2, can be used to test H0: δ=0 or to construct a confidence
region for δ ∈ Rp. The rejection region is given by:

n1n2(n1 + n2 − p− 1)

p(n1 + n2)2
(x̄1 − x̄2)> S−1 (x̄1 − x̄2) ≥ F1−α;p,n1+n2−p−1. (7.14)

A (1− α) confidence region for δ is given by the ellipsoid centered at (x̄1 − x̄2)

{δ − (x̄1 − x̄2)}> S−1 {δ − (x̄1 − x̄2)} ≤ p(n1 + n2)2

(n1 + n2 − p− 1)(n1n2)
F1−α;p,n1+n2−p−1,

and the simultaneous confidence intervals for all linear combinations a>δ of the elements of
δ are given by

a>δ ∈ a>(x̄1 − x̄2)±

√
p(n1 + n2)2

(n1 + n2 − p− 1)(n1n2)
F1−α;p,n1+n2−p−1a>Sa.

In particular we have at the (1− α) level, for j = 1, . . . , p,

δj ∈ (x̄1j − x̄2j)±

√
p(n1 + n2)2

(n1 + n2 − p− 1)(n1n2)
F1−α;p,n1+n2−p−1sjj. (7.15)

EXAMPLE 7.13 Let us come back to the questions raised in Example 7.5. We compare the
means of assets (X1) and of sales (X2) for two sectors, energy (group 1) and manufacturing
(group 2). With n1 = 15, n2 = 10, and p = 2 we obtain the statistics:

x̄1 =

(
4084

2580.5

)
, x̄2 =

(
4307.2
4925.2

)
and

S1 = 107

(
1.6635 1.2410
1.2410 1.3747

)
,S2 = 107

(
1.2248 1.1425
1.1425 1.5112

)
,
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so that

S = 107

(
1.4880 1.2016
1.2016 1.4293

)
.

The observed value of the test statistic (7.14) is F = 2.7036. Since F0.95;2,22 = 3.4434 the
hypothesis of equal means of the two groups is not rejected although it would be rejected at
a less severe level (F > F0.90;2,22 = 2.5613). The 95% simultaneous confidence intervals for
the differences ( MVAsimcidif.xpl) are given by

−4628.6 ≤ µ1a − µ2a ≤ 4182.2
−6662.4 ≤ µ1s − µ2s ≤ 1973.0.

EXAMPLE 7.14 In order to illustrate the presented test procedures it is interesting to ana-
lyze some simulated data. This simulation will point out the importantce of the covariances
in testing means. We created 2 independent normal samples in R4 of sizes n1 = 30 and
n2 = 20 with:

µ1 = (8, 6, 10, 10)>

µ2 = (6, 6, 10, 13)>.

One may consider this as an example of X = (X1, . . . , Xn)> being the students’ scores from
4 tests, where the 2 groups of students were subjected to two different methods of teaching.
First we simulate the two samples with Σ = I4 and obtain the statistics:

x̄1 = (7.607, 5.945, 10.213, 9.635)>

x̄2 = (6.222, 6.444, 9.560, 13.041)>

S1 =


0.812 −0.229 −0.034 0.073
−0.229 1.001 0.010 −0.059
−0.034 0.010 1.078 −0.098

0.073 −0.059 −0.098 0.823



S2 =


0.559 −0.057 −0.271 0.306
−0.057 1.237 0.181 0.021
−0.271 0.181 1.159 −0.130

0.306 0.021 −0.130 0.683

 .

The test statistic (7.14) takes the value F = 60.65 which is highly significant: the small
variance allows the difference to be detected even with these relatively moderate sample sizes.
We conclude (at the 95% level) that:

0.6213 ≤ δ1 ≤ 2.2691
−1.5217 ≤ δ2 ≤ 0.5241
−0.3766 ≤ δ3 ≤ 1.6830
−4.2614 ≤ δ4 ≤ −2.5494

which confirms that the means for X1 and X4 are different.

http://www.quantlet.org/mdstat/codes/mva/MVAsimcidif.html
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Consider now a different simulation scenario where the standard deviations are 4 times
larger: Σ = 16I4. Here we obtain:

x̄1 = (7.312, 6.304, 10.840, 10.902)>

x̄2 = (6.353, 5.890, 8.604, 11.283)>

S1 =


21.907 1.415 −2.050 2.379
1.415 11.853 2.104 −1.864
−2.050 2.104 17.230 0.905

2.379 −1.864 0.905 9.037



S2 =


20.349 −9.463 0.958 −6.507
−9.463 15.502 −3.383 −2.551

0.958 −3.383 14.470 −0.323
−6.507 −2.551 −0.323 10.311

 .

Now the test statistic takes the value 1.54 which is no longer significant (F0.95,4,45 = 2.58).
Now we cannot reject the null hypothesis (which we know to be false!) since the increase in
variances prohibits the detection of differences of such magnitude.

The following situation illustrates once more the role of the covariances between covariates.
Suppose that Σ = 16I4 as above but with σ14 = σ41 = −3.999 (this corresponds to a negative
correlation r41 = −0.9997). We have:

x̄1 = (8.484, 5.908, 9.024, 10.459)>

x̄2 = (4.959, 7.307, 9.057, 13.803)>

S1 =


14.649 −0.024 1.248 −3.961
−0.024 15.825 0.746 4.301

1.248 0.746 9.446 1.241
−3.961 4.301 1.241 20.002



S2 =


14.035 −2.372 5.596 −1.601
−2.372 9.173 −2.027 −2.954

5.596 −2.027 9.021 −1.301
−1.601 −2.954 −1.301 9.593

 .

The value of F is 3.853 which is significant at the 5% level (p-value = 0.0089). So the null
hypothesis δ = µ1−µ2 = 0 is outside the 95% confidence ellipsoid. However, the simultaneous
confidence intervals, which do not take the covariances into account are given by:

−0.1837 ≤ δ1 ≤ 7.2343
−4.9452 ≤ δ2 ≤ 2.1466
−3.0091 ≤ δ3 ≤ 2.9438
−7.2336 ≤ δ4 ≤ 0.5450.

They contain the null value (see Remark 7.1 above) although they are very asymmetric for
δ1 and δ4.
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EXAMPLE 7.15 Let us compare the vectors of means of the forged and the genuine bank
notes. The matrices Sf and Sg were given in Example 3.1 and since here nf = ng = 100, S
is the simple average of Sf and Sg : S = 1

2
(Sf + Sg).

x̄g = (214.97, 129.94, 129.72, 8.305, 10.168, 141.52)>

x̄f = (214.82, 130.3, 130.19, 10.53, 11.133, 139.45)>.

The test statistic is given by (7.14) and turns out to be F = 391.92 which is highly significant
for F6,193. The 95% simultaneous confidence intervals for the differences δj = µgj−µfj, j =
1, . . . , p are:

−0.0443 ≤ δ1 ≤ 0.3363
−0.5186 ≤ δ2 ≤ −0.1954
−0.6416 ≤ δ3 ≤ −0.3044
−2.6981 ≤ δ4 ≤ −1.7519
−1.2952 ≤ δ5 ≤ −0.6348

1.8072 ≤ δ6 ≤ 2.3268.

All of the components (except for the first one) show significant differences in the means.
The main effects are taken by the lower border (X4) and the diagonal (X6).

The preceding test implicitly uses the fact that the two samples are extracted from two
different populations with common variance Σ. In this case, the test statistic (7.14) measures
the distance between the two centers of gravity of the two groups w.r.t. the common metric
given by the pooled variance matrix S. If Σ1 6= Σ2 no such matrix exists. There are no
satisfactory test procedures for testing the equality of variance matrices which are robust with
respect to normality assumptions of the populations. The following test extends Bartlett’s
test for equality of variances in the univariate case. But this test is known to be very sensitive
to departures from normality.

TEST PROBLEM 9 (Comparison of Covariance Matrices)
Let Xih ∼ Np(µh,Σh), i = 1, . . . , nh, h = 1, . . . , k be independent random variables,

H0 : Σ1 = Σ2 = · · · = Σk versus H1 : no constraints.

Each subsample provides Sh, an estimator of Σh, with

nhSh ∼ Wp(Σh, nh − 1).

Under H0,
∑k

h=1 nhSh ∼ Wp(Σ, n − k) (Section 5.2), where Σ is the common covariance

matrix x and n =
∑k

h=1 nh. Let S = n1S1+···+nkSk
n

be the weighted average of the Sh (this is
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in fact the MLE of Σ when H0 is true). The likelihood ratio test leads to the statistic

−2 log λ = n log | S | −
k∑

h=1

nh log | Sh | (7.16)

which under H0 is approximately distributed as a X 2
m where m = 1

2
(k − 1)p(p+ 1).

EXAMPLE 7.16 Let’s come back to Example 7.13, where the mean of assets and sales
have been compared for companies from the energy and manufacturing sector assuming that
Σ1 = Σ2. The test of Σ1 = Σ2 leads to the value of the test statistic

−2 log λ = 0.9076 (7.17)

which is not significant (p-value for a χ2
3 = 0.82). We cannot reject H0 and the comparison

of the means performed above is valid.

EXAMPLE 7.17 Let us compare the covariance matrices of the forged and the genuine bank
notes (the matrices Sf and Sg are shown in Example 3.1). A first look seems to suggest
that Σ1 6= Σ2. The pooled variance S is given by S = 1

2
(Sf + Sg) since here nf = ng.

The test statistic here is −2 log λ = 127.21, which is highly significant χ2 with 21 degrees of
freedom. As expected, we reject the hypothesis of equal covariance matrices, and as a result
the procedure for comparing the two means in Example 7.15 is not valid.

What can we do with unequal covariance matrices? When both n1 and n2 are large, we have
a simple solution:

TEST PROBLEM 10 (Comparison of two means, unequal covariance matrices, large sam-
ples)
Assume that Xi1 ∼ Np(µ1,Σ1), with i = 1, · · · , n1 and Xj2 ∼ Np(µ2,Σ2), with j = 1, · · · , n2

are independent random variables.

H0 : µ1 = µ2 versus H1 : no constraints.

Letting δ = µ1 − µ2, we have

(x̄1 − x̄2) ∼ Np

(
δ,

Σ1

n1

+
Σ2

n2

)
.

Therefore, by (5.4)

(x̄1 − x̄2)>
(

Σ1

n1

+
Σ2

n2

)−1

(x̄1 − x̄2) ∼ χ2
p.
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Since Si is a consistent estimator of Σi for i = 1, 2, we have

(x̄1 − x̄2)>
(
S1

n1

+
S2

n2

)−1

(x̄1 − x̄2)
L→ χ2

p. (7.18)

This can be used in place of (7.13) for testing H0, defining a confidence region for δ or
constructing simultaneous confidence intervals for δj, j = 1, . . . , p.

For instance, the rejection region at the level α will be

(x̄1 − x̄2)>
(
S1

n1

+
S2

n2

)−1

(x̄1 − x̄2) > χ2
1−α;p (7.19)

and the (1− α) simultaneous confidence intervals for δj, j = 1, . . . , p are:

δj ∈ (x̄1 − x̄2)±

√√√√χ2
1−α;p

(
s

(1)
jj

n1

+
s

(2)
jj

n2

)
(7.20)

where s
(i)
jj is the (j, j) element of the matrix Si. This may be compared to (7.15) where the

pooled variance was used.

REMARK 7.2 We see, by comparing the statistics (7.19) with (7.14), that we measure here

the distance between x̄1 and x̄2 using the metric
(
S1

n1
+ S2

n2

)
. It should be noticed that when

n1 = n2, the two methods are essentially the same since then S = 1
2

(S1 + S2). If the
covariances are different but have the same eigenvectors (different eigenvalues), one can
apply the common principal component (CPC) technique, see Chapter 9.

EXAMPLE 7.18 Let us use the last test to compare the forged and the genuine bank notes
again (n1 and n2 are both large). The test statistic (7.19) turns out to be 2436.8 which is
again highly significant. The 95% simultaneous confidence intervals are:

−0.0389 ≤ δ1 ≤ 0.3309
−0.5140 ≤ δ2 ≤ −0.2000
−0.6368 ≤ δ3 ≤ −0.3092
−2.6846 ≤ δ4 ≤ −1.7654
−1.2858 ≤ δ5 ≤ −0.6442

1.8146 ≤ δ6 ≤ 2.3194

showing that all the components except the first are different from zero, the larger difference
coming from X6 (length of the diagonal) and X4 (lower border). The results are very similar
to those obtained in Example (7.15). This is due to the fact that here n1 = n2 as we already
mentioned in the remark above.
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Profile Analysis

Another useful application of Test Problem 6 is the repeated measurements problem applied
to two independent groups. This problem arises in practice when we observe repeated
measurements of characteristics (or measures of the same type under different experimental
conditions) on the different groups which have to be compared. It is important that the p
measures (the “profile”) are comparable and in particular are reported in the same units.
For instance, they may be measures of blood pressure at p different points in time, one group
being the control group and the other the group receiving a new treatment. The observations
may be the scores obtained from p different tests of two different experimental groups. One
is then interested in comparing the profiles of each group: the profile being just the vectors
of the means of the p responses (the comparison may be visualized in a two dimensional
graph using the parallel coordinate plot introduced in Section 1.7).

We are thus in the same statistical situation as for the comparison of two means:

Xi1 ∼ Np (µ1,Σ) i = 1, . . . , n1

Xi2 ∼ Np (µ2,Σ) i = 1, . . . , n2

where all variables are independent. Suppose the two population profiles look like Figure 7.1.

The following questions are of interest:

1. Are the profiles similar in the sense of being parallel (which means no interaction
between the treatments and the groups)?

2. If the profiles are parallel, are they at the same level?

3. If the profiles are parallel, is there any treatment effect, i.e., are the profiles horizontal?

The above questions are easily translated into linear constraints on the means and a test
statistic can be obtained accordingly.

Parallel Profiles

Let C be a (p− 1)× p matrix defined as C =

 1 −1 0 · · · 0
0 1 −1 · · · 0
0 · · · 0 1 −1

 .

The hypothesis to be tested is

H
(1)
0 : C(µ1 − µ2) = 0.

From (7.11), (7.12) and Corollary 5.4 we know that under H0:

n1n2

(n1 + n2)2
(n1 + n2 − 2) {C(x̄1 − x̄2)}> (CSC>)−1C(x̄1 − x̄2) ∼ T 2(p− 1, n1 + n2 − 2) (7.21)
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Population profiles

1 2 3 4 5

Treatment

0
1

2
3

4
5

M
ea

n

Group1

Group2

Figure 7.1. Example of population profiles MVAprofil.xpl

where S is the pooled covariance matrix. The hypothesis is rejected if

n1n2(n1 + n1 − p)
(n1 + n2)2(p− 1)

(Cx̄)>
(
CSC>

)−1 Cx̄ > F1−α;p−1,n1+n2−p.

Equality of Two Levels

The question of equality of the two levels is meaningful only if the two profiles are parallel.
In the case of interactions (rejection of H

(1)
0 ), the two populations react differently to the

treatments and the question of the level has no meaning.
The equality of the two levels can be formalized as

H
(2)
0 : 1>p (µ1 − µ2) = 0

since

1>p (x̄1 − x̄2) ∼ N1

(
1>p (µ1 − µ2),

n1 + n2

n1n2

1>p Σ1p

)

http://www.quantlet.org/mdstat/codes/mva/MVAprofil.html
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and
(n1 + n2)1>p S1p ∼ W1(1>p Σ1p, n1 + n2 − 2).

Using Corollary 5.4 we have that:

n1n2

(n1 + n2)2
(n1 + n2 − 2)

{
1>p (x̄1 − x̄2)

}2

1>p S1p
∼ T 2(1, n1 + n2 − 2) (7.22)

= F1,n1+n2−2.

The rejection region is

n1n2(n1 + n2 − 2)

(n1 + n2)2

{
1>p (x̄1 − x̄2)

}2

1>p S1p
> F1−α;1,n1+n2−2.

Treatment Effect

If it is rejected that the profiles are parallel, then two independent analyses should be done
on the two groups using the repeated measurement approach. But if it is accepted that they
are parallel, then we can exploit the information contained in both groups (eventually at
different levels) to test a treatment effect, i.e., if the two profiles are horizontal. This may
be written as:

H
(3)
0 : C(µ1 + µ2) = 0.

Consider the average profile x̄:

x̄ =
n1x̄1 + n2x̄2

n1 + n2

.

Clearly,

x̄ ∼ Np

(
n1µ1 + n2µ2

n1 + n2

,
1

n1 + n2

Σ

)
.

Now it is not hard to prove that H
(3)
0 with H

(1)
0 implies that

C
(
n1µ1 + n2µ2

n1 + n2

)
= 0.

So under parallel, horizontal profiles we have
√
n1 + n2Cx̄ ∼ Np(0, CΣC>).

From Corollary 5.4 we again obtain

(n1 + n2 − 2)(Cx̄)>(CSC>)−1Cx̄ ∼ T 2(p− 1, n1 + n2 − 2). (7.23)

This leads to the rejection region of H
(3)
0 , namely

n1 + n2 − p
p− 1

(Cx̄)>(CSC>)−1Cx̄ > F1−α;p−1,n1+n2−p.
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EXAMPLE 7.19 Morrison (1990) proposed a test in which the results of 4 sub-tests of the
Wechsler Adult Intelligence Scale (WAIS) are compared for 2 categories of people: group 1
contains n1 = 37 people who do not have a senile factor and group 2 contains n2 = 12 people
who have a senile factor. The four WAIS sub-tests are X1 (information), X2 (similarities),
X3 (arithmetic) and X4 (picture completion). The relevant statistics are

x̄1 = (12.57, 9.57, 11.49, 7.97)>

x̄2 = (8.75, 5.33, 8.50, 4.75)>

S1 =


11.164 8.840 6.210 2.020
8.840 11.759 5.778 0.529
6.210 5.778 10.790 1.743
2.020 0.529 1.743 3.594



S2 =


9.688 9.583 8.875 7.021
9.583 16.722 11.083 8.167
8.875 11.083 12.083 4.875
7.021 8.167 4.875 11.688

 .

The test statistic for testing if the two profiles are parallel is F = 0.4634, which is not
significant (p-value = 0.71). Thus it is accepted that the two are parallel. The second test
statistic (testing the equality of the levels of the 2 profiles) is F = 17.21, which is highly
significant (p-value ≈ 10−4). The global level of the test for the non-senile people is superior
to the senile group. The final test (testing the horizontality of the average profile) has the
test statistic F = 53.32, which is also highly significant (p-value ≈ 10−14). This implies that
there are substantial differences among the means of the different subtests.

Summary
↪→ Hypotheses about µ can often be written as Aµ = a, with matrix A, and

vector a.

↪→ The hypothesis H0 : Aµ = a for X ∼ Np(µ,Σ) with Σ known leads to
−2 log λ = n(Ax − a)>(AΣA>)−1(Ax − a) ∼ χ2

q, where q is the number
of elements in a.

↪→ The hypothesis H0 : Aµ = a for X ∼ Np(µ,Σ) with Σ unknown leads
to −2 log λ = n log{1 + (Ax − a)>(ASA>)−1(Ax − a)} −→ χ2

q, where q

is the number of elements in a and we have an exact test (n − 1)(Ax̄ −
a)>(ASA>)−1(Ax̄− a) ∼ T 2(q, n− 1).
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Summary (continued)

↪→ The hypothesis H0 : Aβ = a for Yi ∼ N1(β>xi, σ
2) with σ2 unknown leads

to −2 log λ = n
2

log
(
||y−X β̃||2

||y−X β̂||2 − 1
)
−→ χ2

q, with q being the length of a

and with

n− p
q

(
Aβ̂ − a

){
A
(
X>X

)−1A>
}−1 (

Aβ̂ − a
)

(
y −X β̂

)> (
y −X β̂

) ∼ Fq,n−p.

7.3 Boston Housing

Returning to the Boston housing data set, we are now in a position to test if the means of the
variables vary according to their location, for example, when they are located in a district
with high valued houses. In Chapter 1, we built 2 groups of observations according to the
value of X14 being less than or equal to the median of X14 (a group of 256 districts) and
greater than the median (a group of 250 districts). In what follows, we use the transformed
variables motivated in Section 1.8.

Testing the equality of the means from the two groups was proposed in a multivariate setup,
so we restrict the analysis to the variables X1, X5, X8, X11, and X13 to see if the differences
between the two groups that were identified in Chapter 1 can be confirmed by a formal test.
As in Test Problem 8, the hypothesis to be tested is

H0 : µ1 = µ2, where µ1 ∈ R5, n1 = 256, and n2 = 250.

Σ is not known. The F -statistic given in (7.13) is equal to 126.30, which is much higher
than the critical value F0.95;5,500 = 2.23. Therefore, we reject the hypothesis of equal means.

To see which component, X1, X5, X8, X11, or X13, is responsible for this rejection, take a
look at the simultaneous confidence intervals defined in (7.14):

δ1 ∈ (1.4020, 2.5499)

δ5 ∈ (0.1315, 0.2383)

δ8 ∈ (−0.5344,−0.2222)

δ11 ∈ (1.0375, 1.7384)

δ13 ∈ (1.1577, 1.5818).

These confidence intervals confirm that all of the δj are significantly different from zero (note
there is a negative effect forX8: weighted distances to employment centers) MVAsimcibh.xpl.

http://www.quantlet.org/mdstat/codes/mva/MVAsimcibh.html
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We could also check if the factor “being bounded by the river” (variable X4) has some effect
on the other variables. To do this compare the means of (X5, X8, X9, X12, X13, X14)>. There
are two groups: n1 = 35 districts bounded by the river and n2 = 471 districts not bounded
by the river. Test Problem 8 (H0 : µ1 = µ2) is applied again with p = 6. The resulting
test statistic, F = 5.81, is highly significant (F0.95;6,499 = 2.12). The simultaneous confidence
intervals indicate that only X14 (the value of the houses) is responsible for the hypothesis
being rejected! At a significance level of 0.95

δ5 ∈ (−0.0603, 0.1919)

δ8 ∈ (−0.5225, 0.1527)

δ9 ∈ (−0.5051, 0.5938)

δ12 ∈ (−0.3974, 0.7481)

δ13 ∈ (−0.8595, 0.3782)

δ14 ∈ (0.0014, 0.5084).

Testing Linear Restrictions

In Chapter 3 a linear model was proposed that explained the variations of the price X14 by
the variations of the other variables. Using the same procedure that was shown in Testing
Problem 7, we are in a position to test a set of linear restrictions on the vector of regression
coefficients β.

The model we estimated in Section 3.7 provides the following ( MVAlinregbh.xpl):

Variable β̂j SE(β̂j) t p-value
constant 4.1769 0.3790 11.020 0.0000
X1 −0.0146 0.0117 −1.254 0.2105
X2 0.0014 0.0056 0.247 0.8051
X3 −0.0127 0.0223 −0.570 0.5692
X4 0.1100 0.0366 3.002 0.0028
X5 −0.2831 0.1053 −2.688 0.0074
X6 0.4211 0.1102 3.822 0.0001
X7 0.0064 0.0049 1.317 0.1885
X8 −0.1832 0.0368 −4.977 0.0000
X9 0.0684 0.0225 3.042 0.0025
X10 −0.2018 0.0484 −4.167 0.0000
X11 −0.0400 0.0081 −4.946 0.0000
X12 0.0445 0.0115 3.882 0.0001
X13 −0.2626 0.0161 −16.320 0.0000

http://www.quantlet.org/mdstat/codes/mva/MVAlinregbh.html
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Recall that the estimated residuals Y − X β̂ did not show a big departure from normality,
which means that the testing procedure developed above can be used.

1. First a global test of significance for the regression coefficients is performed,

H0 : (β1, . . . , β13) = 0.

This is obtained by defining A = (013, I13) and a = 013 so that H0 is equivalent to
Aβ = a where β = (β0, β1, . . . , β13)>. Based on the observed values F = 123.20. This
is highly significant (F0.95;13,492 = 1.7401), thus we reject H0. Note that under H0

β̂H0 = (3.0345, 0, . . . , 0) where 3.0345 = y.

2. Since we are interested in the effect that being located close to the river has on the
value of the houses, the second test is H0 : β4 = 0. This is done by fixing

A = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)>

and a = 0 to obtain the equivalent hypothesis H0 : Aβ = a. The result is again
significant: F = 9.0125 (F0.95;1,492 = 3.8604) with a p-value of 0.0028. Note that this is
the same p-value obtained in the individual test β4 = 0 in Chapter 3, computed using
a different setup.

3. A third test notices the fact that some of the regressors in the full model (3.57) appear
to be insignificant (that is they have high individual p-values). It can be confirmed from
a joint test if the corresponding reduced model, formulated by deleting the insignificant
variables, is rejected by the data. We want to test H0 : β1 = β2 = β3 = β7 = 0. Hence,

A =


0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0


and a = 04. The test statistic is 0.9344, which is not significant for F4,492. Given that
the p-value is equal to 0.44, we cannot reject the null hypothesis nor the corresponding
reduced model. The value of β̂ under the null hypothesis is

β̂H0 = (4.16, 0, 0, 0, 0.11,−0.31, 0.47, 0,−0.19, 0.05,−0.20,−0.04, 0.05,−0.26)>.

A possible reduced model is

X14 = β0 + β4X4 + β5X5 + β6X6 + β8X8 + · · ·+ β13X13 + ε.

Estimating this reduced model using OLS, as was done in Chapter 3, provides the
results shown in Table 7.3.

Note that the reduced model has r2 = 0.763 which is very close to r2 = 0.765 obtained
from the full model. Clearly, including variables X1, X2, X3, and X7 does not provide
valuable information in explaining the variation of X14, the price of the houses.
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Variable β̂j SE t p-value
const 4.1582 0.3628 11.462 0.0000
X4 0.1087 0.0362 2.999 0.0028
X5 −0.3055 0.0973 −3.140 0.0018
X6 0.4668 0.1059 4.407 0.0000
X8 −0.1855 0.0327 −5.679 0.0000
X9 0.0492 0.0183 2.690 0.0074
X10 −0.2096 0.0446 −4.705 0.0000
X11 −0.0410 0.0078 −5.280 0.0000
X12 0.0481 0.0112 4.306 0.0000
X13 −0.2588 0.0149 −17.396 0.0000

Table 7.3. Linear Regression for Boston Housing Data Set.
MVAlinreg2bh.xpl

7.4 Exercises

EXERCISE 7.1 Use Theorem 7.1 to derive a test for testing the hypothesis that a dice is
balanced, based on n tosses of that dice. (Hint: use the multinomial probability function.)

EXERCISE 7.2 Consider N3(µ,Σ). Formulate the hypothesis H0 : µ1 = µ2 = µ3 in terms
of Aµ = a.

EXERCISE 7.3 Simulate a normal sample with µ =
(

1
2

)
and Σ =

(
1

0.5
0.5
2

)
and test H0 :

2µ1 − µ2 = 0.2 first with Σ known and then with Σ unknown. Compare the results.

EXERCISE 7.4 Derive expression (7.3) for the likelihood ratio test statistic in Test Prob-
lem 2.

EXERCISE 7.5 With the simulated data set of Example 7.14, test the hypothesis of equality
of the covariance matrices.

EXERCISE 7.6 In the U.S. companies data set, test the equality of means between the energy
and manufacturing sectors, taking the full vector of observations X1 to X6. Derive the
simultaneous confidence intervals for the differences.

EXERCISE 7.7 Let X ∼ N2(µ,Σ) where Σ is known to be Σ =

(
2 −1
−1 2

)
. We have

an i.i.d. sample of size n = 6 providing x̄> =
(
1 1

2

)
. Solve the following test problems

(α = 0.05):

http://www.quantlet.org/mdstat/codes/mva/MVAlinreg2bh.html
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a) H0: µ =
(
2, 2

3

)>
H1: µ 6=

(
2, 2

3

)>
b) H0: µ1 + µ2 = 7

2
H1: µ1 + µ2 6= 7

2

c) H0: µ1 − µ2 = 1
2

H1: µ1 − µ2 6= 1
2

d) H0: µ1 = 2 H1: µ1 6= 2

For each case, represent the rejection region graphically (comment!).

EXERCISE 7.8 Repeat the preceeding exercise with Σ unknown and S =

(
2 −1
−1 2

)
.

Compare the results.

EXERCISE 7.9 Consider X ∼ N3(µ,Σ). An i.i.d. sample of size n = 10 provides:

x̄ = (1, 0, 2)>

S =

 3 2 1
2 3 1
1 1 4

 .

a) Knowing that the eigenvalues of S are integers, describe a 95% confidence region for

µ. (Hint: to compute eigenvalues use |S| =
3∏
j=1

λj and tr(S) =
3∑
j=1

λj).

b) Calculate the simultaneous confidence intervals for µ1, µ2 and µ3.

c) Can we assert that µ1 is an average of µ2 and µ3?

EXERCISE 7.10 Consider two independent i.i.d. samples, each of size 10, from two bivari-
ate normal populations. The results are summarized below:

x̄1 = (3, 1)>; x̄2 = (1, 1)>

S1 =

(
4 −1
−1 2

)
; S2 =

(
2 −2
−2 4

)
.

Provide a solution to the following tests:

a) H0: µ1 = µ2 H1: µ1 6= µ2

b) H0: µ11 = µ21 H1: µ11 6= µ21

c) H0: µ12 = µ22 H1: µ12 6= µ22

Compare the solutions and comment.

EXERCISE 7.11 Prove expression (7.4) in the Test Problem 2 with log-likelihoods `∗0 and
`∗1. (Hint: use (2.29).
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EXERCISE 7.12 Assume that X ∼ Np(µ,Σ) where Σ is unknown.

a) Derive the log likelihood ratio test for testing the independence of the p components,
that is H0 : Σ is a diagonal matrix. (Solution: −2 log λ = −n log |R| where R is the
correlation matrix, which is asymptotically a χ2

1
2
p(p−1)

under H0).

b) Assume that Σ is a diagonal matrix (all the variables are independent). Can an asymp-
totic test for H0 : µ = µo against H1 : µ 6= µo be derived? How would this compare to
p independent univariate t−tests on each µj?

c) Show an easy derivation of an asymptotic test for testing the equality of the p means
(Hint: use (CX̄)>(CSC>)−1CX̄ → χ2

p−1 where S = diag(s11, . . . , spp) and C is defined
as in (7.10)). Compare this to the simple ANOVA procedure used in Section 3.5.

EXERCISE 7.13 The yields of wheat have been measured in 30 parcels that have been ran-
domly attributed to 3 lots prepared by one of 3 different fertilizer A B and C. The data
are

Fertilizer Yield A B C
1 4 6 2
2 3 7 1
3 2 7 1
4 5 5 1
5 4 5 3
6 4 5 4
7 3 8 3
8 3 9 3
9 3 9 2

10 1 6 2

Using Exercise 7.12,

a) test the independence between the 3 variables.

b) test whether µ> = [2 6 4] and compare this to the 3 univariate t−tests.

c) test whether µ1 = µ2 = µ3 using simple ANOVA and the χ2 approximation.

EXERCISE 7.14 Consider an i.i.d. sample of size n = 5 from a bivariate normal distribution

X ∼ N2

(
µ,

(
3 ρ
ρ 1

))
where ρ is a known parameter. Suppose x̄> = (1 0). For what value of ρ would the hypothesis
H0 : µ> = (0 0) be rejected in favor of H1 : µ> 6= (0 0) (at the 5% level)?
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EXERCISE 7.15 Using Example 7.14, test the last two cases described there and test the
sample number one (n1 = 30), to see if they are from a normal population with Σ = 4I4 (the
sample covariance matrix to be used is given by S1).

EXERCISE 7.16 Consider the bank data set. For the counterfeit bank notes, we want to
know if the length of the diagonal (X6) can be predicted by a linear model in X1 to X5.
Estimate the linear model and test if the coefficients are significantly different from zero.

EXERCISE 7.17 In Example 7.10, can you predict the vocabulary score of the children in
eleventh grade, by knowing the results from grades 8–9 and 10? Estimate a linear model and
test its significance.

EXERCISE 7.18 Test the equality of the covariance matrices from the two groups in the
WAIS subtest (Example 7.19).

EXERCISE 7.19 Prove expressions (7.21), (7.22) and (7.23).

EXERCISE 7.20 Using Theorem 6.3 and expression (7.16), construct an asymptotic rejec-
tion region of size α for testing, in a general model f(x, θ), with θ ∈ Rk,
H0 : θ = θ0 against H1 : θ 6= θ0.

EXERCISE 7.21 Exercise 6.5 considered the pdf f(x1, x2) = 1
θ2
1θ

2
2x2
e
−
(

x1
θ1x2

+
x2
θ1θ2

)
x1, x2 > 0. Solve the problem of testing H0 : θ> = (θ01, θ02) from an iid sample of size n on
x = (x1, x2)>, where n is large.

EXERCISE 7.22 In Olkin and Veath (1980), the evolution of citrate concentrations in plasma
is observed at 3 different times of day, X1 (8 am), X2 (11 am) and X3 (3 pm), for two groups
of patients who follow a different diets. (The patients were randomly attributed to each group
under a balanced design n1 = n2 = 5).
The data are:

Group X1(8 am) X2(11 am) X3(3 pm)
125 137 121
144 173 147

I 105 119 125
151 149 128
137 139 109
93 121 107

116 135 106
II 109 83 100

89 95 83
116 128 100
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Test if the profiles of the groups are parallel, if they are at the same level and if they are
horizontal.



Part III

Multivariate Techniques





8 Decomposition of Data Matrices by
Factors

In Chapter 1 basic descriptive techniques we developed which provided tools for “looking” at
multivariate data. They were based on adaptations of bivariate or univariate devices used to
reduce the dimensions of the observations. In the following three chapters, issues of reducing
the dimension of a multivariate data set will be discussed. The perspectives will be different
but the tools will be related.

In this chapter, we take a descriptive perspective and show how using a geometrical approach
a “best” way of reducing the dimension of a data matrix can be derived with respect to a
least-squares criterion. The result will be low dimensional graphical pictures of the data
matrix. This involves the decomposition of the data matrix into “factors”. These “factors”
will be sorted in decreasing order of importance. The approach is very general and is the
core idea of many multivariate techniques. We deliberately use the word “factor” here as a
tool or transformation for structural interpretation in an exploratory analysis. In practice,
the matrix to be decomposed will be some transformation of the original data matrix and as
shown in the following chapters, these transformations provide easier interpretations of the
obtained graphs in lower dimensional spaces.

Chapter 9 addresses the issue of reducing the dimensionality of a multivariate random vari-
able by using linear combinations (the principal components). The identified principal com-
ponents are ordered in decreasing order of importance. When applied in practice to a data
matrix, the principal components will turn out to be the factors of a transformed data matrix
(the data will be centered and eventually standardized).

Factor analysis is discussed in Chapter 10. The same problem of reducing the dimension of a
multivariate random variable is addressed but in this case the number of factors is fixed from
the start. Each factor is interpreted as a latent characteristic of the individuals revealed by
the original variables. The non-uniqueness of the solutions is dealt with by searching for the
representation with the easiest interpretation for the analysis.

Summarizing, this chapter can be seen as a foundation since it develops a basic tool for
reducing the dimension of a multivariate data matrix.
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8.1 The Geometric Point of View

As a matter of introducing certain ideas, assume that the data matrix X (n×p) is composed
of n observations (or individuals) of p variables.

There are in fact two ways of looking at X , row by row or column by column:

(1) Each row (observation) is a vector x>i = (xi1, . . . , xip) ∈ Rp.

From this point of view our data matrix X is representable as a cloud of n points in
R
p as shown in Figure 8.1.

�

������� �

������

�
�
��

�

�

�

�
�

��

� � � � ���
�
	���
��������������������������
���� !�"���"#���$
�&%(')+*-,

Figure 8.1.

(2) Each column (variable) is a vector x[j] = (x1j . . . xnj)
> ∈ Rn.

From this point of view the data matrix X is a cloud of p points in Rn as shown in
Figure 8.2.
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Figure 8.2.
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When n and/or p are large (larger than 2 or 3), we cannot produce interpretable graphs of
these clouds of points. Therefore, the aim of the factorial methods to be developed here is
two-fold. We shall try to simultaneously approximate the column space C(X ) and the row
space C(X>) with smaller subspaces. The hope is of course that this can be done without
loosing too much information about the variation and structure of the point clouds in both
spaces. Ideally, this will provide insights into the structure of X through graphs in R, R2 or
R

3. The main focus then is to find the dimension reducing factors.

Summary
↪→ Each row (individual) of X is a p-dimensional vector. From this point of

view X can be considered as a cloud of n points in Rp.

↪→ Each column (variable) of X is a n-dimensional vector. From this point
of view X can be considered as a cloud of p points in Rn.

8.2 Fitting the p-dimensional Point Cloud

Subspaces of Dimension 1

In this section X is represented by a cloud of n points in Rp (considering each row). The
question is how to project this point cloud onto a space of lower dimension. To begin consider
the simplest problem, namely finding a subspace of dimension 1. The problem boils down
to finding a straight line F1 through the origin. The direction of this line can be defined by
a unit vector u1 ∈ Rp. Hence, we are searching for the vector u1 which gives the “best” fit
of the initial cloud of n points. The situation is depicted in Figure 8.3.

The representation of the i-th individual xi ∈ Rp on this line is obtained by the projection
of the corresponding point onto u1, i.e., the projection point pxi . We know from (2.42) that
the coordinate of xi on F1 is given by

pxi = x>i
u1

‖u1‖
= x>i u1. (8.1)

We define the best line F1 in the following “least-squares” sense: Find u1 ∈ Rp which
minimizes

n∑
i=1

‖xi − pxi‖2. (8.2)

Since ‖xi−pxi‖2 = ‖xi‖2−‖pxi‖2 by Pythagoras’s theorem, the problem of minimizing (8.2)
is equivalent to maximizing

∑n
i=1 ‖pxi‖2. Thus the problem is to find u1 ∈ Rp that maximizes
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Figure 8.3.

∑n
i=1 ‖pxi‖2 under the constraint ‖u1‖ = 1. With (8.1) we can write

px1

px2

...
pxn

 =


x>1 u1

x>2 u1
...

x>nu1

 = Xu1

and the problem can finally be reformulated as: find u1 ∈ Rp with ‖u1‖ = 1 that maximizes
the quadratic form (Xu1)>(Xu1) or

max
u>1 u1=1

u>1 (X>X )u1. (8.3)

The solution is given by Theorem 2.5 (using A = X>X and B = I in the theorem).

THEOREM 8.1 The vector u1 which minimizes (8.2) is the eigenvector of X>X associated
with the largest eigenvalue λ1 of X>X .
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Note that if the data have been centered, i.e., x = 0, then X = Xc, where Xc is the
centered data matrix, and 1

n
X>X is the covariance matrix. Thus Theorem 8.1 says that

we are searching for a maximum of the quadratic form (8.3) w.r.t. the covariance matrix
SX = n−1X>X .

Representation of the Cloud on F1

The coordinates of the n individuals on F1 are given by Xu1. Xu1 is called the first factorial
variable or the first factor and u1 the first factorial axis. The n individuals, xi, are now rep-
resented by a new factorial variable z1 = Xu1. This factorial variable is a linear combination
of the original variables (x[1], . . . , x[p]) whose coefficients are given by the vector u1, i.e.,

z1 = u11x[1] + . . .+ up1x[p]. (8.4)

Subspaces of Dimension 2

If we approximate the n individuals by a plane (dimension 2), it can be shown via Theo-
rem 2.5 that this space contains u1. The plane is determined by the best linear fit (u1) and
a unit vector u2 orthogonal to u1 which maximizes the quadratic form u>2 (X>X )u2 under
the constraints

‖u2‖ = 1, and u>1 u2 = 0.

THEOREM 8.2 The second factorial axis, u2, is the eigenvector of X>X corresponding to
the second largest eigenvalue λ2 of X>X .

The unit vector u2 characterizes a second line, F2, on which the points are projected. The
coordinates of the n individuals on F2 are given by z2 = Xu2. The variable z2 is called
the second factorial variable or the second factor. The representation of the n individuals in
two-dimensional space (z1 = Xu1 vs. z2 = Xu2) is shown in Figure 8.4.

Subspaces of Dimension q (q ≤ p)

In the case of q dimensions the task is again to minimize (8.2) but with projection points in a
q-dimensional subspace. Following the same argument as above, it can be shown via Theorem
2.5 that this best subspace is generated by u1, u2, . . . , uq, the orthonormal eigenvectors of
X>X associated with the corresponding eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λq. The coordinates
of the n individuals on the k-th factorial axis, uk, are given by the k-th factorial variable
zk = Xuk for k = 1, . . . , q. Each factorial variable zk = (z1k, z2k, . . . , znk)

> is a linear
combination of the original variables x[1], x[2], . . . , x[p] whose coefficients are given by the
elements of the k-th vector uk : zik =

∑p
m=1 ximumk.
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Figure 8.4. Representation of the individuals x1, . . . , xn as a two-
dimensional point cloud.

Summary
↪→ The p-dimensional point cloud of individuals can be graphically repre-

sented by projecting each element into spaces of smaller dimensions.

↪→ The first factorial axis is u1 and defines a line F1 through the origin. This
line is found by minimizing the orthogonal distances (8.2). The factor
u1 equals the eigenvector of X>X corresponding to its largest eigenvalue.
The coordinates for representing the point cloud on a straight line are
given by z1 = Xu1.

↪→ The second factorial axis is u2, where u2 denotes the eigenvector of X>X
corresponding to its second largest eigenvalue. The coordinates for repre-
senting the point cloud on a plane are given by z1 = Xu1 and z2 = Xu2.

↪→ The factor directions 1, . . . , q are u1, . . . , uq, which denote the eigenvectors
of X>X corresponding to the q largest eigenvalues. The coordinates for
representing the point cloud of individuals on a q-dimensional subspace
are given by z1 = Xu1, . . . , zq = Xuq.
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8.3 Fitting the n-dimensional Point Cloud

Subspaces of Dimension 1

Suppose that X is represented by a cloud of p points (variables) in Rn (considering each
column). How can this cloud be projected into a lower dimensional space? We start as
before with one dimension. In other words, we have to find a straight line G1, which is
defined by the unit vector v1 ∈ Rn, and which gives the best fit of the initial cloud of p
points.

Algebraically, this is the same problem as above (replace X by X> and follow Section
8.2): the representation of the j-th variable x[j] ∈ Rn is obtained by the projection of
the corresponding point onto the straight line G1 or the direction v1. Hence we have to find
v1 such that

∑p
j=1 ‖px[j]

‖2 is maximized, or equivalently, we have to find the unit vector v1

which maximizes (X>v1)>(X v1) = v>1 (XX>)v1. The solution is given by Theorem 2.5.

THEOREM 8.3 v1 is the eigenvector of XX> corresponding to the largest eigenvalue µ1 of
XX>.

Representation of the Cloud on G1

The coordinates of the p variables on G1 are given by w1 = X>v1, the first factorial axis. The
p variables are now represented by a linear combination of the original individuals x1, . . . , xn,
whose coefficients are given by the vector v1, i.e., for j = 1, . . . , p

w1j = v11x1j + . . .+ v1nxnj. (8.5)

Subspaces of Dimension q (q ≤ n)

The representation of the p variables in a subspace of dimension q is done in the same
manner as for the n individuals above. The best subspace is generated by the orthonormal
eigenvectors v1, v2, . . . , vq of XX> associated with the eigenvalues µ1 ≥ µ2 ≥ . . . ≥ µq. The
coordinates of the p variables on the k-th factorial axis are given by the factorial variables
wk = X>vk, k = 1, . . . , q. Each factorial variable wk = (wk1, wk2, . . . , wkp)

> is a linear
combination of the original individuals x1, x2, . . . , xn whose coefficients are given by the
elements of the k-th vector vk : wkj =

∑n
m=1 vkmxmj. The representation in a subspace of

dimension q = 2 is depicted in Figure 8.5.
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Figure 8.5. Representation of the variables x[1], . . . , x[p] as a two-
dimensional point cloud.

Summary
↪→ The n-dimensional point cloud of variables can be graphically represented

by projecting each element into spaces of smaller dimensions.

↪→ The first factor direction is v1 and defines a line G1 through the origin.
The vector v1 equals the eigenvector of XX> corresponding to the largest
eigenvalue of XX>. The coordinates for representing the point cloud on
a straight line are w1 = X>v1.

↪→ The second factor direction is v2, where v2 denotes the eigenvector of
XX> corresponding to its second largest eigenvalue. The coordinates for
representing the point cloud on a plane are given by w1 = X>v1 and
w2 = X>v2.

↪→ The factor directions 1, . . . , q are v1, . . . , vq, which denote the eigenvectors
of XX> corresponding to the q largest eigenvalues. The coordinates for
representing the point cloud of variables on a q-dimensional subspace are
given by w1 = X>v1, . . . , wq = X>vq.
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8.4 Relations between Subspaces

The aim of this section is to present a duality relationship between the two approaches shown
in Sections 8.2 and 8.3. Consider the eigenvector equations in Rn

(XX>)vk = µkvk (8.6)

for k ≤ r, where r = rank(XX>) = rank(X ) ≤ min(p, n). Multiplying by X>, we have

X>(XX>)vk = µkX>vk (8.7)

or (X>X )(X>vk) = µk(X>vk) (8.8)

so that each eigenvector vk of XX> corresponds to an eigenvector (X>vk) of X>X associated
with the same eigenvalue µk. This means that every non-zero eigenvalue of XX> is an
eigenvalue of X>X . The corresponding eigenvectors are related by

uk = ckX>vk,

where ck is some constant.

Now consider the eigenvector equations in Rp:

(X>X )uk = λkuk (8.9)

for k ≤ r. Multiplying by X , we have

(XX>)(Xuk) = λk(Xuk), (8.10)

i.e., each eigenvector uk of X>X corresponds to an eigenvector Xuk of XX> associated with
the same eigenvalue λk. Therefore, every non-zero eigenvalue of (X>X ) is an eigenvalue of
XX>. The corresponding eigenvectors are related by

vk = dkXuk,

where dk is some constant. Now, since u>k uk = v>k vk = 1 we have ck = dk = 1√
λk

. This lead
to the following result:

THEOREM 8.4 (Duality Relations) Let r be the rank of X . For k ≤ r, the eigenvalues λk
of X>X and XX> are the same and the eigenvectors (uk and vk, respectively) are related by

uk =
1√
λk
X>vk (8.11)

vk =
1√
λk
Xuk. (8.12)
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Note that the projection of the p variables on the factorial axis vk is given by

wk = X>vk =
1√
λk
X>Xuk =

√
λk uk. (8.13)

Therefore, the eigenvectors vk do not have to be explicitly recomputed to get wk.

Note that uk and vk provide the SVD of X (see Theorem 2.2). Letting
U = [u1 u2 . . . ur], V = [v1 v2 . . . vr] and Λ = diag(λ1, . . . , λr) we have

X = V Λ1/2 U>

so that

xij =
r∑

k=1

λ
1/2
k vik ujk. (8.14)

In the following section this method is applied in analysing consumption behavior across
different household types.

Summary
↪→ The matrices X>X and XX> have the same non-zero eigenvalues

λ1, . . . , λr, where r = rank(X ).

↪→ The eigenvectors of X>X can be calculated from the eigenvectors of XX>
and vice versa:

uk =
1√
λk
X>vk and vk =

1√
λk
Xuk.

↪→ The coordinates representing the variables (columns) of X in a q-
dimensional subspace can be easily calculated by wk =

√
λkuk.

8.5 Practical Computation

The practical implementation of the techniques introduced begins with the computation of
the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λp and the corresponding eigenvectors u1, . . . , up of X>X .
(Since p is usually less than n, this is numerically less involved than computing vk directly
for k = 1, . . . , p). The representation of the n individuals on a plane is then obtained by
plotting z1 = Xu1 versus z2 = Xu2 (z3 = Xu3 may eventually be added if a third dimension
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is helpful). Using the Duality Relation (8.13) representations for the p variables can easily
be obtained. These representations can be visualized in a scatterplot of w1 =

√
λ1 u1 against

w2 =
√
λ2u2 (and eventually against w3 =

√
λ3 u3). Higher dimensional factorial resolutions

can be obtained (by computing zk and wk for k > 3) but, of course, cannot be plotted.

A standard way of evaluating the quality of the factorial representations in a subspace of
dimension q is given by the ratio

τq =
λ1 + λ2 + . . .+ λq
λ1 + λ2 + . . .+ λp

, (8.15)

where 0 ≤ τq ≤ 1. In general, the scalar product y>y is called the inertia of y ∈ Rn w.r.t.
the origin. Therefore, the ratio τq is usually interpreted as the percentage of the inertia
explained by the first q factors. Note that λj = (Xuj)>(Xuj) = z>j zj. Thus, λj is the inertia
of the j-th factorial variable w.r.t. the origin. The denominator in (8.15) is a measure of the
total inertia of the p variables, x[j]. Indeed, by (2.3)

p∑
j=1

λj = tr(X>X ) =

p∑
j=1

n∑
i=1

x2
ij =

p∑
j=1

x>[j]x[j].

REMARK 8.1 It is clear that the sum
∑q

j=1 λj is the sum of the inertia of the first q factorial
variables z1, z2, . . . , zq.

EXAMPLE 8.1 We consider the data set in Table B.6 which gives the food expenditures
of various French families (manual workers = MA, employees = EM, managers = CA)
with varying numbers of children (2, 3, 4 or 5 children). We are interested in investigating
whether certain household types prefer certain food types. We can answer this question using
the factorial approximations developed here.

The correlation matrix corresponding to the data is

R =



1.00 0.59 0.20 0.32 0.25 0.86 0.30
0.59 1.00 0.86 0.88 0.83 0.66 −0.36
0.20 0.86 1.00 0.96 0.93 0.33 −0.49
0.32 0.88 0.96 1.00 0.98 0.37 −0.44
0.25 0.83 0.93 0.98 1.00 0.23 −0.40
0.86 0.66 0.33 0.37 0.23 1.00 0.01
0.30 −0.36 −0.49 −0.44 −0.40 0.01 1.00


·

We observe a rather high correlation between meat and poultry, whereas the expenditure for
milk and wine is rather small. Are there household types that prefer, say, meat over bread?

We shall now represent food expenditures and households simultaneously using two factors.
First, note that in this particular problem the origin has no specific meaning (it represents
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a “zero” consumer). So it makes sense to compare the consumption of any family to that
of an “average family” rather than to the origin. Therefore, the data is first centered (the
origin is translated to the center of gravity, x). Furthermore, since the dispersions of the 7
variables are quite different each variable is standardized so that each has the same weight
in the analysis (mean 0 and variance 1). Finally, for convenience, we divide each element
in the matrix by

√
n =
√

12. (This will only change the scaling of the plots in the graphical
representation.)

The data matrix to be analyzed is

X∗ =
1√
n
HXD−1/2,

where H is the centering matrix and D = diag(sXiXi) (see Section 3.3). Note that by stan-
dardizing by

√
n, it follows that X>∗ X∗ = R where R is the correlation matrix of the original

data. Calculating
λ = (4.33, 1.83, 0.63, 0.13, 0.06, 0.02, 0.00)>

shows that the directions of the first two eigenvectors play a dominant role (τ2 = 88%),
whereas the other directions contribute less than 15% of inertia. A two-dimensional plot
should suffice for interpreting this data set.

The coordinates of the projected data points are given in the two lower windows of Figure 8.6.
Let us first examine the food expenditure window. In this window we see the representation
of the p = 7 variables given by the first two factors. The plot shows the factorial variables
w1 and w2 in the same fashion as Figure 8.4. We see that the points for meat, poultry,
vegetables and fruits are close to each other in the lower left of the graph. The expenditures
for bread and milk can be found in the upper left whereas wine stands alone in the upper
right. The first factor, w1, may be interpreted as the meat/fruit factor of consumption, the
second factor, w2, as the bread/wine component.

In the lower window on the right-hand side, we show the factorial variables z1 and z2 from
the fit of the n = 12 household types. Note that by the Duality Relations of Theorem 8.4,
the factorial variables zj are linear combinations of the factors wk from the left window.
The points displayed in the consumer window (graph on the right) are plotted relative to
an average consumer represented by the origin. The manager families are located in the
lower left corner of the graph whereas the manual workers and employees tend to be in the
upper right. The factorial variables for CA5 (managers with five children) lie close to the
meat/fruit factor. Relative to the average consumer this household type is a large consumer of
meat/poultry and fruits/vegetables. In Chapter 9, we will return to these plots interpreting
them in a much deeper way. At this stage, it suffices to notice that the plots provide a
graphical representation in R2 of the information contained in the original, high-dimensional
(12× 7) data matrix.



8.5 Practical Computation 231

food

-1 -0.5 0 0.5
W[,1]

0
0.

5

W
[,

2]

bread

veget

fruit
meat 
poult

milk 
wine 

bread -0.499  0.842

veget -0.970  0.133

fruit -0.929 -0.278

meat  -0.962 -0.191

poult -0.911 -0.266

milk  -0.584  0.707

wine   0.428  0.648

families

-2 -1 0 1
Z[,1]

-0
.5

0
0.

5
1

Z
[,

2]

ma2

em2

ca2

ma3

em3

ca3

ma4

em4

ca4

ma5

em5

ca5

ma2  1.129 -0.144

em2  0.746 -0.708

ca2  0.047 -0.286

ma3  0.806  0.128

em3  0.669 -0.064

ca3 -0.669 -0.535

ma4  0.368  0.542

em4  0.100  0.250

ca4 -0.632 -0.685

ma5 -0.087  1.096

em5 -0.770  0.447

ca5 -1.705 -0.040

Figure 8.6. Representation of food expenditures and family types in two
dimensions. MVAdecofood.xpl

Summary
↪→ The practical implementation of factor decomposition of matrices consists

of computing the eigenvalues λ1, . . . , λp and the eigenvectors u1, . . . , up of
X>X . The representation of the n individuals is obtained by plotting z1 =
Xu1 vs. z2 = Xu2 (and, if necessary, vs. z3 = Xu3). The representation
of the p variables is obtained by plotting w1 =

√
λ1u1 vs. w2 =

√
λ2u2

(and, if necessary, vs. w3 =
√
λ3u3).

↪→ The quality of the factorial representation can be evaluated using τq which
is the percentage of inertia explained by the first q factors.

http://www.quantlet.org/mdstat/codes/mva/MVAdecofood.html
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8.6 Exercises

EXERCISE 8.1 Prove that n−1Z>Z is the covariance of the centered data matrix, where Z
is the matrix formed by the columns zk = Xuk.

EXERCISE 8.2 Compute the SVD of the French food data (Table B.6).

EXERCISE 8.3 Compute τ3, τ4, . . . for the French food data (Table B.6).

EXERCISE 8.4 Apply the factorial techniques to the Swiss bank notes (Table B.2).

EXERCISE 8.5 Apply the factorial techniques to the time budget data (Table B.14).

EXERCISE 8.6 Assume that you wish to analyze p independent identically distributed ran-
dom variables. What is the percentage of the inertia explained by the first factor? What is
the percentage of the inertia explained by the first q factors?

EXERCISE 8.7 Assume that you have p i.i.d. r.v.’s. What does the eigenvector, correspond-
ing to the first factor, look like.

EXERCISE 8.8 Assume that you have two random variables, X1 and X2 = 2X1. What do
the eigenvalues and eigenvectors of their correlation matrix look like? How many eigenvalues
are nonzero?

EXERCISE 8.9 What percentage of inertia is explained by the first factor in the previous
exercise?

EXERCISE 8.10 How do the eigenvalues and eigenvectors in Example 8.1 change if we take
the prices in $ instead of in EUR? Does it make a difference if some of the prices are in
EUR and others in $?



9 Principal Components Analysis

Chapter 8 presented the basic geometric tools needed to produce a lower dimensional descrip-
tion of the rows and columns of a multivariate data matrix. Principal components analysis
has the same objective with the exception that the rows of the data matrix X will now be
considered as observations from a p-variate random variable X. The principle idea of re-
ducing the dimension of X is achieved through linear combinations. Low dimensional linear
combinations are often easier to interpret and serve as an intermediate step in a more com-
plex data analysis. More precisely one looks for linear combinations which create the largest
spread among the values of X. In other words, one is searching for linear combinations with
the largest variances.

Section 9.1 introduces the basic ideas and technical elements behind principal components.
No particular assumption will be made on X except that the mean vector and the covariance
matrix exist. When reference is made to a data matrix X in Section 9.2, the empirical
mean and covariance matrix will be used. Section 9.3 shows how to interpret the principal
components by studying their correlations with the original components of X. Often analyses
are performed in practice by looking at two-dimensional scatterplots. Section 9.4 develops
inference techniques on principal components. This is particularly helpful in establishing the
appropriate dimension reduction and thus in determining the quality of the resulting lower
dimensional representations. Since principal component analysis is performed on covariance
matrices, it is not scale invariant. Often, the measurement units of the components of X are
quite different, so it is reasonable to standardize the measurement units. The normalized
version of principal components is defined in Section 9.5. In Section 9.6 it is discovered that
the empirical principal components are the factors of appropriate transformations of the
data matrix. The classical way of defining principal components through linear combinations
with respect to the largest variance is described here in geometric terms, i.e., in terms of
the optimal fit within subspaces generated by the columns and/or the rows of X as was
discussed in Chapter 8. Section 9.9 concludes with additional examples.
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9.1 Standardized Linear Combinations

The main objective of principal components analysis (PC) is to reduce the dimension of
the observations. The simplest way of dimension reduction is to take just one element of
the observed vector and to discard all others. This is not a very reasonable approach, as
we have seen in the earlier chapters, since strength may be lost in interpreting the data.
In the bank notes example we have seen that just one variable (e.g. X1 = length) had no
discriminatory power in distinguishing counterfeit from genuine bank notes. An alternative
method is to weight all variables equally, i.e., to consider the simple average p−1

∑p
j=1 Xj of

all the elements in the vector X = (X1, . . . , Xp)
>. This again is undesirable, since all of the

elements of X are considered with equal importance (weight).

A more flexible approach is to study a weighted average, namely

δ>X =

p∑
j=1

δjXj so that

p∑
j=1

δ2
j = 1. (9.1)

The weighting vector δ = (δ1, . . . , δp)
> can then be optimized to investigate and to detect

specific features. We call (9.1) a standardized linear combination (SLC). Which SLC should
we choose? One aim is to maximize the variance of the projection δ>X, i.e., to choose δ
according to

max
{δ:‖δ‖=1}

Var(δ>X) = max
{δ:‖δ‖=1}

δ>Var(X)δ. (9.2)

The interesting “directions” of δ are found through the spectral decomposition of the co-
variance matrix. Indeed, from Theorem 2.5, the direction δ is given by the eigenvector γ1

corresponding to the largest eigenvalue λ1 of the covariance matrix Σ = Var(X).

Figures 9.1 and 9.2 show two such projections (SLCs) of the same data set with zero mean.
In Figure 9.1 an arbitrary projection is displayed. The upper window shows the data point
cloud and the line onto which the data are projected. The middle window shows the projected
values in the selected direction. The lower window shows the variance of the actual projection
and the percentage of the total variance that is explained.

Figure 9.2 shows the projection that captures the majority of the variance in the data. This
direction is of interest and is located along the main direction of the point cloud. The same
line of thought can be applied to all data orthogonal to this direction leading to the second
eigenvector. The SLC with the highest variance obtained from maximizing (9.2) is the first
principal component (PC) y1 = γ>1 X. Orthogonal to the direction γ1 we find the SLC with
the second highest variance: y2 = γ>2 X, the second PC.

Proceeding in this way and writing in matrix notation, the result for a random variable X
with E(X) = µ and Var(X) = Σ = ΓΛΓ> is the PC transformation which is defined as

Y = Γ>(X − µ). (9.3)

Here we have centered the variable X in order to obtain a zero mean PC variable Y .
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  explained variance   0.52
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Figure 9.1. An arbitrary SLC. MVApcasimu.xpl

EXAMPLE 9.1 Consider a bivariate normal distribution N(0,Σ) with Σ =
(

1
ρ
ρ
1

)
and ρ > 0

(see Example 3.13). Recall that the eigenvalues of this matrix are λ1 = 1 + ρ and λ2 = 1− ρ
with corresponding eigenvectors

γ1 =
1√
2

(
1

1

)
, γ2 =

1√
2

(
1

−1

)
.

The PC transformation is thus

Y = Γ>(X − µ) =
1√
2

(
1 1
1 −1

)
X

or (
Y1

Y2

)
=

1√
2

(
X1 +X2

X1 −X2

)
.

So the first principal component is

Y1 =
1√
2

(X1 +X2)

http://www.quantlet.org/mdstat/codes/mva/MVApcasimu.html
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Figure 9.2. The most interesting SLC. MVApcasimu.xpl

and the second is

Y2 =
1√
2

(X1 −X2).

Let us compute the variances of these PCs using formulas (4.22)-(4.26):

Var(Y1) = Var

{
1√
2

(X1 +X2)

}
=

1

2
Var(X1 +X2)

=
1

2
{Var(X1) + Var(X2) + 2 Cov(X1, X2)}

=
1

2
(1 + 1 + 2ρ) = 1 + ρ

= λ1.

Similarly we find that
Var(Y2) = λ2.

This can be expressed more generally and is given in the next theorem.

http://www.quantlet.org/mdstat/codes/mva/MVApcasimu.html
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THEOREM 9.1 For a given X ∼ (µ,Σ) let Y = Γ>(X − µ) be the PC transformation.
Then

EYj = 0, j = 1, . . . , p (9.4)

Var(Yj) = λj, j = 1, . . . , p (9.5)

Cov(Yi, Yj) = 0, i 6= j (9.6)

Var(Y1) ≥ Var(Y2) ≥ · · · ≥ Var(Yp) ≥ 0 (9.7)
p∑
j=1

Var(Yj) = tr(Σ) (9.8)

p∏
j=1

Var(Yj) = |Σ|. (9.9)

The connection between the PC transformation and the search for the best SLC is made in
the following theorem, which follows directly from (9.2) and Theorem 2.5.

THEOREM 9.2 There exists no SLC that has larger variance than λ1 = Var(Y1).

THEOREM 9.3 If Y = a>X is a SLC that is not correlated with the first k PCs of X, then
the variance of Y is maximized by choosing it to be the (k + 1)-st PC.

Summary
↪→ A standardized linear combination (SLC) is a weighted average δ>X =∑p

j=1 δjXj where δ is a vector of length 1.

↪→ Maximizing the variance of δ>X leads to the choice δ = γ1, the eigenvec-
tor corresponding to the largest eigenvalue λ1 of Σ = Var(X).
This is a projection of X into the one-dimensional space, where the com-
ponents of X are weighted by the elements of γ1. Y1 = γ>1 (X − µ)
is called the first principal component (PC).

↪→ This projection can be generalized for higher dimensions. The PC trans-
formation is the linear transformation Y = Γ>(X − µ), where Σ =
Var(X) = ΓΛΓ> and µ = EX.
Y1, Y2, . . . , Yp are called the first, second,. . . , and p-th PCs.

↪→ The PCs have zero means, variance Var(Yj) = λj, and zero covariances.
From λ1 ≥ . . . ≥ λp it follows that Var(Y1) ≥ . . . ≥ Var(Yp). It holds
that

∑p
j=1 Var(Yj) = tr(Σ) and

∏p
j=1 Var(Yj) = |Σ|.
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Summary (continued)

↪→ If Y = a>X is a SLC which is not correlated with the first k PCs of X
then the variance of Y is maximized by choosing it to be the (k + 1)-st
PC.

9.2 Principal Components in Practice

In practice the PC transformation has to be replaced by the respective estimators: µ becomes
x, Σ is replaced by S, etc. If g1 denotes the first eigenvector of S, the first principal
component is given by y1 = (X − 1nx

>)g1. More generally if S = GLG> is the spectral
decomposition of S, then the PCs are obtained by

Y = (X − 1nx
>)G. (9.10)

Note that with the centering matrix H = I − (n−11n1>n ) and H1nx
> = 0 we can write

SY = n−1Y>HY = n−1G>(X − 1nx
>)>H(X − 1nx

>)G
= n−1G>X>HXG = G>SG = L (9.11)

where L = diag(`1, . . . , `p) is the matrix of eigenvalues of S. Hence the variance of yi equals
the eigenvalue `i!

The PC technique is sensitive to scale changes. If we multiply one variable by a scalar we
obtain different eigenvalues and eigenvectors. This is due to the fact that an eigenvalue
decomposition is performed on of the covariance matrix and not on the correlation matrix
(see Section 9.5). The following warning is therefore important:

�
�
�A
A
A! The PC transformation should be applied to data that have approximately the same

scale in each variable.

EXAMPLE 9.2 Let us apply this technique to the bank data set. In this example we do not
standardize the data. Figure 9.3 shows some PC plots of the bank data set. The genuine and
counterfeit bank notes are marked by “o” and “+” respectively.

Recall that the mean vector of X is

x = (214.9, 130.1, 129.9, 9.4, 10.6, 140.5)> .

The vector of eigenvalues of S is

` = (2.985, 0.931, 0.242, 0.194, 0.085, 0.035)> .



9.2 Principal Components in Practice 239

first  vs. second PC

-51 -50 -49 -48 -47 -46
pc1

-5
0

-4
8

-4
6

-4
4

pc
2

first  vs. third PC 

-51 -50 -49 -48 -47 -46
pc1

23
8.

5
23

9
23

9.
5

24
0

24
0.

5
24

1

pc
3

second vs. third PC 

-50 -48 -46 -44
pc2

23
8.

5
23

9
23

9.
5

24
0

24
0.

5
24

1

pc
3

eigenvalues of S

1 2 3 4 5 6
index

0
0.

5
1

1.
5

2
2.

5
3

la
m

bd
a

Figure 9.3. Principal components of the bank data. MVApcabank.xpl

The eigenvectors gj are given by the columns of the matrix

G =


−0.044 0.011 0.326 0.562 −0.753 0.098

0.112 0.071 0.259 0.455 0.347 −0.767
0.139 0.066 0.345 0.415 0.535 0.632
0.768 −0.563 0.218 −0.186 −0.100 −0.022
0.202 0.659 0.557 −0.451 −0.102 −0.035
−0.579 −0.489 0.592 −0.258 0.085 −0.046

 .

The first column of G is the first eigenvector and gives the weights used in the linear combi-
nation of the original data in the first PC.

EXAMPLE 9.3 To see how sensitive the PCs are to a change in the scale of the variables,
assume that X1, X2, X3 and X6 are measured in cm and that X4 and X5 remain in mm in
the bank data set. This leads to:

x̄ = (21.49, 13.01, 12.99, 9.41, 10.65, 14.05)>.

http://www.quantlet.org/mdstat/codes/mva/MVApcabank.html
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Figure 9.4. Principal components of the rescaled bank data.
MVApcabankr.xpl

The covariance matrix can be obtained from S in (3.4) by dividing rows 1, 2, 3, 6 and
columns 1, 2, 3, 6 by 10. We obtain:

` = (2.101, 0.623, 0.005, 0.002, 0.001, 0.0004)>

which clearly differs from Example 9.2. Only the first two eigenvectors are given:

g1 = (−0.005, 0.011, 0.014, 0.992, 0.113, −0.052)>

g2 = (−0.001, 0.013, 0.016, −0.117, 0.991, −0.069)>.

Comparing these results to the first two columns of G from Example 9.2, a completely different
story is revealed. Here the first component is dominated by X4 (lower margin) and the second
by X5 (upper margin), while all of the other variables have much less weight. The results are
shown in Figure 9.4. Section 9.5 will show how to select a reasonable standardization of the
variables when the scales are too different.

http://www.quantlet.org/mdstat/codes/mva/MVApcabankr.html
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Summary
↪→ The scale of the variables should be roughly the same for PC transforma-

tions.

↪→ For the practical implementation of principal components analysis (PCA)
we replace µ by the mean x and Σ by the empirical covariance S. Then
we compute the eigenvalues `1, . . . , `p and the eigenvectors g1, . . . , gp of S.
The graphical representation of the PCs is obtained by plotting the first
PC vs. the second (and eventually vs. the third).

↪→ The components of the eigenvectors gi are the weights of the original
variables in the PCs.

9.3 Interpretation of the PCs

Recall that the main idea of PC transformations is to find the most informative projections
that maximize variances. The most informative SLC is given by the first eigenvector. In
Section 9.2 the eigenvectors were calculated for the bank data. In particular, with centered
x’s, we had:

y1 = −0.044x1 + 0.112x2 + 0.139x3 + 0.768x4 + 0.202x5 − 0.579x6

y2 = 0.011x1 + 0.071x2 + 0.066x3 − 0.563x4 + 0.659x5 − 0.489x6

and

x1 = length
x2 = left height
x3 = right height
x4 = bottom frame
x5 = top frame
x6 = diagonal.

Hence, the first PC is essentially the difference between the bottom frame variable and the
diagonal. The second PC is best described by the difference between the top frame variable
and the sum of bottom frame and diagonal variables.

The weighting of the PCs tells us in which directions, expressed in original coordinates,
the best variance explanation is obtained. A measure of how well the first q PCs explain
variation is given by the relative proportion:
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eigenvalue proportion of variance cumulated proportion
2.985 0.67 0.67
0.931 0.21 0.88
0.242 0.05 0.93
0.194 0.04 0.97
0.085 0.02 0.99
0.035 0.01 1.00

Table 9.3. Proportion of variance of PC’s

ψq =

q∑
j=1

λj

p∑
j=1

λj

=

q∑
j=1

Var(Yj)

p∑
j=1

Var(Yj)

. (9.12)

Referring to the bank data example 9.2, the (cumulative) proportions of explained variance
are given in Table 9.3. The first PC (q = 1) already explains 67% of the variation. The first
three (q = 3) PCs explain 93% of the variation. Once again it should be noted that PCs are
not scale invariant, e.g., the PCs derived from the correlation matrix give different results
than the PCs derived from the covariance matrix (see Section 9.5).

A good graphical representation of the ability of the PCs to explain the variation in the data
is given by the scree plot shown in the lower righthand window of Figure 9.3. The scree plot
can be modified by using the relative proportions on the y-axis, as is shown in Figure 9.5
for the bank data set.

The covariance between the PC vector Y and the original vector X is calculated with the
help of (9.4) as follows:

Cov(X, Y ) = E(XY >)− EXEY > = E(XY >)

= E(XX>Γ)− µµ>Γ = Var(X)Γ

= ΣΓ (9.13)

= ΓΛΓ>Γ

= ΓΛ.

Hence, the correlation, ρXiYj , between variable Xi and the PC Yj is

ρXiYj =
γijλj

(σXiXiλj)
1/2

= γij

(
λj

σXiXi

)1/2

. (9.14)
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Figure 9.5. Relative proportion of variance explained by PCs.
MVApcabanki.xpl

Using actual data, this of course translates into

rXiYj = gij

(
`j

sXiXi

)1/2

. (9.15)

The correlations can be used to evaluate the relations between the PCs Yj where j = 1, . . . , q,
and the original variables Xi where i = 1, . . . , p. Note that

p∑
j=1

r2
XiYj

=

∑p
j=1 `jg

2
ij

sXiXi
=
sXiXi
sXiXi

= 1. (9.16)

Indeed,
∑p

j=1 `jg
2
ij = g>i Lgi is the (i, i)-element of the matrix GLG> = S, so that r2

XiYj
may

be seen as the proportion of variance of Xi explained by Yj.

In the space of the first two PCs we plot these proportions, i.e., rXiY1 versus rXiY2 . Figure 9.6
shows this for the bank notes example. This plot shows which of the original variables are
most strongly correlated with PC Y1 and Y2.

http://www.quantlet.org/mdstat/codes/mva/MVApcabanki.html
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Figure 9.6. The correlation of the original variable with the PCs.
MVApcabanki.xpl

From (9.16) it obviously follows that r2
XiY1

+ r2
XiY2
≤ 1 so that the points are always inside

the circle of radius 1. In the bank notes example, the variables X4, X5 and X6 correspond to
correlations near the periphery of the circle and are thus well explained by the first two PCs.
Recall that we have interpreted the first PC as being essentially the difference between X4

and X6. This is also reflected in Figure 9.6 since the points corresponding to these variables
lie on different sides of the vertical axis. An analogous remark applies to the second PC.
We had seen that the second PC is well described by the difference between X5 and the
sum of X4 and X6. Now we are able to see this result again from Figure 9.6 since the point
corresponding to X5 lies above the horizontal axis and the points corresponding to X4 and
X6 lie below.

The correlations of the original variables Xi and the first two PCs are given in Table 9.4
along with the cumulated percentage of variance of each variable explained by Y1 and Y2.
This table confirms the above results. In particular, it confirms that the percentage of
variance of X1 (and X2, X3) explained by the first two PCs is relatively small and so are

http://www.quantlet.org/mdstat/codes/mva/MVApcabanki.html
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rXiY1 rXiY2 r2
XiY1

+ r2
XiY2

X1 length −0.201 0.028 0.041
X2 left h. 0.538 0.191 0.326
X3 right h. 0.597 0.159 0.381
X4 lower 0.921 −0.377 0.991
X5 upper 0.435 0.794 0.820
X6 diagonal −0.870 −0.410 0.926

Table 9.4. Correlation between the original variables and the PCs

their weights in the graphical representation of the individual bank notes in the space of the
first two PCs (as can be seen in the upper left plot in Figure 9.3). Looking simultaneously
at Figure 9.6 and the upper left plot of Figure 9.3 shows that the genuine bank notes are
roughly characterized by large values of X6 and smaller values of X4. The counterfeit bank
notes show larger values of X5 (see Example 7.15).

Summary
↪→ The weighting of the PCs tells us in which directions, expressed in original

coordinates, the best explanation of the variance is obtained. Note that
the PCs are not scale invariant.

↪→ A measure of how well the first q PCs explain variation is given by the
relative proportion ψq =

∑q
j=1 λj/

∑p
j=1 λj. A good graphical representa-

tion of the ability of the PCs to explain the variation in the data is the
scree plot of these proportions.

↪→ The correlation between PC Yj and an original variable Xi is ρXiYj =

γij

(
λj

σXiXi

)1/2

. For a data matrix this translates into r2
XiYj

=
`jg

2
ij

sXiXi
. r2

XiYj

can be interpreted as the proportion of variance of Xi explained by Yj.
A plot of rXiY1 vs. rXiY2 shows which of the original variables are most
strongly correlated with the PCs, namely those that are close to the pe-
riphery of the circle of radius 1.
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9.4 Asymptotic Properties of the PCs

In practice, PCs are computed from sample data. The following theorem yields results on
the asymptotic distribution of the sample PCs.

THEOREM 9.4 Let Σ > 0 with distinct eigenvalues, and let U ∼ m−1Wp(Σ,m) with spectral
decompositions Σ = ΓΛΓ>, and U = GLG>. Then

(a)
√
m(`− λ)

L−→ Np(0, 2Λ2),
where ` = (`1, . . . , `p)

> and λ = (λ1, . . . , λp)
> are the diagonals of L and Λ,

(b)
√
m(gj − γj)

L−→ Np(0,Vj),

with Vj = λj
∑
k 6=j

λk
(λk − λj)2

γkγ
>
k ,

(c) Cov(gj, gk) = Vjk,

where the (r, s)-element of the matrix Vjk(p× p) is − λjλkγrkγsj
[m(λj − λk)2]

,

(d) the elements in ` are asymptotically independent of the elements in G.

EXAMPLE 9.4 Since nS ∼ Wp(Σ, n − 1) if X1, . . . , Xn are drawn from N(µ,Σ), we have
that √

n− 1(`j − λj)
L−→ N(0, 2λ2

j), j = 1, . . . , p. (9.17)

Since the variance of (9.17) depends on the true mean λj a log transformation is useful.
Consider f(`j) = log(`j). Then d

d`j
f |`j=λj = 1

λj
and by the Transformation Theorem 4.11 we

have from (9.17) that √
n− 1(log `j − log λj) −→ N(0, 2). (9.18)

Hence, √
n− 1

2
(log `j − log λj)

L−→ N(0, 1)

and a two-sided confidence interval at the 1− α = 0.95 significance level is given by

log(`j)− 1.96

√
2

n− 1
≤ log λj ≤ log(`j) + 1.96

√
2

n− 1
.

In the bank data example we have that

`1 = 2.98.

Therefore,

log(2.98)± 1.96

√
2

199
= log(2.98)± 0.1965.
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It can be concluded for the true eigenvalue that

P {λ1 ∈ (2.448, 3.62)} ≈ 0.95.

Variance explained by the first q PCs.

The variance explained by the first q PCs is given by

ψ =
λ1 + · · ·+ λq

p∑
j=1

λj

·

In practice this is estimated by

ψ̂ =
`1 + · · ·+ `q

p∑
j=1

`j

·

From Theorem 9.4 we know the distribution of
√
n− 1(`−λ). Since ψ is a nonlinear function

of λ, we can again apply the Transformation Theorem 4.11 to obtain that

√
n− 1(ψ̂ − ψ)

L−→ N(0,D>VD)

where V = 2Λ2 (from Theorem 9.4) and D = (d1, . . . , dp)
> with

dj =
∂ψ

∂λj
=


1− ψ
tr(Σ)

for 1 ≤ j ≤ q,

−ψ
tr(Σ)

for q + 1 ≤ j ≤ p.

Given this result, the following theorem can be derived.

THEOREM 9.5 √
n− 1(ψ̂ − ψ)

L−→ N(0, ω2),

where

ω2 = D>VD =
2

{tr(Σ)}2

{
(1− ψ)2(λ2

1 + · · ·+ λ2
q) + ψ2(λ2

q+1 + · · ·+ λ2
p)
}

=
2 tr(Σ2)

{tr(Σ)}2
(ψ2 − 2βψ + β)

and

β =
λ2

1 + · · ·+ λ2
q

λ2
1 + · · ·+ λ2

p

.
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EXAMPLE 9.5 From Section 9.3 it is known that the first PC for the Swiss bank notes
resolves 67% of the variation. It can be tested whether the true proportion is actually 75%.
Computing

β̂ =
`2

1

`2
1 + · · ·+ `2

p

=
(2.985)2

(2.985)2 + (0.931)2 + · · · (0.035)2
= 0.902

tr(S) = 4.472

tr(S2) =

p∑
j=1

`2
j = 9.883

ω̂2 =
2 tr(S2)

{tr(S)}2
(ψ̂2 − 2β̂ψ̂ + β̂)

=
2 · 9.883

(4.472)2
{(0.668)2 − 2(0.902)(0.668) + 0.902} = 0.142.

Hence, a confidence interval at a significance of level 1− α = 0.95 is given by

0.668± 1.96

√
0.142

199
= (0.615, 0.720).

Clearly the hypothesis that ψ = 75% can be rejected!

Summary
↪→ The eigenvalues `j and eigenvectors gj are asymptotically, normally dis-

tributed, in particular
√
n− 1(`− λ)

L−→ Np(0, 2Λ2).

↪→ For the eigenvalues it holds that
√

n−1
2

(log `j − log λj)
L−→ N(0, 1).

↪→ Given an asymptotic, normal distribution approximate confidence inter-
vals and tests can be constructed for the proportion of variance which is ex-
plained by the first q PCs. The two-sided confidence interval at the 1−α =

0.95 level is given by log(`j)− 1.96
√

2
n−1
≤ log λj ≤ log(`j) + 1.96

√
2

n−1
.

↪→ It holds for ψ̂, the estimate of ψ (the proportion of the variance explained

by the first q PCs) that
√
n− 1(ψ̂ − ψ)

L−→ N(0, ω2), where ω is given in
Theorem 9.5.
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9.5 Normalized Principal Components Analysis

In certain situations the original variables can be heterogeneous w.r.t. their variances. This
is particularly true when the variables are measured on heterogeneous scales (such as years,
kilograms, dollars, ...). In this case a description of the information contained in the data
needs to be provided which is robust w.r.t. the choice of scale. This can be achieved through
a standardization of the variables, namely

XS = HXD−1/2 (9.19)

where D = diag(sX1X1 , . . . , sXpXp). Note that xS = 0 and SXS = R, the correlation matrix
of X . The PC transformations of the matrix XS are refereed to as the Normalized Principal
Components (NPCs). The spectral decomposition of R is

R = GRLRG>R, (9.20)

where LR = diag(`R1 , . . . , `
R
p ) and `R1 ≥ . . . ≥ `Rp are the eigenvalues of R with corresponding

eigenvectors gR1 , . . . , g
R
p (note that here

∑p
j=1 `

R
j = tr(R) = p).

The NPCs, Zj, provide a representation of each individual, and is given by

Z = XSGR = (z1, . . . , zp). (9.21)

After transforming the variables, once again, we have that

z = 0, (9.22)

SZ = G>RSXSGR = G>RRGR = LR. (9.23)

�
�
�A
A
A! The NPCs provide a perspective similar to that of the PCs, but in terms of the relative

position of individuals, NPC gives each variable the same weight (with the PCs the variable
with the largest variance received the largest weight).

Computing the covariance and correlation between Xi and Zj is straightforward:

SXS ,Z =
1

n
X>S Z = GRLR, (9.24)

RXS ,Z = GRLRL−1/2
R = GRL1/2

R . (9.25)

The correlations between the original variables Xi and the NPCs Zj are:

rXiZj = rXsiZj =
√
`jgR,ij (9.26)

p∑
j=1

r2
XiZj

= 1 (9.27)

(compare this to (9.15) and (9.16)). The resulting NPCs, the Zj, can be interpreted in terms
of the original variables and the role of each PC in explaining the variation in variable Xi

can be evaluated.
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9.6 Principal Components as a Factorial Method

The empirical PCs (normalized or not) turn out to be equivalent to the factors that one
would obtain by decomposing the appropriate data matrix into its factors (see Chapter 8).
It will be shown that the PCs are the factors representing the rows of the centered data
matrix and that the NPCs correspond to the factors of the standardized data matrix. The
representation of the columns of the standardized data matrix provides (at a scale factor)
the correlations between the NPCs and the original variables. The derivation of the (N)PCs
presented above will have a nice geometric justification here since they are the best fit in
subspaces generated by the columns of the (transformed) data matrix X . This analogy
provides complementary interpretations of the graphical representations shown above.

Assume, as in Chapter 8, that we want to obtain representations of the individuals (the
rows of X ) and of the variables (the columns of X ) in spaces of smaller dimension. To keep
the representations simple, some prior transformations are performed. Since the origin has
no particular statistical meaning in the space of individuals, we will first shift the origin to
the center of gravity, x, of the point cloud. This is the same as analyzing the centered data
matrix XC = HX . Now all of the variables have zero means, thus the technique used in
Chapter 8 can be applied to the matrix XC . Note that the spectral decomposition of X>C XC
is related to that of SX , namely

X>C XC = X>H>HX = nSX = nGLG>. (9.28)

The factorial variables are obtained by projecting XC on G,

Y = XCG = (y1, . . . , yp). (9.29)

These are the same principal components obtained above, see formula (9.10). (Note that
the y’s here correspond to the z’s in Section 8.2.) Since HXC = XC , it immediately follows
that

y = 0, (9.30)

SY = G>SXG = L = diag(`1, . . . , `p). (9.31)

The scatterplot of the individuals on the factorial axes are thus centered around the origin
and are more spread out in the first direction (first PC has variance `1) than in the second
direction (second PC has variance `2).

The representation of the variables can be obtained using the Duality Relations (8.11),
and (8.12). The projections of the columns of XC onto the eigenvectors vk of XCX>C are

X>C vk =
1√
n`k
X>C XCgk =

√
n`kgk. (9.32)

Thus the projections of the variables on the first p axes are the columns of the matrix

X>C V =
√
nGL1/2. (9.33)
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Considering the geometric representation, there is a nice statistical interpretation of the
angle between two columns of XC . Given that

x>C[j]xC[k] = nsXjXk , (9.34)

||xC[j]||2 = nsXjXj , (9.35)

where xC[j] and xC[k] denote the j-th and k-th column of XC , it holds that in the full space
of the variables, if θjk is the angle between two variables, xC[j] and xC[k], then

cos θjk =
x>C[j]xC[k]

‖xC[j]‖ ‖xC[k]‖
= rXjXk (9.36)

(Example 2.11 shows the general connection that exists between the angle and correlation of
two variables). As a result, the relative positions of the variables in the scatterplot of the first
columns of X>C V may be interpreted in terms of their correlations; the plot provides a picture
of the correlation structure of the original data set. Clearly, one should take into account
the percentage of variance explained by the chosen axes when evaluating the correlation.

The NPCs can also be viewed as a factorial method for reducing the dimension. The variables
are again standardized so that each one has mean zero and unit variance and is independent
of the scale of the variables. The factorial analysis of XS provides the NPCs. The spectral
decomposition of X>S XS is related to that of R, namely

X>S XS = D−1/2X>HXD−1/2 = nR = nGRLRG>R.

The NPCs Zj, given by (9.21), may be viewed as the projections of the rows of XS onto GR.

The representation of the variables are again given by the columns of

X>S VR =
√
nGRL1/2

R . (9.37)

Comparing (9.37) and (9.25) we see that the projections of the variables in the factorial
analysis provide the correlation between the NPCs Zk and the original variables x[j] (up to
the factor

√
n which could be the scale of the axes).

This implies that a deeper interpretation of the representation of the individuals can be
obtained by looking simultaneously at the graphs plotting the variables. Note that

x>S[j]xS[k] = nrXjXk , (9.38)

‖xS[j]‖2 = n, (9.39)

where xS[j] and xS[k] denote the j-th and k-th column of XS. Hence, in the full space, all
the standardized variables (columns of XS) are contained within the “sphere” in Rn, which
is centered at the origin and has radius

√
n (the scale of the graph). As in (9.36), given the

angle θjk between two columns xS[j] and xS[k], it holds that

cos θjk = rXjXk . (9.40)
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Therefore, when looking at the representation of the variables in the spaces of reduced
dimension (for instance the first two factors), we have a picture of the correlation structure
between the original Xi’s in terms of their angles. Of course, the quality of the representation
in those subspaces has to be taken into account, which is presented in the next section.

Quality of the representations

As said before, an overall measure of the quality of the representation is given by

ψ =
`1 + `2 + . . .+ `q

p∑
j=1

`j

.

In practice, q is chosen to be equal to 1, 2 or 3. Suppose for instance that ψ = 0.93 for q = 2.
This means that the graphical representation in two dimensions captures 93% of the total
variance. In other words, there is minimal dispersion in a third direction (no more than 7%).

It can be useful to check if each individual is well represented by the PCs. Clearly, the
proximity of two individuals on the projected space may not necessarily coincide with the
proximity in the full original space Rp, which may lead to erroneous interpretations of the
graphs. In this respect, it is worth computing the angle ϑik between the representation of
an individual i and the k-th PC or NPC axis. This can be done using (2.40), i.e.,

cosϑik =
y>i ek
‖yi‖‖ek‖

=
yik
‖xCi‖

for the PCs or analogously

cos ζik =
z>i ek
‖zi‖‖ek‖

=
zik
‖xSi‖

for the NPCs, where ek denotes the k-th unit vector ek = (0, . . . , 1, . . . , 0)>. An individual
i will be represented on the k-th PC axis if its corresponding angle is small, i.e., if cos2 ϑik
for k = 1, . . . , p is close to one. Note that for each individual i,

p∑
k=1

cos2 ϑik =
y>i yi
x>CixCi

=
x>CiGG>xCi
x>CixCi

= 1

The values cos2 ϑik are sometimes called the relative contributions of the k-th axis to the
representation of the i-th individual, e.g., if cos2 ϑi1 + cos2 ϑi2 is large (near one), we know
that the individual i is well represented on the plane of the first two principal axes since its
corresponding angle with the plane is close to zero.

We already know that the quality of the representation of the variables can be evaluated by
the percentage of Xi’s variance that is explained by a PC, which is given by r2

XiYj
or r2

XiZj

according to (9.16) and (9.27) respectively.
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French food data
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Figure 9.7. Representation of the individuals. MVAnpcafood.xpl

EXAMPLE 9.6 Let us return to the French food expenditure example, see Appendix B.6.
This yields a two-dimensional representation of the individuals as shown in Figure 9.7.

Calculating the matrix GR we have

GR =



−0.240 0.622 −0.011 −0.544 0.036 0.508
−0.466 0.098 −0.062 −0.023 −0.809 −0.301
−0.446 −0.205 0.145 0.548 −0.067 0.625
−0.462 −0.141 0.207 −0.053 0.411 −0.093
−0.438 −0.197 0.356 −0.324 0.224 −0.350
−0.281 0.523 −0.444 0.450 0.341 −0.332

0.206 0.479 0.780 0.306 −0.069 −0.138


,

which gives the weights of the variables (milk, vegetables, etc.). The eigenvalues `j and the
proportions of explained variance are given in Table 9.7.

The interpretation of the principal components are best understood when looking at the cor-
relations between the original Xi’s and the PCs. Since the first two PCs explain 88.1% of

http://www.quantlet.org/mdstat/codes/mva/MVAnpcafood.html
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French food data
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Figure 9.8. Representation of the variables. MVAnpcafood.xpl

eigenvalues proportion of variance cumulated proportion
4.333 0.6190 61.9
1.830 0.2620 88.1
0.631 0.0900 97.1
0.128 0.0180 98.9
0.058 0.0080 99.7
0.019 0.0030 99.9
0.001 0.0001 100.0

Table 9.7. Eigenvalues and explained variance

the variance, we limit ourselves to the first two PCs. The results are shown in Table 9.8.
The two-dimensional graphical representation of the variables in Figure 9.8 is based on the
first two columns of Table 9.8.

http://www.quantlet.org/mdstat/codes/mva/MVAnpcafood.html
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rXiZ1 rXiZ2 r2
XiZ1

+ r2
XiZ2

X1: bread −0.499 0.842 0.957
X2: vegetables −0.970 0.133 0.958
X3: fruits −0.929 −0.278 0.941
X4: meat −0.962 −0.191 0.962
X5: poultry −0.911 −0.266 0.901
X6: milk −0.584 0.707 0.841
X7: wine 0.428 0.648 0.604

Table 9.8. Correlations with PCs

The plots are the projections of the variables into R2. Since the quality of the representation
is good for all the variables (except maybe X7), their relative angles give a picture of their
original correlation: wine is negatively correlated with the vegetables, fruits, meat and poultry
groups (θ > 90o), whereas taken individually this latter grouping of variables are highly
positively correlated with each other (θ ≈ 0). Bread and milk are positively correlated but
poorly correlated with meat, fruits and poultry (θ ≈ 90o).

Now the representation of the individuals in Figure 9.7 can be interpreted better. From
Figure 9.8 and Table 9.8 we can see that the the first factor Z1 is a vegetable–meat–poultry–
fruit factor (with a negative sign), whereas the second factor is a milk–bread–wine factor
(with a positive sign). Note that this corresponds to the most important weights in the first
columns of GR. In Figure 9.7 lines were drawn to connect families of the same size and
families of the same professional types. A grid can clearly be seen (with a slight deformation
by the manager families) that shows the families with higher expenditures (higher number of
children) on the left.

Considering both figures together explains what types of expenditures are responsible for sim-
ilarities in food expenditures. Bread, milk and wine expenditures are similar for manual
workers and employees. Families of managers are characterized by higher expenditures on
vegetables, fruits, meat and poultry. Very often when analyzing NPCs (and PCs), it is il-
luminating to use such a device to introduce qualitative aspects of individuals in order to
enrich the interpretations of the graphs.

Summary
↪→ NPCs are PCs applied to the standardized (normalized) data matrix XS.



256 9 Principal Components Analysis

Summary (continued)

↪→ The graphical representation of NPCs provides a similar type of picture
as that of PCs, the difference being in the relative position of individuals,
i.e., each variable in NPCs has the same weight (in PCs, the variable with
the largest variance has the largest weight).

↪→ The quality of the representation is evaluated by ψ =
(
∑p

j=1 `j)
−1(`1 + `2 + . . .+ `q).

↪→ The quality of the representation of a variable can be evaluated by the
percentage of Xi’s variance that is explained by a PC, i.e., r2

XiYj
.

9.7 Common Principal Components

In many applications a statistical analysis is simultaneously done for groups of data. In this
section a technique is presented that allows us to analyze group elements that have common
PCs. From a statistical point of view, estimating PCs simultaneously in different groups
will result in a joint dimension reducing transformation. This multi-group PCA, the so
called common principle components analysis (CPCA), yields the joint eigenstructure across
groups.

In addition to traditional PCA, the basic assumption of CPCA is that the space spanned
by the eigenvectors is identical across several groups, whereas variances associated with the
components are allowed to vary.

More formally, the hypothesis of common principle components can be stated in the following
way (Flury, 1988):

HCPC : Σi = ΓΛiΓ
>, i = 1, ..., k

where Σi is a positive definite p× p population covariance matrix for every i, Γ = (γ1, ..., γp)
is an orthogonal p × p transformation matrix and Λi = diag(λi1, ..., λip) is the matrix of
eigenvalues. Moreover, assume that all λi are distinct.

Let S be the (unbiased) sample covariance matrix of an underlying p-variate normal distri-
bution Np(µ,Σ) with sample size n. Then the distribution of nS has n−1 degrees of freedom
and is known as the Wishart distribution (Muirhead, 1982, p. 86):

nS ∼ Wp(Σ, n− 1).

The density is given in (5.16). Hence, for a given Wishart matrix Si with sample size ni, the
likelihood function can be written as

L (Σ1, ...,Σk) = C
k∏
i=1

exp
{

tr

(
−1

2
(ni − 1)Σ−1

i Si
)}
|Σi|−

1
2

(ni−1) (9.41)
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where C is a constant independent of the parameters Σi. Maximizing the likelihood is
equivalent to minimizing the function

g(Σ1, ...,Σk) =
k∑
i=1

(ni − 1)
{

ln |Σi|+ tr(Σ−1
i Si)

}
.

Assuming that HCPC holds, i.e., in replacing Σi by ΓΛiΓ
>, after some manipulations one

obtains

g(Γ,Λ1, ...,Λk) =
k∑
i=1

(ni − 1)

p∑
j=1

(
lnλij +

γ>j Siγj
λij

)
.

As we know from Section 2.2, the vectors γj in Γ have to be orthogonal. Orthogonality of the
vectors γj is achieved using the Lagrange method, i.e., we impose the p constraints γ>j γj = 1
using the Lagrange multipliers µj, and the remaining p(p − 1)/2 constraints γ>h γj = 0 for
h 6= j using the multiplier 2µhj (Flury, 1988). This yields

g∗(Γ,Λ1, ...,Λk) = g(·)−
p∑
j=1

µj(γ
>
j γj − 1)− 2

p∑
h=1

p∑
j=h+1

µhjγ
>
h γj.

Taking partial derivatives with respect to all λim and γm, it can be shown that the solution
of the CPC model is given by the generalized system of characteristic equations

γ>m

(
k∑
i=1

(ni − 1)
λim − λij
λimλij

Si

)
γj = 0, m, j = 1, ..., p, m 6= j. (9.42)

This system can be solved using

λim = γ>mSγm, i = 1, ..., k, m = 1, ..., p

under the constraints

γ>mγj =

{
0 m 6= j

1 m = j
.

Flury (1988) proves existence and uniqueness of the maximum of the likelihood function,
and Flury and Gautschi (1986) provide a numerical algorithm.

EXAMPLE 9.7 As an example we provide the data sets XFGvolsurf01, XFGvolsurf02 and
XFGvolsurf03 that have been used in Fengler, Härdle and Villa (2001) to estimate common
principle components for the implied volatility surfaces of the DAX 1999. The data has been
generated by smoothing an implied volatility surface day by day. Next, the estimated grid
points have been grouped into maturities of τ = 1, τ = 2 and τ = 3 months and transformed

http://www.xplore-stat.de/data/XFGvolsurf01.dat
http://www.xplore-stat.de/data/XFGvolsurf02.dat
http://www.xplore-stat.de/data/XFGvolsurf03.dat
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into a vector of time series of the “smile”, i.e., each element of the vector belongs to a
distinct moneyness ranging from 0.85 to 1.10.

Figure 9.9 shows the first three eigenvectors in a parallel coordinate plot. The basic structure
of the first three eigenvectors is not altered. We find a shift, a slope and a twist structure.
This structure is common to all maturity groups, i.e., when exploiting PCA as a dimension
reducing tool, the same transformation applies to each group! However, by comparing the
size of eigenvalues among groups we find that variability is decreasing across groups as we
move from the short term contracts to long term contracts.

PCP for CPCA, 3 eigenvectors

1 2 3 4 5 6

moneyness

-0
.5

0
0.

5

lo
ad

in
g

Figure 9.9. Factor loadings of the first (thick), the second (medium), and
the third (thin) PC MVAcpcaiv.xpl

Before drawing conclusions we should convince ourselves that the CPC model is truly a good
description of the data. This can be done by using a likelihood ratio test. The likelihood
ratio statistic for comparing a restricted (the CPC) model against the unrestricted model
(the model where all covariances are treated separately) is given by

T(n1,n2,...,nk) = −2 ln
L(Σ̂1, ..., Σ̂k)

L(S1, ...,Sk)
.

http://www.quantlet.org/mdstat/codes/mva/MVAcpcaiv.html
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Inserting the likelihood function, we find that this is equivalent to

T(n1,n2,...,nk) =
k∑
i=1

(ni − 1)
det (Σ̂i)

det (Si)
,

which has a χ2 distribution as min(ni) tends to infinity with

k
{1

2
p(p− 1) + 1

}
−
{1

2
p(p− 1) + kp

}
=

1

2
(k − 1)p(p− 1)

degrees of freedom. This test is included in the quantlet MVAcpcaiv.xpl.

The calculations yield T(n1,n2,...,nk) = 31.836, which corresponds to the p-value p = 0.37512
for the χ2(30) distribution. Hence we cannot reject the CPC model against the unrestricted
model, where PCA is applied to each maturity separately.

Using the methods in Section 9.3, we can estimate the amount of variability, ζl, explained by
the first l principle components: (only a few factors, three at the most, are needed to capture
a large amount of the total variability present in the data). Since the model now captures
the variability in both the strike and maturity dimensions, this is a suitable starting point for
a simplified VaR calculation for delta-gamma neutral option portfolios using Monte Carlo
methods, and is hence a valuable insight in risk management.

9.8 Boston Housing

A set of transformations were defined in Chapter 1 for the Boston Housing data set that
resulted in “regular” marginal distributions. The usefulness of principal component analysis
with respect to such high-dimensional data sets will now be shown. The variable X4 is
dropped because it is a discrete 0–1 variable. It will be used later, however, in the graphical
representations. The scale difference of the remaining 13 variables motivates a NPCA based
on the correlation matrix.

The eigenvalues and the percentage of explained variance are given in Table 9.10.

The first principal component explains 56% of the total variance and the first three compo-
nents together explain more than 75%. These results imply that it is sufficient to look at 2,
maximum 3, principal components.

Table 9.11 provides the correlations between the first three PC’s and the original variables.
These can be seen in Figure 9.10.

The correlations with the first PC show a very clear pattern. The variables X2, X6, X8, X12,
and X14 are strongly positively correlated with the first PC, whereas the remaining variables
are highly negatively correlated. The minimal correlation in the absolute value is 0.5. The
first PC axis could be interpreted as a quality of life and house indicator. The second axis,

http://www.quantlet.org/mdstat/codes/mva/MVAcpcaiv.html
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eigenvalue percentages cumulated percentages
7.2852 0.5604 0.5604
1.3517 0.1040 0.6644
1.1266 0.0867 0.7510
0.7802 0.0600 0.8111
0.6359 0.0489 0.8600
0.5290 0.0407 0.9007
0.3397 0.0261 0.9268
0.2628 0.0202 0.9470
0.1936 0.0149 0.9619
0.1547 0.0119 0.9738
0.1405 0.0108 0.9846
0.1100 0.0085 0.9931
0.0900 0.0069 1.0000

Table 9.10. Eigenvalues and percentage of explained variance for Boston
Housing data. MVAnpcahous.xpl

PC1 PC2 PC3

X1 −0.9076 0.2247 0.1457
X2 0.6399 −0.0292 0.5058
X3 −0.8580 0.0409 −0.1845
X5 −0.8737 0.2391 −0.1780
X6 0.5104 0.7037 0.0869
X7 −0.7999 0.1556 −0.2949
X8 0.8259 −0.2904 0.2982
X9 −0.7531 0.2857 0.3804
X10 −0.8114 0.1645 0.3672
X11 −0.5674 −0.2667 0.1498
X12 0.4906 −0.1041 −0.5170
X13 −0.7996 −0.4253 −0.0251
X14 0.7366 0.5160 −0.1747

Table 9.11. Correlations of the first three PC’s with the original variables.
MVAnpcahous.xpl

given the polarities of X11 and X13 and of X6 and X14, can be interpreted as a social factor
explaining only 10% of the total variance. The third axis is dominated by a polarity between
X2 and X12.

http://www.quantlet.org/mdstat/codes/mva/MVAnpcahous.html
http://www.quantlet.org/mdstat/codes/mva/MVAnpcahous.html
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Figure 9.10. NPCA for the Boston housing data, correlations of first three
PCs with the original variables. MVAnpcahousi.xpl

The set of individuals from the first two PCs can be graphically interpreted if the plots are
color coded with respect to some particular variable of interest. Figure 9.11 color codes
X14 > median as red points. Clearly the first and second PCs are related to house value.
The situation is less clear in Figure 9.12 where the color code corresponds to X4, the Charles
River indicator, i.e., houses near the river are colored red.

9.9 More Examples

EXAMPLE 9.8 Let us now apply the PCA to the standardized bank data set (Table B.2).
Figure 9.13 shows some PC plots of the bank data set. The genuine and counterfeit bank
notes are marked by “o” and “+” respectively.

http://www.quantlet.org/mdstat/codes/mva/MVAnpcahousi.html
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first  vs. second PC
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Figure 9.11. NPC analysis for the Boston housing data, scatterplot of
the first two PCs. More expensive houses are marked with red color.

MVAnpcahous.xpl

The vector of eigenvalues of R is

` = (2.946, 1.278, 0.869, 0.450, 0.269, 0.189)> .

The eigenvectors gj are given by the columns of the matrix

G =


−0.007 −0.815 0.018 0.575 0.059 0.031

0.468 −0.342 −0.103 −0.395 −0.639 −0.298
0.487 −0.252 −0.123 −0.430 0.614 0.349
0.407 0.266 −0.584 0.404 0.215 −0.462
0.368 0.091 0.788 0.110 0.220 −0.419
−0.493 −0.274 −0.114 −0.392 0.340 −0.632

 .

Each original variable has the same weight in the analysis and the results are independent
of the scale of each variable.

http://www.quantlet.org/mdstat/codes/mva/MVAnpcahous.html
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Figure 9.12. NPC analysis for the Boston housing data, scatterplot of the
first two PCs. Houses close to the Charles River are indicated with red
squares. MVAnpcahous.xpl

`j proportion of variances cumulated proportion
2.946 0.491 49.1
1.278 0.213 70.4
0.869 0.145 84.9
0.450 0.075 92.4
0.264 0.045 96.9
0.189 0.032 100.0

Table 9.12. Eigenvalues and proportions of explained variance

The proportions of explained variance are given in Table 9.12. It can be concluded that the
representation in two dimensions should be sufficient. The correlations leading to Figure 9.14
are given in Table 9.13. The picture is different from the one obtained in Section 9.3 (see Ta-

http://www.quantlet.org/mdstat/codes/mva/MVAnpcahous.html
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Figure 9.13. Principal components of the standardized bank data.
MVAnpcabank.xpl

rXiZ1 rXiZ2 r2
XiZ1

+ r2
XiZ2

X1: length −0.012 −0.922 0.85
X2: left height 0.803 −0.387 0.79
X3: right height 0.835 −0.285 0.78
X4: lower 0.698 0.301 0.58
X5: upper 0.631 0.104 0.41
X6: diagonal −0.847 −0.310 0.81

Table 9.13. Correlations with PCs

ble 9.4). Here, the first factor is mainly a left–right vs. diagonal factor and the second one is
a length factor (with negative weight). Take another look at Figure 9.13, where the individual
bank notes are displayed. In the upper left graph it can be seen that the genuine bank notes
are for the most part in the south-eastern portion of the graph featuring a larger diagonal,

http://www.quantlet.org/mdstat/codes/mva/MVAnpcabank.html
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Swiss bank notes
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Figure 9.14. The correlations of the original variable with the PCs.
MVAnpcabanki.xpl

smaller height (Z1 < 0) and also a larger length (Z2 < 0). Note also that Figure 9.14 gives
an idea of the correlation structure of the original data matrix.

EXAMPLE 9.9 Consider the data of 79 U.S. companies given in Table B.5. The data is
first standardized by subtracting the mean and dividing by the standard deviation. Note that
the data set contains six variables: assets (X1), sales (X2), market value (X3), profits (X4),
cash flow (X5), number of employees (X6).

Calculating the corresponding vector of eigenvalues gives

` = (5.039, 0.517, 0.359, 0.050, 0.029, 0.007)>

http://www.quantlet.org/mdstat/codes/mva/MVAnpcabanki.html
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and the matrix of eigenvectors is

G =


0.340 −0.849 −0.339 0.205 0.077 −0.006
0.423 −0.170 0.379 −0.783 −0.006 −0.186
0.434 0.190 −0.192 0.071 −0.844 0.149
0.420 0.364 −0.324 0.156 0.261 −0.703
0.428 0.285 −0.267 −0.121 0.452 0.667
0.397 0.010 0.726 0.548 0.098 0.065

 .

Using this information the graphical representations of the first two principal components
are given in Figure 9.15. The different sectors are marked by the following symbols:

H ... Hi Tech and Communication
E ... Energy
F ... Finance
M ... Manufacturing
R ... Retail
? ... all other sectors.

The two outliers in the right-hand side of the graph are IBM and General Electric (GE),
which differ from the other companies with their high market values. As can be seen in the
first column of G, market value has the largest weight in the first PC, adding to the isolation
of these two companies. If IBM and GE were to be excluded from the data set, a completely
different picture would emerge, as shown in Figure 9.16. In this case the vector of eigenvalues
becomes

` = (3.191, 1.535, 0.791, 0.292, 0.149, 0.041)> ,

and the corresponding matrix of eigenvectors is

G =


0.263 −0.408 −0.800 −0.067 0.333 0.099
0.438 −0.407 0.162 −0.509 −0.441 −0.403
0.500 −0.003 −0.035 0.801 −0.264 −0.190
0.331 0.623 −0.080 −0.192 0.426 −0.526
0.443 0.450 −0.123 −0.238 −0.335 0.646
0.427 −0.277 0.558 0.021 0.575 0.313

 .

The percentage of variation explained by each component is given in Table 9.14. The first
two components explain almost 79% of the variance. The interpretation of the factors (the
axes of Figure 9.16) is given in the table of correlations (Table 9.15). The first two columns
of this table are plotted in Figure 9.17.

From Figure 9.17 (and Table 9.15) it appears that the first factor is a “size effect”, it is
positively correlated with all the variables describing the size of the activity of the companies.
It is also a measure of the economic strength of the firms. The second factor describes the
“shape” of the companies (“profit-cash flow” vs. “assets-sales” factor), which is more difficult
to interpret from an economic point of view.
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Figure 9.15. Principal components of the U.S. company data.
MVAnpcausco.xpl

`j proportion of variance cumulated proportion
3.191 0.532 0.532
1.535 0.256 0.788
0.791 0.132 0.920
0.292 0.049 0.968
0.149 0.025 0.993
0.041 0.007 1.000

Table 9.14. Eigenvalues and proportions of explained variance.

EXAMPLE 9.10 Volle (1985) analyzes data on 28 individuals (Table B.14). For each indi-
vidual, the time spent (in hours) on 10 different activities has been recorded over 100 days, as
well as informative statistics such as the individual’s sex, country of residence, professional
activity and matrimonial status. The results of a NPCA are given below.

http://www.quantlet.org/mdstat/codes/mva/MVAnpcausco.html
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Figure 9.16. Principal components of the U.S. company data (without
IBM and General Electric). MVAnpcausco2.xpl

rXiZ1 rXiZ2 r2
XiZ1

+ r2
XiZ2

X1: assets 0.47 −0.510 0.48
X2: sales 0.78 −0.500 0.87
X3: market value 0.89 −0.003 0.80
X4: profits 0.59 0.770 0.95
X5: cash flow 0.79 0.560 0.94
X6: employees 0.76 −0.340 0.70

Table 9.15. Correlations with PCs.

The eigenvalues of the correlation matrix are given in Table 9.16. Note that the last eigen-
value is exactly zero since the correlation matrix is singular (the sum of all the variables is
always equal to 2400 = 24 × 100). The results of the 4 first PCs are given in Tables 9.17
and 9.18.

http://www.quantlet.org/mdstat/codes/mva/MVAnpcausco2.html
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U.S. company data
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Figure 9.17. The correlation of the original variables with the PCs.
MVAnpcausco2i.xpl

`j proportion of variance cumulated proportion
4.59 0.459 0.460
2.12 0.212 0.670
1.32 0.132 0.800
1.20 0.120 0.920
0.47 0.047 0.970
0.20 0.020 0.990
0.05 0.005 0.990
0.04 0.004 0.999
0.02 0.002 1.000
0.00 0.000 1.000

Table 9.16. Eigenvalues of correlation matrix for the time budget data.

http://www.quantlet.org/mdstat/codes/mva/MVAnpcausco2i.html
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time budget data
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Figure 9.18. Representation of the individuals. MVAnpcatime.xpl

rXiW1 rXiW2 rXiW3 rXiW4

X1: prof 0.9772 −0.1210 −0.0846 0.0669
X2: tran 0.9798 0.0581 −0.0084 0.4555
X3: hous −0.8999 0.0227 0.3624 0.2142
X4: kids −0.8721 0.1786 0.0837 0.2944
X5: shop −0.5636 0.7606 −0.0046 −0.1210
X6: pers −0.0795 0.8181 −0.3022 −0.0636
X7: eati −0.5883 −0.6694 −0.4263 0.0141
X8: slee −0.6442 −0.5693 −0.1908 −0.3125
X9: tele −0.0994 0.1931 −0.9300 0.1512
X10: leis −0.0922 0.1103 0.0302 −0.9574

Table 9.17. Correlation of variables with PCs.

http://www.quantlet.org/mdstat/codes/mva/MVAnpcatime.html
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Figure 9.19. Representation of the variables. MVAnpcatime.xpl

From these tables (and Figures 9.18 and 9.19), it appears that the professional and house-
hold activities are strongly contrasted in the first factor. Indeed on the horizontal axis of
Figure 9.18 it can be seen that all the active men are on the right and all the inactive women
are on the left. Active women and/or single women are inbetween. The second factor con-
trasts meal/sleeping vs. toilet/shopping (note the high correlation between meal and sleeping).
Along the vertical axis of Figure 9.18 we see near the bottom of the graph the people from
Western-European countries, who spend more time on meals and sleeping than people from
the U. S. (who can be found close to the top of the graph). The other categories are inbetween.

In Figure 9.19 the variables television and other leisure activities hardly play any role (look at
Table 9.17). The variable television appears in Z3 (negatively correlated). Table 9.18 shows
that this factor contrasts people from Eastern countries and Yugoslavia with men living in the
U.S. The variable other leisure activities is the factor Z4. It merely distinguishes between men
and women in Eastern countries and in Yugoslavia. These last two factors are orthogonal to
the preceeding axes and of course their contribution to the total variation is less important.

http://www.quantlet.org/mdstat/codes/mva/MVAnpcatime.html
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Z1 Z2 Z3 Z4

maus 0.0633 0.0245 −0.0668 0.0205
waus 0.0061 0.0791 −0.0236 0.0156
wnus −0.1448 0.0813 −0.0379 −0.0186
mmus 0.0635 0.0105 −0.0673 0.0262
wmus −0.0934 0.0816 −0.0285 0.0038
msus 0.0537 0.0676 −0.0487 −0.0279
wsus 0.0166 0.1016 −0.0463 −0.0053
mawe 0.0420 −0.0846 −0.0399 −0.0016
wawe −0.0111 −0.0534 −0.0097 0.0337
wnwe −0.1544 −0.0583 −0.0318 −0.0051
mmwe 0.0402 −0.0880 −0.0459 0.0054
wmwe −0.1118 −0.0710 −0.0210 0.0262
mswe 0.0489 −0.0919 −0.0188 −0.0365
wswe −0.0393 −0.0591 −0.0194 −0.0534
mayo 0.0772 −0.0086 0.0253 −0.0085
wayo 0.0359 0.0064 0.0577 0.0762
wnyo −0.1263 −0.0135 0.0584 −0.0189
mmyo 0.0793 −0.0076 0.0173 −0.0039
wmyo −0.0550 −0.0077 0.0579 0.0416
msyo 0.0763 0.0207 0.0575 −0.0778
wsyo 0.0120 0.0149 0.0532 −0.0366
maes 0.0767 −0.0025 0.0047 0.0115
waes 0.0353 0.0209 0.0488 0.0729
wnes −0.1399 0.0016 0.0240 −0.0348
mmes 0.0742 −0.0061 −0.0152 0.0283
wmes −0.0175 0.0073 0.0429 0.0719
mses 0.0903 0.0052 0.0379 −0.0701
fses 0.0020 0.0287 0.0358 −0.0346

Table 9.18. PCs for time budget data.

9.10 Exercises

EXERCISE 9.1 Prove Theorem 9.1. (Hint: use (4.23).)

EXERCISE 9.2 Interpret the results of the PCA of the U.S. companies. Use the analysis of
the bank notes in Section 9.3 as a guide. Compare your results with those in Example 9.9.

EXERCISE 9.3 Test the hypothesis that the proportion of variance explained by the first two
PCs for the U.S. companies is ψ = 0.75.
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EXERCISE 9.4 Apply the PCA to the car data (Table B.7). Interpret the first two PCs.
Would it be necessary to look at the third PC?

EXERCISE 9.5 Take the athletic records for 55 countries (Appendix B.18) and apply the
NPCA. Interpret your results.

EXERCISE 9.6 Apply a PCA to Σ =

(
1 ρ
ρ 1

)
, where ρ > 0. Now change the scale of

X1, i.e., consider the covariance of cX1 and X2. How do the PC directions change with the
screeplot?

EXERCISE 9.7 Suppose that we have standardized some data using the Mahalanobis trans-
formation. Would it be reasonable to apply a PCA?

EXERCISE 9.8 Apply a NPCA to the U.S. CRIME data set (Table B.10). Interpret the
results. Would it be necessary to look at the third PC? Can you see any difference between
the four regions? Redo the analysis excluding the variable “area of the state.”

EXERCISE 9.9 Repeat Exercise 9.8 using the U.S. HEALTH data set (Table B.16).

EXERCISE 9.10 Do a NPCA on the GEOPOL data set (see Table B.15) which compares
41 countries w.r.t. different aspects of their development. Why or why not would a PCA be
reasonable here?

EXERCISE 9.11 Let U be an uniform r.v. on [0, 1]. Let a ∈ R3 be a vector of constants.
Suppose that X = Ua> = (X1, X2, X3). What do you expect the NPCs of X to be?

EXERCISE 9.12 Let U1 and U2 be two independent uniform random variables on [0, 1].
Suppose that X = (X1, X2, X3, X4)> where X1 = U1, X2 = U2, X3 = U1 + U2 and X4 =
U1 − U2. Compute the correlation matrix P of X. How many PCs are of interest? Show

that γ1 =
(

1√
2
, 1√

2
, 1, 0

)>
and γ2 =

(
1√
2
, −1√

2
, 0, 1

)>
are eigenvectors of P corresponding to

the non trivial λ‘s. Interpret the first two NPCs obtained.

EXERCISE 9.13 Simulate a sample of size n = 50 for the r.v. X in Exercise 9.12 and
analyze the results of a NPCA.

EXERCISE 9.14 Bouroche (1980) reported the data on the state expenses of France from the
period 1872 to 1971 (24 selected years) by noting the percentage of 11 categories of expenses.
Do a NPCA of this data set. Do the three main periods (before WWI, between WWI and
WWII, and after WWII) indicate a change in behavior w.r.t. to state expenses?
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A frequently applied paradigm in analyzing data from multivariate observations is to model
the relevant information (represented in a multivariate variable X) as coming from a limited
number of latent factors. In a survey on household consumption, for example, the consump-
tion levels, X, of p different goods during one month could be observed. The variations and
covariations of the p components of X throughout the survey might in fact be explained by
two or three main social behavior factors of the household. For instance, a basic desire of
comfort or the willingness to achieve a certain social level or other social latent concepts
might explain most of the consumption behavior. These unobserved factors are much more
interesting to the social scientist than the observed quantitative measures (X) themselves,
because they give a better understanding of the behavior of households. As shown in the ex-
amples below, the same kind of factor analysis is of interest in many fields such as psychology,
marketing, economics, politic sciences, etc.

How can we provide a statistical model addressing these issues and how can we interpret
the obtained model? This is the aim of factor analysis. As in Chapter 8 and Chapter 9, the
driving statistical theme of this chapter is to reduce the dimension of the observed data. The
perspective used, however, is different: we assume that there is a model (it will be called the
“Factor Model”) stating that most of the covariances between the p elements of X can be
explained by a limited number of latent factors. Section 10.1 defines the basic concepts and
notations of the orthogonal factor model, stressing the non-uniqueness of the solutions. We
show how to take advantage of this non-uniqueness to derive techniques which lead to easier
interpretations. This will involve (geometric) rotations of the factors. Section 10.2 presents
an empirical approach to factor analysis. Various estimation procedures are proposed and
an optimal rotation procedure is defined. Many examples are used to illustrate the method.

10.1 The Orthogonal Factor Model

The aim of factor analysis is to explain the outcome of p variables in the data matrix X using
fewer variables, the so-called factors. Ideally all the information in X can be reproduced by
a smaller number of factors. These factors are interpreted as latent (unobserved) common
characteristics of the observed x ∈ Rp. The case just described occurs when every observed
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x = (x1, . . . , xp)
> can be written as

xj =
k∑
`=1

qj`f` + µj, j = 1, ..., p. (10.1)

Here f`, for ` = 1, . . . , k denotes the factors. The number of factors, k, should always be much
smaller than p. For instance, in psychology x may represent p results of a test measuring
intelligence scores. One common latent factor explaining x ∈ Rp could be the overall level
of “intelligence”. In marketing studies, x may consist of p answers to a survey on the levels
of satisfaction of the customers. These p measures could be explained by common latent
factors like the attraction level of the product or the image of the brand, and so on. Indeed
it is possible to create a representation of the observations that is similar to the one in (10.1)
by means of principal components, but only if the last p − k eigenvalues corresponding to
the covariance matrix are equal to zero. Consider a p-dimensional random vector X with
mean µ and covariance matrix Var(X) = Σ. A model similar to (10.1) can be written for X
in matrix notation, namely

X = QF + µ, (10.2)

where F is the k-dimensional vector of the k factors. When using the factor model (10.2) it
is often assumed that the factors F are centered, uncorrelated and standardized: E(F ) = 0
and Var(F ) = Ik. We will now show that if the last p− k eigenvalues of Σ are equal to zero,
we can easily express X by the factor model (10.2).

The spectral decomposition of Σ is given by ΓΛΓ>. Suppose that only the first k eigenvalues
are positive, i.e., λk+1 = . . . = λp = 0. Then the (singular) covariance matrix can be written
as

Σ =
k∑
`=1

λ`γ`γ
>
` = (Γ1Γ2)

(
Λ1 0
0 0

)(
Γ>1
Γ>2

)
.

In order to show the connection to the factor model (10.2), recall that the PCs are given by
Y = Γ>(X − µ). Rearranging we have X − µ = ΓY = Γ1Y1 + Γ2Y2, where the components
of Y are partitioned according to the partition of Γ above, namely

Y =

(
Y1

Y2

)
=

(
Γ>1
Γ>2

)
(X − µ), where

(
Γ>1
Γ>2

)
(X − µ) ∼

(
0,

(
Λ1 0
0 0

))
.

In other words, Y2 has a singular distribution with mean and covariance matrix equal to
zero. Therefore, X − µ = Γ1Y1 + Γ2Y2 implies that X − µ is equivalent to Γ1Y1, which can
be written as

X = Γ1Λ
1/2
1 Λ

−1/2
1 Y1 + µ.

Defining Q = Γ1Λ
1/2
1 and F = Λ

−1/2
1 Y1, we obtain the factor model (10.2).

Note that the covariance matrix of model (10.2) can be written as

Σ = E(X − µ)(X − µ)> = QE(FF>)Q> = QQ> =
k∑
j=1

λjγjγ
>
j . (10.3)
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We have just shown how the variable X can be completely determined by a weighted sum
of k (where k < p) uncorrelated factors. The situation used in the derivation, however, is
too idealistic. In practice the covariance matrix is rarely singular.

It is common praxis in factor analysis to split the influences of the factors into common
and specific ones. There are, for example, highly informative factors that are common to
all of the components of X and factors that are specific to certain components. The factor
analysis model used in praxis is a generalization of (10.2):

X = QF + U + µ, (10.4)

where Q is a (p × k) matrix of the (non-random) loadings of the common factors F (k × 1)
and U is a (p × 1) matrix of the (random) specific factors. It is assumed that the factor
variables F are uncorrelated random vectors and that the specific factors are uncorrelated
and have zero covariance with the common factors. More precisely, it is assumed that:

EF = 0,

Var(F ) = Ik,
EU = 0, (10.5)

Cov(Ui, Uj) = 0, i 6= j

Cov(F,U) = 0.

Define
Var(U) = Ψ = diag(ψ11, . . . , ψpp).

The generalized factor model (10.4) together with the assumptions given in (10.5) constitute
the orthogonal factor model.

Orthogonal Factor Model
X = Q F + U + µ

(p× 1) (p× k) (k × 1) (p× 1) (p× 1)
µj = mean of variable j
Uj = j-th specific factor
F` = `-th common factor
qj` = loading of the j-th variable on the `-th factor

The random vectors F and U are unobservable and uncorrelated.

Note that (10.4) implies for the components of X = (X1, . . . , Xp)
> that

Xj =
k∑
`=1

qj`F` + Uj + µj, j = 1, . . . , p. (10.6)
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Using (10.5) we obtain σXjXj = Var(Xj) =
∑k

`=1 q
2
j` + ψjj. The quantity h2

j =
∑k

`=1 q
2
j`

is called the communality and ψjj the specific variance. Thus the covariance of X can be
rewritten as

Σ = E(X − µ)(X − µ)> = E(QF + U)(QF + U)>

= QE(FF>)Q> + E(UU>) = QVar(F )Q> + Var(U)

= QQ> + Ψ. (10.7)

In a sense, the factor model explains the variations of X for the most part by a small num-
ber of latent factors F common to its p components and entirely explains all the correlation
structure between its components, plus some “noise” U which allows specific variations of
each component to enter. The specific factors adjust to capture the individual variance of
each component. Factor analysis relies on the assumptions presented above. If the assump-
tions are not met, the analysis could be spurious. Although principal components analysis
and factor analysis might be related (this was hinted at in the derivation of the factor model),
they are quite different in nature. PCs are linear transformations of X arranged in decreas-
ing order of variance and used to reduce the dimension of the data set, whereas in factor
analysis, we try to model the variations of X using a linear transformation of a fixed, limited
number of latent factors. The objective of factor analysis is to find the loadings Q and the
specific variance Ψ. Estimates of Q and Ψ are deduced from the covariance structure (10.7).

Interpretation of the Factors

Assume that a factor model with k factors was found to be reasonable, i.e., most of the
(co)variations of the p measures in X were explained by the k fixed latent factors. The
next natural step is to try to understand what these factors represent. To interpret F`, it
makes sense to compute its correlations with the original variables Xj first. This is done for
` = 1, . . . , k and for j = 1, . . . , p to obtain the matrix PXF . The sequence of calculations used
here are in fact the same that were used to interprete the PCs in the principal components
analysis.

The following covariance between X and F is obtained via (10.5),

ΣXF = E{(QF + U)F>} = Q.

The correlation is
PXF = D−1/2Q, (10.8)

where D = diag(σX1X1 , . . . , σXpXp). Using (10.8) it is possible to construct a figure analogous
to Figure 9.6 and thus to consider which of the original variables X1, . . . , Xp play a role in
the unobserved common factors F1, . . . , Fk.

Returning to the psychology example where X are the observed scores to p different intelli-
gence tests (the WAIS data set in Table B.12 provides an example), we would expect a model
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with one factor to produce a factor that is positively correlated with all of the components
in X. For this example the factor represents the overall level of intelligence of an individual.
A model with two factors could produce a refinement in explaining the variations of the p
scores. For example, the first factor could be the same as before (overall level of intelligence),
whereas the second factor could be positively correlated with some of the tests, Xj, that are
related to the individual’s ability to think abstractly and negatively correlated with other
tests, Xi, that are related to the individual’s practical ability. The second factor would
then concern a particular dimension of the intelligence stressing the distinctions between the
“theoretical” and “practical” abilities of the individual. If the model is true, most of the
information coming from the p scores can be summarized by these two latent factors. Other
practical examples are given below.

Invariance of Scale

What happens if we change the scale of X to Y = CX with C = diag(c1, . . . , cp)? If the
k-factor model (10.6) is true for X with Q = QX , Ψ = ΨX , then, since

Var(Y ) = CΣC> = CQXQ>XC> + CΨXC>,

the same k-factor model is also true for Y with QY = CQX and ΨY = CΨXC>. In many
applications, the search for the loadings Q and for the specific variance Ψ will be done by
the decomposition of the correlation matrix of X rather than the covariance matrix Σ. This
corresponds to a factor analysis of a linear transformation of X (i.e., Y = D−1/2(X − µ)).
The goal is to try to find the loadings QY and the specific variance ΨY such that

P = QY Q>Y + ΨY . (10.9)

In this case the interpretation of the factors F immediately follows from (10.8) given the
following correlation matrix:

PXF = PY F = QY . (10.10)

Because of the scale invariance of the factors, the loadings and the specific variance of the
model, where X is expressed in its original units of measure, are given by

QX = D1/2QY
ΨX = D1/2ΨYD

1/2.

It should be noted that although the factor analysis model (10.4) enjoys the scale invariance
property, the actual estimated factors could be scale dependent. We will come back to this
point later when we discuss the method of principal factors.
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Non-Uniqueness of Factor Loadings

The factor loadings are not unique! Suppose that G is an orthogonal matrix. Then X
in (10.4) can also be written as

X = (QG)(G>F ) + U + µ.

This implies that, if a k-factor of X with factors F and loadings Q is true, then the k-
factor model with factors G>F and loadings QG is also true. In practice, we will take
advantage of this non-uniqueness. Indeed, referring back to Section 2.6 we can conclude that
premultiplying a vector F by an orthogonal matrix corresponds to a rotation of the system
of axis, the direction of the first new axis being given by the first row of the orthogonal
matrix. It will be shown that choosing an appropriate rotation will result in a matrix of
loadings QG that will be easier to interpret. We have seen that the loadings provide the
correlations between the factors and the original variables, therefore, it makes sense to search
for rotations that give factors that are maximally correlated with various groups of variables.

From a numerical point of view, the non-uniqueness is a drawback. We have to find loadings
Q and specific variances Ψ satisfying the decomposition Σ = QQ> + Ψ, but no straightfor-
ward numerical algorithm can solve this problem due to the multiplicity of the solutions.
An acceptable technique is to impose some chosen constraints in order to get—in the best
case—an unique solution to the decomposition. Then, as suggested above, once we have a
solution we will take advantage of the rotations in order to obtain a solution that is easier
to interprete.

An obvious question is: what kind of constraints should we impose in order to eliminate the
non-uniqueness problem? Usually, we impose additional constraints where

Q>Ψ−1Q is diagonal (10.11)

or
Q>D−1Q is diagonal. (10.12)

How many parameters does the model (10.7) have without constraints?

Q(p× k) has p · k parameters, and
Ψ(p× p) has p parameters.

Hence we have to determine pk + p parameters! Conditions (10.11) respectively (10.12)
introduce 1

2
{k(k − 1)} constraints, since we require the matrices to be diagonal. Therefore,

the degrees of freedom of a model with k factors is:

d = (# parameters for Σ unconstrained)− (# parameters for Σ constrained)

= 1
2
p(p+ 1)− (pk + p− 1

2
k(k − 1))

= 1
2
(p− k)2 − 1

2
(p+ k).
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If d < 0, then the model is undetermined: there are infinitly many solutions to (10.7). This
means that the number of parameters of the factorial model is larger than the number of
parameters of the original model, or that the number of factors k is “too large” relative to
p. In some cases d = 0: there is an unique solution to the problem (except for rotation). In
practice we usually have that d > 0:there are more equations than parameters, thus an exact
solution does not exist. In this case approximate solutions are used. An approximation of
Σ, for example, is QQ> + Ψ. The last case is the most interesting since the factorial model
has less parameters than the original one. Estimation methods are introduced in the next
section.

Evaluating the degrees of freedom, d, is particularly important, because it already gives an
idea of the upper bound on the number of factors we can hope to identify in a factor model.
For instance, if p = 4, we could not identify a factor model with 2 factors (this results in
d = −1 which has infinitly many solutions). With p = 4, only a one factor model gives an
approximate solution (d = 2). When p = 6, models with 1 and 2 factors provide approximate
solutions and a model with 3 factors results in an unique solution (up to the rotations) since
d = 0. A model with 4 or more factors would not be allowed, but of course, the aim of factor
analysis is to find suitable models with a small number of factors, i.e., smaller than p. The
next two examples give more insights into the notion of degrees of freedom.

EXAMPLE 10.1 Let p = 3 and k = 1, then d = 0 and

Σ =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =

 q2
1 + ψ11 q1q2 q1q3

q1q2 q2
2 + ψ22 q2q3

q1q3 q2q3 q2
3 + ψ33


with Q =

 q1

q2

q3

 and Ψ =

 ψ11 0 0
0 ψ22 0
0 0 ψ33

. Note that here the constraint (10.8) is

automatically verified since k = 1. We have

q2
1 =

σ12σ13

σ23

; q2
2 =

σ12σ23

σ13

; q2
3 =

σ13σ23

σ12

and
ψ11 = σ11 − q2

1; ψ22 = σ22 − q2
2; ψ33 = σ33 − q2

3.

In this particular case (k = 1), the only rotation is defined by G = −1, so the other solution
for the loadings is provided by −Q.

EXAMPLE 10.2 Suppose now p = 2 and k = 1, then d < 0 and

Σ =

(
1 ρ
ρ 1

)
=

(
q2

1 + ψ11 q1q2

q1q2 q2
2 + ψ22

)
.

We have infinitely many solutions: for any α (ρ < α < 1), a solution is provided by

q1 = α; q2 = ρ/α; ψ11 = 1− α2; ψ22 = 1− (ρ/α)2.
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The solution in Example 10.1 may be unique (up to a rotation), but it is not proper in the
sense that it cannot be interpreted statistically. Exercise 10.5 gives an example where the
specific variance ψ11 is negative.

�
�
�A
A
A! Even in the case of a unique solution (d = 0), the solution may be inconsistent with

statistical interpretations.

Summary
↪→ The factor analysis model aims to describe how the original p variables

in a data set depend on a small number of latent factors k < p, i.e., it
assumes that X = QF + U + µ. The (k-dimensional) random vector F
contains the common factors, the (p-dimensional) U contains the specific
factors and Q(p× k) contains the factor loadings.

↪→ It is assumed that F and U are uncorrelated and have zero means, i.e.,
F ∼ (0, I), U ∼ (0,Ψ) where Ψ is diagonal matrix and Cov(F,U) = 0.
This leads to the covariance structure Σ = QQ> + Ψ.

↪→ The interpretation of the factor F is obtained through the correlation
PXF = D−1/2Q.

↪→ A normalized analysis is obtained by the model P = QQ> + Ψ. The
interpretation of the factors is given directly by the loadingsQ : PXF = Q.

↪→ The factor analysis model is scale invariant. The loadings are not unique
(only up to multiplication by an orthogonal matrix).

↪→ Whether a model has an unique solution or not is determined by the
degrees of freedom d = 1/2(p− k)2 − 1/2(p+ k).

10.2 Estimation of the Factor Model

In practice, we have to find estimates Q̂ of the loadings Q and estimates Ψ̂ of the specific
variances Ψ such that analogously to (10.7)

S = Q̂Q̂> + Ψ̂,
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where S denotes the empirical covariance of X . Given an estimate Q̂ of Q, it is natural to
set

ψ̂jj = sXjXj −
k∑
`=1

q̂2
j`.

We have that ĥ2
j =

∑k
`=1 q̂

2
j` is an estimate for the communality h2

j .

In the ideal case d = 0, there is an exact solution. However, d is usually greater than zero,
therefore we have to find Q̂ and Ψ̂ such that S is approximated by Q̂Q̂>+ Ψ̂. As mentioned
above, it is often easier to compute the loadings and the specific variances of the standardized
model.

Define Y = HXD−1/2, the standardization of the data matrix X , where, as usual, D =
diag(sX1X1 , . . . , sXpXp) and the centering matrix H = I − n−11n1>n (recall from Chapter 2

that S = 1
n
X>HX ). The estimated factor loading matrix Q̂Y and the estimated specific

variance Ψ̂Y of Y are

Q̂Y = D−1/2Q̂X and Ψ̂Y = D−1Ψ̂X .

For the correlation matrix R of X , we have that

R = Q̂Y Q̂>Y + Ψ̂Y .

The interpretations of the factors are formulated from the analysis of the loadings Q̂Y .

EXAMPLE 10.3 Let us calculate the matrices just defined for the car data given in Ta-
ble B.7. This data set consists of the averaged marks (from 1 =low to 6 =high) for 24 car
types. Considering the three variables price, security and easy handling, we get the following
correlation matrix:

R =

 1 0.975 0.613
0.975 1 0.620
0.613 0.620 1

 .

We will first look for one factor, i.e., k = 1. Note that (# number of parameters of Σ
unconstrained – # parameters of Σ constrained) is equal to 1

2
(p − k)2 − 1

2
(p + k) = 1

2
(3 −

1)2 − 1
2
(3 + 1) = 0. This implies that there is an exact solution! The equation 1 rX1X2 rX1X3

rX1X2 1 rX2X3

rX1X3 rX2X3 1

 = R =

 q̂2
1 + ψ̂11 q̂1q̂2 q̂1q̂3

q̂1q̂2 q̂2
2 + ψ̂22 q̂2q̂3

q̂1q̂3 q̂2q̂3 q̂2
3 + ψ̂33


yields the communalities ĥ2

i = q̂2
i , where

q̂2
1 =

rX1X2rX1X3

rX2X3

, q̂2
2 =

rX1X2rX2X3

rX1X3

and q̂2
3 =

rX1X3rX2X3

rX1X2

.
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Combining this with the specific variances ψ̂11 = 1− q̂2
1 , ψ̂22 = 1− q̂2

2 and ψ̂33 = 1− q̂2
3, we

obtain the following solution

q̂1 = 0.982 q̂2 = 0.993 q̂3 = 0.624

ψ̂11 = 0.035 ψ̂22 = 0.014 ψ̂33 = 0.610.

Since the first two communalities (ĥ2
i = q̂2

i ) are close to one, we can conclude that the first
two variables, namely price and security, are explained by the single factor quite well. This
factor can be interpreted as a “price+security” factor.

The Maximum Likelihood Method

Recall from Chapter 6 the log-likelihood function ` for a data matrix X of observations of
X ∼ Np(µ,Σ):

`(X ;µ,Σ) = −n
2

log | 2πΣ | −1

2

n∑
i=1

(xi − µ)Σ−1(xi − µ)>

= −n
2

log | 2πΣ | −n
2

tr(Σ−1S)− n

2
(x− µ)Σ−1(x− µ)>.

This can be rewritten as

`(X ; µ̂,Σ) = −n
2

{
log | 2πΣ | + tr(Σ−1S)

}
.

Replacing µ by µ̂ = x and substituting Σ = QQ> + Ψ this becomes

`(X ; µ̂,Q,Ψ) = −n
2

[
log{| 2π(QQ> + Ψ) |}+ tr{(QQ> + Ψ)−1S}

]
. (10.13)

Even in the case of a single factor (k = 1), these equations are rather complicated and
iterative numerical algorithms have to be used (for more details see Mardia et al. (1979, p.
263ff)). A practical computation scheme is also given in Supplement 9A of Johnson and
Wichern (1998).

Likelihood Ratio Test for the Number of Common Factors

Using the methodology of Chapter 7, it is easy to test the adequacy of the factor analy-
sis model by comparing the likelihood under the null (factor analysis) and alternative (no
constraints on covariance matrix) hypotheses.
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Assuming that Q̂ and Ψ̂ are the maximum likelihood estimates corresponding to (10.13), we
obtain the following LR test statistic:

−2 log

(
maximized likelihood under H0

maximized likelihood

)
= n log

(
|Q̂Q̂> + Ψ̂|
|S|

)
, (10.14)

which asymptotically has the χ2
1
2
{(p−k)2−p−k} distribution.

The χ2 approximation can be improved if we replace n by n− 1− (2p+ 4k+ 5)/6 in (10.14)
(Bartlett, 1954). Using Bartlett’s correction, we reject the factor analysis model at the α
level if

{n− 1− (2p+ 4k + 5)/6} log

(
|Q̂Q̂> + Ψ̂|
|S|

)
> χ2

1−α;{(p−k)2−p−k}/2, (10.15)

and if the number of observations n is large and the number of common factors k is such
that the χ2 statistic has a positive number of degrees of freedom.

The Method of Principal Factors

The method of principal factors concentrates on the decomposition of the correlation matrix
R or the covariance matrix S. For simplicity, only the method for the correlation matrix
R will be discussed. As pointed out in Chapter 9, the spectral decompositions of R and S
yield different results and therefore, the method of principal factors may result in different
estimators. The method can be motivated as follows: Suppose we know the exact Ψ, then the
constraint (10.12) implies that the columns of Q are orthogonal since D = I and it implies
that they are eigenvectors ofQQ> = R−Ψ. Furthermore, assume that the first k eigenvalues
are positive. In this case we could calculate Q by means of a spectral decomposition of QQ>
and k would be the number of factors.

The principal factors algorithm is based on good preliminary estimators h̃2
j of the commu-

nalities h2
j , for j = 1, . . . , p. There are two traditional proposals:

• h̃2
j , defined as the square of the multiple correlation coefficient of Xj with (Xl), for

l 6= j, i.e., ρ2(V,Wβ̂) with V = Xj, W = (X`)`6=j and where β̂ is the least squares
regression parameter of a regression of V on W .

• h̃2
j = max

` 6=j
|rXjX` |, where R = (rXjX`) is the correlation matrix of X .

Given ψ̃jj = 1 − h̃2
j we can construct the reduced correlation matrix, R − Ψ̃. The Spectral

Decomposition Theorem says that

R− Ψ̃ =

p∑
`=1

λ`γ`γ
>
` ,
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with eigenvalues λ1 ≥ · · · ≥ λp. Assume that the first k eigenvalues λ1, . . . , λk are positive
and large compared to the others. Then we can set

q̂` =
√
λ` γ` , ` = 1, . . . , k

or
Q̂ = Γ1Λ

1/2
1

with
Γ1 = (γ1, . . . , γk) and Λ1 = diag(λ1, . . . , λk).

In the next step set

ψ̂jj = 1−
k∑
`=1

q̂2
j` , j = 1, . . . , p.

Note that the procedure can be iterated: from ψ̂jj we can compute a new reduced correlation

matrix R− Ψ̂ following the same procedure. The iteration usually stops when the ψ̂jj have
converged to a stable value.

EXAMPLE 10.4 Consider once again the car data given in Table B.7. From Exercise 9.4
we know that the first PC is mainly influenced by X2–X7. Moreover, we know that most
of the variance is already captured by the first PC. Thus we can conclude that the data are
mainly determined by one factor (k = 1).

The eigenvalues of R− Ψ̂ for Ψ̂ = (max
j 6=i
|rXiXj |) are

(5.448, 0.003,−.246,−0.646,−0.901,−0.911,−0.948,−0.964)> .

It would suffice to choose only one factor. Nevertheless, we have computed two factors. The
result (the factor loadings for two factors) is shown in Figure 10.1.

We can clearly see a cluster of points to the right, which contain the factor loadings for the
variables X2–X7. This shows, as did the PCA, that these variables are highly dependent
and are thus more or less equivalent. The factor loadings for X1 (economy) and X8 (easy
handling) are separate, but note the different scales on the horizontal and vertical axes!
Although there are two or three sets of variables in the plot, the variance is already explained
by the first factor, the “price+security” factor.

The Principal Component Method

The principal factor method involves finding an approximation Ψ̃ of Ψ, the matrix of specific
variances, and then correctingR, the correlation matrix ofX, by Ψ̃. The principal component
method starts with an approximation Q̂ of Q, the factor loadings matrix. The sample
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Figure 10.1. Loadings of the evaluated car qualities, factor analysis with
k = 2. MVAfactcarm.xpl

covariance matrix is diagonalized, S = ΓΛΓ>. Then the first k eigenvectors are retained to
build

Q̂ = [
√
λ1γ1, . . . ,

√
λkγk]. (10.16)

The estimated specific variances are provided by the diagonal elements of the matrix S −
Q̂Q̂>,

Ψ̂ =


ψ̂11 0

ψ̂22

. . .

0 ψ̂pp

 with ψ̂jj = sXjXj −
k∑
`=1

q̂2
j`. (10.17)

By definition, the diagonal elements of S are equal to the diagonal elements of Q̂Q̂>+Ψ̂. The
off-diagonal elements are not necessarily estimated. How good then is this approximation?
Consider the residual matrix

S − (Q̂Q̂> + Ψ̂)

http://www.quantlet.org/mdstat/codes/mva/MVAfactcarm.html
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resulting from the principal component solution. Analytically we have that∑
i,j

(S − Q̂Q̂> − Ψ̂)2
ij ≤ λ2

k+1 + . . .+ λ2
p.

This implies that a small value of the neglected eigenvalues can result in a small approxima-
tion error. A heuristic device for selecting the number of factors is to consider the proportion
of the total sample variance due to the j-th factor. This quantity is in general equal to

(A) λj/
∑p

j=1 sjj for a factor analysis of S,

(B) λj/p for a factor analysis of R.

EXAMPLE 10.5 This example uses a consumer-preference study from Johnson and Wich-
ern (1998). Customers were asked to rate several attributes of a new product. The responses
were tabulated and the following correlation matrix R was constructed:

Attribute (Variable)
Taste 1
Good buy for money 2
Flavor 3
Suitable for snack 4
Provides lots of energy 5


1.00 0.02 0.96 0.42 0.01
0.02 1.00 0.13 0.71 0.85
0.96 0.13 1.00 0.50 0.11
0.42 0.71 0.50 1.00 0.79
0.01 0.85 0.11 0.79 1.00


The bold entries of R show that variables 1 and 3 and variables 2 and 5 are highly correlated.
Variable 4 is more correlated with variables 2 and 5 than with variables 1 and 3. Hence, a
model with 2 (or 3) factors seems to be reasonable.

The first two eigenvalues λ1 = 2.85 and λ2 = 1.81 of R are the only eigenvalues greater than
one. Moreover, k = 2 common factors account for a cumulative proportion

λ1 + λ2

p
=

2.85 + 1.81

5
= 0.93

of the total (standardized) sample variance. Using the principal component method, the
estimated factor loadings, communalities, and specific variances, are calculated from formu-
las (10.16) and (10.17), and the results are given in Table 10.2.

Take a look at:

Q̂Q̂> + Ψ̂ =


0.56 0.82
0.78 −0.53
0.65 0.75
0.94 −0.11
0.80 −0.54


(

0.56 0.78 0.65 0.94 0.80
0.82 −0.53 0.75 −0.11 −0.54

)
+
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Estimated factor Specific
loadings Communalities variances

Variable q̂1 q̂2 ĥ2
j ψ̂jj = 1− ĥ2

j

1. Taste 0.56 0.82 0.98 0.02
2. Good buy for money 0.78 -0.53 0.88 0.12
3. Flavor 0.65 0.75 0.98 0.02
4. Suitable for snack 0.94 -0.11 0.89 0.11
5. Provides lots of energy 0.80 -0.54 0.93 0.07
Eigenvalues 2.85 1.81
Cumulative proportion of
total (standardized) sam-
ple variance

0.571 0.932

Table 10.2. Estimated factor loadings, communalities, and specific vari-
ances

+


0.02 0 0 0 0
0 0.12 0 0 0
0 0 0.02 0 0
0 0 0 0.11 0
0 0 0 0 0.07

 =


1.00 0.01 0.97 0.44 0.00
0.01 1.00 0.11 0.79 0.91
0.97 0.11 1.00 0.53 0.11
0.44 0.79 0.53 1.00 0.81
0.00 0.91 0.11 0.81 1.00

 .

This nearly reproduces the correlation matrix R. We conclude that the two-factor model
provides a good fit of the data. The communalities (0.98, 0.88, 0.98, 0.89, 0.93) indicate that
the two factors account for a large percentage of the sample variance of each variable. Due
to the nonuniqueness of factor loadings, the interpretation might be enhanced by rotation.
This is the topic of the next subsection.

Rotation

The constraints (10.11) and (10.12) are given as a matter of mathematical convenience (to
create unique solutions) and can therefore complicate the problem of interpretation. The
interpretation of the loadings would be very simple if the variables could be split into disjoint
sets, each being associated with one factor. A well known analytical algorithm to rotate the
loadings is given by the varimax rotation method proposed by Kaiser (1985). In the simplest
case of k = 2 factors, a rotation matrix G is given by

G(θ) =

(
cos θ sin θ
− sin θ cos θ

)
,

representing a clockwise rotation of the coordinate axes by the angle θ. The corresponding
rotation of loadings is calculated via Q̂∗ = Q̂G(θ). The idea of the varimax method is to find
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the angle θ that maximizes the sum of the variances of the squared loadings q̂∗ij within each

column of Q̂∗. More precisely, defining q̃jl = q̂∗jl/ĥ
∗
j , the varimax criterion chooses θ so that

V =
1

p

k∑
`=1

 p∑
j=1

(
q̃∗jl
)4 −

{
1

p

p∑
j=1

(
q̃∗jl
)2

}2


is maximized.

EXAMPLE 10.6 Let us return to the marketing example of Johnson and Wichern (1998)
(Example 10.5). The basic factor loadings given in Table 10.2 of the first factor and a
second factor are almost identical making it difficult to interpret the factors. Applying
the varimax rotation we obtain the loadings q̃1 = (0.02,0.94, 0.13,0.84,0.97)> and q̃2 =
(0.99,−0.01,0.98, 0.43,−0.02)>. The high loadings, indicated as bold entries, show that
variables 2, 4, 5 define factor 1, a nutricional factor. Variable 1 and 3 define factor 2 which
might be referred to as a taste factor.

Summary
↪→ In practice, Q and Ψ have to be estimated from S = Q̂Q̂> + Ψ̂. The

number of parameters is d = 1
2
(p− k)2 − 1

2
(p+ k).

↪→ If d = 0, then there exists an exact solution. In practice, d is usually
greater than 0, thus approximations must be considered.

↪→ The maximum-likelihood method assumes a normal distribution for the
data. A solution can be found using numerical algorithms.

↪→ The method of principal factors is a two-stage method which calculates Q̂
from the reduced correlation matrix R− Ψ̃, where Ψ̃ is a pre-estimate of
Ψ. The final estimate of Ψ is found by ψ̂ii = 1−

∑k
j=1 q̂

2
ij.

↪→ The principal component method is based on an approximation, Q̂, of Q.

↪→ Often a more informative interpretation of the factors can be found by
rotating the factors.

↪→ The varimax rotation chooses a rotation θ that maximizes

V = 1
p

∑k
`=1

[∑p
j=1

(
q̃∗jl
)4 −

{
1
p

∑p
j=1

(
q̃∗jl
)2
}2
]
.
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10.3 Factor Scores and Strategies

Up to now strategies have been presented for factor analysis that have concentrated on the
estimation of loadings and communalities and on their interpretations. This was a logical
step since the factors F were considered to be normalized random sources of information
and were explicitely addressed as nonspecific (common factors). The estimated values of the
factors, called the factor scores, may also be useful in the interpretation as well as in the
diagnostic analysis. To be more precise, the factor scores are estimates of the unobserved
random vectors Fl, l = 1, . . . , k, for each individual xi, i = 1, . . . , n. Johnson and Wichern
(1998) describe three methods which in practice yield very similar results. Here, we present
the regression method which has the advantage of being the simplest technique and is easy
to implement.

The idea is to consider the joint distribution of (X − µ) and F , and then to proceed with
the regression analysis presented in Chapter 5. Under the factor model (10.4), the joint
covariance matrix of (X − µ) and F is:

Var

(
X − µ
F

)
=

(
QQ> + Ψ Q
Q> Ik

)
. (10.18)

Note that the upper left entry of this matrix equals Σ and that the matrix has size (p+k)×
(p+ k).

Assuming joint normality, the conditional distribution of F |X is multinormal, see Theo-
rem 5.1, with

E(F |X = x) = Q>Σ−1(X − µ) (10.19)

and using (5.7) the covariance matrix can be calculated:

Var(F |X = x) = Ik −Q>Σ−1Q. (10.20)

In practice, we replace the unknown Q, Σ and µ by corresponding estimators, leading to the
estimated individual factor scores:

f̂i = Q̂>S−1(xi − x). (10.21)

We prefer to use the original sample covariance matrix S as an estimator of Σ, instead of
the factor analysis approximation Q̂Q̂> + Ψ̂, in order to be more robust against incorrect
determination of the number of factors.

The same rule can be followed when using R instead of S. Then (10.18) remains valid when

standardized variables, i.e., Z = D−1/2
Σ (X −µ), are considered if DΣ = diag(σ11, . . . , σpp). In

this case the factors are given by

f̂i = Q̂>R−1(zi), (10.22)



292 10 Factor Analysis

where zi = D−1/2
S (xi − x), Q̂ is the loading obtained with the matrix R, and DS =

diag(s11, . . . , spp).

If the factors are rotated by the orthogonal matrix G, the factor scores have to be rotated
accordingly, that is

f̂ ∗i = G>f̂i. (10.23)

A practical example is presented in Section 10.4 using the Boston Housing data.

Practical Suggestions

No one method outperforms another in the practical implementation of factor analysis.
However, by applying the tâtonnement process, the factor analysis view of the data can be
stabilized. This motivates the following procedure.

1. Fix a reasonable number of factors, say k = 2 or 3, based on the correlation structure
of the data and/or screeplot of eigenvalues.

2. Perform several of the presented methods, including rotation. Compare the loadings,
communalities, and factor scores from the respective results.

3. If the results show significant deviations, check for outliers (based on factor scores),
and consider changing the number of factors k.

For larger data sets, cross-validation methods are recommended. Such methods involve
splitting the sample into a training set and a validation data set. On the training sample one
estimates the factor model with the desired methodology and uses the obtained parameters
to predict the factor scores for the validation data set. The predicted factor scores should be
comparable to the factor scores obtained using only the validation data set. This stability
criterion may also involve the loadings and communalities.

Factor Analysis versus PCA

Factor analysis and principal component analysis use the same set of mathematical tools
(spectral decomposition, projections, . . . ). One could conclude, on first sight, that they
share the same view and strategy and therefore yield very similar results. This is not true.
There are substantial differences between these two data analysis techniques that we would
like to describe here.

The biggest difference between PCA and factor analysis comes from the model philosophy.
Factor analysis imposes a strict structure of a fixed number of common (latent) factors
whereas the PCA determines p factors in decreasing order of importance. The most impor-
tant factor in PCA is the one that maximizes the projected variance. The most important
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Estimated factor Specific
loadings Communalities variances

q̂1 q̂2 q̂3 ĥ2
j ψ̂jj = 1− ĥ2

j

1 crime 0.9295 −0.1653 0.1107 0.9036 0.0964
2 large lots −0.5823 −0.0379 0.2902 0.4248 0.5752
3 nonretail acres 0.8192 0.0296 −0.1378 0.6909 0.3091
5 nitric oxides 0.8789 −0.0987 −0.2719 0.8561 0.1439
6 rooms −0.4447 −0.5311 −0.0380 0.4812 0.5188
7 prior 1940 0.7837 0.0149 −0.3554 0.7406 0.2594
8 empl. centers −0.8294 0.1570 0.4110 0.8816 0.1184
9 accessibility 0.7955 −0.3062 0.4053 0.8908 0.1092
10 tax-rate 0.8262 −0.1401 0.2906 0.7867 0.2133
11 pupil/teacher 0.5051 0.1850 0.1553 0.3135 0.6865
12 blacks −0.4701 −0.0227 −0.1627 0.2480 0.7520
13 lower status 0.7601 0.5059 −0.0070 0.8337 0.1663
14 value −0.6942 −0.5904 −0.1798 0.8628 0.1371

Table 10.4. Estimated factor loadings, communalities, and specific vari-
ances, MLM. MVAfacthous.xpl

factor in factor analysis is the one that (after rotation) gives the maximal interpretation.
Often this is different from the direction of the first principal component.

From an implementation point of view, the PCA is based on a well-defined, unique algo-
rithm (spectral decomposition), whereas fitting a factor analysis model involves a variety of
numerical procedures. The non-uniqueness of the factor analysis procedure opens the door
for subjective interpretation and yields therefore a spectrum of results. This data analy-
sis philosophy makes factor analysis difficult especially if the model specification involves
cross-validation and a data-driven selection of the number of factors.

10.4 Boston Housing

To illustrate how to implement factor analysis we will use the Boston housing data set and
the by now well known set of transformations. Once again, the variable X4 (Charles River
indicator) will be excluded. As before, standardized variables are used and the analysis is
based on the correlation matrix.

In Section 10.3, we described a practical implementation of factor analysis. Based on prin-
cipal components, three factors were chosen and factor analysis was applied using the max-
imum likelihood method (MLM), the principal factor method (PFM), and the principal

http://www.quantlet.org/mdstat/codes/mva/MVAfacthous.html
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Figure 10.2. Factor analysis for Boston housing data, MLM.
MVAfacthous.xpl

Estimated factor Specific
loadings Communalities variances

q̂1 q̂2 q̂3 ĥ2
j ψ̂jj = 1− ĥ2

j

1 crime 0.8413 −0.0940 −0.4324 0.9036 0.0964
2 large lots −0.3326 −0.1323 0.5447 0.4248 0.5752
3 nonretail acres 0.6142 0.1238 −0.5462 0.6909 0.3091
5 nitric oxides 0.5917 0.0221 −0.7110 0.8561 0.1439
6 rooms −0.3950 −0.5585 0.1153 0.4812 0.5188
7 prior 1940 0.4665 0.1374 −0.7100 0.7406 0.2594
8 empl. centers −0.4747 0.0198 0.8098 0.8816 0.1184
9 accessibility 0.8879 −0.2874 −0.1409 0.8908 0.1092
10 tax-rate 0.8518 −0.1044 −0.2240 0.7867 0.2133
11 pupil/teacher 0.5090 0.2061 −0.1093 0.3135 0.6865
12 blacks −0.4834 −0.0418 0.1122 0.2480 0.7520
13 lower status 0.6358 0.5690 −0.3252 0.8337 0.1663
14 value −0.6817 −0.6193 0.1208 0.8628 0.1371

Table 10.5. Estimated factor loadings, communalities, and specific vari-
ances, MLM, varimax rotation. MVAfacthous.xpl

http://www.quantlet.org/mdstat/codes/mva/MVAfacthous.html
http://www.quantlet.org/mdstat/codes/mva/MVAfacthous.html
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Figure 10.3. Factor analysis for Boston housing data, MLM after varimax
rotation. MVAfacthous.xpl

component method (PCM). For illustration, the MLM will be presented with and without
varimax rotation.

Table 10.4 gives the MLM factor loadings without rotation and Table 10.5 gives the varimax
version of this analysis. The corresponding graphical representations of the loadings are
displayed in Figures 10.2 and 10.3. We can see that the varimax does not significantly
change the interpretation of the factors obtained by the MLM. Factor 1 can be roughly
interpreted as a “quality of life factor” because it is positively correlated with variables like
X11 and negatively correlated with X8, both having low specific variances. The second factor
may be interpreted as a “residential factor”, since it is highly correlated with variables X6,
and X13. The most striking difference between the results with and without varimax rotation
can be seen by comparing the lower left corners of Figures 10.2 and 10.3. There is a clear
separation of the variables in the varimax version of the MLM. Given this arrangement of
the variables in Figure 10.3, we can interpret factor 3 as an employment factor, since we
observe high correlations with X8 and X5.

We now turn to the PCM and PFM analyses. The results are presented in Tables 10.6
and 10.7 and in Figures 10.4 and 10.5. We would like to focus on the PCM, because this
3-factor model yields only one specific variance (unexplained variation) above 0.5. Looking
at Figure 10.4, it turns out that factor 1 remains a “quality of life factor” which is clearly
visible from the clustering of X5, X3, X10 and X1 on the right-hand side of the graph, while

http://www.quantlet.org/mdstat/codes/mva/MVAfacthous.html
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Estimated factor Specific
loadings Communalities variances

q̂1 q̂2 q̂3 ĥ2
j ψ̂jj = 1− ĥ2

j

1 crime 0.9164 0.0152 0.2357 0.8955 0.1045
2 large lots −0.6772 0.0762 0.4490 0.6661 0.3339
3 nonretail acres 0.8614 −0.1321 −0.1115 0.7719 0.2281
5 nitric oxides 0.9172 0.0573 −0.0874 0.8521 0.1479
6 rooms −0.3590 0.7896 0.1040 0.7632 0.2368
7 prior 1940 0.8392 −0.0008 −0.2163 0.7510 0.2490
8 empl. centers −0.8928 −0.1253 0.2064 0.8554 0.1446
9 accessibility 0.7562 0.0927 0.4616 0.7935 0.2065
10 tax-rate 0.7891 −0.0370 0.4430 0.8203 0.1797
11 pupil/teacher 0.4827 −0.3911 0.1719 0.4155 0.5845
12 blacks −0.4499 0.0368 −0.5612 0.5188 0.4812
13 lower status 0.6925 −0.5843 0.0035 0.8209 0.1791
14 value −0.5933 0.6720 −0.1895 0.8394 0.1606

Table 10.6. Estimated factor loadings, communalities, and specific vari-
ances, PCM, varimax rotation. MVAfacthous.xpl
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Figure 10.4. Factor analysis for Boston housing data, PCM after varimax
rotation. MVAfacthous.xpl

http://www.quantlet.org/mdstat/codes/mva/MVAfacthous.html
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Estimated factor Specific
loadings Communalities variances

q̂1 q̂2 q̂3 ĥ2
j ψ̂jj = 1− ĥ2

j

1 crime 0.8579 −0.0270 −0.4175 0.9111 0.0889
2 large lots −0.2953 0.2168 0.5756 0.4655 0.5345
3 nonretail acres 0.5893 −0.2415 −0.5666 0.7266 0.2734
5 nitric oxides 0.6050 −0.0892 −0.6855 0.8439 0.1561
6 rooms −0.2902 0.6280 0.1296 0.4954 0.5046
7 prior 1940 0.4702 −0.1741 −0.6733 0.7049 0.2951
8 empl. centers −0.4988 0.0414 0.7876 0.8708 0.1292
9 accessibility 0.8830 0.1187 −0.1479 0.8156 0.1844
10 tax-rate 0.8969 −0.0136 −0.1666 0.8325 0.1675
11 pupil/teacher 0.4590 −0.2798 −0.1412 0.3090 0.6910
12 blacks −0.4812 0.0666 0.0856 0.2433 0.7567
13 lower status 0.5433 −0.6604 −0.3193 0.8333 0.1667
14 value −0.6012 0.7004 0.0956 0.8611 0.1389

Table 10.7. Estimated factor loadings, communalities, and specific vari-
ances, PFM, varimax rotation. MVAfacthous.xpl
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Figure 10.5. Factor analysis for Boston housing data, PFM after varimax
rotation. MVAfacthous.xpl
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the variables X8, X2, X14, X12 and X6 are on the left-hand side. Again, the second factor
is a “residential factor”, clearly demonstrated by the location of variables X6, X14, X11,
and X13. The interpretation of the third factor is more difficult because all of the loadings
(except for X12) are very small.

10.5 Exercises

EXERCISE 10.1 In Example 10.4 we have computed Q̂ and Ψ̂ using the method of principal
factors. We used a two-step iteration for Ψ̂. Perform the third iteration step and compare
the results (i.e., use the given Q̂ as a pre-estimate to find the final Ψ).

EXERCISE 10.2 Using the bank data set, how many factors can you find with the Method
of Principal Factors?

EXERCISE 10.3 Repeat Exercise 10.2 with the U.S. company data set!

EXERCISE 10.4 Generalize the two-dimensional rotation matrix in Section 10.2 to n-di-
mensional space.

EXERCISE 10.5 Compute the orthogonal factor model for

Σ =

 1 0.9 0.7
0.9 1 0.4
0.7 0.4 1

 .

[Solution: ψ11 = −0.575, q11 = 1.255]

EXERCISE 10.6 Perform a factor analysis on the type of families in the French food data
set. Rotate the resulting factors in a way which provides the most reasonable interpretation.
Compare your result with the varimax method.

EXERCISE 10.7 Perform a factor analysis on the variables X3 to X9 in the U.S. crime
data set (Table B.10). Would it make sense to use all of the variables for the analysis?

EXERCISE 10.8 Analyze the athletic records data set (Table B.18). Can you recognize any
patterns if you sort the countries according to the estimates of the factor scores?

EXERCISE 10.9 Perform a factor analysis on the U.S. health data set (Table B.16) and
estimate the factor scores.
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EXERCISE 10.10 Redo Exercise 10.9 using the U.S. crime data in Table B.10. Compare
the estimated factor scores of the two data sets.

EXERCISE 10.11 Analyze the vocabulary data given in Table B.17.





11 Cluster Analysis

The next two chapters address classification issues from two varying perspectives. When
considering groups of objects in a multivariate data set, two situations can arise. Given a
data set containing measurements on individuals, in some cases we want to see if some natural
groups or classes of individuals exist, and in other cases, we want to classify the individuals
according to a set of existing groups. Cluster analysis develops tools and methods concerning
the former case, that is, given a data matrix containing multivariate measurements on a
large number of individuals (or objects), the objective is to build some natural subgroups
or clusters of individuals. This is done by grouping individuals that are “similar” according
to some appropriate criterion. Once the clusters are obtained, it is generally useful to
describe each group using some descriptive tool from Chapters 1, 8 or 9 to create a better
understanding of the differences that exist among the formulated groups.

Cluster analysis is applied in many fields such as the natural sciences, the medical sciences,
economics, marketing, etc. In marketing, for instance, it is useful to build and describe the
different segments of a market from a survey on potential consumers. An insurance company,
on the other hand, might be interested in the distinction among classes of potential customers
so that it can derive optimal prices for its services. Other examples are provided below.

Discriminant analysis presented in Chapter 12 addresses the other issue of classification.
It focuses on situations where the different groups are known a priori. Decision rules are
provided in classifying a multivariate observation into one of the known groups.

Section 11.1 states the problem of cluster analysis where the criterion chosen to measure the
similarity among objects clearly plays an important role. Section 11.2 shows how to precisely
measure the proximity between objects. Finally, Section 11.3 provides some algorithms. We
will concentrate on hierarchical algorithms only where the number of clusters is not known
in advance.

11.1 The Problem

Cluster analysis is a set of tools for building groups (clusters) from multivariate data objects.
The aim is to construct groups with homogeneous properties out of heterogeneous large
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samples. The groups or clusters should be as homogeneous as possible and the differences
among the various groups as large as possible. Cluster analysis can be divided into two
fundamental steps.

1. Choice of a proximity measure:
One checks each pair of observations (objects) for the similarity of their values. A
similarity (proximity) measure is defined to measure the “closeness” of the objects.
The “closer” they are, the more homogeneous they are.

2. Choice of group-building algorithm:
On the basis of the proximity measures the objects assigned to groups so that differences
between groups become large and observations in a group become as close as possible.

In marketing, for exmaple, cluster analysis is used to select test markets. Other applications
include the classification of companies according to their organizational structures, technolo-
gies and types. In psychology, cluster analysis is used to find types of personalities on the
basis of questionnaires. In archaeology, it is applied to classify art objects in different time
periods. Other scientific branches that use cluster analysis are medicine, sociology, linguis-
tics and biology. In each case a heterogeneous sample of objects are analyzed with the aim
to identify homogeneous subgroups.

Summary
↪→ Cluster analysis is a set of tools for building groups (clusters) from multi-

variate data objects.

↪→ The methods used are usually divided into two fundamental steps: The
choice of a proximity measure and the choice of a group-building algo-
rithm.

11.2 The Proximity between Objects

The starting point of a cluster analysis is a data matrix X (n × p) with n measurements
(objects) of p variables. The proximity (similarity) among objects is described by a matrix
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D(n× n)

D =



d11 d12 . . . . . . . . . d1n
... d22

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
dn1 dn2 . . . . . . . . . dnn


. (11.1)

The matrix D contains measures of similarity or dissimilarity among the n objects. If the
values dij are distances, then they measure dissimilarity. The greater the distance, the less
similar are the objects. If the values dij are proximity measures, then the opposite is true,
i.e., the greater the proximity value, the more similar are the objects. A distance matrix,
for example, could be defined by the L2-norm: dij = ‖xi − xj‖2, where xi and xj denote the
rows of the data matrix X . Distance and similarity are of course dual. If dij is a distance,
then d′ij = maxi,j{dij} − dij is a proximity measure.

The nature of the observations plays an important role in the choice of proximity measure.
Nominal values (like binary variables) lead in general to proximity values, whereas metric
values lead (in general) to distance matrices. We first present possibilities for D in the binary
case and then consider the continuous case.

Similarity of objects with binary structure

In order to measure the similarity between objects we always compare pairs of observations
(xi, xj) where x>i = (xi1, . . . , xip), x

>
j = (xj1, . . . , xjp), and xik, xjk ∈ {0, 1}. Obviously there

are four cases:

xik = xjk = 1,

xik = 0, xjk = 1,

xik = 1, xjk = 0,

xik = xjk = 0.
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Name δ λ Definition

Jaccard 0 1 a1
a1 + a2 + a3

Tanimoto 1 2 a1 + a4

a1 + 2(a2 + a3) + a4

Simple Matching (M) 1 1 a1 + a4
p

Russel and Rao (RR) – – a1
p

Dice 0 0.5 2a1

2a1 + (a2 + a3)

Kulczynski – – a1
a2 + a3

Table 11.2. The common similarity coefficients.

Define

a1 =

p∑
k=1

I(xik = xjk = 1),

a2 =

p∑
k=1

I(xik = 0, xjk = 1),

a3 =

p∑
k=1

I(xik = 1, xjk = 0),

a4 =

p∑
k=1

I(xik = xjk = 0).

Note that each a`, ` = 1, . . . , 4, depends on the pair (xi, xj).

The following proximity measures are used in practice:

dij =
a1 + δa4

a1 + δa4 + λ(a2 + a3)
(11.2)

where δ and λ are weighting factors. Table 11.2 shows some similarity measures for given
weighting factors.

These measures provide alternative ways of weighting mismatchings and positive (presence of
a common character) or negative (absence of a common character) matchings. In principle,
we could also consider the Euclidian distance. However, the disadvantage of this distance is
that it treats the observations 0 and 1 in the same way. If xik = 1 denotes, say, knowledge of
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a certain language, then the contrary, xik = 0 (not knowing the language) should eventually
be treated differently.

EXAMPLE 11.1 Let us consider binary variables computed from the car data set (Table
B.7). We define the new binary data by

yik =

{
1 if xik > xk,
0 otherwise,

for i = 1, . . . , n and k = 1, . . . , p. This means that we transform the observations of the k-th
variable to 1 if it is larger than the mean value of all observations of the k-th variable. Let
us only consider the data points 17 to 19 (Renault 19, Rover and Toyota Corolla) which lead
to (3× 3) distance matrices. The Jaccard measure gives the similarity matrix

D =

 1.000 0.000 0.333
1.000 0.250

1.000

 ,

the Tanimoto measure yields

D =

 1.000 0.231 0.600
1.000 0.455

1.000

 ,

whereas the Single Matching measure gives

D =

 1.000 0.375 0.750
1.000 0.625

1.000

 .

Distance measures for continuous variables

A wide variety of distance measures can be generated by the Lr-norms, r ≥ 1,

dij = ||xi − xj||r =

{
p∑

k=1

|xik − xjk|r
}1/r

. (11.3)

Here xik denotes the value of the k-th variable on object i. It is clear that dii = 0 for
i = 1, . . . , n. The class of distances (11.3) for varying r measures the dissimilarity of dif-
ferent weights. The L1-metric, for example, gives less weight to outliers than the L2-norm
(Euclidean norm). It is common to consider the squared L2-norm.
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EXAMPLE 11.2 Suppose we have x1 = (0, 0), x2 = (1, 0) and x3 = (5, 5). Then the distance
matrix for the L1-norm is

D1 =

 0 1 10
1 0 9

10 9 0

 ,

and for the squared L2- or Euclidean norm

D2 =

 0 1 50
1 0 41

50 41 0

 .

One can see that the third observation x3 receives much more weight in the squared L2-norm
than in the L1-norm.

An underlying assumption in applying distances based on Lr-norms is that the variables are
measured on the same scale. If this is not the case, a standardization should first be applied.
This corresponds to using a more general L2- or Euclidean norm with a metric A, where
A > 0 (see Section 2.6):

d2
ij = ‖xi − xj‖A = (xi − xj)>A(xi − xj). (11.4)

L2-norms are given by A = Ip, but if a standardization is desired, then the weight matrix
A = diag(s−1

X1X1
, . . . , s−1

XpXp
) may be suitable. Recall that sXkXk is the variance of the k-th

component. Hence we have

d2
ij =

p∑
k=1

(xik − xjk)2

sXkXk
. (11.5)

Here each component has the same weight in the computation of the distances and the
distances do not depend on a particular choice of the units of measure.

EXAMPLE 11.3 Consider the French Food expenditures (Table B.6). The Euclidean dis-
tance matrix (squared L2-norm) is

D = 104·



0.00 5.82 58.19 3.54 5.15 151.44 16.91 36.15 147.99 51.84 102.56 271.83
0.00 41.73 4.53 2.93 120.59 13.52 25.39 116.31 43.68 76.81 226.87

0.00 44.14 40.10 24.12 29.95 8.17 25.57 20.81 20.30 88.62
0.00 0.76 127.85 5.62 21.70 124.98 31.21 72.97 231.57

0.00 121.05 5.70 19.85 118.77 30.82 67.39 220.72
0.00 96.57 48.16 1.80 60.52 28.90 29.56

0.00 9.20 94.87 11.07 42.12 179.84
0.00 46.95 6.17 18.76 113.03

0.00 61.08 29.62 31.86
0.00 15.83 116.11

0.00 53.77
0.00



.
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Taking the weight matrix A = diag(s−1
X1X1

, . . . , s−1
X7X7

), we obtain the distance matrix (squared
L2-norm)

D =



0.00 6.85 10.04 1.68 2.66 24.90 8.28 8.56 24.61 21.55 30.68 57.48
0.00 13.11 6.59 3.75 20.12 13.13 12.38 15.88 31.52 25.65 46.64

0.00 8.03 7.27 4.99 9.27 3.88 7.46 14.92 15.08 26.89
0.00 0.64 20.06 2.76 3.82 19.63 12.81 19.28 45.01

0.00 17.00 3.54 3.81 15.76 14.98 16.89 39.87
0.00 17.51 9.79 1.58 21.32 11.36 13.40

0.00 1.80 17.92 4.39 9.93 33.61
0.00 10.50 5.70 7.97 24.41

0.00 24.75 11.02 13.07
0.00 9.13 29.78

0.00 9.39
0.00



. (11.6)

When applied to contingency tables, a χ2-metric is suitable to compare (and cluster) rows
and columns of a contingency table.

If X is a contingency table, row i is characterized by the conditional frequency distribution
xij
xi•

, where xi• =
∑p

j=1 xij indicates the marginal distributions over the rows: xi•
x••
, x•• =∑n

i=1 xi•. Similarly, column j of X is characterized by the conditional frequencies
xij
x•j

, where

x•j =
∑n

i=1 xij. The marginal frequencies of the columns are
x•j
x••

.

The distance between two rows, i1 and i2, corresponds to the distance between their re-
spective frequency distributions. It is common to define this distance using the χ2-metric:

d2(i1, i2) =

p∑
j=1

1(
x•j
x••

) (xi1j
xi1•
− xi2j
xi2•

)2

. (11.7)

Note that this can be expressed as a distance between the vectors x1 =
(
xi1j
x••

)
and x2 =(

xi2j
x••

)
as in (11.4) with weighting matrixA =

{
diag

(
x•j
x••

)}−1

. Similarly, if we are interested

in clusters among the columns, we can define:

d2(j1, j2) =
n∑
i=1

1(
xi•
x••

) (xij1
x•j1
− xij2
x•j2

)2

.

Apart from the Euclidean and the Lr-norm measures one can use a proximity measure such
as the Q-correlation coefficient

dij =

∑p
k=1(xik − xi)(xjk − xj)

{
∑p

k=1(xik − xi)2
∑p

k=1(xjk − xj)2}1/2
. (11.8)

Here xi denotes the mean over the variables (xi1, . . . , xip).
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Summary
↪→ The proximity between data points is measured by a distance or similar-

ity matrix D whose components dij give the similarity coefficient or the
distance between two points xi and xj.

↪→ A variety of similarity (distance) measures exist for binary data (e.g.,
Jaccard, Tanimoto, Simple Matching coefficients) and for continuous data
(e.g., Lr-norms).

↪→ The nature of the data could impose the choice of a particular metric A
in defining the distances (standardization, χ2-metric etc.).

11.3 Cluster Algorithms

There are essentially two types of clustering methods: hierarchical algorithms and partioning
algorithms. The hierarchical algorithms can be divided into agglomerative and splitting
procedures. The first type of hierarchical clustering starts from the finest partition possible
(each observation forms a cluster) and groups them. The second type starts with the coarsest
partition possible: one cluster contains all of the observations. It proceeds by splitting the
single cluster up into smaller sized clusters.

The partioning algorithms start from a given group definition and proceed by exchanging
elements between groups until a certain score is optimized. The main difference between
the two clustering techniques is that in hierarchical clustering once groups are found and
elements are assigned to the groups, this assignment cannot be changed. In partitioning
techniques, on the other hand, the assignment of objects into groups may change during the
algorithm application.

Hierarchical Algorithms, Agglomerative Techniques

Agglomerative algorithms are used quite frequently in practice. The algorithm consists of
the following steps:



11.3 Cluster Algorithms 309

Agglomerative Algorithm

1. Construct the finest partition.

2. Compute the distance matrix D.

DO

3. Find the two clusters with the closest distance.

4. Put those two clusters into one cluster.

5. Compute the distance between the new groups and obtain a reduced distance
matrix D.

UNTIL all clusters are agglomerated into X .

If two objects or groups say, P and Q, are united, one computes the distance between this
new group (object) P +Q and group R using the following distance function:

d(R, P +Q) = δ1d(R, P ) + δ2d(R,Q) + δ3d(P,Q) + δ4|d(R, P )− d(R,Q)|. (11.9)

The δj’s are weighting factors that lead to different agglomerative algorithms as described
in Table 11.4. Here nP =

∑n
i=1 I(xi ∈ P ) is the number of objects in group P . The values

of nQ and nR are defined analogously.

Name δ1 δ2 δ3 δ4

Single linkage 1/2 1/2 0 -1/2

Complete linkage 1/2 1/2 0 1/2

Average linkage
(unweighted)

1/2 1/2 0 0

Average linkage
(weighted)

nP
nP + nQ

nQ
nP + nQ

0 0

Centroid nP
nP + nQ

nQ
nP + nQ

− nPnQ
(nP + nQ)2 0

Median 1/2 1/2 -1/4 0

Ward nR + nP
nR + nP + nQ

nR + nQ
nR + nP + nQ

− nR
nR + nP + nQ

0

Table 11.4. Computations of group distances.
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EXAMPLE 11.4 Let us examine the agglomerative algorithm for the three points in Ex-
ample 11.2, x1 = (0, 0), x2 = (1, 0) and x3 = (5, 5), and the squared Euclidean distance
matrix with single linkage weighting. The algorithm starts with N = 3 clusters: P = {x1},
Q = {x2} and R = {x3}. The distance matrix D2 is given in Example 11.2. The smallest
distance in D2 is the one between the clusters P and Q. Therefore, applying step 4 in the
above algorithm we combine these clusters to form P + Q = {x1, x2}. The single linkage
distance between the remaining two clusters is from Table 11.4 and (11.9) equal to

d(R, P +Q) =
1

2
d(R, P ) +

1

2
d(R,Q)− 1

2
|d(R, P )− d(R,Q)| (11.10)

=
1

2
d13 +

1

2
d23 −

1

2
· |d13 − d23|

=
50

2
+

41

2
− 1

2
· |50− 41|

= 41.

The reduced distance matrix is then
(

0
41

41
0

)
. The next and last step is to unite the clusters

R and P +Q into a single cluster X , the original data matrix.

When there are more data points than in the example above, a visualization of the implication
of clusters is desirable. A graphical representation of the sequence of clustering is called a
dendrogram. It displays the observations, the sequence of clusters and the distances between
the clusters. The vertical axis displays the indices of the points, whereas the horizontal
axis gives the distance between the clusters. Large distances indicate the clustering of
heterogeneous groups. Thus, if we choose to “cut the tree” at a desired level, the branches
describe the corresponding clusters.

EXAMPLE 11.5 Here we describe the single linkage algorithm for the eight data points
displayed in Figure 11.1. The distance matrix (L2-norms) is

D =



0 10 53 73 50 98 41 65
0 25 41 20 80 37 65

0 2 1 25 18 34
0 5 17 20 32

0 36 25 45
0 13 9

0 4
0


and the dendrogram is shown in Figure 11.2.

If we decide to cut the tree at the level 10, three clusters are defined: {1, 2}, {3, 4, 5} and
{6, 7, 8}.
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Figure 11.1. The 8-point example. MVAclus8p.xpl

The single linkage algorithm defines the distance between two groups as the smallest value
of the individual distances. Table 11.4 shows that in this case

d(R, P +Q) = min{d(R, P ), d(R,Q)}. (11.11)

This algorithm is also called the Nearest Neighbor algorithm. As a consequence of its con-
struction, single linkage tends to build large groups. Groups that differ but are not well sep-
arated may thus be classified into one group as long as they have two approximate points.
The complete linkage algorithm tries to correct this kind of grouping by considering the
largest (individual) distances. Indeed, the complete linkage distance can be written as

d(R, P +Q) = max{d(R, P ), d(R,Q)}. (11.12)

It is also called the Farthest Neighbor algorithm. This algorithm will cluster groups where
all the points are proximate, since it compares the largest distances. The average link-
age algorithm (weighted or unweighted) proposes a compromise between the two preceding

http://www.quantlet.org/mdstat/codes/mva/MVAclus8p.html
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Figure 11.2. The dendrogram for the 8-point example, Single linkage
algorithm. MVAclus8p.xpl

algorithms, in that it computes an average distance:

d(R, P +Q) =
nP

nP + nQ
d(R, P ) +

nQ
nP + nQ

d(R,Q). (11.13)

The centroid algorithm is quite similar to the average linkage algorithm and uses the nat-
ural geometrical distance between R and the weighted center of gravity of P and Q (see
Figure 11.3):

d(R, P +Q) =
nP

nP + nQ
d(R, P ) +

nQ
nP + nQ

d(R,Q)− nPnQ
(nP + nQ)2

d(P,Q). (11.14)

The Ward clustering algorithm computes the distance between groups according to the for-
mula in Table 11.4. The main difference between this algorithm and the linkage procedures is
in the unification procedure. The Ward algorithm does not put together groups with small-
est distance. Instead, it joins groups that do not increase a given measure of heterogeneity

http://www.quantlet.org/mdstat/codes/mva/MVAclus8p.html
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Figure 11.3. The centroid algorithm.

“too much”. The aim of the Ward procedure is to unify groups such that the variation inside
these groups does not increase too drastically: the resulting groups are as homogeneous as
possible.

The heterogeneity of group R is measured by the inertia inside the group. This inertia is
defined as follows:

IR =
1

nR

nR∑
i=1

d2(xi, xR) (11.15)

where xR is the center of gravity (mean) over the groups. IR clearly provides a scalar measure
of the dispersion of the group around its center of gravity. If the usual Euclidean distance is
used, then IR represents the sum of the variances of the p components of xi inside group R.

When two objects or groups P and Q are joined, the new group P +Q has a larger inertia
IP+Q. It can be shown that the corresponding increase of inertia is given by

∆(P,Q) =
nPnQ
nP + nQ

d2(P,Q). (11.16)

In this case, the Ward algorithm is defined as an algorithm that “joins the groups that give
the smallest increase in ∆(P,Q)”. It is easy to prove that when P and Q are joined, the new
criterion values are given by (11.9) along with the values of δi given in Table 11.4, when the
centroid formula is used to modify d2(R, P + Q). So, the Ward algorithm is related to the
centroid algorithm, but with an “inertial” distance ∆ rather than the “geometric” distance
d2.

As pointed out in Section 11.2, all the algorithms above can be adjusted by the choice of
the metric A defining the geometric distance d2. If the results of a clustering algorithm
are illustrated as graphical representations of individuals in spaces of low dimension (using
principal components (normalized or not) or using a correspondence analysis for contingency
tables), it is important to be coherent in the choice of the metric used.
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Figure 11.4. PCA for 20 randomly chosen bank notes.
MVAclusbank.xpl

EXAMPLE 11.6 As an example we randomly select 20 observations from the bank notes
data and apply the Ward technique using Euclidean distances. Figure 11.4 shows the first
two PCs of these data, Figure 11.5 displays the dendrogram.

EXAMPLE 11.7 Consider the French food expenditures. As in Chapter 9 we use standard-
ized data which is equivalent to using A = diag(s−1

X1X1
, . . . , s−1

X7X7
) as the weight matrix in

the L2-norm. The NPCA plot of the individuals was given in Figure 9.7. The Euclidean
distance matrix is of course given by (11.6). The dendrogram obtained by using the Ward
algorithm is shown in Figure 11.6.

If the aim was to have only two groups, as can be seen in Figure 11.6 , they would be {CA2,
CA3, CA4, CA5, EM5} and {MA2, MA3, MA4, MA5, EM2, EM3, EM4}. Clustering three
groups is somewhat arbitrary (the levels of the distances are too similar). If we were interested
in four groups, we would obtain {CA2, CA3, CA4}, {EM2, MA2, EM3, MA3}, {EM4, MA4,
MA5} and {EM5, CA5}. This grouping shows a balance between socio-professional levels and

http://www.quantlet.org/mdstat/codes/mva/MVAclusbank.html
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Dendrogram for 20 Swiss bank notes 

Ward algorithm

0
20

40
60

Sq
ua

re
d 

E
uc

lid
ia

n 
D

is
ta

nc
e

37 32 3 98 67 50 89 171 116 168 148 194 108 135 193 145 165 114 146 173

Figure 11.5. The dendrogram for the 20 bank notes, Ward algorithm.
MVAclusbank.xpl

size of the families in determining the clusters. The four groups are clearly well represented
in the NPCA plot in Figure 9.7.

Summary
↪→ The class of clustering algorithms can be divided into two types: hierar-

chical and partitioning algorithms. Hierarchical algorithms start with the
finest (coarsest) possible partition and put groups together (split groups
apart) step by step. Partitioning algorithms start from a preliminary clus-
tering and exchange group elements until a certain score is reached.

http://www.quantlet.org/mdstat/codes/mva/MVAclusbank.html
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Summary (continued)

↪→ Hierarchical agglomerative techniques are frequently used in practice.
They start from the finest possible structure (each data point forms a
cluster), compute the distance matrix for the clusters and join the clus-
ters that have the smallest distance. This step is repeated until all points
are united in one cluster.

↪→ The agglomerative procedure depends on the definition of the distance
between two clusters. Single linkage, complete linkage, and Ward distance
are frequently used distances.

↪→ The process of the unification of clusters can be graphically represented
by a dendrogram.

11.4 Boston Housing

We have motivated the transformation of the variables of the Boston housing data many
times before. Now we illustrate the cluster algorithm with the transformed data X̃ excluding
X̃4 (Charles River indicator). Among the various algorithms, the results from the Ward
algorithm are presented since this algorithm gave the most sensible results. In order to be

Variable Mean C1 SE C1 Mean C2 SE C2
1 −0.7105 0.0332 0.6994 0.0535
2 0.4848 0.0786 −0.4772 0.0047
3 −0.7665 0.0510 0.7545 0.0279
5 −0.7672 0.0365 0.7552 0.0447
6 0.4162 0.0571 −0.4097 0.0576
7 −0.7730 0.0429 0.7609 0.0378
8 0.7140 0.0472 −0.7028 0.0417
9 −0.5429 0.0358 0.5344 0.0656
10 −0.6932 0.0301 0.6823 0.0569
11 −0.5464 0.0469 0.5378 0.0582
12 0.3547 0.0080 −0.3491 0.0824
13 −0.6899 0.0401 0.6791 0.0509
14 0.5996 0.0431 −0.5902 0.0570

Table 11.6. Means and standard errors of the 13 standardized vari-
ables for Cluster 1 (251 observations) and Cluster 2 (255 observations).

MVAclusbh.xpl

http://www.quantlet.org/mdstat/codes/mva/MVAclusbh.html
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Figure 11.6. The dendrogram for the French food expenditures, Ward
algorithm. MVAclusfood.xpl

coherent with our previous analysis, we standardize each variable. The dendrogram of the
Ward method is displayed in Figure 11.7. Two dominant clusters are visible. A further
refinement of say, 4 clusters, could be considered at a lower level of distance.

To interprete the two clusters, we present the mean values and their respective standard
errors of the thirteen X̃ variables by group in Table 11.6. Comparing the mean values for
both groups shows that all the differences in the means are individually significant and that
cluster one corresponds to housing districts with better living quality and higher house prices,
whereas cluster two corresponds to less favored districts in Boston. This can be confirmed,
for instance, by a lower crime rate, a higher proportion of residential land, lower proportion
of blacks, etc. for cluster one. Cluster two is identified by a higher proportion of older
houses, a higher pupil/teacher ratio and a higher percentage of the lower status population.

This interpretation is underlined by visual inspection of all the variables presented on scat-
terplot matrices in Figures 11.8 and 11.9. For example, the lower right boxplot of Figure 11.9
and the correspondingly colored clusters in the last row confirm the role of each variable in

http://www.quantlet.org/mdstat/codes/mva/MVAclusfood.html
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Figure 11.7. Dendrograms of the Boston housing data using the Ward
algorithm. MVAclusbh.xpl

determining the clusters. This interpretation perfectly coincides with the previous PC anal-
ysis (Figure 9.11). The quality of life factor is clearly visible in Figure 11.10, where cluster
membership is distinguished by the shape and color of the points graphed according to the
first two principal components. Clearly, the first PC completely separates the two clusters
and corresponds, as we have discussed in Chapter 9, to a quality of life and house indicator.

11.5 Exercises

EXERCISE 11.1 Prove formula (11.16).

EXERCISE 11.2 Prove that IR = tr(SR), where SR denotes the empirical covariance matrix
of the observations contained in R.

http://www.quantlet.org/mdstat/codes/mva/MVAclusbh.html
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Figure 11.8. Scatterplot matrix for variables X̃1 to X̃7 of the Boston
housing data. MVAclusbh.xpl

EXERCISE 11.3 Prove that

∆(R, P +Q) =
nR + nP

nR + nP + nQ
∆(R, P ) +

nR + nQ
nR + nP + nQ

∆(R,Q)− nR
nR + nP + nQ

∆(P,Q),

when the centroid formula is used to define d2(R, P +Q).

http://www.quantlet.org/mdstat/codes/mva/MVAclusbh.html
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Figure 11.9. Scatterplot matrix for variables X̃8 to X̃14 of the Boston
housing data. MVAclusbh.xpl

EXERCISE 11.4 Repeat the 8-point example (Example 11.5) using the complete linkage and
the Ward algorithm. Explain the difference to single linkage.

EXERCISE 11.5 Explain the differences between various proximity measures by means of
an example.

http://www.quantlet.org/mdstat/codes/mva/MVAclusbh.html
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Figure 11.10. Scatterplot of the first two PCs displaying the two clusters.
MVAclusbh.xpl

EXERCISE 11.6 Repeat the bank notes example (Example 11.6) with another random sam-
ple of 20 notes.

EXERCISE 11.7 Repeat the bank notes example (Example 11.6) with another clustering
algorithm.

EXERCISE 11.8 Repeat the bank notes example (Example 11.6) or the 8-point example
(Example 11.5) with the L1-norm.

EXERCISE 11.9 Analyze the U.S. companies example (Table B.5) using the Ward algorithm
and the L2-norm.

EXERCISE 11.10 Analyze the U.S. crime data set (Table B.10) with the Ward algorithm
and the L2-norm on standardized variables (use only the crime variables).

http://www.quantlet.org/mdstat/codes/mva/MVAclusbh.html
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EXERCISE 11.11 Repeat Exercise 11.10 with the U.S. health data set (use only the number
of deaths variables).

EXERCISE 11.12 Redo Exercise 11.10 with the χ2-metric. Compare the results.

EXERCISE 11.13 Redo Exercise 11.11 with the χ2-metric and compare the results.



12 Discriminant Analysis

Discriminant analysis is used in situations where the clusters are known a priori. The aim
of discriminant analysis is to classify an observation, or several observations, into these
known groups. For instance, in credit scoring, a bank knows from past experience that there
are good customers (who repay their loan without any problems) and bad customers (who
showed difficulties in repaying their loan). When a new customer asks for a loan, the bank
has to decide whether or not to give the loan. The past records of the bank provides two
data sets: multivariate observations xi on the two categories of customers (including for
example age, salary, marital status, the amount of the loan, etc.). The new customer is
a new observation x with the same variables. The discrimination rule has to classify the
customer into one of the two existing groups and the discriminant analysis should evaluate
the risk of a possible “bad decision”.

Many other examples are described below, and in most applications, the groups correspond
to natural classifications or to groups known from history (like in the credit scoring example).
These groups could have been formed by a cluster analysis performed on past data.

Section 12.1 presents the allocation rules when the populations are known, i.e., when we know
the distribution of each population. As described in Section 12.2 in practice the population
characteristics have to be estimated from history. The methods are illustrated in several
examples.

12.1 Allocation Rules for Known Distributions

Discriminant analysis is a set of methods and tools used to distinguish between groups of
populations Πj and to determine how to allocate new observations into groups. In one of
our running examples we are interested in discriminating between counterfeit and true bank
notes on the basis of measurements of these bank notes, see Table B.2. In this case we have
two groups (counterfeit and genuine bank notes) and we would like to establish an algorithm
(rule) that can allocate a new observation (a new bank note) into one of the groups.

Another example is the detection of “fast” and “slow” consumers of a newly introduced
product. Using a consumer’s characteristics like education, income, family size, amount
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of previous brand switching, we want to classify each consumer into the two groups just
identified.

In poetry and literary studies the frequencies of spoken or written words and lengths of
sentences indicate profiles of different artists and writers. It can be of interest to attribute
unknown literary or artistic works to certain writers with a specific profile. Anthropological
measures on ancient sculls help in discriminating between male and female bodies. Good
and poor credit risk ratings constitute a discrimination problem that might be tackled using
observations on income, age, number of credit cards, family size etc.

In general we have populations Πj, j = 1, 2, ..., J and we have to allocate an observation x
to one of these groups. A discriminant rule is a separation of the sample space (in general
R
p) into sets Rj such that if x ∈ Rj, it is identified as a member of population Πj.

The main task of discriminant analysis is to find “good” regions Rj such that the error
of misclassification is small. In the following we describe such rules when the population
distributions are known.

Maximum Likelihood Discriminant Rule

Denote the densities of each population Πj by fj(x). The maximum likelihood discriminant
rule (ML rule) is given by allocating x to Πj maximizing the likelihood Lj(x) = fj(x) =
maxi fi(x).

If several fi give the same maximum then any of them may be selected. Mathematically,
the sets Rj given by the ML discriminant rule are defined as

Rj = {x : Lj(x) > Li(x) for i = 1, . . . , J, i 6= j}. (12.1)

By classifying the observation into certain group we may encounter a misclassification error.
For J = 2 groups the probability of putting x into group 2 although it is from population 1
can be calculated as

p21 = P (X ∈ R2|Π1) =

∫
R2

f1(x)dx. (12.2)

Similarly the conditional probability of classifying an object as belonging to the first popu-
lation Π1 although it actually comes from Π2 is

p12 = P (X ∈ R1|Π2) =

∫
R1

f2(x)dx. (12.3)

The misclassified observations create a cost C(i|j) when a Πj observation is assigned to Ri.
In the credit risk example, this might be the cost of a “sour” credit. The cost structure can
be pinned down in a cost matrix:
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Classified population
Π1 Π2

Π1 0 C(2|1)
True population

Π2 C(1|2) 0

Let πj be the prior probability of population Πj, where “prior” means the a priori probability
that an individual selected at random belongs to Πj (i.e., before looking to the value x). Prior
probabilities should be considered if it is clear ahead of time that an observation is more
likely to stem from a certain population Πj. An example is the classification of musical tunes.
If it is known that during a certain period of time a majority of tunes were written by a
certain composer, then there is a higher probability that a certain tune was composed by this
composer. Therefore, he should receive a higher prior probability when tunes are assigned
to a specific group.

The expected cost of misclassification (ECM) is given by

ECM = C(2|1)p21π1 + C(1|2)p12π2. (12.4)

We will be interested in classification rules that keep the ECM small or minimize it over
a class of rules. The discriminant rule minimizing the ECM (12.4) for two populations is
given below.

THEOREM 12.1 For two given populations, the rule minimizing the ECM is given by

R1 =

{
x :

f1(x)

f2(x)
≥
(
C(1|2)

C(2|1)

)(
π2

π1

)}

R2 =

(
x :

f1(x)

f2(x)
<

{
C(1|2)

C(2|1)

)(
π2

π1

)}

The ML discriminant rule is thus a special case of the ECM rule for equal misclassification
costs and equal prior probabilities. For simplicity the unity cost case, C(1|2) = C(2|1) = 1,
and equal prior probabilities, π2 = π1, are assumed in the following.

Theorem 12.1 will be proven by an example from credit scoring.

EXAMPLE 12.1 Suppose that Π1 represents the population of bad clients who create the
cost C(2|1) if they are classified as good clients. Analogously, define C(1|2) as the cost of
loosing a good client classified as a bad one. Let γ denote the gain of the bank for the correct
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classification of a good client. The total gain of the bank is then

G(R2) = −C(2|1)π1

∫
I(x ∈ R2)f1(x)dx− C(1|2)π2

∫
{1− I(x ∈ R2)}f2(x)dx

+γ π2

∫
I(x ∈ R2)f2(x)dx

= −C(1|2)π2 +

∫
I(x ∈ R2){−C(2|1)π1f1(x) + (C(1|2) + γ)π2f2(x)}dx

Since the first term in this equation is constant, the maximum is obviously obtained for

R2 = {x : −C(2|1)π1f1(x) + {C(1|2) + γ}π2f2(x) ≥ 0 }.

This is equivalent to

R2 =

{
x :

f2(x)

f1(x)
≥ C(2|1)π1

{C(1|2) + γ}π2

}
,

which corresponds to the set R2 in Theorem 12.1 for a gain of γ = 0.

EXAMPLE 12.2 Suppose x ∈ {0, 1} and

Π1 : P (X = 0) = P (X = 1) =
1

2

Π2 : P (X = 0) =
1

4
= 1− P (X = 1).

The sample space is the set {0, 1}. The ML discriminant rule is to allocate x = 0 to Π1 and
x = 1 to Π2, defining the sets R1 = {0}, R2 = {1} and R1 ∪R2 = {0, 1}.

EXAMPLE 12.3 Consider two normal populations

Π1 : N(µ1, σ
2
1),

Π2 : N(µ2, σ
2
2).

Then

Li(x) = (2πσ2
i )
−1/2 exp

{
−1

2

(
x− µi
σi

)2
}
.

Hence x is allocated to Π1 (x ∈ R1) if L1(x) ≥ L2(x). Note that L1(x) ≥ L2(x) is equivalent
to

σ2

σ1

exp

{
−1

2

[(
x− µ1

σ1

)2

−
(
x− µ2

σ2

)2
]}
≥ 1

or

x2

(
1

σ2
1

− 1

σ2
2

)
− 2x

(
µ1

σ2
1

− µ2

σ2
2

)
+

(
µ2

1

σ2
1

− µ2
2

σ2
2

)
≤ 2 log

σ2

σ1

. (12.5)
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2 Normal distributions
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Figure 12.1. Maximum likelihood rule for normal distributions.
MVAdisnorm.xpl

Suppose that µ1 = 0, σ1 = 1 and µ2 = 1, σ2 = 1
2
. Formula (12.5) leads to

R1 =

{
x : x ≤ 1

3

(
4−

√
4 + 6 log(2)

)
or x ≥ 1

3

(
4 +

√
4 + 6 log(2)

)}
,

R2 = R \R1.

This situation is shown in Figure 12.1.

The situation simplifies in the case of equal variances σ1 = σ2. The discriminant rule (12.5)
is then ( for µ1 < µ2)

x→ Π1, if x ∈ R1 = {x : x ≤ 1
2
(µ1 + µ2)},

x→ Π2, if x ∈ R2 = {x : x > 1
2
(µ1 + µ2)}. (12.6)

Theorem 12.2 shows that the ML discriminant rule for multinormal observations is inti-
mately connected with the Mahalanobis distance. The discriminant rule is based on linear
combinations and belongs to the family of Linear Discriminant Analysis (LDA) methods.

http://www.quantlet.org/mdstat/codes/mva/MVAdisnorm.html


328 12 Discriminant Analysis

THEOREM 12.2 Suppose Πi = Np(µi,Σ).

(a) The ML rule allocates x to Πj, where j ∈ {1, . . . , J} is the value minimizing the square
Mahalanobis distance between x and µi:

δ2(x, µi) = (x− µi)>Σ−1(x− µi) , i = 1, . . . , J .

(b) In the case of J = 2,

x ∈ R1 ⇐⇒ α>(x− µ) ≥ 0 ,

where α = Σ−1(µ1 − µ2) and µ = 1
2
(µ1 + µ2).

Proof:
Part (a) of the Theorem follows directly from comparison of the likelihoods.

For J = 2, part (a) says that x is allocated to Π1 if

(x− µ1)>Σ−1(x− µ1) ≤ (x− µ2)>Σ−1(x− µ2)

Rearranging terms leads to

−2µ>1 Σ−1x+ 2µ>2 Σ−1x+ µ>1 Σ−1µ1 − µ>2 Σ−1µ2 ≤ 0,

which is equivalent to

2(µ2 − µ1)>Σ−1x+ (µ1 − µ2)>Σ−1(µ1 + µ2) ≤ 0,

(µ1 − µ2)>Σ−1{x− 1

2
(µ1 + µ2)} ≥ 0,

α>(x− µ) ≥ 0.

2

Bayes Discriminant Rule

We have seen an example where prior knowledge on the probability of classification into
Πj was assumed. Denote the prior probabilities by πj and note that

∑J
j=1 πj = 1. The

Bayes rule of discrimination allocates x to the Πj that gives the largest value of πifi(x),
πjfj(x) = maxi πifi(x). Hence, the discriminant rule is defined by Rj = {x : πjfj(x) ≥
πifi(x) for i = 1, . . . , J}. Obviously the Bayes rule is identical to the ML discriminant rule
for πj = 1/J .
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A further modification is to allocate x to Πj with a certain probability φj(x), such that∑J
j=1 φj(x) = 1 for all x. This is called a randomized discriminant rule. A randomized

discriminant rule is a generalization of deterministic discriminant rules since

φj(x) =

{
1 if πjfj(x) = maxi πifi(x),
0 otherwise

reflects the deterministic rules.

Which discriminant rules are good? We need a measure of comparison. Denote

pij =

∫
φi(x)fj(x)dx (12.7)

as the probability of allocating x to Πi if it in fact belongs to Πj. A discriminant rule with
probabilities pij is as good as any other discriminant rule with probabilities p′ij if

pii ≥ p′ii for all i = 1, . . . , J. (12.8)

We call the first rule better if the strict inequality in (12.8) holds for at least one i. A
discriminant rule is called admissible if there is no better discriminant rule.

THEOREM 12.3 All Bayes discriminant rules (including the ML rule) are admissible.

Probability of Misclassification for the ML rule (J = 2)

Suppose that Πi = Np(µi,Σ). In the case of two groups, it is not difficult to derive the
probabilities of misclassification for the ML discriminant rule. Consider for instance p12 =
P (x ∈ R1 | Π2). By part (b) in Theorem 12.2 we have

p12 = P{α>(x− µ) > 0 | Π2}.

If X ∈ R2, α>(X − µ) ∼ N
(
−1

2
δ2, δ2

)
where δ2 = (µ1 − µ2)>Σ−1(µ1 − µ2) is the squared

Mahalanobis distance between the two populations, we obtain

p12 = Φ

(
−1

2
δ

)
.

Similarly, the probability of being classified into population 2 although x stems from Π1 is
equal to p21=Φ

(
−1

2
δ
)
.



330 12 Discriminant Analysis

Classification with different covariance matrices

The minimum ECM depends on the ratio of the densities f1(x)
f2(x)

or equivalently on the dif-

ference ln{f1(x)} − ln{f2(x)}. When the covariance for both density functions differ, the
allocation rule becomes more complicated:

R1 =

{
x : −1

2
xT (Σ−1

1 − Σ−1
2 )x+ (µT1 Σ−1

1 − µT2 Σ−1
2 )x− k ≥ ln

[(
C(1|2)

C(2|1)

)(
π2

π1

)]}
,

R2 =

{
x : −1

2
xT (Σ−1

1 − Σ−1
2 )x+ (µT1 Σ−1

1 − µT2 Σ−1
2 )x− k < ln

[(
C(1|2)

C(2|1)

)(
π2

π1

)]}
,

where k = 1
2

ln
(
|Σ1|
|Σ2|

)
+ 1

2
(µT1 Σ−1

1 µ1 − µT2 Σ−1
2 µ2). The classification regions are defined by

quadratic functions. Therefore they belong to the family of Quadratic Discriminant Analysis
(QDA) methods. This quadratic classification rule coincides with the rules used when Σ1 =
Σ2, since the term 1

2
xT (Σ−1

1 − Σ−1
2 )x disappears.

Summary
↪→ Discriminant analysis is a set of methods used to distinguish among groups

in data and to allocate new observations into the existing groups.

↪→ Given that data are from populations Πj with densities fj, j = 1, . . . , J ,
the maximum likelihood discriminant rule (ML rule) allocates an ob-
servation x to that population Πj which has the maximum likelihood
Lj(x) = fj(x) = maxi fi(x).

↪→ Given prior probabilities πj for populations Πj, Bayes discriminant rule
allocates an observation x to the population Πj that maximizes πifi(x)
with respect to i. All Bayes discriminant rules (incl. the ML rule) are
admissible.

↪→ For the ML rule and J = 2 normal populations, the probabilities of mis-
classification are given by p12 = p21 = Φ

(
−1

2
δ
)

where δ is the Mahalanobis
distance between the two populations.

↪→ Classification of two normal populations with different covariance matrices
(ML rule) leads to regions defined by a quadratic function.

↪→ Desirable discriminant rules have a low expected cost of misclassification
(ECM).
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12.2 Discrimination Rules in Practice

The ML rule is used if the distribution of the data is known up to parameters. Suppose for
example that the data come from multivariate normal distributions Np(µj,Σ). If we have J
groups with nj observations in each group, we use xj to estimate µj, and Sj to estimate Σ.
The common covariance may be estimated by

Su =
J∑
j=1

nj

(
Sj

n− J

)
, (12.9)

with n =
∑J

j=1 nj. Thus the empirical version of the ML rule of Theorem 12.2 is to allocate
a new observation x to Πj such that j minimizes

(x− xi)>S−1
u (x− xi) for i ∈ {1, . . . , J}.

EXAMPLE 12.4 Let us apply this rule to the Swiss bank notes. The 20 randomly chosen
bank notes which we had clustered into two groups in Example 11.6 are used. First the
covariance Σ is estimated by the average of the covariances of Π1 (cluster 1) and Π2 (cluster
2). The hyperplane α̂>(x− x) = 0 which separates the two populations is given by

α̂ = S−1
u (x1 − x2) = (−12.18, 20.54,−19.22,−15.55,−13.06, 21.43)> ,

x =
1

2
(x1 + x2) = (214.79, 130.05, 129.92, 9.23, 10.48, 140.46)> .

Now let us apply the discriminant rule to the entire bank notes data set. Counting the number
of misclassifications by

100∑
i=1

I{α̂>(xi − x) < 0},
200∑
i=101

I{α̂>(xi − x) > 0},

we obtain 1 misclassified observation for the conterfeit bank notes and 0 misclassification for
the genuine bank notes.

When J = 3 groups, the allocation regions can be calculated using

h12(x) = (x1 − x2)>S−1
u

{
x− 1

2
(x1 + x2)

}
h13(x) = (x1 − x3)>S−1

u

{
x− 1

2
(x1 + x3)

}
h23(x) = (x2 − x3)>S−1

u

{
x− 1

2
(x2 + x3)

}
.

The rule is to allocate x to
Π1 if h12(x) ≥ 0 and h13(x) ≥ 0
Π2 if h12(x) < 0 and h23(x) ≥ 0
Π3 if h13(x) < 0 and h23(x) < 0.
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Estimation of the probabilities of misclassifications

Misclassification probabilities are given by (12.7) and can be estimated by replacing the
unknown parameters by their corresponding estimators.

For the ML rule for two normal populations we obtain

p̂12 = p̂21 = Φ

(
−1

2
δ̂

)
where δ̂2= (x̄1 − x̄2)>S−1

u (x̄1 − x̄2) is the estimator for δ2.

The probabilities of misclassification may also be estimated by the re-substitution method.
We reclassify each original observation xi, i = 1, · · · , n into Π1, · · · ,ΠJ according to the
chosen rule. Then denoting the number of individuals coming from Πj which have been
classified into Πi by nij, we have p̂ij =

nij
nj

, an estimator of pij. Clearly, this method leads

to too optimistic estimators of pij, but it provides a rough measure of the quality of the
discriminant rule. The matrix (p̂ij) is called the confussion matrix in Johnson and Wichern
(1998).

EXAMPLE 12.5 In the above classification problem for the Swiss bank notes (Table B.2),
we have the following confussion matrix:

true membership
genuine (Π1) counterfeit (Π2)

Π1 100 1
predicted

Π2 0 99

MVAaper.xpl

The apparent error rate (APER) is defined as the fraction of observations that are misclas-
sified. The APER, expressed as a percentage, is

APER =

(
1

200

)
100% = 0.5%.

For the calculation of the APER we use the observations twice: the first time to construct
the classification rule and the second time to evaluate this rule. An APER of 0.5% might
therefore be too optimistic. An approach that corrects for this bias is based on the holdout
procedure of Lachenbruch and Mickey (1968). For two populations this procedure is as
follows:

http://www.quantlet.org/mdstat/codes/mva/MVAaper.html
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1. Start with the first population Π1. Omit one observation and develop the classification
rule based on the remaining n1 − 1, n2 observations.

2. Classify the “holdout” observation using the discrimination rule in Step 1.

3. Repeat steps 1 and 2 until all of the Π1 observations are classified. Count the number
n′21 of misclassified observations.

4. Repeat steps 1 through 3 for population Π2. Count the number n′12 of misclassified
observations.

Estimates of the misclassification probabilities are given by

p̂′12 =
n′12

n2

and

p̂′21 =
n′21

n1

.

A more realistic estimator of the actual error rate (AER) is given by

n′12 + n′21

n2 + n1

. (12.10)

Statisticians favor the AER (for its unbiasedness) over the APER. In large samples, however,
the computational costs might counterbalance the statistical advantage. This is not a real
problem since the two misclassification measures are asymptotically equivalent.

MVAaer.xpl

Fisher’s linear discrimination function

Another approach stems from R. A. Fisher. His idea was to base the discriminant rule on a
projection a>x such that a good separation was achieved. This LDA projection method is
called Fisher’s linear discrimination function. If

Y = Xa

denotes a linear combination of observations, then the total sum of squares of y,
∑n

i=1(yi−ȳ)2,
is equal to

Y>HY = a>X>HX a = a>T a (12.11)

with the centering matrix H = I − n−11n1>n and T = X>HX .

Suppose we have samples Xj, j = 1, . . . , J , from J populations. Fisher’s suggestion was
to find the linear combination a>x which maximizes the ratio of the between-group-sum of
squares to the within-group-sum of squares.

http://www.quantlet.org/mdstat/codes/mva/MVAaer.html
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The within-group-sum of squares is given by

J∑
j=1

Y>j HjYj =
J∑
j=1

a>X>j HjXja = a>Wa, (12.12)

where Yj denotes the j-th sub-matrix of Y corresponding to observations of group j and Hj

denotes the (nj × nj) centering matrix. The within-group-sum of squares measures the sum
of variations within each group.

The between-group-sum of squares is

J∑
j=1

nj(yj − y)2 =
J∑
j=1

nj{a>(xj − x)}2 = a>Ba, (12.13)

where yj and xj denote the means of Yj and Xj and y and x denote the sample means of
Y and X . The between-group-sum of squares measures the variation of the means across
groups.

The total sum of squares (12.11) is the sum of the within-group-sum of squares and the
between-group-sum of squares, i.e.,

a>T a = a>Wa+ a>Ba.

Fisher’s idea was to select a projection vector a that maximizes the ratio

a>Ba
a>Wa

. (12.14)

The solution is found by applying Theorem 2.5.

THEOREM 12.4 The vector a that maximizes (12.14) is the eigenvector of W−1B that
corresponds to the largest eigenvalue.

Now a discrimination rule is easy to obtain:
classify x into group j where a>x̄j is closest to a>x, i.e.,

x→ Πj where j = arg min
i
|a>(x− x̄i)|.

When J = 2 groups, the discriminant rule is easy to compute. Suppose that group 1 has n1

elements and group 2 has n2 elements. In this case

B =
(n1n2

n

)
dd>,
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where d = (x1 − x2). W−1B has only one eigenvalue which equals

tr(W−1B) =
(n1n2

n

)
d>W−1d,

and the corresponding eigenvector is a =W−1d. The corresponding discriminant rule is

x→ Π1 if a>{x− 1
2
(x1 + x2)} > 0,

x→ Π2 if a>{x− 1
2
(x1 + x2)} ≤ 0.

(12.15)

The Fisher LDA is closely related to projection pursuit (Chapter 18) since the statistical
technique is based on a one dimensional index a>x.

EXAMPLE 12.6 Consider the bank notes data again. Let us use the subscript “g” for the
genuine and “f” for the conterfeit bank notes, e.g., Xg denotes the first hundred observations
of X and Xf the second hundred. In the context of the bank data set the “between-group-sum
of squares” is defined as

100
{

(yg − y)2 + (yf − y)2
}

= a>Ba (12.16)

for some matrix B. Here, yg and yf denote the means for the genuine and counterfeit bank
notes and y = 1

2
(yg + yf ). The “within-group-sum of squares” is

100∑
i=1

{(yg)i − yg}2 +
100∑
i=1

{(yf )i − yf}2 = a>Wa, (12.17)

with (yg)i = a>xi and (yf )i = a>xi+100 for i = 1, . . . , 100.

The resulting discriminant rule consists of allocating an observation x0 to the genuine sample
space if

a>(x0 − x) > 0,

with a = W−1(xg − xf ) (see Exercise 12.8) and of allocating x0 to the counterfeit sample
space when the opposite is true. In our case

a = (0.000, 0.029,−0.029,−0.039,−0.041, 0.054)> ·

One genuine and no counterfeit bank notes are misclassified. Figure 12.2 shows the estimated
densities for yg = a>Xg and yf = a>Xf . They are separated better than those of the diagonals
in Figure 1.9.

Note that the allocation rule (12.15) is exactly the same as the ML rule for J = 2 groups
and for normal distributions with the same covariance. For J = 3 groups this rule will be
different, except for the special case of collinear sample means.
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Swiss bank notes
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Figure 12.2. Densities of projections of genuine and counterfeit bank
notes by Fisher’s discrimination rule. MVAdisfbank.xpl

Summary
↪→ A discriminant rule is a separation of the sample space into sets Rj. An

observation x is classified as coming from population Πj if it lies in Rj.

↪→ The expected cost of misclassification (ECM) for two populations is given
by ECM = C(2|1)p21π1 + C(1|2)p12π2.

↪→ The ML rule is applied if the distributions in the populations are known
up to parameters, e.g., for normal distributions Np(µj,Σ).

http://www.quantlet.org/mdstat/codes/mva/MVAdisfbank.html
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Summary (continued)

↪→ The ML rule allocates x to the population that exhibits the smallest Ma-
halanobis distance

δ2(x;µi) = (x− µi)>Σ−1(x− µi).

↪→ The probability of misclassification is given by

p12 = p21 = Φ

(
−1

2
δ

)
,

where δ is the Mahalanobis distance between µ1 and µ2.

↪→ Classification for different covariance structures in the two populations
leads to quadratic discrimination rules.

↪→ A different approach is Fisher’s linear discrimination rule which finds a
linear combination a>x that maximizes the ratio of the “between-group-
sum of squares” and the “within-group-sum of squares”. This rule turns
out to be identical to the ML rule when J = 2 for normal populations.

12.3 Boston Housing

One interesting application of discriminant analysis with respect to the Boston housing data
is the classification of the districts according to the house values. The rationale behind this
is that certain observables must determine the value of a district, as in Section 3.7 where
the house value was regressed on the other variables. Two groups are defined according to
the median value of houses X̃14: in group Π1 the value of X̃14 is greater than or equal to the
median of X̃14 and in group Π2 the value of X̃14 is less than the median of X̃14.

The linear discriminant rule, defined on the remaining 12 variables (excluding X̃4 and X̃14) is
applied. After reclassifying the 506 observations, we obtain an apparent error rate of 0.146.
The details are given in Table 12.3. The more appropriate error rate, given by the AER, is
0.160 (see Table 12.4).

Let us now turn to a group definition suggested by the Cluster Analysis in Section 11.4.
Group Π1 was defined by higher quality of life and house. We define the linear discriminant
rule using the 13 variables from X̃ excluding X̃4. Then we reclassify the 506 observations
and we obtain an APER of 0.0395. Details are summarized in Table 12.5. The AER turns
out to be 0.0415 (see Table 12.6).
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True
Π1 Π2

Π1 216 40
Predicted

Π2 34 216

Table 12.3. APER for price of Boston houses. MVAdiscbh.xpl

True
Π1 Π2

Π1 211 42
Predicted

Π2 39 214

Table 12.4. AER for price of Boston houses. MVAaerbh.xpl

True
Π1 Π2

Π1 244 13
Predicted

Π2 7 242

Table 12.5. APER for clusters of Boston houses. MVAdiscbh.xpl

True
Π1 Π2

Π1 244 14
Predicted

Π2 7 241

Table 12.6. AER for clusters of Boston houses. MVAaerbh.xpl

Figure 12.3 displays the values of the linear discriminant scores (see Theorem 12.2) for all
of the 506 observations, colored by groups. One can clearly see the APER is derived from
the 7 observations from group Π1 with a negative score and the 13 observations from group
Π2 with positive score.

http://www.quantlet.org/mdstat/codes/mva/MVAdiscbh.html
http://www.quantlet.org/mdstat/codes/mva/MVAaerbh.html
http://www.quantlet.org/mdstat/codes/mva/MVAdiscbh.html
http://www.quantlet.org/mdstat/codes/mva/MVAaerbh.html
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Figure 12.3. Discrimination scores for the two clusters created from the
Boston housing data. MVAdiscbh.xpl

12.4 Exercises

EXERCISE 12.1 Prove Theorem 12.2 (a) and 12.2 (b).

EXERCISE 12.2 Apply the rule from Theorem 12.2 (b) for p = 1 and compare the result
with that of Example 12.3.

EXERCISE 12.3 Calculate the ML discrimination rule based on observations of a one-
dimensional variable with an exponential distribution.

EXERCISE 12.4 Calculate the ML discrimination rule based on observations of a two-
dimensional random variable, where the first component has an exponential distribution and
the other has an alternative distribution. What is the difference between the discrimination
rule obtained in this exercise and the Bayes discrimination rule?

EXERCISE 12.5 Apply the Bayes rule to the car data (Table B.3) in order to discriminate
between Japanese, European and U.S. cars, i.e., J = 3. Consider only the “miles per gallon”
variable and take the relative frequencies as prior probabilities.

EXERCISE 12.6 Compute Fisher’s linear discrimination function for the 20 bank notes
from Example 11.6. Apply it to the entire bank data set. How many observations are mis-
classified?

EXERCISE 12.7 Use the Fisher’s linear discrimination function on the WAIS data set (Ta-
ble B.12) and evaluate the results by re-substitution the probabilities of misclassification.

http://www.quantlet.org/mdstat/codes/mva/MVAdiscbh.html
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EXERCISE 12.8 Show that in Example 12.6

(a) W = 100 (Sg + Sf ), where Sg and Sf denote the empirical covariances (3.6) and (3.5)
w.r.t. the genuine and counterfeit bank notes,

(b) B = 100
{

(xg − x)(xg − x)> + (xf − x)(xf − x)>
}
, where x = 1

2
(xg + xf ),

(c) a =W−1(xg − xf ).

EXERCISE 12.9 Recalculate Example 12.3 with the prior probability π1 = 1
3

and C(2|1) =
2C(1|2).

EXERCISE 12.10 Explain the effect of changing π1 or C(1|2) on the relative location of the
region Rj, j = 1, 2.

EXERCISE 12.11 Prove that Fisher’s linear discrimination function is identical to the ML
rule when the covariance matrices are identical (J = 2).

EXERCISE 12.12 Suppose that x ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and

Π1 : X ∼ Bi(10, 0.2) with the prior probability π1 = 0.5;

Π2 : X ∼ Bi(10, 0.3) with the prior probability π2 = 0.3;

Π3 : X ∼ Bi(10, 0.5) with the prior probability π3 = 0.2.

Determine the sets R1, R2 and R3. (Use the Bayes discriminant rule.)



13 Correspondence Analysis

Correspondence analysis provides tools for analyzing the associations between rows and
columns of contingency tables. A contingency table is a two-entry frequency table where
the joint frequencies of two qualitative variables are reported. For instance a (2 × 2) table
could be formed by observing from a sample of n individuals two qualitative variables: the
individual’s sex and whether the individual smokes. The table reports the observed joint
frequencies. In general (n× p) tables may be considered.

The main idea of correspondence analysis is to develop simple indices that will show the rela-
tions between the row and the columns categories. These indices will tell us simultaneously
which column categories have more weight in a row category and vice-versa. Correspondence
analysis is also related to the issue of reducing the dimension of the table, similar to principal
component analysis in Chapter 9, and to the issue of decomposing the table into its factors
as discussed in Chapter 8. The idea is to extract the indices in decreasing order of impor-
tance so that the main information of the table can be summarized in spaces with smaller
dimensions. For instance, if only two factors (indices) are used, the results can be shown in
two-dimensional graphs, showing the relationship between the rows and the columns of the
table.

Section 13.1 defines the basic notation and motivates the approach and Section 13.2 gives the
basic theory. The indices will be used to describe the χ2 statistic measuring the associations
in the table. Several examples in Section 13.3 show how to provide and interpret, in practice,
the two-dimensional graphs displaying the relationship between the rows and the columns
of a contingency table.

13.1 Motivation

The aim of correspondence analysis is to develop simple indices that show relations between
the row and columns of a contingency tables. Contingency tables are very useful to describe
the association between two variables in very general situations. The two variables can be
qualitative (nominal), in which case they are also referred to as categorical variables. Each
row and each column in the table represents one category of the corresponding variable.
The entry xij in the table X (with dimension (n × p)) is the number of observations in a
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sample which simultaneously fall in the i-th row category and the j-th column category, for
i = 1, . . . , n and j = 1, . . . , p. Sometimes a “category” of a nominal variable is also called a
“modality” of the variable.

The variables of interest can also be discrete quantitative variables, such as the number of
family members or the number of accidents an insurance company had to cover during one
year, etc. Here, each possible value that the variable can have defines a row or a column
category. Continuous variables may be taken into account by defining the categories in terms
of intervals or classes of values which the variable can take on. Thus contingency tables can
be used in many situations, implying that correspondence analysis is a very useful tool in
many applications.

The graphical relationships between the rows and the columns of the table X that result
from correspondence analysis are based on the idea of representing all the row and column
categories and interpreting the relative positions of the points in terms of the weights corre-
sponding to the column and the row. This is achieved by deriving a system of simple indices
providing the coordinates of each row and each column. These row and column coordinates
are simultaneously represented in the same graph. It is then clear to see which column
categories are more important in the row categories of the table (and the other way around).

As was already eluded to, the construction of the indices is based on an idea similar to
that of PCA. Using PCA the total variance was partitioned into independent contributions
stemming from the principal components. Correspondence analysis, on the other hand, de-
composes a measure of association, typically the total χ2 value used in testing independence,
rather than decomposing the total variance.

EXAMPLE 13.1 The French “baccalauréat” frequencies have been classified into regions
and different baccalauréat categories, see Appendix, Table B.8. Altogether n = 202100 bac-
calauréats were observed. The joint frequency of the region Ile-de-France and the modality
Philosophy, for example, is 9724. That is, 9724 baccalauréats were in Ile-de-France and the
category Philosophy.

The question is whether certain regions prefer certain baccalauréat types. If we consider, for
instance, the region Lorraine, we have the following percentages:

A B C D E F G H

20.5 7.6 15.3 19.6 3.4 14.5 18.9 0.2

The total percentages of the different modalities of the variable baccalauréat are as follows:

A B C D E F G H

22.6 10.7 16.2 22.8 2.6 9.7 15.2 0.2
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One might argue that the region Lorraine seems to prefer the modalities E, F, G and dislike
the specializations A, B, C, D relative to the overall frequency of baccalauréat type.

In correspondence analysis we try to develop an index for the regions so that this over- or
underrepresentation can be measured in just one single number. Simultaneously we try to
weight the regions so that we can see in which region certain baccalauréat types are preferred.

EXAMPLE 13.2 Consider n types of companies and p locations of these companies. Is there
a certain type of company that prefers a certain location? Or is there a location index that
corresponds to a certain type of company?

Assume that n = 3, p = 3, and that the frequencies are as follows:

X =

 4 0 2
0 1 1
1 1 4

 ← Finance

← Energy

← HiTech

↑ Frankfurt

↑ Berlin

↑ Munich

The frequencies imply that four type 3 companies (HiTech) are in location 3 (Munich), and
so on. Suppose there is a (company) weight vector r = (r1, . . . , rn)> such that a location
index sj could be defined as

sj = c
n∑
i=1

ri
xij
x•j

, (13.1)

where x•j =
∑n

i=1 xij is the number of companies in location j and c is a constant. s1,
for example, would give the average weighted frequency (by r) of companies in location 1
(Frankfurt).

Given a location weight vector s∗ =
(
s∗1, . . . , s

∗
p

)>
, we can define a company index in the

same way as

r∗i = c∗
p∑
j=1

s∗j
xij
xi•

, (13.2)

where c∗ is a constant and xi• =
∑p

j=1 xij is the sum of the i-th row of X , i.e., the number
of type i companies. Thus r∗2, for example, would give the average weighted frequency (by s∗)
of energy companies.

If (13.1) and (13.2) can be solved simultaneously for a “row weight” vector r = (r1, . . . , rn)>

and a “column weight” vector s = (s1, . . . , sp)
>, we may represent each row category by

ri, i = 1, . . . , n and each column category by sj, j = 1, . . . , p in a one-dimensional graph. If
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in this graph ri and sj are in close proximity (far from the origin), this would indicate that
the i-th row category has an important conditional frequency xij/x•j in (13.1) and that the
j-th column category has an important conditional frequency xij/xi• in (13.2). This would
indicate a positive association between the i-th row and the j-th column. A similar line of
argument could be used if ri was very far away from sj (and far from the origin). This would
indicate a small conditional frequency contribution, or a negative association between the
i-th row and the j-th column.

Summary
↪→ The aim of correspondence analysis is to develop simple indices that show

relations among qualitative variables in a contingency table.

↪→ The joint representation of the indices reveals relations among the vari-
ables.

13.2 χ2 Decomposition

An alternative way of measuring the association between the row and column categories is
a decomposition of the value of the χ2-test statistic. The well known χ2-test for indepen-
dence in a two-dimensional contingency table consists of two steps. First the expected value
of each cell of the table is estimated under the hypothesis of independence. Second, the
corresponding observed values are compared to the expected values using the statistic

t =
n∑
i=1

p∑
j=1

(xij − Eij)2/Eij, (13.3)

where xij is the observed frequency in cell (i, j) and Eij is the corresponding estimated
expected value under the assumption of independence, i.e.,

Eij =
xi• x•j
x••

. (13.4)

Here x•• =
∑n

i=1 xi•. Under the hypothesis of independence, t has a χ2
(n−1)(p−1) distribution.

In the industrial location example introduced above the value of t = 6.26 is almost significant
at the 5% level. It is therefore worth investigating the special reasons for departure from
independence.

The method of χ2 decomposition consists of finding the SVD of the matrix C (n × p) with
elements

cij = (xij − Eij)/E1/2
ij . (13.5)
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The elements cij may be viewed as measuring the (weighted) departure between the observed
xij and the theoretical values Eij under independence. This leads to the factorial tools of
Chapter 8 which describe the rows and the columns of C.

For simplification define the matrics A (n× n) and B (p× p) as

A = diag(xi•) and B = diag(x•j). (13.6)

These matrices provide the marginal row frequencies a(n × 1) and the marginal column
frequencies b(p× 1):

a = A1n and b = B1p. (13.7)

It is easy to verify that
C
√
b = 0 and C>

√
a = 0, (13.8)

where the square root of the vector is taken element by element and R = rank(C) ≤ min{(n−
1), (p− 1)}. From (8.14) of Chapter 8, the SVD of C yields

C = ΓΛ∆>, (13.9)

where Γ contains the eigenvectors of CC>, ∆ the eigenvectors of C>C and
Λ = diag(λ

1/2
1 , . . . , λ

1/2
R ) with λ1 ≥ λ2 ≥ . . . ≥ λR (the eigenvalues of CC>). Equation (13.9)

implies that

cij =
R∑
k=1

λ
1/2
k γikδjk. (13.10)

Note that (13.3) can be rewritten as

tr(CC>) =
R∑
k=1

λk =
n∑
i=1

p∑
j=1

c2
ij = t. (13.11)

This relation shows that the SVD of C decomposes the total χ2 value rather than, as in
Chapter 8, the total variance.

The duality relations between the row and the column space (8.11) are now for k = 1, . . . , R
given by

δk = 1√
λk
C>γk,

γk = 1√
λk
Cδk.

(13.12)

The projections of the rows and the columns of C are given by

Cδk =
√
λkγk,

C>γk =
√
λkδk.

(13.13)

Note that the eigenvectors satisfy

δTk
√
b = 0, γTk

√
a = 0. (13.14)
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From (13.10) we see that the eigenvectors δk and γk are the objects of interest when analyzing
the correspondence between the rows and the columns. Suppose that the first eigenvalue in
(13.10) is dominant so that

cij ≈ λ
1/2
1 γi1δj1. (13.15)

In this case when the coordinates γi1 and δj1 are both large (with the same sign) relative to
the other coordinates, then cij will be large as well, indicating a positive association between
the i-th row and the j-th column category of the contingency table. If γi1 and δj1 were both
large with opposite signs, then there would be a negative association between the i-th row
and j-th column.

In many applications, the first two eigenvalues, λ1 and λ2, dominate and the percentage of
the total χ2 explained by the eigenvectors γ1 and γ2 and δ1 and δ2 is large. In this case (13.13)
and (γ1, γ2) can be used to obtain a graphical display of the n rows of the table ((δ1, δ2) play
a similar role for the p columns of the table). The interpretation of the proximity between
row and column points will be interpreted as above with respect to (13.10).

In correspondence analysis, we use the projections of weighted rows of C and the projections
of weighted columns of C for graphical displays. Let rk(n× 1) be the projections of A−1/2C
on δk and sk(p× 1) be the projections of B−1/2C> on γk (k = 1, . . . , R):

rk = A−1/2Cδk =
√
λkA−1/2γk,

sk = B−1/2C>γk =
√
λkB−1/2δk.

(13.16)

These vectors have the property that

r>k a = 0,
s>k b = 0.

(13.17)

The obtained projections on each axis k = 1, . . . , R are centered at zero with the natural
weights given by a (the marginal frequencies of the rows of X ) for the row coordinates rk and
by b (the marginal frequencies of the columns of X ) for the column coordinates sk (compare
this to expression (13.14)). As a result, the origin is the center of gravity for all of the
representations. We also know from (13.16) and the SVD of C that

r>k Ark = λk,
s>k Bsk = λk.

(13.18)

From the duality relation between δk and γk (see (13.12)) we obtain

rk = 1√
λk
A−1/2CB1/2sk,

sk = 1√
λk
B−1/2C>A1/2rk,

(13.19)

which can be simplified to

rk =
√

x••
λk
A−1X sk,

sk =
√

x••
λk
B−1X>rk.

(13.20)
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These vectors satisfy the relations (13.1) and (13.2) for each k = 1, . . . , R simultaneously.

As in Chapter 8, the vectors rk and sk are referred to as factors (row factor and column
factor respectively). They have the following means and variances:

rk = 1
x••
r>k a = 0,

sk = 1
x••
s>k b = 0,

(13.21)

and

V ar(rk) = 1
x••

∑n
i=1 xi•r

2
ki =

r>k Ark
x••

= λk
x••
,

V ar(sk) = 1
x••

∑p
j=1 x•js

2
kj =

s>k Bsk
x••

= λk
x••
.

(13.22)

Hence, λk/
∑j

k=1 λj, which is the part of the k-th factor in the decomposition of the χ2

statistic t, may also be interpreted as the proportion of the variance explained by the factor
k. The proportions

Ca(i, rk) =
xi•r

2
ki

λk
, for i = 1, . . . , n, k = 1, . . . , R (13.23)

are called the absolute contributions of row i to the variance of the factor rk. They show
which row categories are most important in the dispersion of the k-th row factors. Similarly,
the proportions

Ca(j, sk) =
x•js

2
kj

λk
, for j = 1, . . . , p, k = 1, . . . , R (13.24)

are called the absolute contributions of column j to the variance of the column factor sk.
These absolute contributions may help to interpret the graph obtained by correspondence
analysis.

13.3 Correspondence Analysis in Practice

The graphical representations on the axes k = 1, 2, . . . , R of the n rows and of the p columns
of X are provided by the elements of rk and sk. Typically, two-dimensional displays are
often satisfactory if the cumulated percentage of variance explained by the first two factors,
Ψ2 = λ1+λ2∑R

k=1 λk
, is sufficiently large.

The interpretation of the graphs may be summarized as follows:

- The proximity of two rows (two columns) indicates a similar profile in these two rows
(two columns), where “profile” referrs to the conditional frequency distribution of
a row (column); those two rows (columns) are almost proportional. The opposite
interpretation applies when the two rows (two columns) are far apart.
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- The proximity of a particular row to a particular column indicates that this row (col-
umn) has a particularly important weight in this column (row). In contrast to this,
a row that is quite distant from a particular column indicates that there are almost
no observations in this column for this row (and vice versa). Of course, as mentioned
above, these conclusions are particularly true when the points are far away from 0.

- The origin is the average of the factors rk and sk. Hence, a particular point (row or
column) projected close to the origin indicates an average profile.

- The absolute contributions are used to evaluate the weight of each row (column) in
the variances of the factors.

- All the interpretations outlined above must be carried out in view of the quality of the
graphical representation which is evaluated, as in PCA, using the cumulated percentage
of variance.

REMARK 13.1 Note that correspondence analysis can also be applied to more general
(n× p) tables X which in a “strict sense” are not contingency tables.

As long as statistical (or natural) meaning can be given to sums over rows and columns,
Remark 13.1 holds. This implies, in particular, that all of the variables are measured in the
same units. In that case, x•• constitutes the total frequency of the observed phenomenon, and
is shared between individuals (n rows) and between variables (p columns). Representations
of the rows and columns of X , rk and sk, have the basic property (13.19) and show which
variables have important weights for each individual and vice versa. This type of analysis is
used as an alternative to PCA. PCA is mainly concerned with covariances and correlations,
whereas correspondence analysis analyzes a more general kind of association. (See Exercises
13.3 and 13.11.)

EXAMPLE 13.3 A survey of Belgium citizens who regularly read a newspaper was conducted
in the 1980’s. They were asked where they lived. The possible answers were 10 regions: 7
provinces (Antwerp, Western Flanders, Eastern Flanders, Hainant, Liège, Limbourg, Lux-
embourg) and 3 regions around Brussels (Flemish-Brabant, Wallon-Brabant and the city of
Brussels). They were also asked what kind of newspapers they read on a regular basis. There
were 15 possible answers split up into 3 classes: Flemish newspapers (label begins with the
letter v), French newspapers (label begins with f) and both languages together (label begins
with b). The data set is given in Table B.9. The eigenvalues of the factorial correspondence
analysis are given in Table 13.2.

Two-dimensional representations will be quite satisfactory since the first two eigenvalues
account for 81% of the variance. Figure 13.1 shows the projections of the rows (the 15
newspapers) and of the columns (the 10 regions).
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λj percentage of variance cumulated percentage
183.40 0.653 0.653
43.75 0.156 0.809
25.21 0.090 0.898
11.74 0.042 0.940
8.04 0.029 0.969
4.68 0.017 0.985
2.13 0.008 0.993
1.20 0.004 0.997
0.82 0.003 1.000
0.00 0.000 1.000

Table 13.2. Eigenvalues and percentages of the variance (Example 13.3) .
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Figure 13.1. Projection of rows (the 15 newspapers) and columns (the 10
regions) MVAcorrjourn.xpl

http://www.quantlet.org/mdstat/codes/mva/MVAcorrjourn.html
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Ca(i, r1) Ca(i, r2) Ca(i, r3)
va 0.0563 0.0008 0.0036
vb 0.1555 0.5567 0.0067
vc 0.0244 0.1179 0.0266
vd 0.1352 0.0952 0.0164
ve 0.0253 0.1193 0.0013
ff 0.0314 0.0183 0.0597
fg 0.0585 0.0162 0.0122
fh 0.1086 0.0024 0.0656
fi 0.1001 0.0024 0.6376
bj 0.0029 0.0055 0.0187
bk 0.0236 0.0278 0.0237
bl 0.0006 0.0090 0.0064
vm 0.1000 0.0038 0.0047
fn 0.0966 0.0059 0.0269
f0 0.0810 0.0188 0.0899

Total 1.0000 1.0000 1.0000

Table 13.3. Absolute contributions of row factors rk.

As expected, there is a high association between the regions and the type of newspapers which
is read. In particular, vb (Gazet van Antwerp) is almost exclusively read in the province of
Antwerp (this is an extreme point in the graph). The points on the left all belong to Flanders,
whereas those on the right all belong to Wallonia. Notice that the Wallon-Brabant and the
Flemish-Brabant are not far from Brussels. Brussels is close to the center (average) and also
close to the bilingual newspapers. It is shifted a little to the right of the origin due to the
majority of French speaking people in the area.

The absolute contributions of the first 3 factors are listed in Tables 13.3 and 13.4. The row
factors rk are in Table 13.3 and the column factors sk are in Table 13.4.

They show, for instance, the important role of Antwerp and the newspaper vb in determining
the variance of both factors. Clearly, the first axis expresses linguistic differences between
the 3 parts of Belgium. The second axis shows a larger dispersion between the Flemish
region than the French speaking regions. Note also that the 3-rd axis shows an important
role of the category “fi” (other French newspapers) with the Wallon-Brabant “brw” and the
Hainant “hai” showing the most important contributions. The coordinate of “fi” on this axis
is negative (not shown here) so are the coordinates of “brw” and “hai”. Apparently, these
two regions also seem to feature a greater proportion of readers of more local newspapers.

EXAMPLE 13.4 Applying correspondence analysis to the French baccalauréat data (Ta-
ble B.8) leads to Figure 13.2. Excluding Corsica we obtain Figure 13.3. The different
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Ca(j, s1) Ca(j, s2) Ca(j, s3)
brw 0.0887 0.0210 0.2860
bxl 0.1259 0.0010 0.0960
anv 0.2999 0.4349 0.0029
brf 0.0064 0.2370 0.0090
foc 0.0729 0.1409 0.0033
for 0.0998 0.0023 0.0079
hai 0.1046 0.0012 0.3141
lig 0.1168 0.0355 0.1025
lim 0.0562 0.1162 0.0027
lux 0.0288 0.0101 0.1761

Total 1.0000 1.0000 1.0000

Table 13.4. Absolute contributions of column factors sk.

eigenvalues λ percentage of variances cumulated percentage
2436.2 0.5605 0.561
1052.4 0.2421 0.803
341.8 0.0786 0.881
229.5 0.0528 0.934
152.2 0.0350 0.969
109.1 0.0251 0.994
25.0 0.0058 1.000
0.0 0.0000 1.000

Table 13.5. Eigenvalues and percentages of explained variance (including
Corsica).

modalities are labeled A, ..., H and the regions are labeled ILDF, ..., CORS. The results of the
correspondence analysis are given in Table 13.5 and Figure 13.2.

The first two factors explain 80 % of the total variance. It is clear from Figure 13.2 that
Corsica (in the upper left) is an outlier. The analysis is therefore redone without Corsica
and the results are given in Table 13.6 and Figure 13.3. Since Corsica has such a small
weight in the analysis, the results have not changed much.

The projections on the first three axes, along with their absolute contribution to the variance
of the axis, are summarized in Table 13.7 for the regions and in Table 13.8 for baccalauréats.

The interpretation of the results may be summarized as follows. Table 13.8 shows that
the baccalauréats B on one side and F on the other side are most strongly responsible for
the variation on the first axis. The second axis mostly characterizes an opposition between



352 13 Correspondence Analysis

baccalaureat data
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Figure 13.2. Correspondence analysis including Corsica
MVAcorrbac.xpl

eigenvalues λ percentage of variances cumulated percentage
2408.6 0.5874 0.587
909.5 0.2218 0.809
318.5 0.0766 0.887
195.9 0.0478 0.935
149.3 0.0304 0.971
96.1 0.0234 0.994
22.8 0.0056 1.000
0.0 0.0000 1.000

Table 13.6. Eigenvalues and percentages of explained variance (excluding
Corsica).

http://www.quantlet.org/mdstat/codes/mva/MVAcorrbac.html
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baccalaureat data
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Figure 13.3. Correspondence analysis excluding Corsica.
MVAcorrbac.xpl

baccalauréats A and C. Regarding the regions, Ile de France plays an important role on each
axis. On the first axis, it is opposed to Lorraine and Alsace, whereas on the second axis, it
is opposed to Poitou-Charentes and Aquitaine. All of this is confirmed in Figure 13.3.

On the right side are the more classical baccalauréats and on the left, more technical ones.
The regions on the left side have thus larger weights in the technical baccalauréats. Note also
that most of the southern regions of France are concentrated in the lower part of the graph
near the baccalauréat A.

Finally, looking at the 3-rd axis, we see that it is dominated by the baccalauréat E (negative
sign) and to a lesser degree by H (negative) (as opposed to A (positive sign)). The domi-
nating regions are HNOR (positive sign), opposed to NOPC and AUVE (negative sign). For
instance, HNOR is particularly poor in baccalauréat D.

http://www.quantlet.org/mdstat/codes/mva/MVAcorrbac.html
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Region r1 r2 r3 Ca(i, r1) Ca(i, r2) Ca(i, r3)
ILDF 0.1464 0.0677 0.0157 0.3839 0.2175 0.0333
CHAM -0.0603 -0.0410 -0.0187 0.0064 0.0078 0.0047
PICA 0.0323 -0.0258 -0.0318 0.0021 0.0036 0.0155
HNOR -0.0692 0.0287 0.1156 0.0096 0.0044 0.2035
CENT -0.0068 -0.0205 -0.0145 0.0001 0.0030 0.0043
BNOR -0.0271 -0.0762 0.0061 0.0014 0.0284 0.0005
BOUR -0.1921 0.0188 0.0578 0.0920 0.0023 0.0630
NOPC -0.1278 0.0863 -0.0570 0.0871 0.1052 0.1311
LORR -0.2084 0.0511 0.0467 0.1606 0.0256 0.0608
ALSA -0.2331 0.0838 0.0655 0.1283 0.0439 0.0767
FRAC -0.1304 -0.0368 -0.0444 0.0265 0.0056 0.0232
PAYL -0.0743 -0.0816 -0.0341 0.0232 0.0743 0.0370
BRET 0.0158 0.0249 -0.0469 0.0011 0.0070 0.0708
PCHA -0.0610 -0.1391 -0.0178 0.0085 0.1171 0.0054
AQUI 0.0368 -0.1183 0.0455 0.0055 0.1519 0.0643
MIDI 0.0208 -0.0567 0.0138 0.0018 0.0359 0.0061
LIMO -0.0540 0.0221 -0.0427 0.0033 0.0014 0.0154
RHOA -0.0225 0.0273 -0.0385 0.0042 0.0161 0.0918
AUVE 0.0290 -0.0139 -0.0554 0.0017 0.0010 0.0469
LARO 0.0290 -0.0862 -0.0177 0.0383 0.0595 0.0072
PROV 0.0469 -0.0717 0.0279 0.0142 0.0884 0.0383

Table 13.7. Coefficients and absolute contributions for regions, Exam-
ple 13.4.

Baccal s1 s2 s3 Ca(j, s1) Ca(j, s2) Ca(j, s3)
A 0.0447 -0.0679 0.0367 0.0376 0.2292 0.1916
B 0.1389 0.0557 0.0011 0.1724 0.0735 0.0001
C 0.0940 0.0995 0.0079 0.1198 0.3556 0.0064
D 0.0227 -0.0495 -0.0530 0.0098 0.1237 0.4040
E -0.1932 0.0492 -0.1317 0.0825 0.0141 0.2900
F -0.2156 0.0862 0.0188 0.3793 0.1608 0.0219
G -0.1244 -0.0353 0.0279 0.1969 0.0421 0.0749
H -0.0945 0.0438 -0.0888 0.0017 0.0010 0.0112

Table 13.8. Coefficients and absolute contributions for baccalauréats, Ex-
ample 13.4.

EXAMPLE 13.5 The U.S. crime data set (Table B.10) gives the number of crimes in the
50 states of the U.S. classified in 1985 for each of the following seven categories: murder,
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λj percentage of variance cumulated percentage
4399.0 0.4914 0.4914
2213.6 0.2473 0.7387
1382.4 0.1544 0.8932
870.7 0.0973 0.9904
51.0 0.0057 0.9961
34.8 0.0039 1.0000
0.0 0.0000 0.0000

Table 13.9. Eigenvalues and explained proportion of variance, Exam-
ple 13.5.
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Figure 13.4. Projection of rows (the 50 states) and columns (the 7 crime
categories). MVAcorrcrime.xpl

rape, robbery, assault, burglary, larceny and auto-theft. The analysis of the contingency table,
limited to the first two factors, provides the following results (see Table 13.9).

http://www.quantlet.org/mdstat/codes/mva/MVAcorrcrime.html


356 13 Correspondence Analysis

Looking at the absolute contributions (not reproduced here, see Exercise 13.6), it appears that
the first axis is robbery (+) versus larceny (-) and auto-theft (-) axis and that the second
factor contrasts assault (-) to auto-theft (+). The dominating states for the first axis are the
North-Eastern States MA (+) and NY (+) constrasting the Western States WY (-)and ID
(-). For the second axis, the differences are seen between the Northern States (MA (+) and
RI (+)) and the Southern States AL (-), MS (-) and AR (-). These results can be clearly
seen in Figure 13.4 where all the states and crimes are reported. The figure also shows in
which states the proportion of a particular crime category is higher or lower than the national
average (the origin).

Biplots

The biplot is a low-dimensional display of a data matrix X where the rows and columns
are represented by points. The interpretation of a biplot is specifically directed towards the
scalar products of lower dimensional factorial variables and is designed to approximately
recover the individual elements of the data matrix in these scalar products. Suppose that
we have a (10 × 5) data matrix with elements xij. The idea of the biplot is to find 10 row
points qi ∈ Rk (k < p, i = 1, . . . , 10) and 5 column points tj ∈ Rk (j = 1, . . . , 5) such that
the 50 scalar products between the row and the column vectors closely approximate the 50
corresponding elements of the data matrix X . Usually we choose k = 2. For example, the
scalar product between q7 and t4 should approximate the data value x74 in the seventh row
and the fourth column. In general, the biplot models the data xij as the sum of a scalar
product in some low-dimensional subspace and a residual “error” term:

xij = q>i tj + eij

=
∑
k

qiktjk + eij. (13.25)

To understand the link between correspondence analysis and the biplot, we need to introduce
a formula which expresses xij from the original data matrix (see (13.3)) in terms of row and
column frequencies. One such formula, known as the “reconstitution formula”, is (13.10):

xij = Eij

1 +

∑R
k=1 λ

1
2
k γikδjk√

xi•x•j
x••

 (13.26)

Consider now the row profiles xij/xi• (the conditional frequencies) and the average row profile
xi•/x••. From (13.26) we obtain the difference between each row profile and this average:

(
xij
xi•
− xi•
x••

)
=

R∑
k=1

λ
1
2
k γik

(√
x•j
xi•x••

)
δjk. (13.27)
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By the same argument we can also obtain the difference between each column profile and
the average column profile:(

xij
x•j
− x•j
x••

)
=

R∑
k=1

λ
1
2
k γik

(√
xi•

x•jx••

)
δjk. (13.28)

Now, if λ1 � λ2 � λ3 . . ., we can approximate these sums by a finite number of K terms
(usually K = 2) using (13.16) to obtain(

xij
x•j
− xi•
x••

)
=

K∑
k=1

(
x•i√
λkx••

rki

)
skj + eij, (13.29)

(
xij
xi•
− x•j
x••

)
=

K∑
k=1

(
x•j√
λkx••

skj

)
rki + e′ij, (13.30)

where eij and e′ij are error terms. (13.30) shows that if we consider displaying the differences
between the row profiles and the average profile, then the projection of the row profile rk
and a rescaled version of the projections of the column profile sk constitute a biplot of these
differences. (13.29) implies the same for the differences between the column profiles and this
average.

Summary
↪→ Correspondence analysis is a factorial decomposition of contingency ta-

bles. The p-dimensional individuals and the n-dimensional variables can
be graphically represented by projecting onto spaces of smaller dimension.

↪→ The practical computation consists of first computing a spectral decom-
position of A−1XB−1X> and B−1X>A−1X which have the same first p
eigenvalues. The graphical representation is obtained by plotting

√
λ1r1

vs.
√
λ2r2 and

√
λ1s1 vs.

√
λ2s2. Both plots maybe displayed in the same

graph taking into account the appropriate orientation of the eigenvectors
ri, sj.

↪→ Correspondence analysis provides a graphical display of the association
measure cij = (xij − Eij)2/Eij.

↪→ Biplot is a low-dimensional display of a data matrix where the rows and
columns are represented by points
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13.4 Exercises

EXERCISE 13.1 Show that the matrices A−1XB−1X> and B−1X>A−1X have an eigenvalue
equal to 1 and that the corresponding eigenvectors are proportional to (1, . . . , 1)>.

EXERCISE 13.2 Verify the relations in (13.8), (13.14) and (13.17).

EXERCISE 13.3 Do a correspondence analysis for the car marks data (Table B.7)! Explain
how this table can be considered as a contingency table.

EXERCISE 13.4 Compute the χ2-statistic of independence for the French baccalauréat data.

EXERCISE 13.5 Prove that C = A−1/2(X −E)B−1/2√x•• and E = ab>

x••
and verify (13.20).

EXERCISE 13.6 Do the full correspondence analysis of the U.S. crime data (Table B.10),
and determine the absolute contributions for the first three axes. How can you interpret the
third axis? Try to identify the states with one of the four regions to which it belongs. Do
you think the four regions have a different behavior with respect to crime?

EXERCISE 13.7 Repeat Exercise 13.6 with the U.S. health data (Table B.16). Only analyze
the columns indicating the number of deaths per state.

EXERCISE 13.8 Consider a (n×n) contingency table being a diagonal matrix X . What do
you expect the factors rk, sk to be like?

EXERCISE 13.9 Assume that after some reordering of the rows and the columns, the con-
tingency table has the following structure:

X =
J1 J2

I1 ∗ 0
I2 0 ∗

That is, the rows Ii only have weights in the columns Ji, for i = 1, 2. What do you expect
the graph of the first two factors to look like?

EXERCISE 13.10 Redo Exercise 13.9 using the following contingency table:

X =

J1 J2 J3

I1 ∗ 0 0
I2 0 ∗ 0
I3 0 0 ∗
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EXERCISE 13.11 Consider the French food data (Table B.6). Given that all of the vari-
ables are measured in the same units (Francs), explain how this table can be considered as
a contingency table. Perform a correspondence analysis and compare the results to those
obtained in the NPCA analysis in Chapter 9.





14 Canonical Correlation Analysis

Complex multivariate data structures are better understood by studying low-dimensional
projections. For a joint study of two data sets, we may ask what type of low-dimensional
projection helps in finding possible joint structures for the two samples. The canonical
correlation analysis is a standard tool of multivariate statistical analysis for discovery and
quantification of associations between two sets of variables.

The basic technique is based on projections. One defines an index (projected multivariate
variable) that maximally correlates with the index of the other variable for each sample sep-
arately. The aim of canonical correlation analysis is to maximize the association (measured
by correlation) between the low-dimensional projections of the two data sets. The canonical
correlation vectors are found by a joint covariance analysis of the two variables. The tech-
nique is applied to a marketing examples where the association of a price factor and other
variables (like design, sportiness etc.) is analysed. Tests are given on how to evaluate the
significance of the discovered association.

14.1 Most Interesting Linear Combination

The associations between two sets of variables may be identified and quantified by canonical
correlation analysis. The technique was originally developed by Hotelling (1935) who ana-
lyzed how arithmetic speed and arithmetic power are related to reading speed and reading
power. Other examples are the relation between governmental policy variables and economic
performance variables and the relation between job and company characteristics.

Suppose we are given two random variables X ∈ Rq and Y ∈ Rp. The idea is to find an
index describing a (possible) link between X and Y . Canonical correlation analysis (CCA)
is based on linear indices, i.e., linear combinations

a>X and b>Y

of the random variables. Canonical correlation analysis searches for vectors a and b such
that the relation of the two indices a>x and b>y is quantified in some interpretable way.
More precisely, one is looking for the “most interesting” projections a and b in the sense that
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they maximize the correlation
ρ(a, b) = ρa>X b>Y (14.1)

between the two indices.

Let us consider the correlation ρ(a, b) between the two projections in more detail. Suppose
that (

X

Y

)
∼
( (

µ

ν

)
,

(
ΣXX

ΣY X

ΣXY

ΣY Y

) )
where the sub-matrices of this covariance structure are given by

Var(X) = ΣXX (q × q)
Var(Y ) = ΣY Y (p× p)

Cov(X, Y ) = E(X − µ)(Y − ν)> = ΣXY = Σ>Y X (q × p).

Using (3.7) and (4.26),

ρ(a, b) =
a>ΣXY b

(a>ΣXXa)1/2 (b>ΣY Y b)1/2
· (14.2)

Therefore, ρ(ca, b) = ρ(a, b) for any c ∈ R+. Given the invariance of scale we may rescale
projections a and b and thus we can equally solve

max
a,b

= a>ΣXY b

under the constraints

a>ΣXXa = 1

b>ΣY Y b = 1.

For this problem, define
K = Σ

−1/2
XX ΣXY Σ

−1/2
Y Y . (14.3)

Recall the singular value decomposition of K(q × p) from Theorem 2.2. The matrix K may
be decomposed as

K = ΓΛ∆>

with

Γ = (γ1, . . . , γk)

∆ = (δ1, . . . , δk) (14.4)

Λ = diag(λ
1/2
1 , . . . , λ

1/2
k )

where by (14.3) and (2.15),

k = rank(K) = rank(ΣXY ) = rank(ΣY X) ,
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and λ1 ≥ λ2 ≥ . . . λk are the nonzero eigenvalues of N1 = KK> and N2 = K>K and γi and
δj are the standardized eigenvectors of N1 and N2 respectively.

Define now for i = 1, . . . , k the vectors

ai = Σ
−1/2
XX γi, (14.5)

bi = Σ
−1/2
Y Y δi, (14.6)

which are called the canonical correlation vectors. Using these canonical correlation vectors
we define the canonical correlation variables

ηi = a>i X (14.7)

ϕi = b>i Y. (14.8)

The quantities ρi = λ
1/2
i for i = 1, . . . , k are called the canonical correlation coefficients.

From the properties of the singular value decomposition given in (14.4) we have

Cov(ηi, ηj) = a>i ΣXXaj = γ>i γj =

{
1 i = j,
0 i 6= j.

(14.9)

The same is true for Cov(ϕi, ϕj). The following theorem tells us that the canonical correlation
vectors are the solution to the maximization problem of (14.1).

THEOREM 14.1 For any given r, 1 ≤ r ≤ k, the maximum

C(r) = max
a,b

a>ΣXY b (14.10)

subject to
a>ΣXXa = 1, b>ΣY Y b = 1

and
a>i ΣXXa = 0 for i = 1, . . . , r − 1

is given by
C(r) = ρr = λ1/2

r

and is attained when a = ar and b = br.

Proof:
The proof is given in three steps.

(i) Fix a and maximize over b, i.e., solve:

max
b

(
a>ΣXY b

)2
= max

b

(
b>ΣY Xa

) (
a>ΣXY b

)
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subject to b>ΣY Y b = 1. By Theorem 2.5 the maximum is given by the largest eigenvalue of
the matrix

Σ−1
Y Y ΣY Xaa

>ΣXY .

By Corollary 2.2, the only nonzero eigenvalue equals

a>ΣXY Σ−1
Y Y ΣY Xa. (14.11)

(ii) Maximize (14.11) over a subject to the constraints of the Theorem. Put γ = Σ
1/2
XXa and

observe that (14.11) equals

γ>Σ
−1/2
XX ΣXY Σ−1

Y Y ΣY XΣ
−1/2
XX γ = γ>K>Kγ.

Thus, solve the equivalent problem

max
γ

γ>N1γ (14.12)

subject to γ>γ = 1, γ>i γ = 0 for i = 1, . . . , r − 1.

Note that the γi’s are the eigenvectors ofN1 corresponding to its first r−1 largest eigenvalues.
Thus, as in Theorem 9.3, the maximum in (14.12) is obtained by setting γ equal to the
eigenvector corresponding to the r-th largest eigenvalue, i.e., γ = γr or equivalently a = ar.
This yields

C2(r) = γ>r N1γr = λrγ
>
r γ = λr.

(iii) Show that the maximum is attained for a = ar and b = br. From the SVD of K we
conclude that Kδr = ρrγr and hence

a>r ΣXY br = γ>r Kδr = ρrγ
>
r γr = ρr.

2

Let (
X
Y

)
∼
((

µ
ν

)
,

(
ΣXX ΣXY

ΣY X ΣY Y

))
.

The canonical correlation vectors
a1 = Σ

−1/2
XX γ1,

b1 = Σ
−1/2
Y Y δ1

maximize the correlation between the canonical variables

η1 = a>1 X,

ϕ1 = b>1 Y.

The covariance of the canonical variables η and ϕ is given in the next theorem.
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THEOREM 14.2 Let ηi and ϕi be the i-th canonical correlation variables (i = 1, . . . , k).
Define η = (η1, . . . , ηk) and ϕ = (ϕ1, . . . , ϕk). Then

Var

(
η
ϕ

)
=

(
Ik Λ
Λ Ik

)
with Λ given in (14.4).

This theorem shows that the canonical correlation coefficients, ρi = λ
1/2
i , are the covariances

between the canonical variables ηi and ϕi and that the indices η1 = a>1 X and ϕ1 = b>1 Y have
the maximum covariance

√
λ1 = ρ1.

The following theorem shows that canonical correlations are invariant w.r.t. linear transfor-
mations of the original variables.

THEOREM 14.3 Let X∗ = U>X + u and Y ∗ = V>Y + v where U and V are nonsingular
matrices. Then the canonical correlations between X∗ and Y ∗ are the same as those between
X and Y . The canonical correlation vectors of X∗ and Y ∗ are given by

a∗i = U−1ai,

b∗i = V−1bi. (14.13)

Summary
↪→ Canonical correlation analysis aims to identify possible links between two

(sub-)sets of variables X ∈ Rq and Y ∈ Rp. The idea is to find indices
a>X and b>Y such that the correlation ρ(a, b) = ρa>Xb>Y is maximal.

↪→ The maximum correlation (under constraints) is attained by setting ai =

Σ
−1/2
XX γi and bi = Σ

−1/2
Y Y δi, where γi and δi denote the eigenvectors of KK>

and K>K, K = Σ
−1/2
XX ΣXY Σ

−1/2
Y Y respectively.

↪→ The vectors ai and bi are called canonical correlation vectors.

↪→ The indices ηi = a>i X and ϕi = b>i Y are called canonical correlation
variables.

↪→ The values ρ1 =
√
λ1, . . . , ρk =

√
λk, which are the square roots of the

nonzero eigenvalues of KK> and K>K, are called the canonical correlation
coefficients. The covariance between the canonical correlation variables is
Cov(ηi, ϕi) =

√
λi, i = 1, . . . , k.
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Summary (continued)

↪→ The first canonical variables, η1 = a>1 X and ϕ1 = b>1 Y , have the maximum
covariance

√
λ1.

↪→ Canonical correlations are invariant w.r.t. linear transformations of the
original variables X and Y .

14.2 Canonical Correlation in Practice

In practice we have to estimate the covariance matrices ΣXX , ΣXY and ΣY Y . Let us apply
the canonical correlation analysis to the car marks data (see Table B.7). In the context of
this data set one is interested in relating price variables with variables such as sportiness,
safety, etc. In particular, we would like to investigate the relation between the two variables
non-depreciation of value and price of the car and all other variables.

EXAMPLE 14.1 We perform the canonical correlation analysis on the data matrices X
and Y that correspond to the set of values {Price, Value Stability} and {Economy, Service,
Design, Sporty car, Safety, Easy handling}, respectively. The estimated covariance matrix
S is given by

Price Value Econ. Serv. Design Sport. Safety Easy h.

S =



1.41 −1.11 | 0.78 −0.71 −0.90 −1.04 −0.95 0.18
−1.11 1.19 | −0.42 0.82 0.77 0.90 1.12 0.11
−−− −−− | − −− −−− −−− −−− −−− −−−

0.78 −0.42 | 0.75 −0.23 −0.45 −0.42 −0.28 0.28
−0.71 0.82 | −0.23 0.66 0.52 0.57 0.85 0.14
−0.90 0.77 | −0.45 0.52 0.72 0.77 0.68 −0.10
−1.04 0.90 | −0.42 0.57 0.77 1.05 0.76 −0.15
−0.95 1.12 | −0.28 0.85 0.68 0.76 1.26 0.22

0.18 0.11 | 0.28 0.14 −0.10 −0.15 0.22 0.32


.

Hence,

SXX =

(
1.41 −1.11
−1.11 1.19

)
, SXY =

(
0.78 −0.71 −0.90 −1.04 −0.95 0.18
−0.42 0.82 0.77 0.90 1.12 0.11

)
,

SY Y =


0.75 −0.23 −0.45 −0.42 −0.28 0.28
−0.23 0.66 0.52 0.57 0.85 0.14
−0.45 0.52 0.72 0.77 0.68 −0.10
−0.42 0.57 0.77 1.05 0.76 −0.15
−0.28 0.85 0.68 0.76 1.26 0.22

0.28 0.14 −0.10 −0.15 0.22 0.32

 .
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It is interesting to see that value stability and price have a negative covariance. This makes
sense since highly priced vehicles tend to loose their market value at a faster pace than
medium priced vehicles.

Now we estimate K = Σ
−1/2
XX ΣXY Σ

−1/2
Y Y by

K̂ = S−1/2
XX SXY S−1/2

Y Y

and perform a singular value decomposition of K̂:

K̂ = GLD> = (g1, g2) diag(`
1/2
1 , `

1/2
2 ) (d1, d2)>

where the `i’s are the eigenvalues of K̂K̂> and K̂>K̂ with rank(K̂) = 2, and gi and di are the

eigenvectors of K̂K̂> and K̂>K̂, respectively. The canonical correlation coefficients are

r1 = `
1/2
1 = 0.98, r2 = `

1/2
2 = 0.89.

The high correlation of the first two canonical variables can be seen in Figure 14.1. The first
canonical variables are

η̂1 = â>1 x = 1.602 x1 + 1.686 x2

ϕ̂1 = b̂>1 y = 0.568 y1 + 0.544 y2 − 0.012 y3 − 0.096 y4 − 0.014 y5 + 0.915 y6.

Note that the variables y1 (economy), y2 (service) and y6 (easy handling) have positive co-
efficients on ϕ̂1. The variables y3 (design), y4 (sporty car) and y5 (safety) have a negative
influence on ϕ̂1.

The canonical variable η1 may be interpreted as a price and value index. The canonical
variable ϕ1 is mainly formed from the qualitative variables economy, service and handling
with negative weights on design, safety and sportiness. These variables may therefore be
interpreted as an appreciation of the value of the car. The sportiness has a negative effect
on the price and value index, as do the design and the safety features.

Testing the canonical correlation coefficients

The hypothesis that the two sets of variables X and Y are uncorrelated may be tested (under
normality assumptions) with Wilk’s likelihood ratio statistic (Gibbins, 1985):

T 2/n =
∣∣I − S−1

Y Y SY XS
−1
XXSXY

∣∣ =
k∏
i=1

(1− li).

This statistic unfortunately has a rather complicated distribution. Bartlett (1939) provides
an approximation for large n:

−{n− (p+ q + 3)/2} log
k∏
i=1

(1− li) ∼ χ2
pq. (14.14)
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car marks data
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Figure 14.1. The first canonical variables for the car marks data.
MVAcancarm.xpl

A test of the hypothesis that only s of the canonical correlation coefficients are non-zero may
be based (asymptotically) on the statistic

−{n− (p+ q + 3)/2} log
k∏

i=s+1

(1− li) ∼ χ2
(p−s)(q−s). (14.15)

EXAMPLE 14.2 Consider Example 14.1 again. There are n = 40 persons that have rated
the cars according to different categories with p = 2 and q = 6. The canonical correlation
coefficients were found to be r1 = 0.98 and r2 = 0.89. Bartlett’s statistic (14.14) is therefore

−{40− (2 + 6 + 3)/2} log{(1− 0.982)(1− 0.892)} = 165.59 ∼ χ2
12

which is highly significant (the 99% quantile of the χ2
12 is 26.23). The hypothesis of no

correlation between the variables X and Y is therefore rejected.

http://www.quantlet.org/mdstat/codes/mva/MVAcancarm.html
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Let us now test whether the second canonical correlation coefficient is different from zero.
We use Bartlett’s statistic (14.15) with s = 1 and obtain

−{40− (2 + 6 + 3)/2} log{(1− 0.892)} = 54.19 ∼ χ2
5

which is again highly significant with the χ2
5 distribution.

Canonical Correlation Analysis with qualitative data

The canonical correlation technique may also be applied to qualitative data. Consider for
example the contingency table N of the French baccalauréat data. The dataset is given
in Table B.8 in Appendix B.8. The CCA cannot be applied directly to this contingency
table since the table does not correspond to the usual data matrix structure. We may wish,
however, to explain the relationship between the row r and column c categories. It is possible
to represent the data in a (n× (r+ c)) data matrix Z = (X ,Y) where n is the total number
of frequencies in the contingency table N and X and Y are matrices of zero-one dummy
variables. More precisely, let

xki =

{
1 if the k-th individual belongs to the i-th row category
0 otherwise

and

ykj =

{
1 if the k-th individual belongs to the j-th column category
0 otherwise

where the indices range from k = 1, . . . , n, i = 1, . . . , r and j = 1, . . . , c. Denote the cell
frequencies by nij so that N = (nij) and note that

x>(i)y(j) = nij,

where x(i) (y(j)) denotes the i-th (j-th) column of X (Y).

EXAMPLE 14.3 Consider the following example where

N =

(
3 2
1 4

)
.

The matrix X is therefore

X =



1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1


,



370 14 Canonical Correlation Analysis

the matrix Y is

Y =



1 0
1 0
1 0
0 1
0 1
1 0
0 1
0 1
0 1
0 1


and the data matrix Z is

Z = (X ,Y) =



1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
0 1 1 0
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1


.

The element n12 of N may be obtained by multiplying the first column of X with the second
column of Y to yield

x>(1)y(2) = 2.

The purpose is to find the canonical variables η = a>x and ϕ = b>y that are maximally
correlated. Note, however, that x has only one non-zero component and therefore an “indi-
vidual” may be directly associated with its canonical variables or score (ai, bj). There will
be nij points at each (ai, bj) and the correlation represented by these points may serve as a
measure of dependence between the rows and columns of N .

Let Z = (X ,Y) denote a data matrix constructed from a contingency table N . Similar to
Chapter 12 define

c = xi• =
c∑
j=1

nij,

d = x•j =
r∑
i=1

nij,
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and define C = diag(c) and D = diag(d). Suppose that xi• > 0 and x•j > 0 for all i and j.
It is not hard to see that

nS = Z>HZ = Z>Z − nz̄z̄> =

(
nSXX nSXY
nSY X nSY Y

)

=

(
n

n− 1

)(
C − n−1cc> N − N̂
N>N̂> D − n−1dd>

)
where N̂ = cd>/n is the estimated value of N under the assumption of independence of the
row and column categories.

Note that

(n− 1)SXX1r = C1r − n−1cc>1r = c− c(n−1c>1r) = c− c(n−1n) = 0

and therefore S−1
XX does not exist. The same is true for S−1

Y Y . One way out of this difficulty
is to drop one column from both X and Y , say the first column. Let c̄ and d̄ denote the
vectors obtained by deleting the first component of c and d.

Define C̄, D̄ and S̄XX , S̄Y Y , S̄XY accordingly and obtain

(nS̄XX)−1 = C̄−1 + n−1
i• 1r1

>
r

(nS̄Y Y )−1 = D̄−1 + n−1
•j 1c1

>
c

so that (14.3) exists. The score associated with an individual contained in the first row
(column) category of N is 0.

The technique described here for purely qualitative data may also be used when the data
is a mixture of qualitative and quantitative characteristics. One has to “blow up” the data
matrix by dummy zero-one values for the qualitative data variables.

Summary
↪→ In practice we estimate ΣXX , ΣXY , ΣY Y by the empirical covariances and

use them to compute estimates `i, gi, di for λi, γi, δi from the SVD of
K̂ = S−1/2

XX SXY S
−1/2
Y Y .

↪→ The signs of the coefficients of the canonical variables tell us the direction
of the influence of these variables.
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14.3 Exercises

EXERCISE 14.1 Show that the eigenvalues of KK> and K>K are identical. (Hint: Use
Theorem 2.6)

EXERCISE 14.2 Perform the canonical correlation analysis for the following subsets of vari-
ables: X corresponding to {price} and Y corresponding to {economy, easy handling} from
the car marks data (Table B.7).

EXERCISE 14.3 Calculate the second canonical variables for Example 14.1. Interpret the
coefficients.

EXERCISE 14.4 Use the SVD of matrix K to show that the canonical variables η1 and η2

are not correlated.

EXERCISE 14.5 Verify that the number of nonzero eigenvalues of matrix K is equal to
rank(ΣXY ).

EXERCISE 14.6 Express the singular value decomposition of matrices K and K> using
eigenvalues and eigenvectors of matrices K>K and KK>.

EXERCISE 14.7 What will be the result of CCA for Y = X?

EXERCISE 14.8 What will be the results of CCA for Y = 2X and for Y = −X?

EXERCISE 14.9 What results do you expect if you perform CCA for X and Y such that
ΣXY = 0? What if ΣXY = Ip?



15 Multidimensional Scaling

One major aim of multivariate data analysis is dimension reduction. For data measured in
Euclidean coordinates, Factor Analysis and Principal Component Analysis are dominantly
used tools. In many applied sciences data is recorded as ranked information. For example,
in marketing, one may record “product A is better than product B”. High-dimensional
observations therefore often have mixed data characteristics and contain relative information
(w.r.t. a defined standard) rather than absolute coordinates that would enable us to employ
one of the multivariate techniques presented so far.

Multidimensional scaling (MDS) is a method based on proximities between objects, subjects,
or stimuli used to produce a spatial representation of these items. Proximities express the
similarity or dissimilarity between data objects. It is a dimension reduction technique since
the aim is to find a set of points in low dimension (typically 2 dimensions) that reflect the
relative configuration of the high-dimensional data objects. The metric MDS is concerned
with such a representation in Euclidean coordinates. The desired projections are found via
an appropriate spectral decomposition of a distance matrix.

The metric MDS solution may result in projections of data objects that conflict with the
ranking of the original observations. The nonmetric MDS solves this problem by iterating
between a monotizing algorithmic step and a least squares projection step. The examples
presented in this chapter are based on reconstructing a map from a distance matrix and on
marketing concerns such as ranking of the outfit of cars.

15.1 The Problem

Multidimensional scaling (MDS) is a mathematical tool that uses proximities between ob-
jects, subjects or stimuli to produce a spatial representation of these items. The proximities
are defined as any set of numbers that express the amount of similarity or dissimilarity be-
tween pairs of objects, subjects or stimuli. In contrast to the techniques considered so far,
MDS does not start from the raw multivariate data matrix X , but from a (n×n) dissimilar-
ity or distance matrix, D, with the elements δij and dij respectively. Hence, the underlying
dimensionality of the data under investigation is in general not known.
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Figure 15.1. Metric MDS solution for the inter-city road distances.
MVAMDScity1.xpl

MDS is a data reduction technique because it is concerned with the problem of finding a set
of points in low dimension that represents the “configuration” of data in high dimension.
The “configuration” in high dimension is represented by the distance or dissimilarity matrix
D.

MDS-techniques are often used to understand how people perceive and evaluate certain
signals and information. For instance, political scientists use MDS techniques to understand
why political candidates are perceived by voters as being similar or dissimilar. Psychologists
use MDS to understand the perceptions and evaluations of speech, colors and personality
traits, among other things. Last but not least, in marketing researchers use MDS techniques
to shed light on the way consumers evaluate brands and to assess the relationship between
product attributes.

In short, the primary purpose of all MDS-techniques is to uncover structural relations or
patterns in the data and to represent it in a simple geometrical model or picture. One
of the aims is to determine the dimension of the model (the goal is a low-dimensional,

http://www.quantlet.org/mdstat/codes/mva/MVAMDScity1.html
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Figure 15.2. Metric MDS solution for the inter-city road distances after
reflection and 90◦ rotation. MVAMDScity2.xpl

easily interpretable model) by finding the d-dimensional space in which there is maximum
correspondence between the observed proximities and the distances between points measured
on a metric scale.

Multidimensional scaling based on proximities is usually referred to as metric MDS, whereas
the more popular nonmetric MDS is used when the proximities are measured on an ordinal
scale.

EXAMPLE 15.1 A good example of how MDS works is given by Dillon and Goldstein (1984)
(Page 108). Suppose one is confronted with a map of Germany and asked to measure, with
the use of a ruler and the scale of the map, some inter-city distances. Admittedly this is
quite an easy exercise. However, let us now reverse the problem: One is given a set of
distances, as in Table 15.1, and is asked to recreate the map itself. This is a far more
difficult exercise, though it can be solved with a ruler and a compass in two dimensions.
MDS is a method for solving this reverse problem in arbitrary dimensions. In Figure 15.2

http://www.quantlet.org/mdstat/codes/mva/MVAMDScity2.html
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Berlin Dresden Hamburg Koblenz Munich Rostock
Berlin 0 214 279 610 596 237
Dresden 0 492 533 496 444
Hamburg 0 520 772 140
Koblenz 0 521 687
Munich 0 771
Rostock 0

Table 15.1. Inter-city distances.

Audi 100 BMW 5 Citroen AX Ferrari . . .
Audi 100 0 2.232 3.451 3.689 . . .
BMW 5 2.232 0 5.513 3.167 . . .
Citroen AX 3.451 5.513 0 6.202 . . .
Ferrari 3.689 3.167 6.202 0 . . .
...

...
...

...
...

. . .

Table 15.2. Dissimilarities for cars.

you can see the graphical representation of the metric MDS solution to Table 15.1 after
rotating and reflecting the points representing the cities. Note that the distances given in
Table 15.1 are road distances that in general do not correspond to Euclidean distances. In
real-life applications, the problems are exceedingly more complex: there are usually errors in
the data and the dimensionality is rarely known in advance.

EXAMPLE 15.2 A further example is given in Table 15.2 where consumers noted their
impressions of the dissimilarity of certain cars. The dissimilarities in this table were in
fact computed from Table B.7 as Euclidean distances

dij =

√√√√ 8∑
l=1

(xil − xjl)2.

MDS produces Figure 15.3 which shows a nonlinear relationship for all the cars in the pro-
jection. This enables us to build a nonlinear (quadratic) index with the Wartburg and the
Trabant on the left and the Ferrari and the Jaguar on the right. We can construct an order
or ranking of the cars based on the subjective impression of the consumers.

What does the ranking describe? The answer is given by Figure 15.4 which shows the cor-
relation between the MDS projection and the variables. Apparently, the first MDS direction
is highly correlated with service(-), value(-), design(-), sportiness(-), safety(-) and price(+).
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Figure 15.3. MDS solution on the car data. MVAmdscarm.xpl

We can interpret the first direction as the price direction since a bad mark in price (“high
price”) obviously corresponds with a good mark, say, in sportiness (“very sportive”). The
second MDS direction is highly positively correlated with practicability. We observe from this
data an almost orthogonal relationship between price and practicability.

In MDS a map is constructed in Euclidean space that corresponds to given distances. Which
solution can we expect? The solution is determined only up to rotation, reflection and shifts.
In general, if P1, ..., Pn with coordinates xi = (xi1, ..., xip)

> for i = 1, ..., n represents a MDS
solution in p dimensions, then yi = Axi + b with an orthogonal matrix A and a shift vector
b also represents a MDS solution. A comparison of Figure 15.1 and Figure 15.2 illustrates
this fact.

Solution methods that use only the rank order of the distances are termed nonmetric methods
of MDS. Methods aimed at finding the points Pi directly from a distance matrix like the one
in the Table 15.2 are called metric methods.

http://www.quantlet.org/mdstat/codes/mva/MVAmdscarm.html
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Correlations MDS/Variables
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Figure 15.4. Correlation between the MDS direction and the variables.
MVAmdscarm.xpl

Summary
↪→ MDS is a set of techniques which use distances or dissimilarities to project

high-dimensional data into a low-dimensional space essential in under-
standing respondents perceptions and evaluations for all sorts of items.

↪→ MDS starts with a (n×n) proximity matrix D consisting of dissimilarities
δi,j or distances dij.

↪→ MDS is an explorative technique and focuses on data reduction.

↪→ The MDS-solution is indeterminate with respect to rotation, reflection
and shifts.

↪→ The MDS-techniques are divided into metric MDS and nonmetric MDS.

http://www.quantlet.org/mdstat/codes/mva/MVAmdscarm.html


15.2 Metric Multidimensional Scaling 379

15.2 Metric Multidimensional Scaling

Metric MDS begins with a (n×n) distance matrix D with elements dij where i, j = 1, . . . , n.
The objective of metric MDS is to find a configuration of points in p-dimensional space
from the distances between the points such that the coordinates of the n points along the p
dimensions yield a Euclidean distance matrix whose elements are as close as possible to the
elements of the given distance matrix D.

15.2.1 The Classical Solution

The classical solution is based on a distance matrix that is computed from a Euclidean
geometry.

DEFINITION 15.1 A (n × n) distance matrix D = (dij) is Euclidean if for some points
x1, . . . , xn ∈ Rp; d2

ij = (xi − xj)>(xi − xj).

The following result tells us whether a distance matrix is Euclidean or not.

THEOREM 15.1 Define A = (aij), aij = −1
2
d2
ij and B = HAH where H is the centering

matrix. D is Euclidean if and only if B is positive semidefinite. If D is the distance matrix
of a data matrix X , then B = HXX TH. B is called the inner product matrix.

Recovery of coordinates

The task of MDS is to find the original Euclidean coordinates from a given distance matrix.
Let the coordinates of n points in a p dimensional Euclidean space be given by xi (i =
1, . . . , n) where xi = (xi1, . . . , xip)

>. Call X = (x1, . . . , xn)> the coordinate matrix and
assume x = 0. The Euclidean distance between the i-th and j-th points is given by:

d2
ij =

p∑
k=1

(xik − xjk)2. (15.1)

The general bij term of B is given by:

bij =

p∑
k=1

xikxjk = x>i xj. (15.2)

It is possible to derive B from the known squared distances dij, and then from B the unknown
coordinates.

d2
ij = x>i xi + x>j xj − 2x>i xj

= bii + bjj − 2bij. (15.3)
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Centering of the coordinate matrix X implies that
∑n

i=1 bij = 0. Summing (15.3) over i,
over j, and over i and j, we find:

1

n

n∑
i=1

d2
ij =

1

n

n∑
i=1

bii + bjj

1

n

n∑
j=1

d2
ij = bii +

1

n

n∑
j=1

bjj

1

n2

n∑
i=1

n∑
j=1

d2
ij =

2

n

n∑
i=1

bii. (15.4)

Solving (15.3) and (15.4) gives:

bij = −1

2
(d2
ij − d2

i• − d2
•j + d2

••). (15.5)

With aij = −1
2
d2
ij, and

ai• =
1

n

n∑
j=1

aij

a•j =
1

n

n∑
i=1

aij

a•• =
1

n2

n∑
i=1

n∑
j=1

aij (15.6)

we get:
bij = aij − ai• − a•j + a••. (15.7)

Define the matrix A as (aij), and observe that:

B = HAH. (15.8)

The inner product matrix B can be expressed as:

B = XX>, (15.9)

where X = (x1, . . . , xn)> is the (n× p) matrix of coordinates. The rank of B is then

rank(B) = rank(XX>) = rank(X ) = p. (15.10)

As required in Theorem 15.1 the matrix B is symmetric, positive semidefinite and of rank
p, and hence it has p non-negative eigenvalues and n − p zero eigenvalues. B can now be
written as:

B = ΓΛΓ> (15.11)
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where Λ = diag(λ1, . . . , λp), the diagonal matrix of the eigenvalues of B, and Γ = (γ1, . . . , γp),
the matrix of corresponding eigenvectors. Hence the coordinate matrix X containing the
point configuration in Rp is given by:

X = ΓΛ
1
2 . (15.12)

How many dimensions?

The number of desired dimensions is small in order to provide practical interpretations,
and is given by the rank of B or the number of nonzero eigenvalues λi. If B is positive
semidefinite, then the number of nonzero eigenvalues gives the number of eigenvalues required
for representing the distances dij.

The proportion of variation explained by p dimensions is given by∑p
i=1 λi∑n−1
i=1 λi

. (15.13)

It can be used for the choice of p. If B is not positive semidefinite we can modify (15.13) to∑p
i=1 λi∑

(“positive eigenvalues”)
. (15.14)

In practice the eigenvalues λi are almost always unequal to zero. To be able to represent the
objects in a space with dimensions as small as possible we may modify the distance matrix
to:

D∗ = d∗ij (15.15)

with

d∗ij =

{
0 ; i = j
dij + e ≥ 0 ; i 6= j

(15.16)

where e is determined such that the inner product matrix B becomes positive semidefinite
with a small rank.

Similarities

In some situations we do not start with distances but with similarities. The standard trans-
formation (see Chapter 11) from a similarity matrix C to a distance matrix D is:

dij = (cii − 2cij + cjj)
1
2 . (15.17)

THEOREM 15.2 If C ≤ 0, then the distance matrix D defined by (15.17) is Euclidean with
centered inner product matrix B = HCH.



382 15 Multidimensional Scaling

Relation to Factorial Analysis

Suppose that the (n × p) data matrix X is centered so that X>X equals a multiple of the
covariance matrix nS. Suppose that the p eigenvalues λ1, . . . , λp of nS are distinct and non
zero. Using the duality Theorem 8.4 of factorial analysis we see that λ1, . . . , λp are also
eigenvalues of XX>= B when D is the Euclidean distance matrix between the rows of X .
The k-dimensional solution to the metric MDS problem is thus given by the k first principal
components of X .

Optimality properties of the classical MDS solution

Let X be a (n × p) data matrix with some inter-point distance matrix D. The objective
of MDS is thus to find X1, a representation of X in a lower dimensional Euclidean space
R
k whose inter-point distance matrix D1 is not far from D. Let L = (L1,L2) be a (p × p)

orthogonal matrix where L1 is (p × k). X1 = XL1 represents a projection of X on the
column space of L1; in other words, X1 may be viewed as a fitted configuration of X in Rk.
A measure of discrepancy between D and D1 = (d

(1)
ij ) is given by

φ =
n∑

i,j=1

(dij − d(1)
ij )2. (15.18)

THEOREM 15.3 Among all projections XL1 of X onto k-dimensional subspaces of Rp the
quantity φ in (15.18) is minimized when X is projected onto its first k principal factors.

We see therefore that the metric MDS is identical to principal factor analysis as we have
defined it in Chapter 8.

Summary
↪→ Metric MDS starts with a distance matrix D.

↪→ The aim of metric MDS is to construct a map in Euclidean space that
corresponds to the given distances.
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Summary (continued)

↪→ A practical algorithm is given as:

1. start with distances dij

2. define A = −1
2
d2
ij

3. put B = (aij − ai• − a•j + a••)

4. find the eigenvalues λ1, . . . , λp and the associated eigenvectors
γ1, . . . , γp where the eigenvectors are normalized so that γ>i γi = λi.

5. Choose an appropriate number of dimensions p (ideally p = 2)

6. The coordinates of the n points in the Euclidean space are given by
xij = γijλ

1/2
j for i = 1, . . . , n and j = 1, . . . , p.

↪→ Metric MDS is identical to principal components analysis.

15.3 Nonmetric Multidimensional Scaling

The object of nonmetric MDS, as well as of metric MDS, is to find the coordinates of
the points in p-dimensional space, so that there is a good agreement between the observed
proximities and the inter-point distances. The development of nonmetric MDS was motivated
by two main weaknesses in the metric MDS (Fahrmeir and Hamerle, 1984, Page 679):

1. the definition of an explicit functional connection between dissimilarities and distances
in order to derive distances out of given dissimilarities, and

2. the restriction to Euclidean geometry in order to determine the object configurations.

The idea of a nonmetric MDS is to demand a less rigid relationship between the dissimilarities
and the distances. Suppose that an unknown monotonic increasing function f ,

dij = f(δij), (15.19)

is used to generate a set of distances dij as a function of given dissimilarities δij. Here f has
the property that if δij < δrs, then f(δij) < f(δrs). The scaling is based on the rank order
of the dissimilarities. Nonmetric MDS is therefore ordinal in character.

The most common approach used to determine the elements dij and to obtain the coordi-
nates of the objects x1, x2, . . . , xn given only rank order information is an iterative process
commonly referred to as the Shepard-Kruskal algorithm.
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Monotonic Regression
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Figure 15.5. Ranks and distances. MVAMDSnonmstart.xpl

15.3.1 Shepard-Kruskal algorithm

In a first step, called the initial phase, we calculate Euclidean distances d
(0)
ij from an arbitrar-

ily chosen initial configuration X0 in dimension p∗, provided that all objects have different
coordinates. One might use metric MDS to obtain these initial coordinates. The second
step or nonmetric phase determines disparities d̂

(0)
ij from the distances d

(0)
ij by constructing

a monotone regression relationship between the d
(0)
ij ’s and δij’s, under the requirement that

if δij < δrs, then d̂
(0)
ij ≤ d̂

(0)
rs . This is called the weak monotonicity requirement. To ob-

tain the disparities d̂
(0)
ij , a useful approximation method is the pool-adjacent violators (PAV)

algorithm (see Figure 15.6). Let

(i1, j1) > (i2, j2) > ... > (ik, jk) (15.20)

be the rank order of dissimilarities of the k = n(n− 1)/2 pairs of objects. This corresponds
to the points in Figure 15.5. The PAV algorithm is described as follows: “beginning with the
lowest ranked value of δij, the adjacent d

(0)
ij values are compared for each δij to determine if

http://www.quantlet.org/mdstat/codes/mva/MVAMDSnonmstart.html
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Pool-Adjacent-Violator-Algorithm
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Figure 15.6. Pool-adjacent violators algorithm. MVAMDSpooladj.xpl

they are monotonically related to the δij’s. Whenever a block of consecutive values of d
(0)
ij

are encountered that violate the required monotonicity property the d
(0)
ij values are averaged

together with the most recent non-violator d
(0)
ij value to obtain an estimator. Eventually this

value is assigned to all points in the particular block”.

In a third step, called the metric phase, the spatial configuration of X0 is altered to obtain
X1. From X1 the new distances d

(1)
ij can be obtained which are more closely related to the

disparities d̂
(0)
ij from step two.

EXAMPLE 15.3 Consider a small example with 4 objects based on the car marks data set.
Our aim is to find a representation with p∗ = 2 via MDS. Suppose that we choose as an
initial configuration of X0 the coordinates given in Table 15.6. The corresponding distances
dij =

√
(xi − xj)>(xi − xj) are calculated in Table 15.7

A plot of the dissimilarities of Table 15.7 against the distance yields Figure 15.8. This
relation is not satisfactory since the ranking of the δij did not result in a monotone relation

http://www.quantlet.org/mdstat/codes/mva/MVAMDSpooladj.html
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j 1 2 3 4
i Mercedes Jaguar Ferrari VW
1 Mercedes -
2 Jaguar 3 -
3 Ferrari 2 1 -
4 VW 5 4 6 -

Table 15.5. Dissimilarities δij for car marks.

i xi1 xi2
1 Mercedes 3 2
2 Jaguar 2 7
3 Ferrari 1 3
4 VW 10 4

Table 15.6. Initial coordinates for MDS.

i, j dij rank(dij) δij
1,2 5.1 3 3
1,3 2.2 1 2
1,4 7.3 4 5
2,3 4.1 2 1
2,4 8.5 5 4
3,4 9.1 6 6

Table 15.7. Ranks and distances.

of the corresponding distances dij. We apply therefore the PAV algorithm.

The first violator of monotonicity is the second point (1, 3). Therefore we average the dis-
tances d13 and d23 to obtain the disparities

d̂13 = d̂23 =
d13 + d23

2
=

2.2 + 4.1

2
= 3.17.

Applying the same procedure to (2, 4) and (1, 4) we obtain d̂24 = d̂14 = 7.9. The plot of δij
versus the disparities d̂ij represents a monotone regression relationship.

In the initial configuration (Figure 15.7), the third point (Ferrari) could be moved so that
the distance to object 2 (Jaguar) is reduced. This procedure however also alters the distance
between objects 3 and 4. Care should be given when establishing a monotone relation between
δij and dij.
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Initial Configuration
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Figure 15.7. Initial configuration of the MDS of the car data.
MVAnmdscar1.xpl

In order to assess how well the derived configuration fits the given dissimilarities Kruskal
suggests a measure called STRESS1 that is given by

STRESS1 =

(∑
i<j(dij − d̂ij)2∑

i<j d
2
ij

) 1
2

. (15.21)

An alternative stress measure is given by

STRESS2 =

(∑
i<j(dij − d̂ij)2∑
i<j(dij − d)2

) 1
2

, (15.22)

where d denotes the average distance.

http://www.quantlet.org/mdstat/codes/mva/MVAnmdscar1.html
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Dissimilarities and distances
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Figure 15.8. Scatterplot of dissimilarities against distances.
MVAnmdscar2.xpl

EXAMPLE 15.4 The Table 15.8 presents the STRESS calculations for the car example.

The average distance is d = 36.4/6 = 6.1. The corresponding STRESS measures are:

STRESS1 =
√

2.6/256 = 0.1

STRESS2 =
√

2.6/36.4 = −0.27.

The goal is to find a point configuration that balances the effects STRESS and non mono-
tonicity. This is achieved by an iterative procedure. More precisely, one defines a new
position of object i relative to object j by

xNEWil = xil + α

(
1− d̂ij

dij

)
(xjl − xil), l = 1, . . . , p∗. (15.23)

http://www.quantlet.org/mdstat/codes/mva/MVAnmdscar2.html
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(i, j) δij dij d̂ij (dij − d̂ij)2 d2
ij (dij − d)2

(2,3) 1 4.1 3.15 0.9 16.8 3.8
(1,3) 2 2.2 3.15 0.9 4.8 14.8
(1,2) 3 5.1 5.1 0 26.0 0.9
(2,4) 4 8.5 7.9 0.4 72.3 6.0
(1,4) 5 7.3 7.9 0.4 53.3 1.6
(3,4) 6 9.1 9.1 0 82.8 9.3
Σ 36.3 2.6 256.0 36.4

Table 15.8. STRESS calculations for car marks example.

Here α denotes the step width of the iteration.

By (15.23) the configuration of object i is improved relative to object j. In order to obtain
an overall improvement relative to all remaining points one uses:

xNEWil = xil +
α

n− 1

n∑
j=1,j 6=i

(
1− d̂ij

dij

)
(xjl − xil), l = 1, . . . , p∗. (15.24)

The choice of step width α is crucial. Kruskal proposes a starting value of α = 0.2. The
iteration is continued by a numerical approximation procedure, such as steepest descent or
the Newton-Raphson procedure.

In a fourth step, the evaluation phase, the STRESS measure is used to evaluate whether
or not its change as a result of the last iteration is sufficiently small that the procedure is
terminated. At this stage the optimal fit has been obtained for a given dimension. Hence,
the whole procedure needs to be carried out for several dimensions.

EXAMPLE 15.5 Let us compute the new point configuration for i = 3 (Ferrari). The initial
coordinates from Table 15.6 are

x31 = 1 and x32 = 3.

Applying (15.24) yields (for α = 3):

xNEW31 = 1 +
3

4− 1

4∑
j=1,j 6=3

(
1− d̂31

d31

)
(xj1 − 1)

= 1 +

(
1− 3.15

2.2

)
(3− 1) +

(
1− 3.15

2.2

)
(2− 1) +

(
1− 9.1

9.1

)
(10− 1)

= 1− 0.86 + 0.23 + 0

= 0.37.

Similarly we obtain xNEW32 = 4.36.
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First iteration for Ferrari
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Figure 15.9. First iteration for Ferrari. MVAnmdscar3.xpl

To find the appropriate number of dimensions, p∗, a plot of the minimum STRESS value as
a function of the dimensionality is made. One possible criterion in selecting the appropriate
dimensionality is to look for an elbow in the plot. A rule of thumb that can be used to
decide if a STRESS value is sufficiently small or not is provided by Kruskal:

S > 20%, poor; S = 10%, fair; S < 5%, good; S = 0, perfect. (15.25)

Summary
↪→ Nonmetric MDS is only based on the rank order of dissimilarities.

↪→ The object of nonmetric MDS is to create a spatial representation of the
objects with low dimensionality.

http://www.quantlet.org/mdstat/codes/mva/MVAnmdscar3.html
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Summary (continued)

↪→ A practical algorithm is given as:

1. Choose an initial configuration.

2. Find dij from the configuration.

3. Fit d̂ij, the disparities, by the PAV algorithm.

4. Find a new configuration Xn+1 by using the steepest descent.

5. Go to 2.

15.4 Exercises

EXERCISE 15.1 Apply the MDS method to the Swiss bank note data. What do you expect
to see ?

EXERCISE 15.2 Using (15.6), show that (15.7) can be written in the form (15.2).

EXERCISE 15.3 Show that

1. bii = a•• − 2ai•; bij = aij − ai• − a•j + a••; i 6= j

2. B =
∑p

i=1 xix
>
i

3.
∑n

i=1 λi =
∑n

i=1 bii = 1
2n
∑n
i,j=1 d

2
ij

.

EXERCISE 15.4 Redo a careful analysis of the car marks data based on the following dis-
similarity matrix:

j 1 2 3 4
i Nissan Wartburg BMW Audi
1 Nissan -
2 Wartburg 2 -
3 BMW 4 6 -
4 Audi 3 5 1 -
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EXERCISE 15.5 Apply the MDS method to the U.S. health data. Is the result in accordance
with the geographic location of the U.S. states?

EXERCISE 15.6 Redo Exercise 15.5 with the U.S. crime data.

EXERCISE 15.7 Perform the MDS analysis on the Athletic Records data in Appendix B.18.
Can you see which countries are “close to each other”?



16 Conjoint Measurement Analysis

Conjoint Measurement Analysis plays an important role in marketing. In the design of new
products it is valuable to know which components carry what kind of utility for the customer.
Marketing and advertisement strategies are based on the perception of the new product’s
overall utility. It can be valuable information for a car producer to know whether a change in
sportiness or a change in safety equipment is perceived as a higher increase in overall utility.
The Conjoint Measurement Analysis is a method for attributing utilities to the components
(part worths) on the basis of ranks given to different outcomes (stimuli) of the product. An
important assumption is that the overall utility is decomposed as a sum of the utilities of
the components.

In Section 16.1 we introduce the idea of Conjoint Measurement Analysis. We give two
examples from the food and car industries. In Section 16.2 we shed light on the problem of
designing questionnaires for ranking different product outcomes. In Section 16.3 we see that
the metric solution of estimating the part-worths is given by solving a least squares problem.
The estimated preference ordering may be nonmonotone. The nonmetric solution strategy
takes care of this inconsistency by iterating between a least squares solution and the pool
adjacent violators algorithm.

16.1 Introduction

In the design and perception of new products it is important to specify the contributions
made by to different facets or elements. The overall utility and acceptance of such a new
product can then be estimated and understood as a possibly additive function of the elemen-
tary utilities. Examples are the design of cars, a food article or the program of a political
party. For a new type of margarine one may ask whether a change in taste or presentation
will enhance the overall perception of the product. The elementary utilities are here the
presentation style and the taste (e.g., calory content). For a party program one may want to
investigate whether a stronger ecological or a stronger social orientation gives a better overall
profile of the party. For the marketing of a new car one may be interested in whether this new
car should have a stronger active safety equipment or a more sporty note or combinations
of both.
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In Conjoint Measurement Analysis one assumes that the overall utility can be explained as
an additive decomposition of the utilities of different elements. In a sample of questionnaires
people ranked the product types and thus revealed their preference orderings. The aim is to
find the decomposition of the overall utility on the basis of observed data and to interpret
the elementary or marginal utilities.

EXAMPLE 16.1 A car producer plans to introduce a new car with features that appeal to the
customer and that may help in promoting future sales. The new elements that are considered
are safety components (airbag component just for the driver or also for the second front seat)
and a sporty look (leather steering wheel vs. leather interior). The car producer has thus 4
lines of cars.

car 1: basic safety equipment and low sportiness
car 2: basic safety equipment and high sportiness
car 3: high safety equipment and low sportiness
car 4: high safety equipment and high sportiness

For the car producer it is important to rank these cars and to find out customers’ attitudes
toward a certain product line in order to develop a suitable marketing scheme. A tester may
rank the cars as follows:

car 1 2 3 4
ranking 1 2 4 3

Table 16.1. Tester’s ranking of cars.

The elementary utilities here are the safety equipment and the level of sportiness. Conjoint
Measurement Analysis aims at explaining the rank order given by the test person as a function
of these elementary utilities.

EXAMPLE 16.2 A food producer plans to create a new margarine and varies the product
characteristics “calories” (low vs. high) and “presentation” (a plastic pot vs. paper package)
(Backhaus, Erichson, Plinke and Weiber, 1996). We can view this in fact as ranking four
products.

product 1: low calories and plastic pot
product 2: low calories and paper package
product 3: high calories and plastic pot
product 4: high calories and paper package
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These four fictive products may now be ordered by a set of sample testers as described in
Table 16.2.

Product 1 2 3 4
ranking 3 4 1 2

Table 16.2. Tester’s ranking of margarine.

The Conjoint Measurement Analysis aims to explain such a preference ranking by attributing
part-worths to the different elements of the product. The part-worths are the utilities of the
elementary components of the product.

In interpreting the part-worths one may find that for a test person one of the elements has
a higher value or utility. This may lead to a new design or to the decision that this utility
should be emphasized in advertisement schemes.

Summary
↪→ Conjoint Measurement Analysis is used in the design of new products.

↪→ Conjoint Measurement Analysis tries to identify part-worth utilities that
contribute to an overall utility.

↪→ The part-worths enter additively into an overall utility.

↪→ The interpretation of the part-worths gives insight into the perception and
acceptance of the product.

16.2 Design of Data Generation

The product is defined through the properties of the components. A stimulus is defined as
a combination of the different components. Examples 16.1 and 16.2 had four stimuli each.
In the margarine example they were the possible combinations of the factors X1 (calories)
and X2 (presentation). If a product property such as

X3(usage) =


1 bread
2 cooking
3 universal

is added, then there are 3 · 2 · 2 = 12 stimuli.
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For the automobile Example 16.1 additional characteristics may be engine power and the
number of doors. Suppose that the engines offered for the new car have 50, 70, 90 kW and
that the car may be produced in 2-, 4-, or 5-door versions. These categories may be coded
as

X3(power of engine) =


1 50 kW
2 70 kW
3 90 kW

and

X4(doors) =


1 2 doors
2 4 doors
3 5 doors

.

Both X3 and X4 have three factor levels each, whereas the first two factors X1 (safety) and
X2 (sportiness) have only two levels. Altogether 2 · 2 · 3 · 3 = 36 stimuli are possible. In a
questionnaire a tester would have to rank all 36 different products.

The profile method asks for the utility of each stimulus. This may be time consuming and
tiring for a test person if there are too many factors and factor levels. Suppose that there
are 6 properties of components with 3 levels each. This results in 36 = 729 stimuli (i.e., 729
different products) that a tester would have to rank.

The two factor method is a simplification and considers only two factors simultaneously. It
is also called trade-off analysis. The idea is to present just two stimuli at a time and then to
recombine the information. Trade-off analysis is performed by defining the trade-off matrices
corresponding to stimuli of two factors only.

The trade-off matrices for the levels X1, X2 and X3 from the margarine Example 16.2 are
given below.

X3 X1

1 1 2
2 1 2
3 1 2

X3 X2

1 1 2
2 1 2
3 1 2

X1 X2

1 1 2
2 1 2

Table 16.4. Trade-off matrices for margarine.
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The trade-off matrices for the new car outfit are as follows:

X4 X3

1 1 2 3
2 1 2 3
3 1 2 3

X4 X2

1 1 2
2 1 2
3 1 2

X4 X1

1 1 2
2 1 2
3 1 2

X3 X2

1 1 2
2 1 2
3 1 2

X3 X1

1 1 2
2 1 2
3 1 2

X2 X1

1 1 2
2 1 2

Table 16.5. Trade-off matrices for car design.

The choice between the profile method and the trade-off analysis should be guided by con-
sideration of the following aspects:

1. requirements on the test person,

2. time consumption,

3. product perception.

The first aspect relates to the ability of the test person to judge the different stimuli. It is
certainly an advantage of the trade-off analysis that one only has to consider two factors
simultaneously. The two factor method can be carried out more easily in a questionnaire
without an interview.

The profile method incorporates the possibility of a complete product perception since the
test person is not confronted with an isolated aspect (2 factors) of the product. The stimuli
may be presented visually in its final form (e.g., as a picture). With the number of levels
and properties the number of stimuli rise exponentially with the profile method. The time
to complete a questionnaire is therefore a factor in the choice of method.

In general the product perception is the most important aspect and is therefore the profile
method that is used the most. The time consumption aspect speaks for the trade-off analysis.
There exist, however, clever strategies on selecting representation subsets of all profiles that
bound the time investment. We therefore concentrate on the profile method in the following.
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Summary
↪→ A stimulus is a combination of different properties of a product.

↪→ Conjoint measurement analysis is based either on a list of all factors (pro-
file method) or on trade-off matrices (two factor method).

↪→ Trade-off matrices are used if there are too many factor levels.

↪→ Presentation of trade-off matrices makes it easier for testers since only two
stimuli have to be ranked at a time.

16.3 Estimation of Preference Orderings

On the basis of the reported preference values for each stimulus conjoint analysis determines
the part-worths. Conjoint analysis uses an additive model of the form

Yk =
J∑
j=1

Lj∑
l=1

βjlI(Xj = xjl) + µ, for k = 1, . . . , K and ∀ j
Lj∑
l=1

βjl = 0. (16.1)

Xj (j = 1, . . . , J) denote the factors, xjl (l = 1, . . . , Lj) are the levels of each factor Xj and
the coefficients βjl are the part-worths. The constant µ denotes an overall level and Yk is
the observed preference for each stimulus and the total number of stimuli are:

K =
J∏
j=1

Lj.

Equation (16.1) is without an error term for the moment. In order to explain how (16.1) may
be written in the standard linear model form we first concentrate on J = 2 factors. Suppose
that the factors engine power and airbag safety equipment have been ranked as follows:

airbag
1 2

50 kW 1 1 3
engine 70 kW 2 2 6

90 kW 3 4 5

There are K = 6 preferences altogether. Suppose that the stimuli have been sorted so that
Y1 corresponds to engine level 1 and airbag level 1, Y2 corresponds to engine level 1 and
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airbag level 2, and so on. Then model (16.1) reads:

Y1 = β11 + β21 + µ
Y2 = β11 + β22 + µ
Y3 = β12 + β21 + µ
Y4 = β12 + β22 + µ
Y5 = β13 + β21 + µ
Y6 = β13 + β22 + µ.

Now we would like to estimate the part-worths βjl.

EXAMPLE 16.3 In the margarine example let us consider the part-worths of X1 = usage
and X2 = calories. We have x11 = 1, x12 = 2, x13 = 3, x21 = 1 and x22 = 2. (We
momentarily re-labeled the factors: X3 became X1). Hence L1 = 3 and L2 = 2. Suppose that
a person has ranked the six different products as in Table 16.7.

X2 (calories)
low high
1 2

bread 1 2 1
X1 (usage) cooking 2 3 4

universal 3 6 5

Table 16.7. Ranked products.

If we order the stimuli as follows:

Y1 = Utility (X1 = 1 ∧X2 = 1)
Y2 = Utility (X1 = 1 ∧X2 = 2)
Y3 = Utility (X1 = 2 ∧X2 = 1)
Y4 = Utility (X1 = 2 ∧X2 = 2)
Y5 = Utility (X1 = 3 ∧X2 = 1)
Y6 = Utility (X1 = 3 ∧X2 = 2) ,

we obtain from equation (16.1) the same decomposition as above:

Y1 = β11 + β21 + µ
Y2 = β11 + β22 + µ
Y3 = β12 + β21 + µ
Y4 = β12 + β22 + µ
Y5 = β13 + β21 + µ
Y6 = β13 + β22 + µ.
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X2 (calories)
low high
1 2 p̄x1• β1l

bread 1 2 1 1.5 −2
X1 (usage) cooking 2 3 4 3.5 0

universal 3 6 5 5.5 2
p̄x2• 3.66 3.33 3.5
β2l 0.16 −0.16

Table 16.9. Metric solution for Table 16.7.

Our aim is to estimate the part-worths βjl as well as possible from a collection of tables like
Table 16.7 that have been generated by a sample of test persons. First, the so-called metric
solution to this problem is discussed and then a non-metric solution.

Metric Solution

The problem of conjoint measurement analysis can be solved by the technique of Analysis
of Variance. An important assumption underlying this technique is that the “distance”
between any two adjacent preference orderings corresponds to the same difference in utility.
That is, the difference in utility between the products ranked 1st and 2nd is the same as the
difference in utility between the products ranked 4th and 5th. Put differently, we treat the
ranking of the products—which is a cardinal variable—as if it were a metric variable.

Introducing a mean utility µ equation (16.1) can be rewritten. The mean utility in the above
Example 16.3 is µ = (1 + 2 + 3 + 4 + 5 + 6)/6 = 21/6 = 3.5. In order to check the deviations
of the utilities from this mean, we enlarge Table 16.7 by the mean utility p̄xj• , given a certain
level of the other factor. The metric solution for the car example is given in Table 16.8:

X2 (airbags)
1 2 p̄x1• β1l

50 kW 1 1 3 2 −1.5
X1 (engine) 70 kW 2 2 6 4 −0.5

90 kW 3 4 5 4.5 1.5
p̄x2• 2.33 4.66 3.5
β2l −1.16 1.16

Table 16.8. Metric solution for car example.
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Stimulus Yk Ŷk Yk − Ŷk (Yk − Ŷk)2

1 2 1.66 0.33 0.11
2 1 1.33 −0.33 0.11
3 3 3.66 −0.66 0.44
4 4 3.33 0.66 0.44
5 6 5.66 0.33 0.11
6 5 5.33 −0.33 0.11∑

21 21 0 1.33

Table 16.10. Deviations between model and data.

EXAMPLE 16.4 In the margarine example the resulting part-worths for µ = 3.5 are

β11 = −2 β21 = 0.16
β12 = 0 β22 = −0.16
β13 = 2

.

Note that
Lj∑
l=1

βjl = 0 (j = 1, . . . , J). The estimated utility Ŷ1 for the product with low calories

and usage of bread, for example, is:

Ŷ1 = β11 + β21 + µ = −2 + 0.16 + 3.5 = 1.66.

The estimated utility Ŷ4 for product 4 (cooking (X1 = 2) and high calories (X2 = 2)) is:

Ŷ4 = β12 + β22 + µ = 0− 0.16 + 3.5 = 3.33.

The coefficients βjl are computed as p̄xjl − µ, where p̄xjl is the average preference ordering
for each factor level. For instance, p̄x11 = 1/2 ∗ (2 + 1) = 1.5.

The fit can be evaluated by calculating the deviations of the fitted values to the observed
preference orderings. In the rightmost column of Table 16.10 the quadratic deviations be-
tween the observed rankings (utilities) Yk and the estimated utilities Ŷk are listed.

The technique described that generated Table 16.9 is in fact the solution to a least squares
problem. The conjoint measurement problem (16.1) may be rewritten as a linear regression
model (with error ε = 0):

Y = Xβ + ε (16.2)

with X being a design matrix with dummy variables. X has the row dimension K =
J∏
j=1

Lj

(the number of stimuli) and the column dimension D =
J∑
j=1

Lj − J . The reason for the
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reduced column number is that per factor only (Lj − 1) vectors are linearly independent.
Without loss of generality we may standardize the problem so that the last coefficient of each
factor is omitted. The error term ε is introduced since even for one person the preference
orderings may not fit the model (16.1).

EXAMPLE 16.5 If we rewrite the β coefficients in the form
β1

β2

β3

β4

 =


µ+ β13 + β22

β11 − β13

β12 − β13

β21 − β22

 (16.3)

and define the design matrix X as

X =


1 1 0 1
1 1 0 0
1 0 1 1
1 0 1 0
1 0 0 1
1 0 0 0

 , (16.4)

then equation (16.1) leads to the linear model (with error ε = 0):

Y = Xβ + ε. (16.5)

The least squares solution to this problem is the technique used for Table 16.9.

In practice we have more than one person to answer the utility rank question for the different
factor levels. The design matrix is then obtained by stacking the above design matrix n times.
Hence, for n persons we have as a final design matrix:

X ∗ = 1n ⊗X =


X
...
...
X


n− times

which has dimension (nK)(L− J) (where L =
J∑
j=1

Lj ) and Y ∗ = (Y >1 , ..., Y
>
n )>. The linear

model (16.5) can now be written as:

Y ∗ = X ∗β + ε∗. (16.6)

Given that the test people assign different rankings, the error term ε∗ is a necessary part of
the model.
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EXAMPLE 16.6 If we take the β vector as defined in (16.3) and the design matrix X
from (16.4), we obtain the coefficients:

β̂1 = 5.33 = µ̂+ β̂13 + β̂22

β̂2 = −4 = β̂11 − β̂13

β̂3 = −2 = β̂12 − β̂13

β̂4 = 0.33 = β̂21 − β̂22
Lj∑
l=1

β̂jl = 0.

(16.7)

Solving (16.7) we have:

β̂11 = β̂2 − 1
3

(
β̂2 + β̂3

)
= −2

β̂12 = β̂3 − 1
3

(
β̂2 + β̂3

)
= 0

β̂13 = −1
3

(
β̂2 + β̂3

)
= 2

β̂21 = β̂4 − 1
2
β̂4 = 1

2
β̂4 = 0.16

β̂31 = −1
2
β̂4 = −0.16

µ̂ = β̂1 + 1
3

(
β̂2 + β̂3

)
+ 1

2
(β̂4) = 3.5.

(16.8)

In fact, we obtain the same estimated part-worths as in Table 16.9. The stimulus k = 2
corresponds to adding up β11, β22, and µ (see (16.3)). Adding β̂1 and β̂2 gives:

Ŷ2 = 5.33− 4 = 1.33.

Nonmetric solution

If we drop the assumption that utilities are measured on a metric scale, we have to use (16.1)
to estimate the coefficients from an adjusted set of estimated utilities. More precisely, we
may use the monotone ANOVA as developed by Kruskal (1965). The procedure works as
follows. First, one estimates model (16.1) with the ANOVA technique described above. Then
one applies a monotone transformation Ẑ = f(Ŷ ) to the estimated stimulus utilities. The
monotone transformation f is used because the fitted values Ŷk from (16.2) of the reported
preference orderings Yk may not be monotone. The transformation Ẑk = f(Ŷk) is introduced
to guarantee monotonicity of preference orderings. For the car example the reported Yk
values were Y = (1, 3, 2, 6, 4, 5)>. The estimated values are computed as:

Ŷ1 = −1.5− 1.16 + 3.5 = 0.84

Ŷ2 = −1.5 + 1.16 + 3.5 = 3.16

Ŷ3 = −0.5− 1.16 + 3.5 = 1.84

Ŷ4 = −0.5 + 1.16 + 3.5 = 4.16

Ŷ5 = 1.5− 1.16 + 3.5 = 3.84

Ŷ6 = 1.5 + 1.16 + 3.5 = 6.16.
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Figure 16.1. Plot of estimated preference orderings vs. revealed rankings
and PAV fit. MVAcarrankings.xpl

If we make a plot of the estimated preference orderings against the revealed ones, we obtain
Figure 16.1.

We see that the estimated Ŷ4 = 4.16 is below the estimated Ŷ6 = 6.16 and thus an in-
consistency in ranking the utilities occurrs. The monotone transformation Ẑk = f(Ŷk) is
introduced to make the relationship in Figure 16.1 monotone. A very simple procedure con-
sists of averaging the “violators” Ŷ4 and Ŷ6 to obtain 5.16. The relationship is then monotone
but the model (16.1) may now be violated. The idea is therefore to iterate these two steps.

http://www.quantlet.org/mdstat/codes/mva/MVAcarrankings.html
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This procedure is iterated until the stress measure (see Chapter 15)

STRESS =

K∑
k=1

(Ẑk − Ŷk)2

K∑
k=1

(Ŷk − ¯̂
Y )2

(16.9)

is minimized over β and the monotone transformation f . The monotone transformation can
be computed by the so called pool-adjacent-violators (PAV) algorithm.

Summary
↪→ The part-worths are estimated via the least squares method.

↪→ The metric solution corresponds to analysis of variance in a linear model.

↪→ The non-metric solution iterates between a monotone regression curve
fitting and determining the part-worths by ANOVA methodology.

↪→ The fitting of data to a monotone function is done via the PAV algorithm.

16.4 Exercises

EXERCISE 16.1 Compute the part-worths for the following table of rankings

X2

1 2
1 1 2

X1 2 4 3
3 6 5

.

EXERCISE 16.2 Consider again Example 16.5. Rewrite the design matrix X and the pa-
rameter vector β so that the overall mean effect µ is part of X and β, i.e., find the matrix
X ′ and β′ such that Y = X ′β′.

EXERCISE 16.3 Compute the design matrix for Example 16.5 for n = 3 persons ranking
the margarine with X1 and X2.

EXERCISE 16.4 Construct an analog for Table 16.10 for the car example.
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EXERCISE 16.5 Compute the part-worths on the basis of the following tables of rankings
observed on n = 3 persons.

X2

1 1 2
X1 2 4 3

3 6 5

X2

1 3
X1 4 2

5 6

X2

3 1
X1 5 2

6 4

EXERCISE 16.6 Suppose that in the car example a person has ranked cars by the profile
method on the following characteristics:

X1 = motor
X2 = safety
X3 = doors

There are k = 18 stimuli.

X1 X2 X3 preference
1 1 1 1
1 1 2 3
1 1 3 2

1 2 1 5
1 2 2 4
1 2 3 6

X1 X2 X3 preference
2 1 1 7
2 1 2 8
2 1 3 9

2 2 1 10
2 2 2 12
2 2 3 11

X1 X2 X3 preference
3 1 1 13
3 1 2 15
3 1 3 14

3 2 1 16
3 2 2 17
3 2 3 18

Estimate and analyze the part-worths.
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A portfolio is a linear combination of assets. Each asset contributes with a weight cj to
the portfolio. The performance of such a portfolio is a function of the various returns of
the assets and of the weights c = (c1, . . . , cp)

>. In this chapter we investigate the “optimal
choice” of the portfolio weights c. The optimality criterion is the mean-variance efficiency
of the portfolio. Usually investors are risk-averse, therefore, we can define a mean-variance
efficient portfolio to be a portfolio that has a minimal variance for a given desired mean
return. Equivalently, we could try to optimize the weights for the portfolios with maximal
mean return for a given variance (risk structure). We develop this methodology in the
situations of (non)existence of riskless assets and discuss relations with the Capital Assets
Pricing Model (CAPM).

17.1 Portfolio Choice

Suppose that one has a portfolio of p assets. The price of asset j at time i is denoted as pij.
The return from asset j in a single time period (day, month, year etc.) is:

xij =
pij − pi−1,j

pij
·

We observe the vectors xi = (xi1, . . . , xip)
> (i.e., the returns of the assets which are contained

in the portfolio) over several time periods. We stack these observations into a data matrix
X = (xij) consisting of observations of a random variable

X ∼ (µ,Σ).

The return of the portfolio is the weighted sum of the returns of the p assets:

Q = c>X, (17.1)

where c = (c1, . . . , cp)
> (with

∑p
j=1 cj = 1) denotes the proportions of the assets in the

portfolio. The mean return of the portfolio is given by the expected value of Q, which is
c>µ. The risk or volatility of the portfolio is given by the variance of Q (Theorem 4.6), which
is equal to two times

1

2
c>Σc. (17.2)
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The reason for taking half of the variance of Q is merely technical. The optimization of
(17.2) with respect to c is of course equivalent to minimizing c>Σc. Our aim is to maximize
the portfolio returns (17.1) given a bound on the volatility (17.2) or vice versa to minimize
risk given a (desired) mean return of the portfolio.

Summary
↪→ Given a matrix of returns X from p assets in n time periods, and that

the underlying distribution is stationary, i.e., X ∼ (µ,Σ), then the (the-
oretical) return of the portfolio is a weighted sum of the returns of the p
assets, namely Q = c>X.

↪→ The expected value of Q is c>µ. For technical reasons one considers opti-
mizing 1

2
c>Σc. The risk or volatility is c>Σc = Var(c>X).

↪→ The portfolio choice, i.e., the selection of c, is such that the return is
maximized for a given risk bound.

17.2 Efficient Portfolio

A variance efficient portfolio is one that keeps the risk (17.2) minimal under the constraint
that the weights sum to 1, i.e., c>1p = 1. For a variance efficient portfolio, we therefore try
to find the value of c that minimizes the Lagrangian

L =
1

2
c>Σc− λ(c>1p − 1). (17.3)

A mean-variance efficient portfolio is defined as one that has minimal variance among all
portfolios with the same mean. More formally, we have to find a vector of weights c such
that the variance of the portfolio is minimal subject to two constraints:

1. a certain, pre-specified mean return µ has to be achieved,

2. the weights have to sum to one.

Mathematically speaking, we are dealing with an optimization problem under two con-
straints.

The Lagrangian function for this problem is given by

L = c>Σc+ λ1(µ− c>µ) + λ2(1− c>1p).
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Figure 17.1. Returns of six firms from January 1978 to December 1987.
MVAreturns.xpl

With tools presented in Section 2.4 we can calculate the first order condition for a minimum:

∂L
∂c

= 2Σc− λ1µ− λ21p = 0. (17.4)

EXAMPLE 17.1 Figure 17.1 shows the returns from January 1978 to December 1987 of six
stocks traded on the New York stock exchange (Berndt, 1990). For each stock we have chosen
the same scale on the vertical axis (which gives the return of the stock). Note how the return
of some stocks, such as Pan American Airways and Delta Airlines, are much more volatile
than the returns of other stocks, such as IBM or Consolidated Edison (Electric utilities).

As a very simple example consider two differently weighted portfolios containing only two
assets, IBM and PanAm. Figure 17.2 displays the monthly returns of the two portfolios.
The portfolio in the upper panel consists of approximately 10% PanAm assets and 90% IBM
assets. The portfolio in the lower panel contains an equal proportion of each of the assets.
The text windows on the right of Figure 17.2 show the exact weights which were used. We

http://www.quantlet.org/mdstat/codes/mva/MVAreturns.html
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Figure 17.2. Portfolio of IBM and PanAm assets, equal and efficient
weights. MVAportfol.xpl

can clearly see that the returns of the portfolio with a higher share of the IBM assets (which
have a low variance) are much less volatile.

For an exact analysis of the optimization problem (17.4) we distinguish between two cases:
the existence and nonexistence of a riskless asset. A riskless asset is an asset such as a
zero bond, i.e., a financial instrument with a fixed nonrandom return (Franke, Härdle and
Hafner, 2001).

Nonexistence of a riskless asset

Assume that the covariance matrix Σ is invertible (which implies positive definiteness). This
is equivalent to the nonexistence of a portfolio c with variance c>Σc = 0. If all assets are
uncorrelated, Σ is invertible if all of the asset returns have positive variances. A riskless asset

http://www.quantlet.org/mdstat/codes/mva/MVAportfol.html
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(uncorrelated with all other assets) would have zero variance since it has fixed, nonrandom
returns. In this case Σ would not be positive definite.

The optimal weights can be derived from the first order condition (17.4) as

c =
1

2
Σ−1(λ1µ+ λ21p). (17.5)

Multiplying this by a (p× 1) vector 1p of ones, we obtain

1 = 1>p c =
1

2
1>p Σ−1(λ1µ+ λ21>p ),

which can be solved for λ2 to get:

λ2 =
2− λ11>p Σ−1µ

1>p Σ−11p
.

Plugging this expression into (17.5) yields

c =
1

2
λ1

(
Σ−1µ−

1>p Σ−1µ

1>p Σ−11p
Σ−11p

)
+

Σ−11p
1>p Σ−11p

. (17.6)

For the case of a variance efficient portfolio there is no restriction on the mean of the portfolio
(λ1 = 0). The optimal weights are therefore:

c =
Σ−11p

1>p Σ−11p
. (17.7)

This formula is identical to the solution of (17.3). Indeed, differentiation with respect to c
gives

Σc = λ1p

c = λΣ−11p.

If we plug this into (17.3), we obtain

L =
1

2
λ21pΣ

−11p − λ(λ1pΣ
−11p − 1)

= λ− 1

2
λ21pΣ

−11p.

This quantity is a function of λ and is minimal for

λ = (1pΣ
−11p)

−1

since
∂2L
∂c>∂c

= Σ > 0.
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THEOREM 17.1 The variance efficient portfolio weights for returns X ∼ (µ,Σ) are

copt =
Σ−11p

1>p Σ−11p
. (17.8)

Existence of a riskless asset

If an asset exists with variance equal to zero, then the covariance matrix Σ is not invertible.
The notation can be adjusted for this case as follows: denote the return of the riskless asset
by r (under the absence of arbitrage this is the interest rate), and partition the vector and
the covariance matrix of returns such that the last component is the riskless asset. Thus,
the last equation of the system (17.4) becomes

2 Cov(r,X)− λ1r − λ2 = 0,

and, because the covariance of the riskless asset with any portfolio is zero, we have

λ2 = −rλ1. (17.9)

Let us for a moment modify the notation in such a way that in each vector and matrix the
components corresponding to the riskless asset are excluded. For example, c is the weight
vector of the risky assets (i.e., assets with positive variance), and c0 denotes the proportion
invested in the riskless asset. Obviously, c0 = 1 − 1>p c, and Σ the covariance matrix of the
risky assets, is assumed to be invertible. Solving (17.4) using (17.9) gives

c =
λ1

2
Σ−1(µ− r1p). (17.10)

This equation may be solved for λ1 by plugging it into the condition µ>c = µ. This is the
mean-variance efficient weight vector of the risky assets if a riskless asset exists. The final
solution is:

c =
µΣ−1(µ− r1p)
µ>Σ−1(µ− r1p)

. (17.11)

The variance optimal weighting of the assets in the portfolio depends on the structure of the
covariance matrix as the following corollaries show.

COROLLARY 17.1 A portfolio of uncorrelated assets whose returns have equal variances
(Σ = σ2Ip) needs to be weighted equally:

copt =
1

p
1p.
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Proof:
Here we obtain 1>p Σ−11p = σ−21>p 1p = σ−2p and therefore c = σ−21p

σ−2p
= 1

p
1p. 2

COROLLARY 17.2 A portfolio of correlated assets whose returns have equal variances, i.e.,

Σ = σ2


1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1

 , − 1

p− 1
< ρ < 1

needs to be weighted equally:

copt =
1

p
1p.

Proof:
Σ can be rewritten as Σ = σ2

{
(1− ρ)Ip + ρ1p1

>
p

}
. The inverse is

Σ−1 =
Ip

σ2(1− ρ)
−

ρ1p1
>
p

σ2(1− ρ){1 + (p− 1)ρ}

since for a (p× p) matrix A of the form A = (a− b)Ip + b1p1
>
p the inverse is generally given

by

A−1 =
Ip

(a− b)
−

b 1p1
>
p

(a− b){a+ (p− 1)b}
·

Hence

Σ−11p =
1p

σ2(1− ρ)
−

ρ1p1
>
p 1p

σ2(1− ρ){1 + (p− 1)ρ}

=
[{1 + (p− 1)ρ} − ρp]1p
σ2(1− ρ){1 + (p− 1)ρ}

=
{1− ρ}1p

σ2(1− ρ){1 + (p− 1)ρ}

=
1p

σ2{1 + (p− 1)ρ}

which yields

1>p Σ−11>p =
p

σ2{1 + (p− 1)ρ}

and thus c = 1
p
1p. 2

Let us now consider assets with different variances. We will see that in this case the weights
are adjusted to the risk.
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COROLLARY 17.3 A portfolio of uncorrelated assets with returns of different variances,
i.e., Σ = diag(σ2

1, . . . , σ
2
p), has the following optimal weights

cj,opt =
σ−2
j

p∑
l=1

σ−2
l

, j = 1, . . . , p.

Proof:
From Σ−1 = diag(σ−2

1 , . . . , σ−2
p ) we have 1>p Σ−11>p =

∑p
l=1 σ

−2
l and therefore the optimal

weights are cj = σ−2
j /

p∑
l=1

σ−2
l . 2

This result can be generalized for covariance matrices with block structures.

COROLLARY 17.4 A portfolio of assets with returns X ∼ (µ,Σ), where the covariance
matrix has the form:

Σ =


Σ1 0 . . . 0

0 Σ2
. . .

...
...

. . . . . .
...

0 . . . 0 Σr


has optimal weights c = (c1, . . . , cr)

> given by

cj,opt =
Σ−1
j 1

1TΣ−1
j 1

, j = 1, . . . , r.

Summary
↪→ An efficient portfolio is one that keeps the risk minimal under the con-

straint that a given mean return is achieved and that the weights sum to
1, i.e., that minimizes L = c>Σc+ λ1(µ− c>µ) + λ2(1− c>1p).

↪→ If a riskless asset does not exist, the variance efficient portfolio weights
are given by

c =
Σ−11p

1>p Σ−11p
.
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Summary (continued)

↪→ If a riskless asset exists, the mean-variance efficient portfolio weights are
given by

c =
µΣ−1(µ− r1p)
µ>Σ−1(µ− r1p)

.

↪→ The efficient weighting depends on the structure of the covariance matrix
Σ. Equal variances of the assets in the portfolio lead to equal weights,
different variances lead to weightings proportional to these variances:

cj,opt =
σ−2
j

p∑
l=1

σ−2
l

, j = 1, . . . , p.

17.3 Efficient Portfolios in Practice

We can now demonstrate the usefulness of this technique by applying our method to the
monthly market returns computed on the basis of transactions at the New York stock market
between January 1978 to December 1987 (Berndt, 1990).

EXAMPLE 17.2 Recall that we had shown the portfolio returns with uniform and optimal
weights in Figure 17.2. The covariance matrix of the returns of IBM and PanAm is

S =

(
0.0034 0.0016
0.0016 0.0172

)
.

Hence by (17.7) the optimal weighting is

ĉ =
S−112

1>2 S−112

= (0.8957, 0.1043)>.

The effect of efficient weighting becomes even clearer when we expand the portfolio to six
assets. The covariance matrix for the returns of all six firms introduced in Example 17.1 is

S =


0.0035 0.0016 0.0019 0.0003 0.0015 0.0010
0.0016 0.0172 0.0049 0.0011 0.0019 0.0003
0.0019 0.0049 0.0091 0.0004 0.0016 0.0010
0.0003 0.0011 0.0004 0.0025 0.0007 −0.0004
0.0015 0.0019 0.0016 0.0007 0.0076 0.0021
0.0010 0.0003 0.0010 −0.0004 0.0021 0.0063

 .
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0.167 Gerber
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weights

 

0.250 IBM

0.004 Pan Am

0.041 Delta

0.509 Edison

0.007 Gerber

0.189 Texaco

Figure 17.3. Portfolio of all six assets, equal and efficient weights.
MVAportfol.xpl

Hence the optimal weighting is

ĉ =
S−116

1>6 S−116

= (0.2504, 0.0039, 0.0409, 0.5087, 0.0072, 0.1890)>.

As we can clearly see, the optimal weights are quite different from the equal weights (cj =
1/6). The weights which were used are shown in text windows on the right hand side of
Figure 17.3.

This efficient weighting assumes stable covariances between the assets over time. Changing
covariance structure over time implies weights that depend on time as well. This is part of a
large body of literature on multivariate volatility models. For a review refer to Franke et al.
(2001).

http://www.quantlet.org/mdstat/codes/mva/MVAportfol.html
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Summary
↪→ Efficient portfolio weighting in practice consists of estimating the covari-

ances of the assets in the portfolio and then computing efficient weights
from this empirical covariance matrix.

↪→ Note that this efficient weighting assumes stable covariances between the
assets over time.

17.4 The Capital Asset Pricing Model (CAPM)

The CAPM considers the relation between a mean-variance efficient portfolio and an asset
uncorrelated with this portfolio. Let us denote this specific asset return by y0. The riskless
asset with constant return y0 ≡ r may be such an asset. Recall from (17.4) the condition for
a mean-variance efficient portfolio:

2Σc− λ1µ− λ21p = 0.

In order to eliminate λ2, we can multiply (17.4) by c> to get:

2c>Σc− λ1µ̄ = λ2.

Plugging this into (17.4), we obtain:

2Σc− λ1µ = 2c>Σc1p − λ1µ̄1p

µ = µ̄1p +
2

λ1

(Σc− c>Σc1p). (17.12)

For the asset that is uncorrelated with the portfolio, equation (17.12) can be written as:

y0 = µ̄− 2

λ1

c>Σc

since y0 = r is the mean return of this asset and is otherwise uncorrelated with the risky
assets. This yields:

λ1 = 2
c>Σc

µ̄− y0

(17.13)

and if (17.13) is plugged into (17.12):

µ = µ̄1p +
µ̄− y0

c>Σc
(Σc− c>Σc1p)

µ = y01p +
Σc

c>Σc
(µ̄− y0)

µ = y01p + β(µ̄− y0) (17.14)
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with

β ≡ Σc

c>Σc
.

The relation (17.14) holds if there exists any asset that is uncorrelated with the mean-
variance efficient portfolio c. The existence of a riskless asset is not a necessary condition
for deriving (17.14). However, for this special case we arrive at the well-known expression

µ = r1p + β(µ̄− r), (17.15)

which is known as the Capital Asset Pricing Model (CAPM), see Franke et al. (2001). The
beta factor β measures the relative performance with respect to riskless assets or an index.
It reflects the sensitivity of an asset with respect to the whole market. The beta factor is
close to 1 for most assets. A factor of 1.16, for example, means that the asset reacts in
relation to movements of the whole market (expressed through an index like DAX or DOW
JONES) 16 percents stronger than the index. This is of course true for both positive and
negative fluctuations of the whole market.

Summary
↪→ The weights of the mean-variance efficient portfolio satisfy 2Σc − λ1µ −

λ21p = 0.

↪→ In the CAPM the mean of X depends on the riskless asset and the pre-
specified mean µ as follows µ = r1p + β(µ− r).

↪→ The beta factor β measures the relative performance with respect to risk-
less assets or an index and reflects the sensitivity of an asset with respect
to the whole market.

17.5 Exercises

EXERCISE 17.1 Prove that the inverse of A = (a− b)Ip + b1p1
>
p is given by

A−1 =
Ip

(a− b)
−

b 1p1
>
p

(a− b){a+ (p− 1)b}
·

EXERCISE 17.2 The empirical covariance between the 120 returns of IBM and PanAm
is 0.0016 (see Example 17.2). Test if the true covariance is zero. Hint: Use Fisher’s Z-
transform.
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EXERCISE 17.3 Explain why in both Figures 17.2 and 17.3 the portfolios have negative
returns just before the end of the series, regardless of whether they are optimally weighted or
not! (What happened in December 1987?)

EXERCISE 17.4 Apply the method used in Example 17.2 on the same data (Table B.5)
including also the Digital Equipment company. Obviously one of the weights is negative. Is
this an efficient weighting?

EXERCISE 17.5 In the CAPM the β value tells us about the performance of the portfolio
relative to the riskless asset. Calculate the β value for each single stock price series relative
to the “riskless” asset IBM.





18 Highly Interactive, Computationally
Intensive Techniques

It is generally accepted that training in statistics must include some exposure to the mechan-
ics of computational statistics. This exposure to computational methods is of an essential
nature when we consider extremely high dimensional data. Computer aided techniques can
help us discover dependencies in high dimensions without complicated mathematical tools.
A draftman’s plot (i.e., a matrix of pairwise scatterplots like in Figure 1.14) may lead us
immediately to a theoretical hypothesis (on a lower dimensional space) about the relation-
ship of the variables. Computer aided techniques are therefore at the heart of multivariate
statistical analysis.

In this chapter we first present the concept of Simplicial Depth—a multivariate extension
of the data depth concept of Section 1.1. We then present Projection Pursuit—a semipara-
metric technique which is based on a one-dimensional, flexible regression or on the idea of
density smoothing applied to PCA type projections. A similar model is underlying the Sliced
Inverse Regression (SIR) technique which we discuss in Section 18.3.

18.1 Simplicial Depth

Simplicial depth generalizes the notion of data depth as introduced in Section 1.1. This
general definition allows us to define a multivariate median and to visually present high
dimensional data in low dimension. For univariate data we have well known parameters of
location which describe the center of a distribution of a random variableX. These parameters
are for example the mean

x̄ =
1

n

n∑
i=1

xi, (18.1)

or the mode

xmod = arg max
x

f̂(x),
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where f̂ is the estimated density function of X (see Section 1.3). The median

xmed =

{
x((n+1)/2) if n odd

x(n/2)+x(n/2+1)

2
otherwise,

where x(i) is the order statistics of the n observations xi, is yet another measure of location.

The first two parameters can be easily extended to multivariate random variables. The mean
in higher dimensions is defined as in (18.1) and the mode accordingly,

xmod = arg max
x

f̂(x)

with f̂ the estimated multidimensional density function of X (see Section 1.3). The median
poses a problem though since in a multivariate sense we cannot interpret the element-wise
median

xmed,j =

{
x((n+1)/2),j if n odd

x(n/2),j+x(n/2+1),j

2
otherwise

(18.2)

as a point that is “most central”. The same argument applies to other observations of a
sample that have a certain “depth” as defined in Section 1.1. The “fourths” or the “extremes”
are not defined in a straightforward way in higher (not even for two) dimensions.

An equivalent definition of the median in one dimension is given by the simplicial depth. It
is defined as follows: For each pair of datapoints xi and xj we generate a closed interval, a
one-dimensional simplex, which contains xi and xj as border points. Redefine the median
as the datapoint xmed, which is enclosed in the maximum number of intervals:

xmed = arg max
i

#{k, l;xi ∈ [xk, xl]}. (18.3)

With this definition of the median, the median is the “deepest” and “most central” point in
a data set as discussed in Section 1.1. This definition involves a computationally intensive
operation since we generate n(n− 1)/2 intervals for n observations.

In two dimensions, the computation is even more intensive since the interval [xk, xl] is re-
placed by a triangle constructed from three different datapoints. The median as the deepest
point is then defined by that datapoint that is covered by the maximum number of triangles.
In three dimensions triangles become pyramids formed from 4 points and the median is that
datapoint that lies in the maximum number of pyramids.

An example for the depth in 2 dimensions is given by the constellation of points given in
Figure 18.1. If we build for example the traingle of the points 1, 3, 5 (denoted as 4 135 in
Table 18.1), it contains the point 4. From Table 18.1 we count the number of coverages to
obtain the simplicial depth values of Table 18.2.
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simplicial depth example
 1

 6

 3  4

 5

 2

Figure 18.1. Construction of simplicial depth. MVAsimdep1.xpl

In arbitrary dimension p, we look for datapoints that lie inside a simplex (or convex hull)
formed from p+1 points. We therefore extend the definition of the median to the multivariate
case as follows

xmed = arg max
i

#{k0, . . . , kp;xi ∈ hull(xk0 , ..., xkp)}. (18.4)

Here k0, ..., kp denote the indices of p + 1 datapoints. Thus for each datapoint we have a
multivariate data depth. If we compute all the necessary simplices hull(xk0 , . . . , xkp), the
computing time will unfortunately be exponential as the dimension increases.

In Figure 18.2 we calculate the simplicial depth for a two-dimensional, 10 point distribution.
The deepest point, the two-dimensional median, is indicated as a big star in the center. The
points with less depth are indicated via grey shades.

http://www.quantlet.org/mdstat/codes/mva/MVAsimdep1.html
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Triangle Coverages
1 4 123 1 2 3
2 4 124 1 2 4
3 4 125 1 2 5
4 4 126 1 2 3 4 6
5 4 134 1 3 4
6 4 135 1 3 4 5
7 4 136 1 3 6
8 4 145 1 4 5
9 4 146 1 3 4 6
10 4 156 1 3 4 5 6
11 4 234 2 3 4
12 4 235 2 3 4 5
13 4 236 2 3 4 6
14 4 245 2 4 5
15 4 246 2 4 6
16 4 256 2 5 6
17 4 345 3 4 5
18 4 346 3 4 6
19 4 356 3 5 6
20 4 456 4 5 6

Table 18.1. Coverages for artificial configuration of points.

point 1 2 3 4 5 6
depth 10 10 12 14 8 8

Table 18.2. Simplicial depths for artificial configuration of points.

Summary
↪→ The “depth” of a datapoint in one dimension can be computed by counting

all (closed) intervals of two datapoints which contain the datapoint.

↪→ The “deepest” datapoint is the central point of the distribution, the me-
dian.

↪→ The “depth” of a datapoint in arbitrary dimension p is defined as the
number of simplices (constructed from p + 1 points) covering this point.
It is called simplicial depth.
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Summary (continued)

↪→ A multivariate extension of the median is to take the “deepest” datapoint
of the distribution.

↪→ In the bivariate case we count all triangles of datapoints which contain
the datapoint to compute its depth.

18.2 Projection Pursuit

“Projection Pursuit” stands for a class of exploratory projection techniques. This class con-
tains statistical methods designed for analyzing high-dimensional data using low-dimensional
projections. The aim of projection pursuit is to reveal possible nonlinear and therefore in-
teresting structures hidden in the high-dimensional data. To what extent these structures
are “interesting” is measured by an index. Exploratory Projection Pursuit (EPP) goes back
to Kruskal(1969; 1972). The approach was successfully implemented for exploratory pur-
poses by various other authors. The idea has been applied to regression analysis, density
estimation, classification and discriminant analysis.

Exploratory Projection Pursuit

In EPP, we try to find “interesting” low-dimensional projections of the data. For this
purpose, a suitable index function I(α), depending on a normalized projection vector α,
is used. This function will be defined such that “interesting” views correspond to local
and global maxima of the function. This approach naturally accompanies the technique of
principal component analysis (PCA) of the covariance structure of a random vector X. In
PCA we are interested in finding the axes of the covariance ellipsoid. The index function
I(α) is in this case the variance of a linear combination α>X subject to the normalizing
constraint α>α = 1 (see Theorem 9.2). If we analyze a sample with a p-dimensional normal
distribution, the “interesting” high-dimensional structure we find by maximizing this index
is of course linear.

There are many possible projection indices, for simplicity the kernel based and polynomial
based indices are reported. Assume that the p-dimensional random variable X is sphered
and centered, that is, E(X) = 0 and Var(X) = Ip. This will remove the effect of location,
scale, and correlation structure. This covariance structure can be achieved easily by the
Mahalanobis transformation (3.26).
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Simplicial depth
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Figure 18.2. 10 point distribution with the median shown as a big star in
the center. MVAsimdepex.xpl

Friedman and Tukey (1974) proposed to investigate the high-dimensional distribution of X
by considering the index

IFT,h(α) = n−1

n∑
i=1

f̂h,α(α>Xi) (18.5)

where f̂h,α denotes the kernel estimator (see Section 1.3)

f̂h,α(z) = n−1

n∑
j=1

Kh(z − α>Xj) (18.6)

of the projected data. Note that (18.5) is an estimate of
∫
f 2(z)dz where z = α>X is a

one-dimensional random variable with mean zero and unit variance. If the high-dimensional
distribution of X is normal, then each projection z = α>X is standard normal since ||α|| = 1
and since X has been centered and sphered by, e.g., the Mahalanobis transformation.

http://www.quantlet.org/mdstat/codes/mva/MVAsimdepex.html
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The index should therefore be stable as a function of α if the high-dimensional data is
in fact normal. Changes in IFT,h(α) with respect to α therefore indicate deviations from
normality. Hodges and Lehman (1956) showed that, given a mean of zero and unit variance,
the (compact support) density which minimizes

∫
f 2 is uniquely given by

f(z) = max{0, c(b2 − z2)},

where c = 3/(20
√

5) and b =
√

5. This is a parabolic density function, which is equal to
zero outside the interval (−

√
5,
√

5). A high value of the Friedman-Tukey index indicates a
larger departure from the parabolic form.

An alternative index is based on the negative of the entropy measure, i.e.,
∫
−f log f . The

density for zero mean and unit variance which minimizes the index∫
f log f

is the standard normal density, a far more plausible candidate than the parabolic density as
a norm from which departure is to be regarded as “interesting”. Thus in using

∫
f log f as a

projection index we are really implementing the viewpoint of seeing “interesting” projections
as departures from normality. Yet another index could be based on the Fisher information
(see Section 6.2) ∫

(f ′)2/f.

To optimize the entropy index, it is necessary to recalculate it at each step of the numerical
procedure. There is no method of obtaining the index via summary statistics of the multi-
variate data set, so the workload of the calculation at each iteration is determined by the
number of observations. It is therefore interesting to look for approximations to the entropy
index. Jones and Sibson (1987) suggested that deviations from the normal density should
be considered as

f(x) = ϕ(x){1 + ε(x)} (18.7)

where the function ε satisfies∫
ϕ(u)ε(u)u−rdu = 0, for r = 0, 1, 2. (18.8)

In order to develop the Jones and Sibson index it is convenient to think in terms of cumulants
κ3 = µ3 = E(X3), κ4 = µ4 = E(X4) − 3 (see Section 4.2). The standard normal density
satisfies κ3 = κ4 = 0, an index with any hope of tracking the entropy index must at least
incorporate information up to the level of symmetric departures (κ3 or κ4 not zero) from
normality. The simplest of such indices is a positive definite quadratic form in κ3 and κ4. It
must be invariant under sign-reversal of the data since both α>X and −α>X should show
the same kind of departure from normality. Note that κ3 is odd under sign-reversal, i.e.,
κ3(α>X) = −κ3(−α>X). The cumulant κ4 is even under sign-reversal, i.e., κ4(α>X) =
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κ4(−α>X). The quadratic form in κ3 and κ4 measuring departure from normality cannot
include a mixed κ3κ4 term.

For the density (18.7) one may conclude with (18.8) that∫
f(u) log(u)du ≈ 1

2

∫
ϕ(u)ε(u)du.

Now if f is expressed as a Gram-Charliér expansion

f(x)ϕ(x) = {1 + κ3H3(x)/6 + κ4H4(x)/24...} (18.9)

(Kendall and Stuart, 1977, p. 169) where Hr is the r-th Hermite polynomial, then the trunca-
tion of (18.9) and use of orthogonality and normalization properties of Hermite polynomials
with respect to ϕ yields

1

2

∫
ϕ(x)ε2(x)dx =

(
κ2

3 + κ2
4/4
)
/12.

The index proposed by Jones and Sibson (1987) is therefore

IJS(α) = {κ2
3(α>X) + κ2

4(α>X)/4}/12.

This index measures in fact the difference
∫
f log f −

∫
ϕ logϕ.

EXAMPLE 18.1 The exploratory Projection Pursuit is used on the Swiss bank note data.
For 50 randomly chosen one-dimensional projections of this six-dimensional dataset we cal-
culate the Friedman-Tukey index to evaluate how “interesting” their structures are.

Figure 18.3 shows the density for the standard, normally distributed data (green) and the
estimated densities for the best (red) and the worst (blue) projections found. A dotplot of
the projections is also presented. In the lower part of the figure we see the estimated value
of the Friedman-Tukey index for each computed projection. From this information we can
judge the non normality of the bank note data set since there is a lot of variation across the
50 random projections.

Projection Pursuit Regression

The problem in projection pursuit regression is to estimate a response surface

f(x) = E(Y | x)

via approximating functions of the form

f̂(x) =
M∑
k=1

gk(Λ
>
k x)
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Figure 18.3. Exploratory Projection Pursuit for the Swiss bank
notes data (green = standard normal, red = best, blue = worst).

MVAppexample.xpl

with non-parametric regression functions gk. Given observations {(x1, y1), ..., (xn, yn)} with
xi ∈ Rp and yi ∈ R the basic algorithm works as follows.

1. Set r
(0)
i = yi and k = 1.

2. Minimize

Ek =
n∑
i=1

{
r

(k−1)
i − gk(Λ>k xi)

}2

where Λk is an orthogonal projection matrix and gk is a non-parametric regression
estimator.

3. Compute new residuals

r
(k)
i = r

(k−1)
i − gk(Λ>k xi).

http://www.quantlet.org/mdstat/codes/mva/MVAppexample.html
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4. Increase k and repeat the last two steps until Ek becomes small.

Although this approach seems to be simple, we encounter some problems. One of the most
serious is that the decomposition of a function into sums of functions of projections may not
be unique. An example is

z1z2 =
1

4ab
{(az1 + bz2)2 − (az1 − bz2)2}.

Improvements of this algorithm were suggested by Friedman and Stuetzle (1981).

Summary
↪→ Exploratory Projection Pursuit is a technique used to find interesting

structures in high-dimensional data via low-dimensional projections. Since
the Gaussian distribution represents a standard situation, we define the
Gaussian distribution as the most uninteresting.

↪→ The search for interesting structures is done via a projection score like the
Friedman-Tukey index IFT(α) =

∫
f 2. The parabolic distribution has the

minimal score. We maximize this score over all projections.

↪→ The Jones-Sibson index maximizes

IJS(α) = {κ3(α>X) + κ2
4(α>X)/4}/12

as a function of α.

↪→ The entropy index maximizes

IE(α) =

∫
f log f

where f is the density of α>X.

↪→ In Projection Pursuit Regression the idea is to represent the unknown
function by a sum of non-parametric regression functions on projections.
The key problem is in choosing the number of terms and often the inter-
pretability.
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18.3 Sliced Inverse Regression

Sliced inverse regression (SIR) is a dimension reduction method proposed by Duan and Li
(1991). The idea is to find a smooth regression function that operates on a variable set of
projections. Given a response variable Y and a (random) vector X ∈ Rp of explanatory
variables, SIR is based on the model:

Y = m(β>1 X, . . . , β
>
k X, ε), (18.10)

where β1, . . . , βk are unknown projection vectors, k is unknown and assumed to be less
than p, m : Rk+1 → R is an unknown function, and ε is the noise random variable with
E (ε |X) = 0.

Model (18.10) describes the situation where the response variable Y depends on the p-
dimensional variable X only through a k-dimensional subspace. The unknown βi’s, which
span this space, are called effective dimension reduction directions (EDR-directions). The
span is denoted as effective dimension reduction space (EDR-space). The aim is to estimate
the base vectors of this space, for which neither the length nor the direction can be identified.
Only the space in which they lie is identifiable.

SIR tries to find this k-dimensional subspace of Rp which under the model (18.10) carries
the essential information of the regression between X and Y . SIR also focuses on small k,
so that nonparametric methods can be applied for the estimation of m. A direct application
of nonparametric smoothing to X is for high dimension p generally not possible due to the
sparseness of the observations. This fact is well known as the curse of dimensionality, see
Huber (1985).

The name of SIR comes from computing the inverse regression (IR) curve. That means
instead of looking for E (Y |X = x), we investigate E (X |Y = y), a curve in Rp consisting of
p one-dimensional regressions. What is the connection between the IR and the SIR model
(18.10)? The answer is given in the following theorem from Li (1991).

THEOREM 18.1 Given the model (18.10) and the assumption

∀b ∈ Rp : E
(
b>X |β>1 X = β>1 x, . . . , β

>
k X = β>k x

)
= c0 +

k∑
i=1

ciβ
>
i x, (18.11)

the centered IR curve E(X |Y = y)−E(X) lies in the linear subspace spanned by the vectors
Σβi, i = 1, . . . , k, where Σ = Cov(X).

Assumption (18.11) is equivalent to the fact thatX has an elliptically symmetric distribution,
see Cook and Weisberg (1991). Hall and Li (1993) have shown that assumption (18.11) only
needs to hold for the EDR-directions.
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It is easy to see that for the standardized variable Z = Σ−1/2{X − E(X)} the IR curve
m1(y) = E(Z |Y = y) lies in span(η1, . . . , ηk), where ηi = Σ1/2βi. This means that the con-
ditional expectation m1(y) is moving in span(η1, . . . , ηk) depending on y. With b orthogonal
to span(η1, . . . , ηk), it follows that

b>m1(y) = 0,

and further that

m1(y)m1(y)>b = Cov{m1(y)}b = 0.

As a consequence Cov{E(Z | y)} is degenerated in each direction orthogonal to all EDR-
directions ηi of Z. This suggests the following algorithm.

First, estimate Cov{m1(y)} and then calculate the orthogonal directions of this matrix (for
example, with eigenvalue/eigenvector decomposition). In general, the estimated covariance
matrix will have full rank because of random variability, estimation errors and numerical
imprecision. Therefore, we investigate the eigenvalues of the estimate and ignore eigenvectors
having small eigenvalues. These eigenvectors η̂i are estimates for the EDR-direction ηi of Z.
We can easily rescale them to estimates β̂i for the EDR-directions of X by multiplying by
Σ̂−1/2, but then they are not necessarily orthogonal. SIR is strongly related to PCA. If all
of the data falls into a single interval, which means that Ĉov{m1(y)} is equal to Ĉov(Z),
SIR coincides with PCA. Obviously, in this case any information about y is ignored.

The SIR Algorithm

The algorithm to estimate the EDR-directions via SIR is as follows:

1. Standardize x:

zi = Σ̂−1/2(xi − x̄).

2. Divide the range of yi into S nonoverlapping intervals (slices) Hs, s = 1, . . . , S. ns
denotes the number of observations within slice Hs, and IHs the indicator function for
this slice:

ns =
n∑
i=1

IHs(yi).

3. Compute the mean of zi over all slices. This is a crude estimate m̂1 for the inverse
regression curve m1:

z̄s =
1

ns

n∑
i=1

zi IHs(yi).
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4. Calculate the estimate for Cov{m1(y)}:

V̂ = n−1

S∑
s=1

nsz̄sz̄
>
s .

5. Identify the eigenvalues λ̂i and eigenvectors η̂i of V̂ .

6. Transform the standardized EDR-directions η̂i back to the original scale. Now the
estimates for the EDR-directions are given by

β̂i = Σ̂−1/2η̂i.

REMARK 18.1 The number of different eigenvalues unequal to zero depends on the number
of slices. The rank of V̂ cannot be greater than the number of slices−1 (the zi sum up to zero).
This is a problem for categorical response variables, especially for a binary response—where
only one direction can be found.

SIR II

In the previous section we learned that it is interesting to consider the IR curve, that is,
E(X | y). In some situations however SIR does not find the EDR-direction. We overcome
this difficulty by considering the conditional covariance Cov(X |y) instead of the IR curve.
An example where the EDR directions are not found via the SIR curve is given below.

EXAMPLE 18.2 Suppose that (X1, X2)> ∼ N(0, I2) and Y = X2
1 . Then E(X2 | y) = 0

because of independence and E(X1 |y) = 0 because of symmetry. Hence, the EDR-direction
β = (1, 0)> is not found when the IR curve E(X |y) = 0 is considered.

The conditional variance

Var(X1 |Y = y) = E(X2
1 |Y = y) = y,

offers an alternative way to find β. It is a function of y while Var(X2 |y) is a constant.

The idea of SIR II is to consider the conditional covariances. The principle of SIR II is
the same as before: investigation of the IR curve (here the conditional covariance instead of
the conditional expectation). Unfortunately, the theory of SIR II is more complicated. The
assumption of the elliptical symmetrical distribution of X has to be more restrictive, i.e.,
assuming the normality of X.
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Given this assumption, one can show that the vectors with the largest distance to Cov(Z |
Y = y) − E{Cov(Z | Y = y)} for all y are the most interesting for the EDR-space. An
appropriate measure for the overall mean distance is, according to Li (1992),

E
(
|| [Cov(Z |Y = y)− E{Cov(Z |Y = y)}] b||2

)
= (18.12)

= b>E
(
||Cov(Z |y)− E{Cov(Z |y)}||2

)
b. (18.13)

Equipped with this distance, we conduct again an eigensystem decomposition, this time
for the above expectation E (||Cov(Z |y)− E{Cov(Z |y)}||2). Then we take the rescaled
eigenvectors with the largest eigenvalues as estimates for the unknown EDR-directions.

The SIR II Algorithm

The algorithm of SIR II is very similar to the one for SIR, it differs in only two steps.
Instead of merely computing the mean, the covariance of each slice has to be computed. The
estimate for the above expectation (18.12) is calculated after computing all slice covariances.
Finally, decomposition and rescaling are conducted, as before.

1. Do steps 1 to 3 of the SIR algorithm.

2. Compute the slice covariance matrix V̂s:

V̂s =
1

ns − 1

n∑
i=1

IHs(yi)ziz
>
i − nsz̄sz̄>s .

3. Calculate the mean over all slice covariances:

V̄ =
1

n

S∑
s=1

nsV̂s.

4. Compute an estimate for (18.12):

V̂ =
1

n

S∑
s=1

ns

(
V̂s − V̄

)2

=
1

n

S∑
s=1

nsV̂
2
s − V̄ 2.

5. Identify the eigenvectors and eigenvalues of V̂ and scale back the eigenvectors. This
gives estimates for the SIR II EDR-directions:

β̂i = Σ̂−1/2η̂i.
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Figure 18.4. Plot of the true response versus the true indices. The mono-
tonic and the convex shapes can be clearly seen. MVAsirdata.xpl

EXAMPLE 18.3 The result of SIR is visualized in four plots in Figure 18.6: the left two
show the response variable versus the first respectively second direction. The upper right
plot consists of a three-dimensional plot of the first two directions and the response. The
last picture shows Ψ̂k, the ratio of the sum of the first k eigenvalues and the sum of all
eigenvalues, similar to principal component analysis.

The data are generated according to the following model:

yi = β>1 xi + (β>1 xi)
3 + 4

(
β>2 xi

)2
+ εi,

where the xi’s follow a three-dimensional normal distribution with zero mean, the covariance
equal to the identity matrix, β2 = (1,−1,−1)>, and β1 = (1, 1, 1)>. εi is standard, normally
distributed and n = 300. Corresponding to model (18.10), m(u, v, ε) = u+ u3 + v2 + ε. The
situation is depicted in Figure 18.4 and Figure 18.5.

Both algorithms were conducted using the slicing method with 20 elements in each slice. The
goal was to find β1 and β2 with SIR. The data are designed such that SIR can detect β1

http://www.quantlet.org/mdstat/codes/mva/MVAsirdata.html
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Figure 18.5. Plot of the true response versus the true indices. The mono-
tonic and the convex shapes can be clearly seen. MVAsirdata.xpl

β̂1 β̂2 β̂3

0.578 -0.723 -0.266

0.586 0.201 0.809

0.568 0.661 -0.524

Table 18.5. SIR: EDR-directions for simulated data.

because of the monotonic shape of {β>1 xi + (β>1 xi)
3}, while SIR II will search for β2, as in

this direction the conditional variance on y is varying.

If we normalize the eigenvalues for the EDR-directions in Table 18.5 such that they sum
up to one, the resulting vector is (0.852, 0.086, 0.062). As can be seen in the upper left
plot of Figure 18.6, there is a functional relationship found between the first index β̂>1 x and
the response. Actually, β1 and β̂1 are nearly parallel, that is, the normalized inner product

http://www.quantlet.org/mdstat/codes/mva/MVAsirdata.html
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Figure 18.6. SIR: The left plots show the response versus the estimated
EDR-directions. The upper right plot is a three-dimensional plot of the
first two directions and the response. The lower right plot shows the
eigenvalues λ̂i (∗) and the cumulative sum (◦). MVAsirdata.xpl

β̂>1 β1/{||β̂1||||β1||} = 0.9894 is very close to one.

The second direction along β2 is probably found due to the good approximation, but SIR does
not provide it clearly, because it is “blind” with respect to the change of variance, as the
second eigenvalue indicates.

For SIR II, the normalized eigenvalues are (0.706, 0.185, 0.108), that is, about 69% of the
variance is explained by the first EDR-direction (Table 18.6). Here, the normalized inner
product of β2 and β̂1 is 0.9992. The estimator β̂1 estimates in fact β2 of the simulated model.
In this case, SIR II found the direction where the second moment varies with respect to β>2 x.

In summary, SIR has found the direction which shows a strong relation regarding the con-
ditional expectation between β>1 x and y, and SIR II has found the direction where the
conditional variance is varying, namely, β>2 x.

http://www.quantlet.org/mdstat/codes/mva/MVAsirdata.html
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Figure 18.7. SIR II mainly sees the direction β2. The left plots show the
response versus the estimated EDR-directions. The upper right plot is a
three-dimensional plot of the first two directions and the response. The
lower right plot shows the eigenvalues λ̂i (∗) and the cumulative sum (◦).

MVAsir2data.xpl

β̂1 β̂2 β̂3

0.821 0.180 0.446

-0.442 -0.826 0.370

-0.361 -0.534 0.815

Table 18.6. SIR II: EDR-directions for simulated data.

The behavior of the two SIR algorithms is as expected. In addition, we have seen that it is
worthwhile to apply both versions of SIR. It is possible to combine SIR and SIR II (Cook
and Weisberg, 1991; Li, 1991; Schott, 1994) directly, or to investigate higher conditional

http://www.quantlet.org/mdstat/codes/mva/MVAsir2data.html
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moments. For the latter it seems to be difficult to obtain theoretical results. For further
details on SIR see Kötter (1996).

Summary
↪→ SIR serves as a dimension reduction tool for regression problems.

↪→ Inverse regression avoids the curse of dimensionality.

↪→ The dimension reduction can be conducted without estimation of the re-
gression function y = m(x).

↪→ SIR searches for the effective dimension reduction (EDR) by computing
the inverse regression IR.

↪→ SIR II bases the EDR on computing the inverse conditional variance.

↪→ SIR might miss EDR directions that are found by SIR II.

18.4 Boston Housing

Coming back to the Boston housing data set, we compare the results of exploratory projection
pursuit on the original data X and the transformed data X̂ motivated in Section 1.8. So we
exclude X4 (indicator of Charles River) from the present analysis.

The aim of this analysis is to see from a different angle whether our proposed transformations
yield more normal distributions and whether it will yield data with less outliers. Both effects
will be visible in our projection pursuit analysis.

We first apply the Jones and Sibson index to the non-transformed data with 50 randomly
chosen 13-dimensional directions. Figure 18.8 displays the results in the following form. In
the lower part, we see the values of the Jones and Sibson index. It should be constant for
13-dimensional normal data. We observe that this is clearly not the case. In the upper
part of Figure 18.8 we show the standard normal density as a green curve and two densities
corresponding to two extreme index values. The red, slim curve corresponds to the maximal
value of the index among the 50 projections. The blue curve, which is close to the normal,
corresponds to the minimal value of the Jones and Sibson index. The corresponding values
of the indices have the same color in the lower part of Figure 18.8. Below the densities, a
jitter plot shows the distribution of the projected points α>xi (i = 1, . . . , 506). We conclude
from the outlying projection in the red distribution that several points are in conflict with
the normality assumption.
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Figure 18.8. Projection Pursuit with the Sibson-Jones index with 13 orig-
inal variables. MVAppsib.xpl

Figure 18.9 presents an analysis with the same design for the transformed data. We observe
in the lower part of the figure values that are much lower for the Jones and Sibson index
(by a factor of 10) with lower variability which suggests that the transformed data is closer
to the normal. (“Closeness” is interpreted here in the sense of the Jones and Sibson index.)
This is confirmed by looking to the upper part of Figure 18.9 which has a significantly less
outlying structure than in Figure 18.8.

18.5 Exercises

EXERCISE 18.1 Calculate the Simplicial Depth for the Swiss bank notes data set and com-
pare the results to the univariate medians. Calculate the Simplicial Depth again for the
genuine and counterfeit bank notes separately.

http://www.quantlet.org/mdstat/codes/mva/MVAppsib.html
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Figure 18.9. Projection Pursuit with the Sibson-Jones index with 13 trans-
formed variables. MVAppsib.xpl

EXERCISE 18.2 Construct a configuration of points in R2 such that xmed,j from (18.2) is
not in the “center” of the scatterplot.

EXERCISE 18.3 Apply the SIR technique to the U.S. companies data with Y = market value
and X = all other variables. Which directions do you find?

EXERCISE 18.4 Simulate a data set with X ∼ N4(0, I4), Y = (X1 + 3X2)2 + (X3−X4)4 + ε
and ε ∼ N(0, (0.1)2). Use SIR and SIR II to find the EDR directions.

EXERCISE 18.5 Apply the Projection Pursuit technique on the Swiss bank notes data set
and compare the results to the PC analysis and the Fisher discriminant rule.

EXERCISE 18.6 Apply the SIR and SIR II technique on the car data set in Table B.3 with
Y = price.

http://www.quantlet.org/mdstat/codes/mva/MVAppsib.html




A Symbols and Notation

Basics

X,Y random variables or vectors

X1, X2, . . . , Xp random variables

X = (X1, . . . , Xp)
> random vector

X ∼ · X has distribution ·
A,B matrices 57

Γ,∆ matrices 63

X ,Y data matrices 83

Σ covariance matrix 82

1n vector of ones (1, . . . , 1︸ ︷︷ ︸
n-times

)> 59

0n vector of zeros (0, . . . , 0︸ ︷︷ ︸
n-times

)> 59

I(.) indicator function, i.e. for a set M is I = 1
on M , I = 0 otherwise

i
√
−1

⇒ implication

⇔ equivalence

≈ approximately equal

⊗ Kronecker product

iff if and only if, equivalence
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Samples

x, y observations of X and Y

x1, . . . , xn = {xi}ni=1 sample of n observations of X

X = {xij}i=1,...,n;j=1,...,p (n×p) data matrix of observations of X1, . . . , Xp

or of X = (X1, . . . , Xp)
T

83

x(1), . . . , x(n) the order statistic of x1, . . . , xn 15

H centering matrix, H = In − n−11n1>n 93

Characteristics of Distribution

f(x) density of X

f(x, y) joint density of X and Y

fX(x), fY (y) marginal densities of X and Y

fX1(x1), . . . , fXp(x2) marginal densities of X1, . . . , Xp

f̂h(x) histogram or kernel estimator of f(x) 22

F (x) distribution function of X

F (x, y) joint distribution function of X and Y

FX(x), FY (y) marginal distribution functions of X and Y

FX1(x1), . . . , fXp(xp) marginal distribution functions of X1, . . . , Xp

ϕ(x) density of the standard normal distribution

Φ(x) standard normal distribution function

ϕX(t) characteristic function of X

mk k-th moment of X

κj cumulants or semi-invariants of X
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Moments

EX,EY mean values of random variables or vectors X
and Y

82

σXY = Cov(X, Y ) covariance between random variables X and Y 82

σXX = Var(X) variance of random variable X 82

ρXY =
Cov(X, Y )√

Var(X) Var(Y )
correlation between random variables X and Y 86

ΣXY = Cov(X, Y ) covariance between random vectors X and Y ,
i.e., Cov(X, Y ) = E(X − EX)(Y − EY )>

ΣXX = Var(X) covariance matrix of the random vector X

Empirical Moments

x =
1

n

n∑
i=1

xi average of X sampled by {xi}i=1,...,n 17

sXY =
1

n

n∑
i=1

(xi − x)(yi − y) empirical covariance of random variables X and
Y sampled by {xi}i=1,...,n and {yi}i=1,...,n

82

sXX =
1

n

n∑
i=1

(xi − x)2 empirical variance of random variable X sampled
by {xi}i=1,...,n

82

rXY =
sXY√
sXXsY Y

empirical correlation of X and Y 86

S = {sXiXj} = x>Hx empirical covariance matrix of X1, . . . , Xp or of
the random vector X = (X1, . . . , Xp)

>
82, 93

R = {rXiXj} = D−1/2SD−1/2 empirical correlation matrix of X1, . . . , Xp or of
the random vector X = (X1, . . . , Xp)

>
87, 93
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Distributions

ϕ(x) density of the standard normal distribution

Φ(x) distribution function of the standard normal dis-
tribution

N(0, 1) standard normal or Gaussian distribution

N(µ, σ2) normal distribution with mean µ and variance σ2

Np(µ,Σ) p-dimensional normal distribution with mean µ
and covariance matrix Σ

L−→ convergence in distribution 143

CLT Central Limit Theorem 143

χ2
p χ2 distribution with p degrees of freedom

χ2
1−α;p 1 − α quantile of the χ2 distribution with p de-

grees of freedom

tn t-distribution with n degrees of freedom

t1−α/2;n 1− α/2 quantile of the t-distribution with n d.f.

Fn,m F -distribution with n and m degrees of freedom

F1−α;n,m 1 − α quantile of the F -distribution with n and
m degrees of freedom

Mathematical Abbreviations

tr(A) trace of matrix A

hull(x1, . . . , xk) convex hull of points {x1, . . . , xk}
diag(A) diagonal of matrix A
rank(A) rank of matrix A
det(A) determinant of matrix A



B Data

All data sets are available on the MD*base webpage at www.mdtech.de. More detailed
information on the data sets may be found there.

B.1 Boston Housing Data

The Boston housing data set was collected by Harrison and Rubinfeld (1978). They comprise
506 observations for each census district of the Boston metropolitan area. The data set was
analyzed in Belsley, Kuh and Welsch (1980).

X1: per capita crime rate,
X2: proportion of residential land zoned for large lots,
X3: proportion of nonretail business acres,
X4: Charles River (1 if tract bounds river, 0 otherwise),
X5: nitric oxides concentration,
X6: average number of rooms per dwelling,
X7: proportion of owner-occupied units built prior to 1940,
X8: weighted distances to five Boston employment centers,
X9: index of accessibility to radial highways,
X10: full-value property tax rate per $10,000,
X11: pupil/teacher ratio ,
X12: 1000(B − 0.63)2I(B < 0.63) where B is the proportion of blacks ,
X13: % lower status of the population,
X14: median value of owner-occupied homes in $1000.

http://www.mdtech.de
http://www.mdtech.de
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B.2 Swiss Bank Notes

Six variables measured on 100 genuine and 100 counterfeit old Swiss 1000-franc bank notes.
The data stem from Flury and Riedwyl (1988). The columns correspond to the following 6
variables.

X1: Length of the bank note,
X2: Height of the bank note, measured on the left,
X3: Height of the bank note, measured on the right,
X4: Distance of inner frame to the lower border,
X5: Distance of inner frame to the upper border,
X6: Length of the diagonal.

Observations 1–100 are the genuine bank notes and the other 100 observations are the
counterfeit bank notes.

Length Height Height Inner Frame Inner Frame Diagonal
(left) (right) (lower) (upper)

214.8 131.0 131.1 9.0 9.7 141.0
214.6 129.7 129.7 8.1 9.5 141.7
214.8 129.7 129.7 8.7 9.6 142.2
214.8 129.7 129.6 7.5 10.4 142.0
215.0 129.6 129.7 10.4 7.7 141.8
215.7 130.8 130.5 9.0 10.1 141.4
215.5 129.5 129.7 7.9 9.6 141.6
214.5 129.6 129.2 7.2 10.7 141.7
214.9 129.4 129.7 8.2 11.0 141.9
215.2 130.4 130.3 9.2 10.0 140.7
215.3 130.4 130.3 7.9 11.7 141.8
215.1 129.5 129.6 7.7 10.5 142.2
215.2 130.8 129.6 7.9 10.8 141.4
214.7 129.7 129.7 7.7 10.9 141.7
215.1 129.9 129.7 7.7 10.8 141.8
214.5 129.8 129.8 9.3 8.5 141.6
214.6 129.9 130.1 8.2 9.8 141.7
215.0 129.9 129.7 9.0 9.0 141.9
215.2 129.6 129.6 7.4 11.5 141.5
214.7 130.2 129.9 8.6 10.0 141.9
215.0 129.9 129.3 8.4 10.0 141.4
215.6 130.5 130.0 8.1 10.3 141.6
215.3 130.6 130.0 8.4 10.8 141.5
215.7 130.2 130.0 8.7 10.0 141.6
215.1 129.7 129.9 7.4 10.8 141.1
215.3 130.4 130.4 8.0 11.0 142.3
215.5 130.2 130.1 8.9 9.8 142.4
215.1 130.3 130.3 9.8 9.5 141.9
215.1 130.0 130.0 7.4 10.5 141.8
214.8 129.7 129.3 8.3 9.0 142.0
215.2 130.1 129.8 7.9 10.7 141.8
214.8 129.7 129.7 8.6 9.1 142.3
215.0 130.0 129.6 7.7 10.5 140.7
215.6 130.4 130.1 8.4 10.3 141.0
215.9 130.4 130.0 8.9 10.6 141.4
214.6 130.2 130.2 9.4 9.7 141.8
215.5 130.3 130.0 8.4 9.7 141.8
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215.3 129.9 129.4 7.9 10.0 142.0
215.3 130.3 130.1 8.5 9.3 142.1
213.9 130.3 129.0 8.1 9.7 141.3
214.4 129.8 129.2 8.9 9.4 142.3
214.8 130.1 129.6 8.8 9.9 140.9
214.9 129.6 129.4 9.3 9.0 141.7
214.9 130.4 129.7 9.0 9.8 140.9
214.8 129.4 129.1 8.2 10.2 141.0
214.3 129.5 129.4 8.3 10.2 141.8
214.8 129.9 129.7 8.3 10.2 141.5
214.8 129.9 129.7 7.3 10.9 142.0
214.6 129.7 129.8 7.9 10.3 141.1
214.5 129.0 129.6 7.8 9.8 142.0
214.6 129.8 129.4 7.2 10.0 141.3
215.3 130.6 130.0 9.5 9.7 141.1
214.5 130.1 130.0 7.8 10.9 140.9
215.4 130.2 130.2 7.6 10.9 141.6
214.5 129.4 129.5 7.9 10.0 141.4
215.2 129.7 129.4 9.2 9.4 142.0
215.7 130.0 129.4 9.2 10.4 141.2
215.0 129.6 129.4 8.8 9.0 141.1
215.1 130.1 129.9 7.9 11.0 141.3
215.1 130.0 129.8 8.2 10.3 141.4
215.1 129.6 129.3 8.3 9.9 141.6
215.3 129.7 129.4 7.5 10.5 141.5
215.4 129.8 129.4 8.0 10.6 141.5
214.5 130.0 129.5 8.0 10.8 141.4
215.0 130.0 129.8 8.6 10.6 141.5
215.2 130.6 130.0 8.8 10.6 140.8
214.6 129.5 129.2 7.7 10.3 141.3
214.8 129.7 129.3 9.1 9.5 141.5
215.1 129.6 129.8 8.6 9.8 141.8
214.9 130.2 130.2 8.0 11.2 139.6
213.8 129.8 129.5 8.4 11.1 140.9
215.2 129.9 129.5 8.2 10.3 141.4
215.0 129.6 130.2 8.7 10.0 141.2
214.4 129.9 129.6 7.5 10.5 141.8
215.2 129.9 129.7 7.2 10.6 142.1
214.1 129.6 129.3 7.6 10.7 141.7
214.9 129.9 130.1 8.8 10.0 141.2
214.6 129.8 129.4 7.4 10.6 141.0
215.2 130.5 129.8 7.9 10.9 140.9
214.6 129.9 129.4 7.9 10.0 141.8
215.1 129.7 129.7 8.6 10.3 140.6
214.9 129.8 129.6 7.5 10.3 141.0
215.2 129.7 129.1 9.0 9.7 141.9
215.2 130.1 129.9 7.9 10.8 141.3
215.4 130.7 130.2 9.0 11.1 141.2
215.1 129.9 129.6 8.9 10.2 141.5
215.2 129.9 129.7 8.7 9.5 141.6
215.0 129.6 129.2 8.4 10.2 142.1
214.9 130.3 129.9 7.4 11.2 141.5
215.0 129.9 129.7 8.0 10.5 142.0
214.7 129.7 129.3 8.6 9.6 141.6
215.4 130.0 129.9 8.5 9.7 141.4
214.9 129.4 129.5 8.2 9.9 141.5
214.5 129.5 129.3 7.4 10.7 141.5
214.7 129.6 129.5 8.3 10.0 142.0
215.6 129.9 129.9 9.0 9.5 141.7
215.0 130.4 130.3 9.1 10.2 141.1
214.4 129.7 129.5 8.0 10.3 141.2
215.1 130.0 129.8 9.1 10.2 141.5
214.7 130.0 129.4 7.8 10.0 141.2
214.4 130.1 130.3 9.7 11.7 139.8
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214.9 130.5 130.2 11.0 11.5 139.5
214.9 130.3 130.1 8.7 11.7 140.2
215.0 130.4 130.6 9.9 10.9 140.3
214.7 130.2 130.3 11.8 10.9 139.7
215.0 130.2 130.2 10.6 10.7 139.9
215.3 130.3 130.1 9.3 12.1 140.2
214.8 130.1 130.4 9.8 11.5 139.9
215.0 130.2 129.9 10.0 11.9 139.4
215.2 130.6 130.8 10.4 11.2 140.3
215.2 130.4 130.3 8.0 11.5 139.2
215.1 130.5 130.3 10.6 11.5 140.1
215.4 130.7 131.1 9.7 11.8 140.6
214.9 130.4 129.9 11.4 11.0 139.9
215.1 130.3 130.0 10.6 10.8 139.7
215.5 130.4 130.0 8.2 11.2 139.2
214.7 130.6 130.1 11.8 10.5 139.8
214.7 130.4 130.1 12.1 10.4 139.9
214.8 130.5 130.2 11.0 11.0 140.0
214.4 130.2 129.9 10.1 12.0 139.2
214.8 130.3 130.4 10.1 12.1 139.6
215.1 130.6 130.3 12.3 10.2 139.6
215.3 130.8 131.1 11.6 10.6 140.2
215.1 130.7 130.4 10.5 11.2 139.7
214.7 130.5 130.5 9.9 10.3 140.1
214.9 130.0 130.3 10.2 11.4 139.6
215.0 130.4 130.4 9.4 11.6 140.2
215.5 130.7 130.3 10.2 11.8 140.0
215.1 130.2 130.2 10.1 11.3 140.3
214.5 130.2 130.6 9.8 12.1 139.9
214.3 130.2 130.0 10.7 10.5 139.8
214.5 130.2 129.8 12.3 11.2 139.2
214.9 130.5 130.2 10.6 11.5 139.9
214.6 130.2 130.4 10.5 11.8 139.7
214.2 130.0 130.2 11.0 11.2 139.5
214.8 130.1 130.1 11.9 11.1 139.5
214.6 129.8 130.2 10.7 11.1 139.4
214.9 130.7 130.3 9.3 11.2 138.3
214.6 130.4 130.4 11.3 10.8 139.8
214.5 130.5 130.2 11.8 10.2 139.6
214.8 130.2 130.3 10.0 11.9 139.3
214.7 130.0 129.4 10.2 11.0 139.2
214.6 130.2 130.4 11.2 10.7 139.9
215.0 130.5 130.4 10.6 11.1 139.9
214.5 129.8 129.8 11.4 10.0 139.3
214.9 130.6 130.4 11.9 10.5 139.8
215.0 130.5 130.4 11.4 10.7 139.9
215.3 130.6 130.3 9.3 11.3 138.1
214.7 130.2 130.1 10.7 11.0 139.4
214.9 129.9 130.0 9.9 12.3 139.4
214.9 130.3 129.9 11.9 10.6 139.8
214.6 129.9 129.7 11.9 10.1 139.0
214.6 129.7 129.3 10.4 11.0 139.3
214.5 130.1 130.1 12.1 10.3 139.4
214.5 130.3 130.0 11.0 11.5 139.5
215.1 130.0 130.3 11.6 10.5 139.7
214.2 129.7 129.6 10.3 11.4 139.5
214.4 130.1 130.0 11.3 10.7 139.2
214.8 130.4 130.6 12.5 10.0 139.3
214.6 130.6 130.1 8.1 12.1 137.9
215.6 130.1 129.7 7.4 12.2 138.4
214.9 130.5 130.1 9.9 10.2 138.1
214.6 130.1 130.0 11.5 10.6 139.5
214.7 130.1 130.2 11.6 10.9 139.1
214.3 130.3 130.0 11.4 10.5 139.8
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215.1 130.3 130.6 10.3 12.0 139.7
216.3 130.7 130.4 10.0 10.1 138.8
215.6 130.4 130.1 9.6 11.2 138.6
214.8 129.9 129.8 9.6 12.0 139.6
214.9 130.0 129.9 11.4 10.9 139.7
213.9 130.7 130.5 8.7 11.5 137.8
214.2 130.6 130.4 12.0 10.2 139.6
214.8 130.5 130.3 11.8 10.5 139.4
214.8 129.6 130.0 10.4 11.6 139.2
214.8 130.1 130.0 11.4 10.5 139.6
214.9 130.4 130.2 11.9 10.7 139.0
214.3 130.1 130.1 11.6 10.5 139.7
214.5 130.4 130.0 9.9 12.0 139.6
214.8 130.5 130.3 10.2 12.1 139.1
214.5 130.2 130.4 8.2 11.8 137.8
215.0 130.4 130.1 11.4 10.7 139.1
214.8 130.6 130.6 8.0 11.4 138.7
215.0 130.5 130.1 11.0 11.4 139.3
214.6 130.5 130.4 10.1 11.4 139.3
214.7 130.2 130.1 10.7 11.1 139.5
214.7 130.4 130.0 11.5 10.7 139.4
214.5 130.4 130.0 8.0 12.2 138.5
214.8 130.0 129.7 11.4 10.6 139.2
214.8 129.9 130.2 9.6 11.9 139.4
214.6 130.3 130.2 12.7 9.1 139.2
215.1 130.2 129.8 10.2 12.0 139.4
215.4 130.5 130.6 8.8 11.0 138.6
214.7 130.3 130.2 10.8 11.1 139.2
215.0 130.5 130.3 9.6 11.0 138.5
214.9 130.3 130.5 11.6 10.6 139.8
215.0 130.4 130.3 9.9 12.1 139.6
215.1 130.3 129.9 10.3 11.5 139.7
214.8 130.3 130.4 10.6 11.1 140.0
214.7 130.7 130.8 11.2 11.2 139.4
214.3 129.9 129.9 10.2 11.5 139.6
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B.3 Car Data

The car data set (Chambers, Cleveland, Kleiner and Tukey, 1983) consists of 13 variables
measured for 74 car types. The abbreviations in Table B.3 are as follows:

X1: P Price,
X2: M Mileage (in miles per gallone),
X3: R78 Repair record 1978 (rated on a 5–point scale; 5 best, 1 worst),
X4: R77 Repair record 1977 (scale as before),
X5: H Headroom (in inches),
X6: R Rear seat clearance (distance from front seat back to rear seat, in inches),
X7: Tr Trunk space (in cubic feet),
X8: W Weight (in pound),
X9: L Length (in inches),
X10: T Turning diameter (clearance required to make a U-turn, in feet),
X11: D Displacement (in cubic inches),
X12: G Gear ratio for high gear,
X13: C Company headquarter (1 for U.S., 2 for Japan, 3 for Europe).

Model P M R78 R77 H R Tr W L T D G C

AMC–Concord 4099 22 3 2 2.5 27.5 11 2930 186 40 121 3.58 1
AMC–Pacer 4749 17 3 1 3.0 25.5 11 3350 173 40 258 2.53 1
AMC–Spirit 3799 22 – – 3.0 18.5 12 2640 168 35 121 3.08 1
Audi–5000 9690 17 5 2 3.0 27.0 15 2830 189 37 131 3.20 1
Audi–Fox 6295 23 3 3 2.5 28.0 11 2070 174 36 97 3.70 3
BMW–320i 9735 25 4 4 2.5 26.0 12 2650 177 34 121 3.64 3
Buick–Century 4816 20 3 3 4.5 29.0 16 3250 196 40 196 2.93 1
Buick–Electra 7827 15 4 4 4.0 31.5 20 4080 222 43 350 2.41 1
Buick–Le–Sabre 5788 18 3 4 4.0 30.5 21 3670 218 43 231 2.73 1
Buick–Opel 4453 26 – – 3.0 24.0 10 2230 170 34 304 2.87 1
Buick–Regal 5189 20 3 3 2.0 28.5 16 3280 200 42 196 2.93 1
Buick–Riviera 10372 16 3 4 3.5 30.0 17 3880 207 43 231 2.93 1
Buick–Skylark 4082 19 3 3 3.5 27.0 13 3400 200 42 231 3.08 1
Cad.–Deville 11385 14 3 3 4.0 31.5 20 4330 221 44 425 2.28 1
Cad.–Eldorado 14500 14 2 2 3.5 30.0 16 3900 204 43 350 2.19 1
Cad.–Seville 15906 21 3 3 3.0 30.0 13 4290 204 45 350 2.24 1
Chev.–Chevette 3299 29 3 3 2.5 26.0 9 2110 163 34 231 2.93 1
Chev.–Impala 5705 16 4 4 4.0 29.5 20 3690 212 43 250 2.56 1
Chev.–Malibu 4504 22 3 3 3.5 28.5 17 3180 193 41 200 2.73 1
Chev.–Monte–Carlo 5104 22 2 3 2.0 28.5 16 3220 200 41 200 2.73 1
Chev.–Monza 3667 24 2 2 2.0 25.0 7 2750 179 40 151 2.73 1
Chev.–Nova 3955 19 3 3 3.5 27.0 13 3430 197 43 250 2.56 1
Datsun–200-SX 6229 23 4 3 1.5 21.0 6 2370 170 35 119 3.89 2
Datsun–210 4589 35 5 5 2.0 23.5 8 2020 165 32 85 3.70 2
Datsun–510 5079 24 4 4 2.5 22.0 8 2280 170 34 119 3.54 2
Datsun–810 8129 21 4 4 2.5 27.0 8 2750 184 38 146 3.55 2
Dodge–Colt 3984 30 5 4 2.0 24.0 8 2120 163 35 98 3.54 2
Dodge–Diplomat 5010 18 2 2 4.0 29.0 17 3600 206 46 318 2.47 1
Dodge–Magnum–XE 5886 16 2 2 3.5 26.0 16 3870 216 48 318 2.71 1
Dodge–St.–Regis 6342 17 2 2 4.5 28.0 21 3740 220 46 225 2.94 1
Fiat–Strada 4296 21 3 1 2.5 26.5 16 2130 161 36 105 3.37 3
Ford–Fiesta 4389 28 4 – 1.5 26.0 9 1800 147 33 98 3.15 1
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Ford–Mustang 4187 21 3 3 2.0 23.0 10 2650 179 42 140 3.08 1
Honda–Accord 5799 25 5 5 3.0 25.5 10 2240 172 36 107 3.05 2
Honda–Civic 4499 28 4 4 2.5 23.5 5 1760 149 34 91 3.30 2
Linc.–Continental 11497 12 3 4 3.5 30.5 22 4840 233 51 400 2.47 1
Linc.–Cont–Mark–V 13594 12 3 4 2.5 28.5 18 4720 230 48 400 2.47 1
Linc.–Versailles 13466 14 3 3 3.5 27.0 15 3830 201 41 302 2.47 1
Mazda–GLC 3995 30 4 4 3.5 25.5 11 1980 154 33 86 3.73 1
Merc.–Bobcat 3829 22 4 3 3.0 25.5 9 2580 169 39 140 2.73 1
Merc.–Cougar 5379 14 4 3 3.5 29.5 16 4060 221 48 302 2.75 1
Merc.–Cougar–XR-7 6303 14 4 4 3.0 25.0 16 4130 217 45 302 2.75 1
Merc.–Marquis 6165 15 3 2 3.5 30.5 23 3720 212 44 302 2.26 1
Merc.–Monarch 4516 18 3 – 3.0 27.0 15 3370 198 41 250 2.43 1
Merc.–Zephyr 3291 20 3 3 3.5 29.0 17 2830 195 43 140 3.08 1
Olds.–98 8814 21 4 4 4.0 31.5 20 4060 220 43 350 2.41 1
Olds.–Cutlass 4733 19 3 3 4.5 28.0 16 3300 198 42 231 2.93 1
Olds.–Cutl–Supr 5172 19 3 4 2.0 28.0 16 3310 198 42 231 2.93 1
Olds.–Delta–88 5890 18 4 4 4.0 29.0 20 3690 218 42 231 2.73 1
Olds.–Omega 4181 19 3 3 4.5 27.0 14 3370 200 43 231 3.08 1
Olds.–Starfire 4195 24 1 1 2.0 25.5 10 2720 180 40 151 2.73 1
Olds.–Tornado 10371 16 3 3 3.5 30.0 17 4030 206 43 350 2.41 1
Peugeot–604–SL 12990 14 – – 3.5 30.5 14 3420 192 38 163 3.58 3
Plym.–Arrow 4647 28 3 3 2.0 21.5 11 2360 170 37 156 3.05 1
Plym.–Champ 4425 34 5 4 2.5 23.0 11 1800 157 37 86 2.97 1
Plym.–Horizon 4482 25 3 – 4.0 25.0 17 2200 165 36 105 3.37 1
Plym.–Sapporo 6486 26 – – 1.5 22.0 8 2520 182 38 119 3.54 1
Plym.–Volare 4060 18 2 2 5.0 31.0 16 3330 201 44 225 3.23 1
Pont.–Catalina 5798 18 4 4 4.0 29.0 20 3700 214 42 231 2.73 1
Pont.–Firebird 4934 18 1 2 1.5 23.5 7 3470 198 42 231 3.08 1
Pont.–Grand–Prix 5222 19 3 3 2.0 28.5 16 3210 201 45 231 2.93 1
Pont.–Le–Mans 4723 19 3 3 3.5 28.0 17 3200 199 40 231 2.93 1
Pont.–Phoenix 4424 19 – – 3.5 27.0 13 3420 203 43 231 3.08 1
Pont.–Sunbird 4172 24 2 2 2.0 25.0 7 2690 179 41 151 2.73 1
Renault–Le–Car 3895 26 3 3 3.0 23.0 10 1830 142 34 79 3.72 3
Subaru 3798 35 5 4 2.5 25.5 11 2050 164 36 97 3.81 2
Toyota–Cecila 5899 18 5 5 2.5 22.0 14 2410 174 36 134 3.06 2
Toyota–Corolla 3748 31 5 5 3.0 24.5 9 2200 165 35 97 3.21 2
Toyota–Corona 5719 18 5 5 2.0 23.0 11 2670 175 36 134 3.05 2
VW–Rabbit 4697 25 4 3 3.0 25.5 15 1930 155 35 89 3.78 3
VW–Rabbit–Diesel 5397 41 5 4 3.0 25.5 15 2040 155 35 90 3.78 3
VW–Scirocco 6850 25 4 3 2.0 23.5 16 1990 156 36 97 3.78 3
VW–Dasher 7140 23 4 3 2.5 37.5 12 2160 172 36 97 3.74 3
Volvo–260 11995 17 5 3 2.5 29.5 14 3170 193 37 163 2.98 3
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B.4 Classic Blue Pullovers Data

This is a data set consisting of 10 measurements of 4 variables. The story: A textile shop
manager is studying the sales of “classic blue” pullovers over 10 periods. He uses three
different marketing methods and hopes to understand his sales as a fit of these variables
using statistics. The variables measured are

X1: Numbers of sold pullovers,
X2: Price (in EUR),
X3: Advertisement costs in local newspapers (in EUR),
X4: Presence of a sales assistant (in hours per period).

Sales Price Advert. Ass. Hours

1 230 125 200 109
2 181 99 55 107
3 165 97 105 98
4 150 115 85 71
5 97 120 0 82
6 192 100 150 103
7 181 80 85 111
8 189 90 120 93
9 172 95 110 86

10 170 125 130 78
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B.5 U.S. Companies Data

The data set consists of measurements for 79 U.S. companies. The abbreviations in Table B.5
are as follows:

X1: A Assets (USD),
X2: S Sales (USD),
X3: MV Market Value (USD),
X4: P Profits (USD),
X5: CF Cash Flow (USD),
X6: E Employees.

Company A S MV P CF E Sector
Bell Atlantic 19788 9084 10636 1092.9 2576.8 79.4 Communication
Continental Telecom 5074 2557 1892 239.9 578.3 21.9 Communication
American Electric Power 13621 4848 4572 485.0 898.9 23.4 Energy
Brooklyn Union Gas 1117 1038 478 59.7 91.7 3.8 Energy
Centra lIllinois Publ. Serv. 1633 701 679 74.3 135.9 2.8 Energy
Cleveland Electric Illum. 5651 1254 2002 310.7 407.9 6.2 Energy
Columbia Gas System 5835 4053 1601 -93.8 173.8 10.8 Energy
Florida Progress 3494 1653 1442 160.9 320.3 6.4 Energy
Idaho Power 1654 451 779 84.8 130.4 1.6 Energy
Kansas Power & Light 1679 1354 687 93.8 154.6 4.6 Energy
Mesa Petroleum 1257 355 181 167.5 304.0 0.6 Energy
Montana Power 1743 597 717 121.6 172.4 3.5 Energy
Peoples Energy 1440 1617 639 81.7 126.4 3.5 Energy
Phillips Petroleum 14045 15636 2754 418.0 1462.0 27.3 Energy
Publ. Serv. Coof New Mexico 3010 749 1120 146.3 209.2 3.4 Energy
San Diego Gas & Electric 3086 1739 1507 202.7 335.2 4.9 Energy
Valero Energy 1995 2662 341 34.7 100.7 2.3 Energy
American Savings Bank FSB 3614 367 90 14.1 24.6 1.1 Finance
Bank South 2788 271 304 23.5 28.9 2.1 Finance
H & R Block 327 542 959 54.1 72.5 2.8 Finance
California First Bank 5401 550 376 25.6 37.5 4.1 Finance
Cigna 44736 16197 4653 -732.5 -651.9 48.5 Finance
Dreyfus 401 176 1084 55.6 57.0 0.7 Finance
First American 4789 453 367 40.2 51.4 3.0 Finance
First Empire State 2548 264 181 22.2 26.2 2.1 Finance
First Tennessee National 5249 527 346 37.8 56.2 4.1 Finance
Marine Corp 3720 356 211 26.6 34.8 2.4 Finance
Mellon Bank 33406 3222 1413 201.7 246.7 15.8 Finance
National City 12505 1302 702 108.4 131.4 9.0 Finance
Norstar Bancorp 8998 882 988 93.0 119.0 7.4 Finance
Norwest 21419 2516 930 107.6 164.7 15.6 Finance
Southeast Banking 11052 1097 606 64.9 97.6 7.0 Finance
Sovran Financial 9672 1037 829 92.6 118.2 8.2 Finance
United Financial Group 4989 518 53 -3.1 -0.3 0.8 Finance
Apple Computer 1022 1754 1370 72.0 119.5 4.8 HiTech
Digital Equipment 6914 7029 7957 400.6 754.7 87.3 HiTech
Eg & G 430 1155 1045 55.7 70.8 22.5 HiTech
General Electric 26432 28285 33172 2336.0 3562.0 304.0 HiTech
Hewlett-Packard 5769 6571 9462 482.0 792.0 83.0 HiTech
IBM 52634 50056 95697 6555.0 9874.0 400.2 HiTech
NCR 3940 4317 3940 315.2 566.3 62.0 HiTech
Telex 478 672 866 67.1 101.6 5.4 HiTech
Armstrong World Industries 1093 1679 1070 100.9 164.5 20.8 Manufacturing
CBI Industries 1128 1516 430 -47.0 26.7 13.2 Manufacturing
Fruehauf 1804 2564 483 70.5 164.9 26.6 Manufacturing
Halliburton 4662 4781 2988 28.7 371.5 66.2 Manufacturing
LTV 6307 8199 598 -771.5 -524.3 57.5 Manufacturing
Owens-Corning Fiberglas 2366 3305 1117 131.2 256.5 25.2 Manufacturing
PPG Industries 4084 4346 3023 302.7 521.7 37.5 Manufacturing
Textron 10348 5721 1915 223.6 322.5 49.5 Manufacturing
Turner 752 2149 101 11.1 15.2 2.6 Manufacturing
United Technologies 10528 14992 5377 312.7 710.7 184.8 Manufacturing
Commun. Psychiatric Centers 278 205 853 44.8 50.5 3.8 Medical
Hospital Corp of America 6259 4152 3090 283.7 524.5 62.0 Medical
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AH Robins 707 706 275 61.4 77.8 6.1 Medical
Shared Medical Systems 252 312 883 41.7 60.6 3.3 Medical
Air Products 2687 1870 1890 145.7 352.2 18.2 Other
Allied Signal 13271 9115 8190 -279.0 83.0 143.8 Other
Bally Manufactoring 1529 1295 444 25.6 137.0 19.4 Other
Crown Cork & Seal 866 1487 944 71.7 115.4 12.6 Other
Ex-Cell-0 799 1140 633 57.6 89.2 15.4 Other
Liz Claiborne 223 557 1040 60.6 63.7 1.9 Other
Warner Communications 2286 2235 2306 195.3 219.0 8.0 Other
Dayton-Hudson 4418 8793 4459 283.6 456.5 128.0 Retail
Dillard Department Stores 862 160l 1093 66.9 106.8 16.0 Retail
Giant Food 623 2247 797 57.0 93.8 18.6 Retail
Great A & P Tea 1608 6615 829 56.1 134.0 65.0 Retail
Kroger 4178 17124 2091 180.8 390.4 164.6 Retail
May Department Stores 3442 5080 2673 235.4 361.5 77.3 Retail
Stop & Shop Cos 1112 3689 542 30.3 96.9 43.5 Retail
Supermarkets General 1104 5123 910 63.7 133.3 48.5 Retail
Wickes Cos 2957 2806 457 40.6 93.5 50.0 Retail
FW Woolworth 2535 5958 1921 177.0 288.0 118.1 Retail
AMR 6425 6131 2448 345.8 682.5 49.5 Transportation
IU International 999 1878 393 -173.5 -108.1 23.3 Transportation
PanAm 2448 3484 1036 48.8 257.1 25.4 Transportation
Republic Airlines 1286 1734 361 69.2 145.7 14.3 Transportation
TWA 2769 3725 663 -208.4 12.4 29.1 Transportation
Western AirLines 952 1307 309 35.4 92.8 10.3 Transportation
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B.6 French Food Data

The data set consists of the average expenditures on food for several different types of
families in France (manual workers = MA, employees = EM, managers = CA) with different
numbers of children (2,3,4 or 5 children). The data is taken from Lebart, Morineau and
Fénelon (1982).

bread vegetables fruits meat poultry milk wine

1 MA2 332 428 354 1437 526 247 427
2 EM2 293 559 388 1527 567 239 258
3 CA2 372 767 562 1948 927 235 433
4 MA3 406 563 341 1507 544 324 407
5 EM3 386 608 396 1501 558 319 363
6 CA3 438 843 689 2345 1148 243 341
7 MA4 534 660 367 1620 638 414 407
8 EM4 460 699 484 1856 762 400 416
9 CA4 385 789 621 2366 1149 304 282

10 MA5 655 776 423 1848 759 495 486
11 EM5 584 995 548 2056 893 518 319
12 CA5 515 1097 887 2630 1167 561 284

x 446,7 737,8 505,0 1886,7 803,2 358,2 368,6
sXiXi 102,6 172,2 158,1 378,9 238,9 112,1 68,7



458 B Data

B.7 Car Marks

The data are averaged marks for 24 car types from a sample of 40 persons. The marks range
from 1 (very good) to 6 (very bad) like German school marks. The variables are:

X1: A Economy,
X2: B Service,
X3: C Non-depreciation of value,
X4: D Price, Mark 1 for very cheap cars
X5: E Design,
X6: F Sporty car,
X7: G Safety,
X8: H Easy handling.

Type Model Economy Service Value Price Design Sport. Safety Easy h.
Audi 100 3.9 2.8 2.2 4.2 3.0 3.1 2.4 2.8
BMW 5 series 4.8 1.6 1.9 5.0 2.0 2.5 1.6 2.8
Citroen AX 3.0 3.8 3.8 2.7 4.0 4.4 4.0 2.6
Ferrari 5.3 2.9 2.2 5.9 1.7 1.1 3.3 4.3
Fiat Uno 2.1 3.9 4.0 2.6 4.5 4.4 4.4 2.2
Ford Fiesta 2.3 3.1 3.4 2.6 3.2 3.3 3.6 2.8
Hyundai 2.5 3.4 3.2 2.2 3.3 3.3 3.3 2.4
Jaguar 4.6 2.4 1.6 5.5 1.3 1.6 2.8 3.6
Lada Samara 3.2 3.9 4.3 2.0 4.3 4.5 4.7 2.9
Mazda 323 2.6 3.3 3.7 2.8 3.7 3.0 3.7 3.1
Mercedes 200 4.1 1.7 1.8 4.6 2.4 3.2 1.4 2.4
Mitsubishi Galant 3.2 2.9 3.2 3.5 3.1 3.1 2.9 2.6
Nissan Sunny 2.6 3.3 3.9 2.1 3.5 3.9 3.8 2.4
Opel Corsa 2.2 2.4 3.0 2.6 3.2 4.0 2.9 2.4
Opel Vectra 3.1 2.6 2.3 3.6 2.8 2.9 2.4 2.4
Peugeot 306 2.9 3.5 3.6 2.8 3.2 3.8 3.2 2.6
Renault 19 2.7 3.3 3.4 3.0 3.1 3.4 3.0 2.7
Rover 3.9 2.8 2.6 4.0 2.6 3.0 3.2 3.0
Toyota Corolla 2.5 2.9 3.4 3.0 3.2 3.1 3.2 2.8
Volvo 3.8 2.3 1.9 4.2 3.1 3.6 1.6 2.4
Trabant 601 3.6 4.7 5.5 1.5 4.1 5.8 5.9 3.1
VW Golf 2.4 2.1 2.0 2.6 3.2 3.1 3.1 1.6
VW Passat 3.1 2.2 2.1 3.2 3.5 3.5 2.8 1.8
Wartburg 1.3 3.7 4.7 5.5 1.7 4.8 5.2 5.5 4.0
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B.8 French Baccalauréat Frequencies

The data consists of observations of 202100 baccalauréats from France in 1976 and give
the frequencies for different sets of modalities classified into regions. For a reference see
Bourouche and Saporta (1980). The variables (modalities) are:

X1: A Philosophy-Letters,
X2: B Economics and Social Sciences,
X3: C Mathematics and Physics,
X4: D Mathematics and Natural Sciences,
X5: E Mathematics and Techniques,
X6: F Industrial Techniques,
X7: G Economic Techniques,
X8: H Computer Techniques.

Abbrev. Region A B C D E F G H total
ILDF Ile-de-France 9724 5650 8679 9432 839 3353 5355 83 43115
CHAM Champagne-Ardennes 924 464 567 984 132 423 736 12 4242
PICA Picardie 1081 490 830 1222 118 410 743 13 4907
HNOR Haute-Normandie 1135 587 686 904 83 629 813 13 4850
CENT Centre 1482 667 1020 1535 173 629 989 26 6521
BNOR Basse-Normandie 1033 509 553 1063 100 433 742 13 4446
BOUR Bourgogne 1272 527 861 1116 219 769 1232 13 6009
NOPC Nord - Pas-de-Calais 2549 1141 2164 2752 587 1660 1951 41 12845
LORR Lorraine 1828 681 1364 1741 302 1289 1683 15 8903
ALSA Alsace 1076 443 880 1121 145 917 1091 15 5688
FRAC Franche-Comté 827 333 481 892 137 451 618 18 3757
PAYL Pays de la Loire 2213 809 1439 2623 269 990 1783 14 10140
BRET Bretagne 2158 1271 1633 2352 350 950 1509 22 10245
PCHA Poitou-Charentes 1358 503 639 1377 164 495 959 10 5505
AQUI Aquitaine 2757 873 1466 2296 215 789 1459 17 9872
MIDI Midi-Pyrénées 2493 1120 1494 2329 254 855 1565 28 10138
LIMO Limousin 551 297 386 663 67 334 378 12 2688
RHOA Rhônes-Alpes 3951 2127 3218 4743 545 2072 3018 36 19710
AUVE Auvergne 1066 579 724 1239 126 476 649 12 4871
LARO Languedoc-Roussillon 1844 816 1154 1839 156 469 993 16 7287
PROV Provence-Alpes-Côte d’Azur 3944 1645 2415 3616 343 1236 2404 22 15625
CORS Corse 327 31 85 178 9 27 79 0 736

total 45593 21563 32738 46017 5333 19656 30749 451 202100
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B.9 Journaux Data

This is a data set that was created from a survey completed in the 1980‘s in Belgium
questioning people’s reading habits. They were asked where they live (10 regions comprised
of 7 provinces and 3 regions around Brussels) and what kind of newspaper they read on a
regular basis. The 15 possible answers belong to 3 classes: Flemish newspapers (first letter
v), French newspapers (first letter f) and both languages (first letter b).

X1: WaBr Walloon Brabant
X2: Brar Brussels area
X3: Antw Antwerp
X4: FlBr Flemish Brabant
X5: OcFl Occidental Flanders
X6: OrFl Oriental Flanders
X7: Hain Hainaut
X8: Lièg Liège
X9: Limb Limburg
X10: Luxe Luxembourg

WaBr Brar Antw FlBr OcFl OrFl Hain Lièg Limb Luxe
va 1.8 7.8 9.1 3.0 4.3 3.9 0.1 0.3 3.3 0.0
vb 0.1 3.4 17.8 1.0 0.7 4.1 0.0 0.0 0.2 0.0
vc 0.1 9.4 4.6 7.7 4.4 5.8 1.6 0.1 1.4 0.0
vd 0.5 15.6 6.1 12.0 10.5 10.2 0.7 0.3 5.4 0.0
ve 0.1 5.2 3.3 4.8 1.6 1.4 0.1 0.0 3.5 0.0
ff 5.6 13.7 3.1 2.4 0.5 1.7 1.9 2.3 0.2 0.2
fg 4.1 16.5 1.9 1.0 1.0 0.9 2.4 3.2 0.1 0.3
fh 8.3 29.5 1.8 7.3 0.8 0.4 5.1 3.2 0.2 0.3
fi 0.9 7.8 0.2 2.6 0.1 0.1 5.6 3.8 0.1 0.8
bj 6.1 18.2 10.8 4.1 4.5 5.3 2.0 2.6 3.4 0.2
bk 8.3 35.4 6.2 11.0 5.0 6.1 5.5 3.3 1.5 0.3
bl 4.4 9.9 6.7 3.4 1.1 3.9 2.1 1.5 2.1 0.0
vm 0.3 11.6 14.2 4.7 5.1 7.9 0.3 0.5 3.0 0.0
fn 5.1 21.0 1.3 3.4 0.2 0.2 2.3 4.4 0.0 0.4
f0 2.2 9.8 0.1 0.3 0.0 0.7 2.3 3.0 0.3 1.0
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B.10 U.S. Crime Data

This is a data set consisting of 50 measurements of 7 variables. It states for one year (1985)
the reported number of crimes in the 50 states of the U.S. classified according to 7 categories
(X3–X9).

X1: land area (land)
X2: population 1985 (popu 1985)
X3: murder (murd)
X4: rape
X5: robbery (robb)
X6: assault (assa)
X7: burglary (burg)
X8: larcery (larc)
X9: autothieft (auto)
X10: US states region number (reg)
X11: US states division number (div)

division numbers region numbers
New England 1 Northeast 1
Mid Atlantic 2 Midwest 2
E N Central 3 South 3
W N Central 4 West 4
S Atlantic 5
E S Central 6
W S Central 7
Mountain 8
Pacific 9

abb. of land popu murd rape robb assa burg larc auto reg div
state area 1985
ME 33265 1164 1.5 7.0 12.6 62 562 1055 146 1 1
NH 9279 998 2.0 6 12.1 36 566 929 172 1 1
VT 9614 535 1.3 10.3 7.6 55 731 969 124 1 1
MA 8284 5822 3.5 12.0 99.5 88 1134 1531 878 1 1

RI 1212 968 3.2 3.6 78.3 120 1019 2186 859 1 1
CT 5018 3174 3.5 9.1 70.4 87 1084 1751 484 1 1
NY 49108 17783 7.9 15.5 443.3 209 1414 2025 682 1 2
NJ 7787 7562 5.7 12.9 169.4 90 1041 1689 557 1 2
PA 45308 11853 5.3 11.3 106.0 90 594 11 340 1 2
OH 41330 10744 6.6 16.0 145.9 116 854 1944 493 2 3
IN 36185 5499 4.8 17.9 107.5 95 860 1791 429 2 3
IL 56345 11535 9.6 20.4 251.1 187 765 2028 518 2 3

MI 58527 9088 9.4 27.1 346.6 193 1571 2897 464 2 3
WI 56153 4775 2.0 6.7 33.1 44 539 1860 218 2 3
MN 84402 4193 2.0 9.7 89.1 51 802 1902 346 2 4
IA 56275 2884 1.9 6.2 28.6 48 507 1743 175 2 4

MO 69697 5029 10.7 27.4 2.8 167 1187 2074 538 2 4
ND 70703 685 0.5 6.2 6.5 21 286 1295 91 2 4
SD 77116 708 3.8 11.1 17.1 60 471 1396 94 2 4
NE 77355 1606 3.0 9.3 57.3 115 505 1572 292 2 4
KS 82277 2450 4.8 14.5 75.1 108 882 2302 257 2 4
DE 2044 622 7.7 18.6 105.5 196 1056 2320 559 3 5
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MD 10460 4392 9.2 23.9 338.6 253 1051 2417 548 3 5
VA 40767 5706 8.4 15.4 92.0 143 806 1980 297 3 5

WV 24231 1936 6.2 6.7 27.3 84 389 774 92 3 5
NC 52669 6255 11.8 12.9 53.0 293 766 1338 169 3 5
SC 31113 3347 14.6 18.1 60.1 193 1025 1509 256 3 5
GA 58910 5976 15.3 10.1 95.8 177 9 1869 309 3 5
FL 58664 11366 12.7 22.2 186.1 277 1562 2861 397 3 5
KY 40409 3726 11.1 13.7 72.8 123 704 1212 346 3 6
TN 42144 4762 8.8 15.5 82.0 169 807 1025 289 3 6
AL 51705 4021 11.7 18.5 50.3 215 763 1125 223 3 6
MS 47689 2613 11.5 8.9 19.0 140 351 694 78 3 6
AR 53187 2359 10.1 17.1 45.6 150 885 1211 109 3 7
LA 47751 4481 11.7 23.1 140.8 238 890 1628 385 3 7
OK 69956 3301 5.9 15.6 54.9 127 841 1661 280 3 7
TX 266807 16370 11.6 21.0 134.1 195 1151 2183 394 3 7
MT 147046 826 3.2 10.5 22.3 75 594 1956 222 4 8
ID 83564 15 4.6 12.3 20.5 86 674 2214 144 4 8

WY 97809 509 5.7 12.3 22.0 73 646 2049 165 4 8
CO 104091 3231 6.2 36.0 129.1 185 1381 2992 588 4 8
NM 121593 1450 9.4 21.7 66.1 196 1142 2408 392 4 8
AZ 1140 3187 9.5 27.0 120.2 214 1493 3550 501 4 8
UT 84899 1645 3.4 10.9 53.1 70 915 2833 316 4 8
NV 110561 936 8.8 19.6 188.4 182 1661 3044 661 4 8
WA 68138 4409 3.5 18.0 93.5 106 1441 2853 362 4 9
OR 97073 2687 4.6 18.0 102.5 132 1273 2825 333 4 9
CA 158706 26365 6.9 35.1 206.9 226 1753 3422 689 4 9
AK 5914 521 12.2 26.1 71.8 168 790 2183 551 4 9
HI 6471 1054 3.6 11.8 63.3 43 1456 3106 581 4 9
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B.11 Plasma Data

In Olkin and Veath (1980), the evolution of citrate concentration in the plasma is observed
at 3 different times of day, X1 (8 am), X2 (11 am) and X3 (3 pm), for two groups of patients.
Each group follows a different diet.

X1: 8 am
X2: 11 am
X3: 3 pm

Group (8 am) (11 am) (3 pm)

125 137 121
144 173 147

I 105 119 125
151 149 128
137 139 109

93 121 107
116 135 106

II 109 83 100
89 95 83

116 128 100
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B.12 WAIS Data

Morrison (1990) compares the results of 4 subtests of the Wechsler Adult Intelligence Scale
(WAIS) for 2 categories of people: in group 1 are n1 = 37 people who do not present a senile
factor, group 2 are those (n2 = 12) presenting a senile factor.

WAIS subtests:
X1: information
X2: similarities
X3: arithmetic
X4: picture completion

Group II
subject information similarities arithmetic picture completion

1 9 5 10 8
2 10 0 6 2
3 8 9 11 1
4 13 7 14 9
5 4 0 4 0
6 4 0 6 0
7 11 9 9 8
8 5 3 3 6
9 9 7 8 6
10 7 2 6 4
11 12 10 14 3
12 13 12 11 10

Mean 8.75 5.33 8.50 4.75

Group I
subject information similarities arithmetic picture completion

1 7 5 9 8
2 8 8 5 6
3 16 18 11 9
4 8 3 7 9
5 6 3 13 9
6 11 8 10 10
7 12 7 9 8
8 8 11 9 3
9 14 12 11 4
10 13 13 13 6
11 13 9 9 9
12 13 10 15 7
13 14 11 12 8
14 15 11 11 10
15 13 10 15 9
16 10 5 8 6
17 10 3 7 7
18 17 13 13 7
19 10 6 10 7
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20 10 10 15 8
21 14 7 11 5
22 16 11 12 11
23 10 7 14 6
24 10 10 9 6
25 10 7 10 10
26 7 6 5 9
27 15 12 10 6
28 17 15 15 8
29 16 13 16 9
30 13 10 17 8
31 13 10 17 10
32 19 12 16 10
33 19 15 17 11
34 13 10 7 8
35 15 11 12 8
36 16 9 11 11
37 14 13 14 9

Mean 12.57 9.57 11.49 7.97
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B.13 ANOVA Data

The yields of wheat have been measured in 30 parcels which have been randomly attributed
to 3 lots prepared by one of 3 different fertilizers A, B, and C.

X1: fertilizer A
X2: fertilizer B
X3: fertilizer C

Fertilizer A B C
Yield

1 4 6 2
2 3 7 1
3 2 7 1
4 5 5 1
5 4 5 3
6 4 5 4
7 3 8 3
8 3 9 3
9 3 9 2
10 1 6 2
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B.14 Timebudget Data

In Volle (1985), we can find data on 28 individuals identified according to sex, country where
they live, professional activity and matrimonial status, which indicates the amount of time
each person spent on ten categories of activities over 100 days (100·24h = 2400 hours total
in each row) in the year 1976.

X1: prof : professional activity
X2: tran : transportation linked to professional activity
X3: hous : household occupation
X4: kids : occupation linked to children
X5: shop : shopping
X6: pers : time spent for personal care
X7: eat : eating
X8: slee : sleeping
X9: tele : watching television
X10: leis : other leisures

maus: active men in the U.S.
waus: active women in the U.S.
wnus: nonactive women in the U.S.
mmus: married men in U.S.
wmus: married women in U.S.
msus: single men in U.S.
wsus: single women in U.S.
mawe: active men from Western countries
wawe: active women from Western countries
wnwe: nonactive women from Western countries
mmwe: married men from Western countries
wmwe: married women from Western countries
mswe: single men from Western countries
wswe: single women from Western countries
mayo: active men from yugoslavia
wayo: active women from yugoslavia
wnyo: nonactive women from yugoslavia
mmyo: married men from yugoslavia
wmyo: married women from yugoslavia
msyo: single men from yugoslavia
wsyo: single women from yugoslavia
maes: active men from eastern countries
waes: active women from eastern countries
wnes: nonactive women from eastern countries
mmes: married men from eastern countries
wmes: married women from eastern countries
mses: single men from eastern countries
wses: single women from eastern countries
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prof tran hous kids shop pers eat slee tele leis

maus 610 140 60 10 120 95 115 760 175 315
waus 475 90 250 30 140 120 100 775 115 305
wnus 10 0 495 110 170 110 130 785 160 430
mmus 615 140 65 10 115 90 115 765 180 305
wmus 179 29 421 87 161 112 119 776 143 373
msus 585 115 50 0 150 105 100 760 150 385
wsus 482 94 196 18 141 130 96 775 132 336
mawe 653 100 95 7 57 85 150 808 115 330
wawe 511 70 307 30 80 95 142 816 87 262
wnwe 20 7 568 87 112 90 180 843 125 368
mmwe 656 97 97 10 52 85 152 808 122 321
wmwe 168 22 528 69 102 83 174 824 119 311
mswe 643 105 72 0 62 77 140 813 100 388
wswe 429 34 262 14 92 97 147 849 84 392
mayo 650 140 120 15 85 90 105 760 70 365
wayo 560 105 375 45 90 90 95 745 60 235
wnyo 10 10 710 55 145 85 130 815 60 380
mmyo 650 145 112 15 85 90 105 760 80 358
wmyo 260 52 576 59 116 85 117 775 65 295
msyo 615 125 95 0 115 90 85 760 40 475
wsyo 433 89 318 23 112 96 102 774 45 408
maea 650 142 122 22 76 94 100 764 96 334
waea 578 106 338 42 106 94 92 752 64 228
wnea 24 8 594 72 158 92 128 840 86 398
mmea 652 133 134 22 68 94 102 763 122 310
wmea 436 79 433 60 119 90 107 772 73 231
msea 627 148 68 0 88 92 86 770 58 463
wsea 434 86 297 21 129 102 94 799 58 380
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B.15 Geopol Data

This data set contains a comparison of 41 countries according to 10 different political and
economic parameters.

X1: popu population
X2: giph Gross Internal Product per habitant
X3: ripo rate of increase of the population
X4: rupo rate of urban population
X5: rlpo rate of illiteracy in the population
X6: rspo rate of students in the population
X7: eltp expected lifetime of people
X8: rnnr rate of nutritional needs realized
X9: nunh number of newspapers and magazines per 1000 habitants
X10: nuth number of television per 1000 habitants

AFS South Africa DAN Denmark MAR Marocco
ALG Algeria EGY Egypt MEX Mexico
BRD Germany ESP Spain NOR Norway
GBR Great Britain FRA France PER Peru
ARS Saudi Arabia GAB Gabun POL Poland
ARG Argentine GRE Greece POR Portugal
AUS Australia HOK Hong Kong SUE Sweden
AUT Austria HON Hungary SUI Switzerland
BEL Belgium IND India THA Tailand
CAM Cameroon IDO Indonesia URS USSR
CAN Canada ISR Israel USA USA
CHL Chile ITA Italia VEN Venezuela
CHN China JAP Japan YOU Yugoslavia
CUB Cuba KEN Kenia

popu giph ripo rupo rlpo rspo eltp rnnr nunh nuth

AFS 37 2492 2 58.9 44 1.08 60 120 48 98
ALG 24.6 1960 3 44.7 50.4 0.73 64 112 21 71
BRD 62 19610 0.4 86.4 2 2.72 72 145 585 759
GBR 57.02 14575 0.04 92.5 2.2 1.9 75 128 421 435
ARS 14.4 5980 2.7 77.3 48.9 0.91 63 125 34 269
ARG 32.4 2130 1.6 86.2 6.1 2.96 71 136 82 217
AUS 16.81 16830 1.4 85.5 5 2.5 76 125 252 484
AUT 7.61 16693 0 57.7 1.5 2.52 74 130 362 487
BEL 9.93 15243 0.2 96.9 3 2.56 74 150 219 320

CAM 11 1120 2.7 49.4 58.8 0.17 53 88 6 12
CAN 26.25 20780 0.9 76.4 1 6.89 77 129 321 586
CHL 12.95 1794 1.6 85.6 8.9 1.73 71 106 67 183
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CHN 1119 426 1.1 21.4 34.5 0.16 69 111 36 24
CUB 10.5 1050 0.8 74.9 3.8 2.38 75 135 129 203
DAN 5.13 20570 0.4 86.4 1.5 2.38 75 131 359 526
EGY 52.52 665 2.5 48.8 61.8 1.67 59 132 39 84
ESP 39.24 9650 0.4 78.4 4.2 2.55 77 137 75 380
FRA 56.1 16905 0.4 74.1 2 2.63 76 130 193 399
GAB 1.1 3000 4 45.7 60 0.36 52 107 14 23
GRE 10 5370 0.3 62.60 9.5 1.89 76 147 102 175
HOK 5.75 10900 0 100 22.7 1.34 77 121 521 247
HON 10.6 2330 -0.1 60.3 1.1 0.93 70 135 273 404
IND 810 317 1.9 28 59.2 0.55 57 100 28 7
IDO 179 454 2 28.8 32.7 0.55 60 116 21 41
ISR 4.47 9800 1.4 91.6 8.2 2.62 75 118 253 276
ITA 57.55 15025 0.1 68.6 3.5 2.25 75 139 105 419
JAP 123.2 22825 0.6 77 3 2.1 78 122 566 589
KEN 23.88 400 3.8 23.6 69 0.11 58 92 13 6
MAR 24.51 800 2.2 48.5 78.6 0.86 61 118 12 55
MEX 84.3 2096 2.5 72.6 17 1.55 68 120 124 124
NOR 4.2 22060 0.3 74.4 2 2.74 77 124 551 350
PER 21.75 1899 2.1 70.2 18.1 2.04 61 93 31 85
POL 38 1740 0.9 63.2 1.2 1.3 71 134 184 263
POR 10.5 4304 0.6 33.3 20.6 1.99 74 128 70 160
SUE 8.47 22455 0.1 84 1.5 2.21 77 113 526 395
SUI 6.7 26025 0.5 59.6 1 1.87 77 128 504 408

THA 55.45 1130 1.9 22.6 12 1.59 65 105 46 104
URS 289 6020 0.8 67.5 2 1.76 69 133 474 319
USA 247.5 20765 1 74 0.5 5.01 75 138 259 812
VEN 19.2 3220 2.5 90 15.3 2.6 69 102 164 147
YOU 23.67 2599 0.7 50.2 10.4 1.44 72 139 100 179
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B.16 U.S. Health Data

This is a data set consisting of 50 measurements of 13 variables. It states for one year (1985)
the reported number of deaths in the 50 states of the U.S. classified according to 7 categories.

X1: land area (land)
X2: population 1985 (popu)
X3: accident (acc)
X4: cardiovascular (card)
X5: cancer (canc)
X6: pulmonar (pul)
X7: pneumonia flu (pnue)
X8: diabetis (diab)
X9: liver (liv)
X10: Doctors (doc)
X11: Hospitals (hosp)
X12: U.S. states region number (r)
X13: U.S. states division number (d)

division numbers region numbers
New England 1 Northeast 1
Mid Atlantic 2 Midwest 2
E N Central 3 South 3
W N Central 4 West 4
S Atlantic 5
E S Central 6
W S Central 7
Mountain 8
Pacific 9

state land popu acc card canc pul pneu diab liv doc hosp r d
1985

ME 33265 1164 37.7 466.2 213.8 33.6 21.1 15.6 14.5 1773 47 1 1
NH 9279 998 35.9 395.9 182.2 29.6 20.1 17.6 10.4 1612 34 1 1
VT 9614 535 41.3 433.1 188.1 33.1 24.0 15.6 13.1 1154 19 1 1
MA 8284 5822 31.1 460.6 219 24.9 29.7 16.0 13.0 16442 177 1 1

RI 1212 968 28.6 474.1 231.5 27.4 17.7 26.2 13.4 2020 21 1 1
CT 5018 3174 35.3 423.8 205.1 23.2 22.4 15.4 11.7 8076 65 1 1
NY 49108 17783 31.5 499.5 209.9 23.9 26.0 17.1 17.7 49304 338 1 2
NJ 7787 7562 32.2 464.7 216.3 23.3 19.9 17.3 14.2 15120 131 1 2
PA 45308 11853 34.9 508.7 223.6 27.0 20.1 20.4 12.0 23695 307 1 2
OH 41330 10744 33.2 443.1 198.8 27.4 18.0 18.9 10.2 18518 236 2 3
IN 36185 5499 37.7 435.7 184.6 27.2 18.6 17.2 8.4 7339 133 2 3
IL 56345 11535 32.9 449.6 193.2 22.9 21.3 15.3 12.5 22173 279 2 3

MI 58527 9088 34.3 420.9 182.3 24.2 18.7 14.8 13.7 15212 231 2 3
WI 56153 4775 33.8 444.3 189.4 22.5 21.2 15.7 8.7 7899 163 2 3
MN 84402 4193 35.7 398.3 174 23.4 25.6 13.5 8.1 8098 181 2 4
IA 56275 2884 38.6 490.1 199.1 31.2 28.3 16.6 7.9 3842 140 2 4

MO 69697 5029 42.2 475.9 211.1 29.8 25.7 15.3 9.6 8422 169 2 4
ND 70703 685 48.2 401 173.7 18.2 25.9 14.9 7.4 936 58 2 4
SD 77116 708 53.0 495.2 182.1 30.7 32.4 12.8 7.2 833 68 2 4
NE 77355 1606 40.8 479.6 187.4 31.6 28.3 13.5 7.8 2394 110 2 4
KS 82277 2450 42.9 455.9 183.9 32.3 24.9 16.9 7.8 3801 165 2 4
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DE 2044 622 38.8 404.5 202.8 25.3 16.0 25.0 10.5 1046 14 3 5
MD 10460 4392 35.2 366.7 195 23.4 15.8 16.1 9.6 11961 85 3 5
VA 40767 5706 37.4 365.3 174.4 22.4 20.3 11.4 9.2 9749 135 3 5
MV 24231 1936 46.7 502.7 199.6 35.2 20.1 18.4 10.0 2813 75 3 5
NC 52669 6255 45.4 392.6 169.2 22.6 19.8 13.1 10.2 9355 159 3 5
SC 31113 3347 47.8 374.4 156.9 19.6 19.2 14.8 9.0 4355 89 3 5
GA 58910 5976 48.2 371.4 157.9 22.6 20.5 13.2 10.4 8256 191 3 5
FL 58664 11366 46.0 501.8 244 34.0 18.3 16.1 17.2 18836 254 3 5
KY 40409 3726 48.8 442.5 194.7 29.8 22.9 15.9 9.1 5189 120 3 6
TN 42144 4762 45.0 427.2 185.6 27.0 20.8 12.0 8.3 7572 162 3 6
AL 51705 4021 48.9 411.5 185.8 25.5 16.8 16.1 9.1 5157 146 3 6
MS 47689 2613 59.3 422.3 173.9 21.7 19.5 14.0 7.1 2883 118 3 6
AR 53187 2359 51.0 482 202.1 29.0 22.7 15.0 8.7 2952 97 3 7
LA 47751 4481 52.3 390.9 168.1 18.6 15.8 17.8 8.3 7061 158 3 7
OK 69956 3301 62.5 441.4 182.4 27.6 24.5 15.3 9.6 4128 143 3 7
TX 266807 16370 48.9 327.9 146.5 20.7 17.4 12.1 8.7 23481 562 3 7
MT 147046 826 59.0 372.2 170.7 33.4 25.1 14.4 11.1 1058 67 4 8
ID 83564 15.0 51.5 324.8 140.4 29.9 22.3 12.4 9.2 1079 52 4 8

WY 97809 509 67.6 264.2 112.2 27.7 18.5 9.2 9.2 606 31 4 8
CO 104091 3231 44.7 280.2 125.1 29.9 22.8 9.6 9.5 5899 98 4 8
NM 121593 1450 62.3 235.6 137.2 28.7 17.8 17.5 13.1 2127 56 4 8
AZ 1140 3187 48.3 331.5 165.6 36.3 21.2 12.6 13.1 5137 79 4 8
UT 84899 1645 39.3 242 93.7 17.6 14.5 11.1 7.3 2563 44 4 8
NV 110561 936 57.3 299.5 162.3 32.3 13.7 11.1 15.4 1272 26 4 8
WA 68138 4409 41.4 358.1 171 31.1 21.2 13.0 10.9 7768 122 4 9
OR 97073 2687 41.6 387.8 179.4 33.8 23.1 11.2 10.4 4904 83 4 9
CA 158706 26365 40.3 357.8 173 26.9 22.2 10.7 16.7 57225 581 4 9
AK 5914 521 85.8 114.6 76.1 8.3 12.4 3.4 11.0 545 26 4 9
HI 6471 1054 32.5 216.9 125.8 16.0 16.8 12.7 6.2 1953 26 4 9
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B.17 Vocabulary Data

This example of the evolution of the vocabulary of children can be found in Bock (1975).
Data are drawn from test results on file in the Records Office of the Laboratory School of
the University of Chicago. They consist of scores, obtained from a cohort of pupils from the
eighth through eleventh grade levels, on alternative forms of the vocabulary section of the
Coorperative Reading Test. It provides the following scaled scores shown for the sample of
64 subjects (the origin and units are fixed arbitrarily).

Grade
Subjects 8 9 10 11 Mean

1 1.75 2.60 3.76 3.68 2.95
2 0.90 2.47 2.44 3.43 2.31
3 0.80 0.93 0.40 2.27 1.10
4 2.42 4.15 4.56 4.21 3.83
4 −1.31 −1.31 −0.66 −2.22 −1.38
6 −1.56 1.67 0.18 2.33 0.66
7 1.09 1.50 0.52 2.33 1.36
8 −1.92 1.03 0.50 3.04 0.66
9 −1.61 0.29 0.73 3.24 0.66
10 2.47 3.64 2.87 5.38 3.59
11 −0.95 0.41 0.21 1.82 0.37
12 1.66 2.74 2.40 2.17 2.24
13 2.07 4.92 4.46 4.71 4.04
14 3.30 6.10 7.19 7.46 6.02
15 2.75 2.53 4.28 5.93 3.87
16 2.25 3.38 5.79 4.40 3.96
17 2.08 1.74 4.12 3.62 2.89
18 0.14 0.01 1.48 2.78 1.10
19 0.13 3.19 0.60 3.14 1.77
20 2.19 2.65 3.27 2.73 2.71
21 −0.64 −1.31 −0.37 4.09 0.44
22 2.02 3.45 5.32 6.01 4.20
23 2.05 1.80 3.91 2.49 2.56
24 1.48 0.47 3.63 3.88 2.37
25 1.97 2.54 3.26 5.62 3.35
26 1.35 4.63 3.54 5.24 3.69
27 −0.56 −0.36 1.14 1.34 0.39
28 0.26 0.08 1.17 2.15 0.92
29 1.22 1.41 4.66 2.62 2.47
30 −1.43 0.80 −0.03 1.04 0.09
31 −1.17 1.66 2.11 1.42 1.00
32 1.68 1.71 4.07 3.30 2.69
33 −0.47 0.93 1.30 0.76 0.63
34 2.18 6.42 4.64 4.82 4.51
35 4.21 7.08 6.00 5.65 5.73
36 8.26 9.55 10.24 10.58 9.66
37 1.24 4.90 2.42 2.54 2.78
38 5.94 6.56 9.36 7.72 7.40
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39 0.87 3.36 2.58 1.73 2.14
40 −0.09 2.29 3.08 3.35 2.15
41 3.24 4.78 3.52 4.84 4.10
42 1.03 2.10 3.88 2.81 2.45
43 3.58 4.67 3.83 5.19 4.32
44 1.41 1.75 3.70 3.77 2.66
45 −0.65 −0.11 2.40 3.53 1.29
46 1.52 3.04 2.74 2.63 2.48
47 0.57 2.71 1.90 2.41 1.90
48 2.18 2.96 4.78 3.34 3.32
49 1.10 2.65 1.72 2.96 2.11
50 0.15 2.69 2.69 3.50 2.26
51 −1.27 1.26 0.71 2.68 0.85
52 2.81 5.19 6.33 5.93 5.06
53 2.62 3.54 4.86 5.80 4.21
54 0.11 2.25 1.56 3.92 1.96
55 0.61 1.14 1.35 0.53 0.91
56 −2.19 −0.42 1.54 1.16 0.02
57 1.55 2.42 1.11 2.18 1.82
58 0.04 0.50 2.60 2.61 1.42
59 3.10 2.00 3.92 3.91 3.24
60 −0.29 2.62 1.60 1.86 1.45
61 2.28 3.39 4.91 3.89 3.62
62 2.57 5.78 5.12 4.98 4.61
63 −2.19 0.71 1.56 2.31 0.60
64 −0.04 2.44 1.79 2.64 1.71

Mean 1.14 2.54 2.99 3.47 2.53
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B.18 Athletic Records Data

This data set provides data on athletic records for 55 countries.

Country 100m 200m 400m 800m 1500m 5000m 10000m Marathon
(s) (s) (s) (s) (min) (min) (min) (min)

Argentina 10.39 20.81 46.84 1.81 3.70 14.04 29.36 137.71
Australia 10.31 20.06 44.84 1.74 3.57 13.28 27.66 128.30
Austria 10.44 20.81 46.82 1.79 3.60 13.26 27.72 135.90
Belgium 10.34 20.68 45.04 1.73 3.60 13.22 27.45 129.95
Bermuda 10.28 20.58 45.91 1.80 3.75 14.68 30.55 146.61
Brazil 10.22 20.43 45.21 1.73 3.66 13.62 28.62 133.13
Burma 10.64 21.52 48.30 1.80 3.85 14.45 30.28 139.95
Canada 10.17 20.22 45.68 1.76 3.63 13.55 28.09 130.15
Chile 10.34 20.80 46.20 1.79 3.71 13.61 29.30 134.03
China 10.51 21.04 47.30 1.81 3.73 13.90 29.13 133.53
Columbia 10.43 21.05 46.10 1.82 3.74 13.49 27.88 131.35
Cook Is 12.18 23.20 52.94 2.02 4.24 16.70 35.38 164.70
Costa Rica 10.94 21.90 48.66 1.87 3.84 14.03 28.81 136.58
Czech 10.35 20.65 45.64 1.76 3.58 13.42 28.19 134.32
Denmark 10.56 20.52 45.89 1.78 3.61 13.50 28.11 130.78
Dom Rep 10.14 20.65 46.80 1.82 3.82 14.91 31.45 154.12
Finland 10.43 20.69 45.49 1.74 3.61 13.27 27.52 130.87
France 10.11 20.38 45.28 1.73 3.57 13.34 27.97 132.30
GDR 10.12 20.33 44.87 1.73 3.56 13.17 27.42 129.92
FRG 10.16 20.37 44.50 1.73 3.53 13.21 27.61 132.23
GB 10.11 20.21 44.93 1.70 3.51 13.01 27.51 129.13
Greece 10.22 20.71 46.56 1.78 3.64 14.59 28.45 134.60
Guatemala 10.98 21.82 48.40 1.89 3.80 14.16 30.11 139.33
Hungary 10.26 20.62 46.02 1.77 3.62 13.49 28.44 132.58
India 10.60 21.42 45.73 1.76 3.73 13.77 28.81 131.98
Indonesia 10.59 21.49 47.80 1.84 3.92 14.73 30.79 148.83
Ireland 10.61 20.96 46.30 1.79 3.56 13.32 27.81 132.35
Israel 10.71 21.00 47.80 1.77 3.72 13.66 28.93 137.55
Italy 10.01 19.72 45.26 1.73 3.60 13.23 27.52 131.08
Japan 10.34 20.81 45.86 1.79 3.64 13.41 27.72 128.63
Kenya 10.46 20.66 44.92 1.73 3.55 13.10 27.80 129.75
Korea 10.34 20.89 46.90 1.79 3.77 13.96 29.23 136.25
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P Korea 10.91 21.94 47.30 1.85 3.77 14.13 29.67 130.87
Luxemburg 10.35 20.77 47.40 1.82 3.67 13.64 29.08 141.27
Malaysia 10.40 20.92 46.30 1.82 3.80 14.64 31.01 154.10
Mauritius 11.19 33.45 47.70 1.88 3.83 15.06 31.77 152.23
Mexico 10.42 21.30 46.10 1.80 3.65 13.46 27.95 129.20
Netherlands 10.52 29.95 45.10 1.74 3.62 13.36 27.61 129.02
NZ 10.51 20.88 46.10 1.74 3.54 13.21 27.70 128.98
Norway 10.55 21.16 46.71 1.76 3.62 13.34 27.69 131.48
Png 10.96 21.78 47.90 1.90 4.01 14.72 31.36 148.22
Philippines 10.78 21.64 46.24 1.81 3.83 14.74 30.64 145.27
Poland 10.16 20.24 45.36 1.76 3.60 13.29 27.89 131.58
Portugal 10.53 21.17 46.70 1.79 3.62 13.13 27.38 128.65
Rumania 10.41 20.98 45.87 1.76 3.64 13.25 27.67 132.50
Singapore 10.38 21.28 47.40 1.88 3.89 15.11 31.32 157.77
Spain 10.42 20.77 45.98 1.76 3.55 13.31 27.73 131.57
Sweden 10.25 20.61 45.63 1.77 3.61 13.29 27.94 130.63
Switzerland 10.37 20.45 45.78 1.78 3.55 13.22 27.91 131.20
Tapei 10.59 21.29 46.80 1.79 3.77 14.07 30.07 139.27
Thailand 10.39 21.09 47.91 1.83 3.84 15.23 32.56 149.90
Turkey 10.71 21.43 47.60 1.79 3.67 13.56 28.58 131.50
USA 9.93 19.75 43.86 1.73 3.53 13.20 27.43 128.22
USSR 10.07 20.00 44.60 1.75 3.59 13.20 27.53 130.55
W Samoa 10.82 21.86 49.00 2.02 4.24 16.28 34.71 161.83
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B.19 Unemployment Data

This data set provides unemployment rates in all federal states of Germany in September
1999.

No. Federal state Unemployment rate
1 Schleswig-Holstein 8.7
2 Hamburg 9.8
3 Mecklenburg-Vorpommern 17.3
4 Niedersachsen 9.8
5 Bremen 13.9
6 Nordrhein-Westfalen 9.8
7 Hessen 7.9
8 Rheinland-Pfalz 7.7
9 Saarland 10.4
10 Baden-Württemberg 6.2
11 Bayern 5.8
12 Berlin 15.8
13 Brandenburg 17.1
14 Sachsen-Anhalt 19.9
15 Thüringen 15.1
16 Sachsen 16.8
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B.20 Annual Population Data

The data shows yearly average population rates for the old federal states (given in 1000
inhabitants).

Year Inhabitants Unemployed
1960 55433 271
1961 56158 181
1962 56837 155
1963 57389 186
1964 57971 169
1965 58619 147
1966 59148 161
1967 59268 459
1968 59500 323
1969 60067 179
1970 60651 149
1971 61302 185
1972 61672 246
1973 61976 273
1974 62054 582
1975 61829 1074
1976 61531 1060
1977 61400 1030
1978 61327 993
1979 61359 876
1980 61566 889
1981 61682 1272
1982 61638 1833
1983 61423 2258
1984 61175 2266
1985 61024 2304
1986 61066 2228
1987 61077 2229
1988 61449 2242
1989 62063 2038
1990 63254 1883
1991 64074 1689
1992 64865 1808
1993 65535 2270
1994 65858 2556
1995 66156 2565
1996 66444 2796
1997 66648 3021
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480 Bibliography

Fahrmeir, L. and Hamerle, A. (1984). Multivariate Statistische Verfahren, De Gruyter,
Berlin.

Fang, K. T., Kotz, S. and Ng, K. W. (1990). Symmetric Multivariate and Related Distribu-
tions, Chapman and Hall, London.

Feller, W. (1966). An Introduction to Probability Theory and Its Application, Vol. 2, Wiley
& Sons, New York.
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admissible, 329
agglomerative techniques, 308
allocation rules, 323
Andrews’ curves, 39
angle between two vectors, 75
ANOVA, 103
ANOVA – simple analysis of variace, 103

Bayes discriminant rule, 328
Bernoulli distribution, 143
Bernoulli distributions, 143
best line, 221
binary structure, 303
Biplots, 356
bootstrap, 148
bootstrap sample, 150
Boston housing, 44, 112, 209, 259, 293,

316, 337
boxplot, 15

construction, 17

canonical correlation, 361
canonical correlation analysis, 361
canonical correlation coefficient, 363
canonical correlation variable, 363
canonical correlation vector, 363
centering matrix, 93
central limit theorem (CLT), 143, 145
centroid, 312
characteristic functions, 125, 131
classic blue pullovers, 84
cluster algorithms, 308
cluster analysis, 301
Cochran theorem, 163
coefficient of determination, 98, 109

corrected, 109
column space, 77, 221
common factors, 277
common principal components, 256
communality, 278
complete linkage, 311
computationally intensive techniques, 421
concentration ellipsoid, 138
conditional approximations, 160
conditional covariance, 433

conditional density, 121
conditional distribution, 157
conditional expectation, 127, 432, 433
conditional pdf, 120
confidence interval, 145
confussion matrix, 332
conjoint measurement analysis, 393
contingency table, 341
contrast, 195
convex hull, 423
copula, 122
correlation, 86

multiple, 160
correspondence analysis, 341
covariance, 82
covariance matrix

decomposition, 234
properties, 126

CPCA, 256
Cramer-Rao, 179
Cramer-Rao-lower bound, 178
Cramer-Wold, 132
cumulant, 133
cumulative distribution function (cdf), 120
curse of dimensionality, 431

data depth, 423
data sets

XFGvolsurf01, 257
XFGvolsurf02, 257
XFGvolsurf03, 257

degrees of freedom, 105
dendrogram, 310
density estimates, 22
density functions, 120
derivatives, 68
determinant, 59
diagonal matrix, 59
Dice, 304
discriminant analysis, 323
discriminant rule, 324
discrimination rules in practice, 331
dissimilarity of cars, 376
distance
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Euclidean, 71
iso-distance curves, 71

distance matrix, 379
distance measures, 305
distribution, 120
draftman’s plot, 32
duality relations, 227
duality theorem, 382

effective dimension reduction directions, 431,
433

effective dimension reduction space, 431
efficient portfolio, 408
eigenvalues, 61
eigenvectors, 61
elliptical distribution, 167
elliptically symmetric distribution, 431
estimation, 173
existence of a riskless asset, 412
expected cost of misclassification, 325
explained variation, 98
exploratory projection pursuit, 425
extremes, 17

F-spread, 16
f-test, 106
faces, 34
factor analysis, 275
factor analysis model, 275
factor model, 282
factor score, 291
factor scores, 291
factorial axis, 223
factorial method, 250
factorial representation, 229, 231
factorial variable, 223, 230
factors, 221
Farthest Neighbor, 311
Fisher information, 180
Fisher information matrix, 178, 179
Fisher’s linear discrimination function, 333
five-number summary, 15
flury faces, 35
fourths, 15
French food expenditure, 253
full model, 105

G-inverse, 60
non-uniqueness, 64

general multinormal distribution, 165
gradient, 68
group-building algorithm, 302

Hessian, 68

hierarchical algorithm, 308
histograms, 22
Hotelling T 2-distribution, 165

idempotent matrix, 59
identity matrix, 59
independence copula, 123
independent, 87, 121
inertia, 229, 231
information matrix, 179
interpretation of the factors, 278
interpretation of the principal components,

241
invariance of scale, 279
inverse, 60
inverse regression, 431, 433

Jaccard, 304
Jacobian, 135
Jordan decomposition, 63, 64

kernel densities, 25
kernel estimator, 25
Kulczynski, 304

likelihood function, 174
likelihood ratio test, 184
limit theorems, 142
linear discriminant analysis, 327
linear regression, 95
linear transformation, 94
link function, 431
loadings, 277, 278

non-uniqueness, 280
log-likelihood function, 174

Mahalanobis distance, 327
Mahalanobis transformation, 95, 137, 138
marginal densities, 121
marketing strategies, 104
maximum likelihood discriminant rule, 324
maximum likelihood estimator, 174
MDS direction, 376
mean-variance, 407, 408
median, 15, 422
metric methods, 377
moments, 125
multidimentional scaling, 373
multinormal, 139, 155
multinormal distribution, 137
multivariate distributions, 119
multivariate median, 423
multivariate t-distribution, 168
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Nearest Neighbor, 311
non-metric solution, 400
Nonexistence of a riskless asset, 410
nonhomogeneous, 94
nonmetric methods of MDS, 377
norm of a vector, 74
normal distribution, 175
normalized principal components (NPCs),

249
null space, 77

order statistics, 15
orthogonal complement, 78
orthogonal matrix, 59
orthonormed, 223
outliers, 13
outside bars, 16

parallel coordinates plots, 42
parallel profiles, 205
partitioned covariance matrix, 156
partitioned matrices, 68
PAV algorithm, 384, 405
pool-adjacent violators algorithm, 384, 405
portfolio analysis, 407
portfolio choice, 407
positive definite, 65
positive definiteness, 67
positive or negative dependence, 34
positive semidefinite, 65, 93
principal axes, 73
principal component method, 286
principal components, 237
principal components analysis (PCA), 233,

432, 435
principal components in practice, 238
principal components technique, 238
principal components transformation, 234,

237
principal factors, 285
profile analysis, 205
profile method, 396
projection matrix, 77
projection pursuit, 425
projection pursuit regression, 428
projection vector, 431
proximity between objects, 302
proximity measure, 302

quadratic discriminant analysis, 330
quadratic form, 65
quadratic forms, 65
quality of the representations, 252

randomized discriminant rule, 329
rank, 58
reduced model, 105
rotation, 289
rotations, 76
row space, 221
Russel and Rao (RR), 304

sampling distributions, 142
scatterplot matrix, 31
scatterplots, 30
separation line, 31
similarity of objects, 303
Simple Matching, 304
single linkage, 311
single matching, 305
singular normal distribution, 140
singular value decomposition (SVD), 64,

228
sliced inverse regression, 431, 435

algorithm, 432
sliced inverse regression II, 433, 434, 436,

437
algorithm, 434

solution
nonmetric, 403

specific factors, 277
specific variance, 278
spectral decompositions, 63
spherical distribution, 167
standardized linear combinations (SLC), 234
statistics, 142
stimulus, 395
Student’s t-distribution, 96
sum of squares, 105
summary statistics, 92
Swiss bank data, 14
symmetric matrix, 59

t-test, 96
Tanimoto, 304
testing, 183
The CAPM, 417
total variation, 98
trace, 58
trade-off analysis, 396
transformations, 135
transpose, 60
two factor method, 396

unbiased estimator, 179
uncorrelated factors, 277
unexplained variation, 98
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unit vector, 74
upper triangular matrix, 59

variance explained by PCs, 247
varimax criterion, 290
varimax method, 289
varimax rotation method, 289

Ward clustering, 312
Wishart distribution, 162, 164

XFGvolsurf01 data, 257
XFGvolsurf02 data, 257
XFGvolsurf03 data, 257
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