




















Preface

How This Text Was Developed

This text grew out of the course notes for an Introduction to Bayesian Statistics
course that I have been teaching at the University of Waikato for the past few years.
My goal in developing this course was to introduce Bayesian methods at the earliest
possible stage, and cover a similar range of topics as a traditional introductory
statistics course. There is currently an upsurge in using Bayesian methods in applied
statistical analysis, yet the Introduction to Statistics course most students take is
almost always taught from a frequentist perspective. In my view, this is not right.
Students with a reasonable mathematics background should be exposed to Bayesian
methods from the beginning, because that is the direction applied statistics is moving.

Mathematical Background Required

Bayesian statistics uses the rules of probability to make inferences, so students must
have good algebraic skills for recognizing and manipulating formulas. A general
knowledge of calculus would be an advantage in reading this book. In particular, the
student should understand that the area under a curve is found by integration, and
that the location of a maximum or a minimum of a continuous differentiable function
is found by setting the derivative function equal to zero and solving. The book is
self-contained with a calculus appendix students can refer to. However, the actual
calculus used is minimal.
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Features of the Text

In this text I have introduced Bayesian methods using a step by step development from
conditional probability. In Chapter 4, the universe of an experiment is set up with
two dimensions, the horizontal dimension is observable, and the vertical dimension
is unobservable. Unconditional probabilities are found for each point in the universe
using the multiplication rule and the prior probabilities of the unobservable events.
Conditional probability is the probability on that part of the universe that occurred, the
reduced universe. It is found by dividing the unconditional probability by their sum
over all the possible unobservable events. Because of way the universe is organized,
this summing is down the column in the reduced universe. The division scales them
up so the conditional probabilities sum to one. This result known as Bayes’ theorem
is the key to this course. In Chapter 6 this pattern is repeated with the Bayesian
universe. The horizontal dimension is the sample space, the set of all possible values
of the observable random variable. The vertical dimension is the parameter space,
the set of all possible values of the unobservable parameter. The reduced universe
is the vertical slice that we observed. The conditional probabilities given what
we observed are the unconditional probabilities found by using the multiplication
rule (prior × likelihood) divided by their sum over all possible parameter values.
Again, this sum is taken down the column. The division rescales the probabilities
so they sum to one. This gives Bayes’ theorem for a discrete parameter and a
discrete observation. When the parameter is continuous, the rescaling is done by
dividing the joint probability-probability density function at the observed value by
its integral over all possible parameter values so it integrates to one. Again, the joint
probability-probability density function is found by the multiplication rule and at the
observed value is (prior× likelihood). This is done for binomial observations and a
continuous beta prior in Chapter 8. When the observation is also a continuous random
variable, the conditional probability density is found by rescaling the joint probability
density at the observed value by dividing by its integral over all possible parameter
values. Again, the joint probability density is found by the multiplication rule and at
the observed value is prior × likelihood. This is done for normal observations and
a continuous normal prior in Chapter 10. All these cases follow the same general
pattern.

Bayes’ theorem allows one to revise his/her belief about the parameter, given the
data that occurred. There must be a prior belief to start from. One’s prior distribution
gives the relative belief weights he/she has for the possible values of the parameters.
How to choose ones prior is discussed in detail. Conjugate priors are found by
matching first two moments with prior belief on location and spread. When the
conjugate shape does not give satisfactory representation of prior belief, setting up a
discrete prior and interpolating is suggested.

Details that I consider beyond the scope of this course are included as footnotes.
There are many figures that illustrate the main ideas, and there are many fully
worked out examples. I have included chapters comparing Bayesian methods with
the corresponding frequentist methods. There are exercises at the end of each chapter,
some with short answers. In the exercises, I only ask for the Bayesian methods to be
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used, because those are the methods I want the students to learn. There are computer
exercises to be done in Minitab or R using the included macros. Some of these
are small-scale Monte Carlo studies that demonstrate the efficiency of the Bayesian
methods evaluated according to frequentist criteria.

Advantages of the Bayesian Perspective

Anyone who has taught an Introduction to Statistics class will know that students have
a hard time coming to grips with statistical inference. The concepts of hypothesis
testing and confidence intervals are subtle and students struggle with them. Bayesian
statistics relies on a single tool, Bayes’ theorem to revise our belief given the data.
This is more like the kind of plausible reasoning that students use in their everyday
life, but structured in a formal way. Conceptually it is a more straightforward method
for making inferences. The Bayesian perspective offers a number of advantages over
the conventional frequentist perspective.

• The "objectivity" of frequentist statistics has been obtained by disregarding
any prior knowledge about the process being measured. Yet in science there
usually is some prior knowledge about the process being measured. Throwing
this prior information away is wasteful of information (which often translates
to money). Bayesian statistics uses both sources of information; the prior
information we have about the process and the information about the process
contained in the data. They are combined using Bayes’ theorem.

• The Bayesian approach allows direct probability statements about the param-
eters. This is much more useful to a scientist than the confidence statements
allowed by frequentist statistics. This is a very compelling reason for using
Bayesian statistics. Clients will interpret a frequentist confidence interval as a
probability interval. The statistician knows that that interpretation is not cor-
rect but also knows that the confidence interpretation relating the probability
to all possible data sets that could have occurred, but didn’t; is of no particular
use to the scientist. Why not use a perspective that allows them to make the
interpretation that is useful to them.

• Bayesian statistics has a single tool, Bayes’ theorem, which is used in all situ-
ations. This contrasts to frequentist procedures, which require many different
tools.

• Bayesian methods often outperform frequentist methods, even when judged by
frequentist criteria.

• Bayesian statistics has a straightforward way of dealing with nuisance param-
eters. They are always marginalized out of the joint posterior distribution.

• Bayes’ theorem gives the way to find the predictive distribution of future
observations. This is not always easily done in a frequentist way.
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These advantages have been well known to statisticians for some time. However,
there were great difficulties in using Bayesian statistics in actual practice. While it is
easy to write down the formula for the posterior distribution,

g(θ|data) =
g(θ) × f(data|θ)

∫
g(θ) × f(data|θ) dθ

,

a closed form existed only in a few simple cases, such as for a normal sample with
a normal prior. In other cases the integration required had to be done numerically.
This in itself made it more difficult for beginning students. If there were more than a
few parameters, it became extremely difficult to perform the numerical integration.

In the past few years, computer algorithms (e.g., the Gibbs Sampler and the
Metropolis-Hasting algorithm) have been developed to draw an (approximate) ran-
dom sample from the posterior distribution, without having to completely evaluate
it. We can approximate the posterior distribution to any accuracy we wish by taking
a large enough random sample from it. This removes the disadvantage of Bayesian
statistics, for now it can be done in practice for problems with many parameters,
and for distributions from general samples and having general prior distributions.
Of course these methods are beyond the level of an introductory course. Neverthe-
less, we should be introducing our students the approach to statistics that gives the
theoretical advantages from the very start. That is how they will get the maximum
benefit.

Outline of a Course Based on This Text

At the University of Waikato we have a one-semester course based on this text. This
course consists of 36 one-hour lectures, 12 one-hour tutorial sessions, and several
computer assignments. In each tutorial session, the students work through a statistical
activity in a hands-on way. Some of the computer assignments involve Monte Carlo
studies showing the long run performance of statistical procedures.

• Chapter 1 (one lecture) gives an introduction to the course.

• Chapter 2 (three lectures) covers scientific data gathering including random
sampling methods and the need for randomized experiments to make inferences
on cause-effect relationships.

• Chapter 3 (two lectures) is on data analysis with methods for displaying and
summarizing data. If students have already covered this material in a previous
statistics course, this could be covered as a reading assignment only.

• Chapter 4 (three lectures) introduces the rules of probability including joint,
marginal, and conditional probability and shows Bayes’ theorem is the best
method for dealing with uncertainty.

• Chapter 5 (two lectures) introduces discrete and random variables.
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• Chapter 6 ((three lectures) shows how Bayesian inference works for an discrete
random variable with a discrete prior.

• Chapter 7 (two lectures) introduces continuous random variables.

• Chapter 8 (three lectures) shows how inference is done on the population
proportion from a binomial sample using either a uniform or a beta prior.
There is discussion on choosing a beta prior that corresponds to your prior
belief, and graphing it to confirm that it fits your belief.

• Chapter 9 (three lectures) compares the Bayesian inferences for the proportion
with the corresponding frequentist ones. The Bayesian estimator for the pro-
portion is compared with the corresponding frequentist estimator in terms of
mean squared error. The difference between the interpretations of Bayesian
credible interval and the frequentist confidence interval are discussed.

• Chapter 10 (four lectures) introduces Bayes’ theorem for the mean of a normal
distribution, using either a "flat" improper prior or a normal prior. There is
considerable discussion on choosing a normal prior, and graphing it to confirm
it fits with your belief. The predictive distribution of the next observation is
developed. Student’s t distribution is introduced as the adjustment required
for the credible intervals when the standard deviation is estimated from the
sample. Section 10.5 is at a higher level, and may be omitted.

• Chapter 11 (one lecture) compares the Bayesian inferences for mean with the
corresponding frequentist ones.

• Chapter 12 (three lectures) does Bayesian inference for the difference between
two normal means, and the difference between two binomial proportions using
the normal approximation.

• Chapter 13 (three lectures) does simple linear regression model in a Bayesian
manner. Section 13.5 is at a higher level, and may be omitted.

• Chapter 14 (three lectures) introduces robust Bayesian methods using mixture
priors. This chapter shows how to protect against misspecified priors, which
is one of the main concerns that many people have against using Bayesian
statistics. It is at a higher level than the previous chapters and could be omitted
and more lecture time given to the other chapters.
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1
Introduction to

Statistical Science

Statistics is the science that relates data to specific questions of interest. This includes
devising methods to gather data relevant to the question, methods to summarize
and display the data to shed light on the question, and methods that enable us to
draw answers to the question that are supported by the data. Data almost always
contain uncertainty. This uncertainty may arise from selection of the items to be
measured, or it may arise from variability of the measurement process. Drawing
general conclusions from data is the basis for increasing knowledge about the world,
and is the basis for all rational scientific inquiry. Statistical inference gives us
methods and tools for doing this despite the uncertainty in the data. The methods
used for analysis depend on the way the data were gathered. It is vitally important
that there is a probability model explaining how the uncertainty gets into the data.

Showing a Causal Relationship from Data

Suppose we have observed two variables X and Y . Variable X appears to have an
association with variable Y . If high values of X occur with high values of variable Y

and low values of X occur with low values of Y , we say the association is positive. On
the other hand, the association could be negative in which high values of variable X

occur in with low values of variable Y . Figure 1.1 shows a schematic diagram where
the association is indicated by the dotted curve connecting X and Y . The unshaded
area indicates that X and Y are observed variables. The shaded area indicates that
there may be additional variables that have not been observed.

0Introduction to Bayesian Statistics. By William M. Bolstad
ISBN 0-471-27020-2 Copyright c©John Wiley & Sons, Inc.
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X Y

Figure 1.1 Association between two variables.

X Y

Figure 1.2 Association due to causal relationship.

We would like to determine why the two variables are associated. There are
several possible explanations. The association might be a causal one. For example,
X might be the cause of Y . This is shown in Figure 1.2, where the causal relationship
is indicated by the arrow from X to Y .

On the other hand, there could be an unidentified third variable Z that has a causal
effect on both X and Y . They are not related in a direct causal relationship. The
association between them is due to the effect of Z. Z is called a lurking variable,
since it is hiding in the background and it affects the data. This is shown in Figure
1.3.

It is possible that both a causal effect and a lurking variable may both be contribut-
ing to the association. This is shown in Figure 1.4. We say that the causal effect and
the effect of the lurking variable are confounded. This means that both effects are
included in the association.
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X Y

Z

Figure 1.3 Association due to lurking variable.

X Y

Z

Figure 1.4 Confounded causal and lurking variable effects.

Our first goal is to determine which of the possible reasons for the association
holds. If we conclude that it is due to a causal effect, then our next goal is to
determine the size of the effect. If we conclude that the association is due to causal
effect confounded with the effect of a lurking variable, then our next goal becomes
determining the sizes of both the effects.

1.1 THE SCIENTIFIC METHOD: A PROCESS FOR LEARNING

In the Middle Ages, science was deduced from principles set down many centuries
earlier by authorities such as Aristotle. The idea that scientific theories should be
tested against real world data revolutionized thinking. This way of thinking known
as the scientific method sparked the Renaissance.

The scientific method rests on the following premises:

• A scientific hypothesis can never be shown to be absolutely true.
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• However, it must potentially be disprovable.

• It is a useful model until it is established that it is not true.

• Always go for the simplest hypothesis, unless it can be shown to be false.

This last principle, elaborated by William of Ockham in the 13th century, is now
known as "Ockham’s razor" and is firmly embedded in science. It keeps science from
developing fanciful overly elaborate theories. Thus the scientific method directs
us through an improving sequence of models, as previous ones get falsified. The
scientific method generally follows the following procedure:

1. Ask a question or pose a problem in terms of the current scientific hypothesis.

2. Gather all the relevant information that is currently available. This includes
the current knowledge about parameters of the model.

3. Design an investigation or experiment that addresses the question from step 1.
The predicted outcome of the experiment should be one thing if the current
hypothesis is true, and something else if the hypothesis is false.

4. Gather data from the experiment.

5. Draw conclusions given the experimental results. Revise the knowledge about
the parameters to take the current results into account.

The scientific method searches for cause and effect relationships between an ex-
perimental variable and an outcome variable. In other words, how changing the
experimental variable results in a change to the outcome variable. Scientific mod-
elling develops mathematical models of these relationships. Both of them need to
isolate the experiment from outside factors that could affect the experimental re-
sults. All outside factors that can be identified as possibly affecting the results
must be controlled. It is no coincidence that the earliest successes for the method
were in physics and chemistry where the few outside factors could be identified
and controlled. Thus there were no lurking variables. All other relevant variables
could be identified, and physically controlled by being held constant. That way
they would not affect results of the experiment, and the effect of the experimental
variable on the outcome variable could be determined. In biology, medicine, engi-
neering, technology, and the social sciences it isn’t that easy to identify the relevant
factors that must be controlled. In those fields a different way to control outside
factors, because they can’t be identified beforehand and physically controlled.

1.2 THE ROLE OF STATISTICS IN THE SCIENTIFIC METHOD

Statistical methods of inference can be used when there is random variability in the
data. The probability model for the data is justified by the design of the investigation or
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experiment. This can extend the scientific method into situations where the relevant
outside factors cannot even be identified. Since we cannot identify these outside
factors, we cannot control them directly. The lack of direct control means the outside
factors will be affecting the data. There is a danger that the wrong conclusions could
be drawn from the experiment due to these uncontrolled outside factors.

The important statistical idea of randomization has been developed to deal with
this possibility. The unidentified outside factors can be "averaged out" by randomly
assigning each unit to either treatment or control group. This contributes variability
to the data. Statistical conclusions always have some uncertainty or error due to
variability in the data. We can develop a probability model of the data variability
based on the randomization used. Randomization not only reduces this uncertainty
due to outside factors, it also allows us to measure the amount of uncertainty that
remains using the probability model. Randomization lets us control the outside
factors statistically, by averaging out their effects.

Underlying this is the idea of a statistical population, consisting of all possible
values of the observations that could be made. The data consists of observations
taken from a sample of the population. For valid inferences about the population
parameters from the sample statistics, the sample must be "representative" of the
population. Amazingly, choosing the sample randomly is the most effective way to
get representative samples!

1.3 MAIN APPROACHES TO STATISTICS

There are two main philosophical approaches to statistics. The first is often referred to
as the frequentist approach. Sometimes it is called the classical approach. Procedures
are developed by looking at how they perform over all possible random samples. The
probabilities don’t relate to the particular random sample that was obtained. In many
ways this indirect method places the "cart before the horse."

The alternative approach that we take in this book is the Bayesian approach. It
applies the laws of probability directly to the problem. This offers many fundamental
advantages over the more commonly used frequentist approach. We will show these
advantages over the course of the book.

Frequentist Approach to Statistics

Most introductory statistics books take the frequentist approach to statistics, which
is based on the following ideas:

• Parameters, the numerical characteristics of the population, are fixed but un-
known constants.

• Probabilities are always interpreted as long run relative frequency.

• Statistical procedures are judged by how well they perform in the long run over
an infinite number of hypothetical repetitions of the experiment.
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Probability statements are only allowed for random quantities. The unknown
parameters are fixed, not random, so probability statements cannot be made about
their value. Instead, a sample is drawn from the population, and a sample statistic
is calculated. The probability distribution of the statistic over all possible random
samples from the population is determined, and is known as the sampling distribution
of the statistic. The parameter of the population will also be a parameter of the
sampling distribution. The probability statement that can be made about the statistic
based on its sampling distribution is converted to a confidence statement about the
parameter. The confidence is based on the average behavior of the procedure under
all possible samples.

Bayesian Approach to Statistics

The Reverend Thomas Bayes first discovered the theorem that now bears his name.
It was written up in a paper An Essay Towards Solving a Problem in the Doctrine of
Chances. This paper was found after his death by his friend Richard Price, who had
it published posthumously in the Philosophical Transactions of the Royal Society in
1763. Bayes showed how inverse probability could be used to calculate probability
of antecedent events from the occurrence of the consequent event. His methods were
adopted by Laplace and other scientists in the 19th century, but had largely fallen
from favor by the early 20th century. By mid 20th century interest in Bayesian
methods was renewed by De Finetti, Jeffreys, Savage, and Lindley, among others.
They developed a complete method of statistical inference based on Bayes’ theorem.

This book introduces the Bayesian approach to statistics. The ideas that form the
basis of the this approach are:

• Since we are uncertain about the true value of the parameters we will consider
them a random variable.

• The rules of probability are used directly to make inferences about the param-
eters.

• Probability statements about parameters must be interpreted as "degree of
belief." The prior distribution must be subjective. Each person can have
his/her own prior, which contains the relative weights that person gives to every
possible parameter value. It measures how "plausible" the person considers
each parameter value to be before observing the data.

• We revise our beliefs about parameters after getting the data by using Bayes’
theorem. This gives our posterior distribution which gives the relative weights
we give to each parameter value after analyzing the data. The posterior dis-
tribution comes from two sources: the prior distribution and the observed
data.

This has a number of advantages over the conventional frequentist approach. Bayes’
theorem is the only consistent way to modify our beliefs about the parameters given
the data that actually occurred. This means that the inference is based on the
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actual occurring data, not all possible data sets that might have occurred, but didn’t!
Allowing the parameter to be a random variable lets us make probability statements
about it, posterior to the data. This contrasts with the conventional approach where
inference probabilities are based on all possible data sets that could have occurred
for the fixed parameter value. Given the actual data there is nothing random left
with a fixed parameter value, so one can only make confidence statements, based
on what could have occurred. Bayesian statistics also has a general way of dealing
with a nuisance parameter . A nuisance parameter is one which we don’t want to
make inference about, but we don’t want them to interfere with the inferences we
are making about the main parameters. Frequentist statistics does not have a general
procedure for dealing with them. Bayesian statistics is predictive, unlike conventional
frequentist statistics. This means that we can easily find the conditional probability
distribution of the next observation given the sample data.

Monte Carlo Studies

In frequentist statistics, the parameter is considered a fixed, but unknown constant. A
statistical procedure such as a particular estimator for the parameter cannot be judged
from the value it takes given the data. The parameter is unknown, so we can’t know
the value it should be giving. If we knew the parameter value it was supposed to take,
we wouldn’t be using an estimator.

Instead, statistical procedures are evaluated by looking how they perform in the
long run over all possible samples of data, for fixed parameter values over some
range. For instance, we fix the parameter at some value. The estimator depends
on the random sample, so it is considered a random variable having a probability
distribution. This distribution is called the sampling distribution of the estimator,
since its probability distribution comes from taking all possible random samples.
Then we look at how the estimator is distributed around the parameter value. This is
called sample space averaging. Essentially it compares the performance of procedures
before we take any data.

Bayesian procedures consider the parameter to be a random variable, and its
posterior distribution is conditional on the sample data that actually occurred, not all
those samples that were possible, but did not occur. However, before the experiment,
we might want to know how well the Bayesian procedure works at some specific
parameter values in the range.

To evaluate the Bayesian procedure using sample space averaging, we have to
consider the parameter to be both a random variable and a fixed but unknown value
at the same time. We can get past the apparent contradiction in the nature of the
parameter because the probability distribution we put on the parameter measures
our uncertainty about the true value. It shows the relative belief weights we give to
the possible values of the unknown parameter! After looking at the data, our belief
distribution over the parameter values has changed. This way we can think of the
parameter as fixed, but unknown value at the same time as we think of it being a
random variable. This allows us to evaluate the Bayesian procedure using sample
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space averaging. This is called pre-posterior analysis because it can be done before
we obtain the data.

In Chapter 4, we will find out that the laws of probability are the best way to model
uncertainty. Because of this, Bayesian procedures will be optimal in the post-data
setting, given the data that actually occurred. In Chapters 9 and 11, we will see
that Bayesian procedures perform very well in the pre-data setting when evaluated
using pre-posterior analysis. In fact, it is often the case that Bayesian procedures
outperform the usual frequentist procedures even in the pre-data setting.

Monte Carlo studies are a useful way to perform sample space averaging. We draw
a large number of samples randomly using the computer and calculate the statistic
(frequentist or Bayesian) for each sample. The empirical distribution of the statistic
(over the large number of random samples) approximates its sampling distribution
(over all possible random samples). We can calculate statistics such as mean and
standard deviation on this Monte Carlo sample to approximate the mean and standard
deviation of the sampling distribution. Some small-scale Monte Carlo studies are
included as exercises.

1.4 PURPOSE AND ORGANIZATION OF THIS TEXT

A very large proportion of undergraduates are required to take a service course in
statistics. Almost all of these courses are based on frequentist ideas. Most of them
don’t even mention Bayesian ideas. As a statistician, I know that Bayesian methods
have great theoretical advantages. I think we should be introducing our best students
to Bayesian ideas, from the beginning. There aren’t many introductory statistics text
books based on the Bayesian ideas. Some other texts include Berry (1996), Press
(1989), and Lee (1989).

This book aims to introduce students with a good mathematics background to
Bayesian statistics. It covers the same topics as a standard introductory statistics
text, only from a Bayesian perspective. Students need reasonable algebra skills to
follow this book. Bayesian statistics uses the rules of probability, so competence
in manipulating mathematical formulas is required. Students will find that general
knowledge of calculus is helpful in reading this book. Specifically they need to know
that area under a curve is found by integrating, and that a maximum or minimum
of a continuous differentiable function is found where the derivative of the function
equals zero. However the actual calculus used is minimal. The book is self-contained
with a calculus appendix students can refer to.

Chapter 2 introduces some fundamental principles of scientific data gathering
to control the effects of unidentified factors. These include the need for drawing
samples randomly, and some of random sampling techniques. The reason why there
is a difference between the conclusions we can draw from data arising from an
observational study and from data arising from a randomized experiment is shown.
Completely randomized designs and randomized block designs are discussed.



PURPOSE AND ORGANIZATION OF THIS TEXT 9

Chapter 3 covers elementary methods for graphically displaying and summarizing
data. Often a good data display is all that is necessary. The principles of designing
displays that are true to the data are emphasized.

Chapter 4 shows the difference between deduction and induction. Plausible rea-
soning is shown to be an extension of logic where there is uncertainty. It turns out that
plausible reasoning must follow the same rules as probability. The axioms of prob-
ability are introduced and the rules of probability, including conditional probability
and Bayes’ theorem are developed.

Chapter 5 covers discrete random variables, including joint and marginal discrete
random variables. The binomial and hypergeometric distributions are introduced,
and the situations where they arise are characterized.

Chapter 6 covers Bayes’ theorem for discrete random variables using a table. We
see that two important consequences of the method are that multiplying the prior by
a constant, or that multiplying the likelihood by a constant do not affect the resulting
posterior distribution. This gives us the "proportional form" of Bayes’ theorem.
We show that we get the same results when we analyze the observations sequentially
using the posterior after the previous observation as the prior for the next observation,
as when we analyze the observations all at once using the joint likelihood and the
original prior. We show how to use Bayes’ theorem for binomial observations with
a discrete prior.

Chapter 7 covers continuous random variables, including joint, marginal, and
conditional random variables. The beta and normal distributions are introduced in
this chapter.

Chapter 8 covers Bayes’ theorem for the population proportion (binomial) with a
continuous prior. We show how to find the posterior distribution of the population
proportion using either a uniform prior or a beta prior. We explain how to choose a
suitable prior. We look at ways of summarizing the posterior distribution.

Chapter 9 compares the Bayesian inferences with the frequentist inferences. We
show that the Bayesian estimator (posterior mean using a uniform prior) has better
performance than the frequentist estimator (sample proportion) in terms of mean
squared error over most of the range of possible values. This kind of frequentist
analysis is useful before we perform our Bayesian analysis. We see the Bayesian
credible interval has a much more useful interpretation than the frequentist confidence
interval for the population proportion. One-sided and two-sided hypothesis tests using
Bayesian methods are introduced.

Chapter 10 covers Bayes’ theorem for the mean of a normal distribution with
known variance. We show how to choose a normal prior. We discuss dealing
with nuisance parameters by marginalization. The predictive density of the next
observation is found by considering the population mean a nuisance parameter, and
marginalizing it out.

Chapter 11 compares Bayesian inferences with the frequentist inferences for the
mean of a normal distribution.

Chapter 12 shows how to perform Bayesian inferences for the difference between
normal means and how to perform Bayesian inferences for the difference between
proportions using the normal approximation.
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Chapter 13 introduces the simple linear regression model, and shows how to
perform Bayesian inferences on the slope of the model. The predictive distribution
of the next observation is found by considering both the slope and intercept to be
nuisance parameters, and marginalizing them out.

Chapter 14 shows how we can make Bayesian inference robust against a misspec-
ified prior by using a mixture prior, and marginalizing out the mixture parameter.
This chapter is at a somewhat higher level than the others, but it shows how one of
the main dangers of Bayesian analysis can be avoided.

Main Points

• An association between two variables does not mean that one causes the other.
It may be due to a causal relationship, it may be due to the effect of a third
(lurking) variable on both the other variables, or a combination of a causal
relationship and the effect of a lurking variable.

• Scientific method is a method for searching for cause-effect relationships, and
measuring their strength. It uses controlled experiments, where outside factors
that may effect the measurements are controlled. This isolates the relationship
between the two variables from the outside factors, so the relationship can be
determined.

• Statistical methods extend the scientific method to cases where the outside
factors aren’t identified, and hence can’t be controlled. The principle of ran-
domization is used to statistically control these unidentified outside factors by
averaging out their effects. This contributes to variability in the data.

• We can use the probability model (based on the randomization method) to
measure the uncertainty.

• The frequentist approach to statistics considers the parameter to be a fixed but
unknown constant. The only kind of probability allowed is long run relative
frequency. These probabilities are only for observations and sample statistics,
given the unknown parameters. Statistical procedures are judged by how they
perform in an infinite number of hypothetical repetitions of the experiment.

• The Bayesian approach to statistics allows the parameter to be considered a
random variable. Probabilities can be calculated for parameters as well as
observations and sample statistics. Probabilities calculated for parameters
are interpreted as "degree of belief," and must be subjective. The rules of
probability are used to revise our beliefs about the parameters, given the data.

• Frequentist estimators are evaluated by looking at their sampling distribution
for a fixed parameter value, and how it is distributed over all possible repetitions
of the experiment.
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• If we look at the sampling distribution of a Bayesian estimator for a fixed
parameter value it is called pre-posterior analysis since it can be done prior to
taking the data.

• A Monte Carlo study is where we perform the experiment a large number of
times, and calculate the statistic for each experiment. We use the empirical
distribution of the statistic over all the samples we took in our study instead of
its sampling distribution over all possible repetitions.



2
Scientific Data Gathering

Scientists gather data purposefully, in order to find answers to particular questions.
Statistical science has shown that data should be relevant to the particular questions,
yet be gathered using randomization. The development of methods to gather data
purposefully, yet using randomization is one of the greatest contributions the field of
statistics has made to the practice of science.

Variability in data solely due to chance can be averaged out by increasing the
sample size. Variability due to other causes cannot be. Statistical methods have been
developed for gathering data randomly, yet relevant to a specific question. These
methods can be divided into two fields. Sample survey theory is the study of methods
for sampling from a finite real population. Experimental design is the study of
methods for designing experiments that focus on the desired factors, and are not
affected by other possibly unidentified ones.

Inferences always depend on the probability model which we assume generated
the observed data being the correct one. When data are not gathered randomly, there
is a risk that the observed pattern is due to lurking variables that were not observed,
instead of being a true reflection of the underlying pattern. In a properly designed
experiment, treatments are assigned to subjects in such a way as to reduce the effects
of any lurking variables that are present, but unknown to us.

When we make inferences from data gathered according to a properly designed
random survey or experiment, the probability model for the observations follows
from the design of the survey or experiment, and we can be confident that it is
correct. This puts our inferences on a solid foundation. On the other hand, when we

0Introduction to Bayesian Statistics. By William M. Bolstad
ISBN 0-471-27020-2 Copyright c©John Wiley & Sons, Inc.
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make inferences from data gathered from a nonrandom design, we don’t have any
underlying justification for the probability model, we just assume it is true! There is
the possibility the assumed probability model for the observations is not correct, and
our inferences will be on shaky ground.

2.1 SAMPLING FROM A REAL POPULATION

First, we will define some fundamental terms.

• Population. The entire group of objects or people the investigator wants
information about. For instance, the population might consist of New Zealand
residents over the age of eighteen. Usually we want to know some specific
attribute about the population. Each member of the population has a number
associated with it, for example, his/her annual income. Then we can consider
the model population to be the set of numbers for each individual in the
real population. Our model population would be the set of incomes of all
New Zealand residents over the age of eighteen. We want to learn about the
distribution of the population. Specifically, we want information about the
population parameters, which are numbers associated with the distribution of
the population, such as the population mean, median, and standard deviation.
Often it is not feasible to get information about all the units in the population.
The population may be too big, or spread over too large an area, or it may cost
too much to obtain data for the complete population. So we don’t know the
parameters because it is infeasible to calculate them.

• Sample. A subset of the population. The investigator draws one sample
from the population, and gets information from the individuals in that sample.
Sample statistics are calculated from sample data. They are numerical char-
acteristics that summarize the distribution of the sample, such as the sample
mean, median, and standard deviation. A statistic has a similar relationship to
a sample that a parameter has to a population. However, the sample is known,
so the statistic can be calculated.

• Statistical inference. Making a statement about population parameters on basis
of sample statistics. Good inferences can be made if the sample is representative
of the population as a whole! The distribution of the sample must be similar
to the distribution of the population from which it came! Sampling bias, a
systematic tendency to collect a sample which is not representative of the
population, must be avoided. It would cause the distribution of the sample to
be dissimilar to that of the population, and thus lead to very poor inferences.

Even if we are aware of something about the population and try to represent it in
the sample, there is probably some other factors in the population that we are unaware
of, and the sample would end up being nonrepresentative in those factors.

Example 1 Suppose we are interested in estimating the proportion of Hamilton
voters who approve the Hamilton City Council’s financing a new rugby stadium. We
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decide to go downtown one lunch break, and draw our sample from people passing
by. We might decide that our sample should be balanced between males and females
the same as the voting age population. We might get a sample evenly balanced
between males and females, but not be aware that the people we interview during the
day are mainly those on the street during working hours. Office workers would be
over represented, while factory workers would be underrepresented. There might be
other biases inherent in choosing our sample this way, and we might not have a clue
as to what these biases are. Some groups would be systematically underrepresented,
and others systematically overrepresented. We can’t make our sample representative
for classifications we don’t know.

Surprisingly, random samples give more representative samples than any nonran-
dom method such as quota samples or judgment samples. They not only minimize
the amount of error in the inference, they also allow a (probabilistic) measurement
of the error that remains.

Simple Random Sampling (without Replacement)

Simple random sampling requires a sampling frame , which is a list of the population
numbered from 1 to N . A sequence of n random numbers are drawn from the
numbers 1 to N . Each time a number is drawn, it is removed from consideration, so
it cannot be drawn again. The items on the list corresponding to the chosen numbers
are included in the sample. Thus, at each draw, each item not yet selected has an
equal chance of being selected. Every item has equal chance of being in the final
sample. Furthermore, every possible sample of the required size is equally likely.

Suppose we are sampling from the population of registered voters in a large city.
It is likely that the proportion of males in the sample is close to the proportion of
males in the population. Most samples are near the correct proportions, however, we
are not certain to get the exact proportion. All possible samples of size n are equally
likely, including those that are not representative with respect to sex.

Stratified Random Sampling

Since we know what the proportions of males and females are from the voters list,
we should take that information into account in our sampling method. In stratified
random sampling, the population is divided into subpopulations called strata. In our
case this would be males and females. The sampling frame would be divided into
separate sampling frames for the two strata. A simple random sample is taken from
each stratum where each stratum sample size is proportional to stratum size. Every
item has equal chance of being selected. And every possible sample that has each
stratum represented in the correct proportions is equally likely. This method will give
us samples that are exactly representative with respect to sex. Hence inferences from
these type samples will be more accurate than those from simple random sampling
when the variable of interest has different distributions over the strata. If the variable
of interest is the same for all the strata, stratified random sampling will be no more
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(and no less) accurate than simple random sampling. Stratification has no potential
downside as far as accuracy of the inference. However, it is more costly, as the
sampling frame has to be divided into separate sampling frames for each stratum.

Cluster Random Sampling

Sometimes we don’t have a good sampling frame of individuals. In other cases the
individuals are scattered across a wide area. In cluster random sampling, we divide
that area into neighborhoods called clusters. Then we make a sampling frame for
clusters. A random sample of clusters is selected. All items in the chosen clusters
are included in the sample. This is very cost effective because the interviewer won’t
have as much travel time between interviews. The drawback is that items in a cluster
tend to be more similar than items in different clusters. For instance, people living
in the same neighborhood usually come from the same economic level because the
houses were built at the same time and in the same price range. This means that each
observation gives less information about the population parameters. It is less efficient
in terms of sample size. However, often it is very cost effective, since getting a larger
sample is usually cheaper by this method.

Nonsampling Errors in Sample Surveys

Errors can arise in sample surveys or in a complete population census for reasons
other than the sampling method used. These nonsampling errors include response
bias; the people who respond may be somewhat different than those who do not
respond. They may have different views on the matters surveyed. Since we only get
observations from those who respond, this difference would bias the results. A well
planned survey will have callbacks, where those in the sample who haven’t responded
will be contacted again, in order to get responses from as many people in the original
sample as possible. This will entail additional costs, but is important as we have no
reason to believe that nonrespondents have the same views as the respondents. Errors
can also arise from poorly worded questions. Survey questions should be trialed in a
pilot study to determine if there is any ambiguity.

Randomized Response Methods

Social science researchers and medical researchers often wish to obtain information
about the population as a whole, but the information that they wish to obtain is
sensitive to the individuals who are surveyed. For instance, the distribution of the
number of sex partners over the whole population would be indicative of the overall
population risk for sexually transmitted diseases. Individuals surveyed may not wish
to divulge this sensitive personal information. They might refuse to respond, or even
worse, they could give an untruthful answer. Either way, this would threaten the
validity of the survey results. Randomized response methods have been developed
to get around this problem. There are two questions, the sensitive question and the
dummy question. Both questions have the same set of answers. The respondent uses
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a randomization that selects which question he or she answers, and also the answer
if the dummy question is selected. Some of the answers in the survey data will be
to the sensitive question and some will be to the dummy question. The interviewer
will not know which is which. However, the incorrect answers are entering the data
from known randomization probabilities. This way information about the population
can be obtained without actually knowing the personal information of the individuals
surveyed, since only that individual knows which question he or she answered.
Bolstad, Hunt, and McWhirter (2001) describe a Sex, Drugs, and Rock & Roll Survey
that gets sensitive information about a population (Introduction to Statistics class)
using randomized response methods.

2.2 OBSERVATIONAL STUDIES AND DESIGNED EXPERIMENTS

The goal of scientific inquiry is to gain new knowledge about the cause and effect
relationship between a factor and a response variable. We gather data to help us
determine these relationships, and to develop mathematical models to explain them.
The world is complicated. There are many other factors that may affect the response.
We may not even know what these other factors are. If we don’t know what they
are, we cannot control them directly. Unless we can control them, we can’t make
inferences about cause and effect relationships! Suppose, for example, we want to
study a herbal medicine for its effect on weight loss. Each person in the study is
an experimental unit. There is great variability between experimental units, because
people are all unique individuals with their own hereditary body chemistry and dietary
and exercise habits. The variation among experimental units makes it more difficult
to detect the effect of a treatment. Figure 2.1 shows a collection of experimental units.
The degree of shading shows they are not the same with respect to some unidentified
variable. The response variable in the experiment may depend on that unidentified
variable, which could be a lurking variable in the experiment.

Observational Study

If we record the data on a group of subjects that decided to take the herbal medicine
and compared that with data from a control group who did not, that would be an
observational study. The treatments have not been randomly assigned to treatment
and control group. Instead they self select. Even if we observe a substantial difference
between the two groups, we cannot conclude there is a causal relationship from an
observational study. We can’t rule out that the association was due to an unidentified
lurking variable. In our study, those who took the treatment may have been more
highly motivated to lose weight than those who did not. Or there may be other factors
that differed between the two groups. Any inferences we make on an observational
study are dependent on the assumption that there are no differences between the
distribution of the units assigned to the treatment groups and the control group. We
can’t know whether this assumption is actually correct in an observational study.
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Figure 2.1 Variation among experimental units.

Designed Experiment

We need to get our data from a designed experiment if we want to be able to
make sound inferences about cause-effect relationships. The experimenter uses
randomization to decide which subjects get into the treatment group(s) and control
group respectively. For instance, he/she uses a table of random numbers, or flips a
coin.

We are going to divide the experimental units into four treatment groups (one of
which may be a control group). We must ensure that each group gets a similar range
of units. If we don’t, we might end up attributing a difference between treatment
groups to the different treatments, when in fact it was due to the lurking variable and
a biased assignment of experimental units to treatment groups.

Completely randomized design. We will randomly assign experimental units
to groups so that each experimental unit is equally likely to go to any of the groups.
Each experimental unit will be assigned (nearly)independently of other experimental
units. The only dependence between assignments is that having assigned one unit to
treatment group 1 (for example), the probability of the other unit being assigned to
group 1 is slightly reduced because there is one less place in group 1. This is known
as a completely randomized design. Having a large number of (nearly) independent
randomizations ensures that the comparisons between treatment groups and control
group are fair since all groups will contain a similar range of experimental units.
Units having high values and units having low values of the lurking variable will be
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Figure 2.2 Completely randomized design. Units have been randomly assigned to four
treatment groups.

in all treatment groups in similar proportions. In Figure 2.2 we see the four treatment
groups have similar range of experimental units with respect to the unidentified
lurking variable.

The randomization averages out the differences between experimental units as-
signed to the groups. The expected value of the lurking variable is the same for all
groups, because of the randomization. The average value of the lurking variable for
each group will be close to its mean value in the population because there are a large
number of independent randomizations. The larger the number of units in the exper-
iment, the closer the average values of the lurking variable in each group will be to
its mean value in the population. If we find an association between the treatment and
the response, it will be unlikely that the association was due to any lurking variable.
For a large-scale experiment, we can effectively rule out any lurking variable, and
conclude that the association was due to the effect of different treatments.

Randomized block design. If we identify a variable, we can control for it
directly. It ceases to be a lurking variable. One might think that using judgment
about assigning experimental units to the treatment and control groups would lead
to similar range of units being assigned to them. The experimenter could get similar
groups according to the criterion (identified variable) he/she was using. However,
there would be no protection against any other lurking variable that hadn’t been
considered. We can’t expect it to be averaged out if we haven’t done the assignments
randomly!
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Figure 2.3 Similar units have been put into blocks.

Any prior knowledge we have about the experimental units should be used before
the randomization. Units that have similar values of the identified variable should
be formed into blocks. This is shown in Figure 2.3. The experimental units in each
block are similar with respect to that variable. Then the randomization is be done
within blocks. One experimental unit in each block is randomly assigned to each
treatment group. The blocking controls that particular variable, as we are sure all
units in the block are similar, and one goes to each treatment group. By selecting
which one goes to each group randomly, we are protecting against any other lurking
variable by randomization. It is unlikely that any of the treatment groups was unduly
favored or disadvantaged by the lurking variable. On the average, all groups are
treated the same. Figure 2.4 shows the treatment groups found by a randomized
block design. We see the four treatment groups are even more similar than those
from the randomized block design.

For example, if we wanted to determine which of four varieties of wheat gave
better yield, we would divide the field into blocks of four adjacent plots because plots
that are adjacent are more similar in their fertility than plots that are distant from
each other. Then within each block, one plot would be randomly assigned to each
variety. This randomized block design ensures that the four varieties each have been
assigned to similar groups of plots. It protects against any other lurking variable, by
the within block randomization.



MAIN POINTS 21

block 1

block 2

block 3

block 4

block 5

block 6

6111623

9 121824

1 2722

3515 19

4 13 2021

8 101417

Figure 2.4 Randomized block design. One unit in each block randomly assigned to each
treatment group. Randomizations in different blocks are independent of each other.

When the response variable is related to the trait we are blocking on, the blocking
will be effective, and the randomized block design will lead to more precise inferences
about the yields than a completely randomized design with the same number of plots.
This can be seen by comparing the treatment groups from the completely randomized
design shown in Figure 2.2 with the treatment groups from the randomized block
design shown in Figure 2.4. The treatment groups from the randomized block design
are more similar than those from the completely randomized design.

Main Points

• Population. The entire set of objects or people that the study is about. Each
member of the population has a number associated with it, so we often consider
the population as a set of numbers. We want to know about the distribution of
these numbers.

• Sample. The subset of the population from which we obtain the numbers.

• Parameter. A number that is a characteristic of the population distribution,
such as the mean, median, standard deviation, and interquartile range of the
whole population.

• Statistic. A number that is a characteristic of the sample distribution, such as
the mean, median, standard deviation, and interquartile range of the sample.
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• Statistical inference. Making a statement about population parameters on the
basis of sample statistics.

• Simple random sampling. At each draw every item that has not already been
drawn has an equal chance of being chosen to be included in the sample.

• Stratified random sampling. The population is partitioned into subpopulations
called strata, and simple random samples are drawn from each stratum where
the stratum sample sizes are proportional to the stratum proportions in the
population. The stratum samples are combined to form the sample from the
population.

• Cluster random sampling. The area the population lies in is partitioned into
areas called clusters. A random sample of clusters is drawn, and all members
of the population in the chosen clusters are included in the sample.

• Randomized response methods. These allow the respondent to randomly de-
termine whether to answer a sensitive question or the dummy question, which
both have the same range of answers. Thus the respondents personal informa-
tion is not divulged by the answer, since the interviewer does not know which
question it applies to.

• Observational study. The researcher collects data from a set of experimental
units not chosen randomly, or not allocated to experimental or control group
by randomization. There may be lurking variables due to the lack of random-
ization.

• Designed experiment. The researcher allocates experimental units to the treat-
ment group(s) and control group by some form of randomization.

• Completely randomized design. The researcher randomly assigns the units
into the treatment groups (nearly) independently. The only dependence is the
constraint that the treatment groups are the correct size.

• Randomized block design. The researcher first groups the units into blocks
which contain similar units. Then the units in each block are randomly as-
signed, one to each group. The randomizations in separate blocks are per-
formed independent of each other.

Monte Carlo Exercises

2.1 Monte Carlo study comparing methods for random sampling. We will
use a Monte Carlo computer simulation to evaluate the methods of random
sampling. Now, if we want to evaluate a method, we need to know how it does
in the long run. In a real life situation, we can’t judge a method by the sample
estimate it gives, because if we knew the population parameter, we would not
be taking a sample and estimating it with a sample statistic.
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One way to evaluate a statistical procedure is to evaluate the sampling distri-
bution which summarizes how the estimate based on that procedure varies in
the long run (over all possible random samples) for a case when we know the
population parameters. Then we can see how closely the sampling distribution
is centered around the true parameter. The closer it is, the better the statistical
procedure, and the more confidence we will have in it for realistic cases when
we don’t know the parameter.

If we use computer simulations to run a large number of hypothetical repetitions
of the procedure with known parameters, this is known as a Monte Carlo study
named after the famous casino. Instead of having the theoretical sampling
distribution, we have the empirical distribution of the sample statistic over
those simulated repetitions. We judge the statistical procedure by seeing how
closely the empirical distribution of the estimator is centered around the known
parameter.

The population. Suppose there is a population made up of 100 individuals,
and we want to estimate the mean income of the population from a random
sample of size 20. The individuals come from three ethnic groups with pop-
ulation proportions of 40%, 40%, and 20% respectively. There are twenty
neighborhoods and five individuals live in each one. Now, the income dis-
tribution may be different for the three ethnic groups. Also, individuals in
the same neighborhood tend to be more similar than individuals in different
neighborhoods.

Details about the population are contained in the Minitab worksheet sscsam-
ple.mtw. Each row contains the information for an individual. Column 1
contains the income, column 2 contains the ethnic group, and column 3 con-
tains the neighborhood. Compute the mean income for the population. That
will be the true parameter value that we are trying to estimate.

In the Monte Carlo study we will approximate the sampling distribution of the
sample means for three types of random sampling, simple random sampling,
stratified random sampling, and cluster random sampling. We do this by draw-
ing a large number (in this case 200) random samples from the population using
each method of sampling, calculating the sample mean as our estimate. The
empirical distribution of these 200 sample means approximates the sampling
distribution of the estimate.

(a) Display the incomes for the three ethnic groups (strata) using boxplots on
the same scale. Compute the mean income for the three ethnic groups.
Do you see any difference between the income distributions?

(b) Draw 200 random samples of size 20 from the population using simple
random sampling using sscsample.mac and put the output in columns
c6-c9. Details of how to use this macro are in Appendix 3. Answer the
following questions from the output:

i. Does simple random sampling always have the strata represented in
the correct proportions?
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ii. On the average, does simple random sampling give the strata in their
correct proportions?

iii. Does the mean of the sampling distribution of the sample mean for
simple random sampling appear to be close enough to the population
mean that we can consider the difference to be due to chance alone?
(We only took 200 samples, not all possible samples.)

(c) Draw 200 stratified random samples using the macro and store the output
in c11-c14. Answer the following questions from the output:

i. Does stratified random sampling always have the strata represented
in the correct proportions?

ii. On the average, does stratified random sampling give the strata in
their correct proportions?

iii. Does the mean of the sampling distribution of the sample mean
for stratified random sampling appear to be close enough to the
population mean that we can consider the difference to be due to
chance alone? (We only took 200 samples, not all possible samples.)

(d) Draw 200 cluster random samples using the macro and put the output in
columns c16-c19. Answer the following questions from the output:

i. Does cluster random sampling always have the strata represented in
the correct proportions?

ii. On the average, does cluster random sampling give the strata in their
correct proportions?

iii. Does the mean of the sampling distribution of the sample mean for
cluster random sampling appear to be close enough to the population
mean that we can consider the difference to be due to chance alone?
(We only took 200 samples, not all possible samples.)

(e) Compare the spreads of the sampling distributions (standard deviation
and interquartile range). Which method of random sampling seems to be
more effective in giving sample means more concentrated about the true
mean?

(f) Give reasons for this.

2.2 Monte Carlo study comparing completely randomized design and ran-
domized block design. Often we want to set up an experiment to determine
the magnitude of several treatment effects. We have a set of experimental units
that we are going to divide into treatment groups. There is variation among
the experimental units in the underlying response variable that we are going to
measure. We will assume that we have an additive model where each of the
treatments has a constant effect. That means the measurement we get for an
experimental unit i given treatment j will be the underlying value for unit i
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plus the effect of the treatment for the treatment it receives

yi,j = ui + Tj ,

where ui is the underlying value for experimental unit i and Tj is the treatment
effect for treatment j. The assignment of experimental units to treatment
groups is crucial.

There are two things that the assignment of experimental units into treatment
groups should deal with. First, there may be a "lurking variable" that is
related to the measurement variable, either positively or negatively. If we
assign experimental units that have high values of that lurking variable into
one treatment group, that group will be either advantaged or disadvantaged,
depending if there is a positive or negative relationship. We would be quite
likely to conclude that treatment is good or bad relative to the other treatments,
when in fact the apparent difference would be due to the effect of the lurking
variable. That is clearly a bad thing to occur. We know that to prevent this,
the experimental units should be assigned to treatment groups according to
some randomization method. On the average, we want all treatment groups to
get a similar range of experimental units with respect to the lurking variable.
Otherwise, the experimental results may be biased.

Second, the variation in the underlying values of the experimental units may
mask the differing effects of the treatments. It certainly makes it harder to
detect a small difference in treatment effects. The assignment of experimental
units into treatment groups should make the groups as similar as possible.
Certainly, we want the group means of the underlying values to be nearly
equal.

The completely randomized design randomly divides the set of experimental
units into treatment groups. Each unit is randomized (almost) independently.
We want to insure that each treatment group contains equal numbers of units.
Every assignment that satisfies this criterion is equally likely. This design does
not take the values of the other variable into account. It remains a possible
lurking variable.

The randomized block design takes the other variable value into account. First
blocks of experimental units having similar values of the other variable are
formed. Then one unit in each block is randomly assigned to each of the
treatment groups. In other words, randomization occurs within blocks. The
randomizations in different blocks are done independently of each other. This
design makes use of the other variable. It ceases to be a lurking variable and
becomes the blocking variable.

In this assignment we compare the two methods of randomly assigning exper-
imental units into treatment groups. Each experimental unit has an underlying
value of the response variable and a value of another variable associated with
it. (If we don’t take the other variable in account, it will be a lurking variable.)
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We will run a small-scale Monte Carlo study to compare the performance of
these two designs in two situations.

(a) First we will do a small-scale Monte Carlo study of 500 random as-
signments using each of the two designs when the response variable is
strongly related to the other variable. We let the correlation between them
be k1 = .8. The details of how to use the Minitab macro Xdesign.mac or
the R function Xdesign are in Appendix 3 and Appendix 4, respectively.
Look at the boxplots and summary statistics.

i. Does it appear that, on average, all groups have the same underlying
mean value for the other (lurking) variable when we use a completely
randomized design?

ii. Does it appear that, on average, all groups have the same under-
lying mean value for the other (blocking) variable when we use a
randomized block design?

iii. Does the distribution of the other variable over the treatment groups
appear to be the same for the two designs? Explain any difference.

iv. Which design is controlling for the other variable more effectively?
Explain.

v. Does it appear that, on average, all groups have the same underlying
mean value for the response variable when we use a completely
randomized design?

vi. Does it appear that, on average, all groups have the same underlying
mean value for the response variable when we use a randomized
block design?

vii. Does the distribution of the response variable over the treatment
groups appear to be the same for the two designs? Explain any
difference.

viii. Which design will give us a better chance for detecting a small
difference in treatment effects? Explain.

ix. Is blocking on the other variable effective when the response variable
is strongly related to the other variable?

(b) Next we will do a small-scale Monte Carlo study of 500 random as-
signments using each of the two designs when the response variable is
weakly related to the other variable. We let the correlation between them
be k1 = .4. Look at the boxplots and summary statistics.

i. Does it appear that, on average, all groups have the same underlying
mean value for the other (lurking) variable when we use a completely
randomized design?

ii. Does it appear that, on average, all groups have the same under-
lying mean value for the other (blocking) variable when we use a
randomized block design?
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iii. Does the distribution of the other variable over the treatment groups
appear to be the same for the two designs? Explain any difference.

iv. Which design is controlling for the other variable more effectively?
Explain.

v. Does it appear that, on average, all groups have the same underlying
mean value for the response variable when we use a completely
randomized design?

vi. Does it appear that, on average, all groups have the same underlying
mean value for the response variable when we use a randomized
block design?

vii. Does the distribution of the response variable over the treatment
groups appear to be the same for the two designs? Explain any
difference.

viii. Which design will give us a better chance for detecting a small
difference in treatment effects? Explain.

ix. Is blocking on the other variable effective when the response variable
is strongly related to the other variable?

(c) Next we will do a small-scale Monte Carlo study of 500 random assign-
ments using each of the two designs when the response variable is not
related to the other variable. We let the correlation between them be
k1 = 0. This will make the response variable independent of the other
variable. Look at the boxplots for the treatment group means for the other
variable.

i. Does it appear that, on average, all groups have the same underlying
mean value for the other (lurking) variable when we use a completely
randomized design?

ii. Does it appear that, on average, all groups have the same under-
lying mean value for the other (blocking) variable when we use a
randomized block design?

iii. Does the distribution of the other variable over the treatment groups
appear to be the same for the two designs? Explain any difference.

iv. Which design is controlling for the other variable more effectively?
Explain.

v. Does it appear that, on average, all groups have the same underlying
mean value for the response variable when we use a completely
randomized design?

vi. Does it appear that, on average, all groups have the same underlying
mean value for the response variable when we use a randomized
block design?
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vii. Does the distribution of the response variable over the treatment
groups appear to be the same for the two designs? Explain any
difference.

viii. Which design will give us a better chance for detecting a small
difference in treatment effects? Explain.

ix. Is blocking on the other variable effective when the response variable
is independent from the other variable?

x. Can we lose any effectiveness by blocking on a variable that is not
related to the response?



3
Displaying and

Summarizing Data

We use statistical methods to extract information from data and gain insight into
the underlying process that generated the data. Frequently our data set consists of
measurements on one or more variables over the experimental units in one or more
samples. The distribution of the numbers in the sample will give us insight into the
distribution of the numbers for the whole population.

It is very difficult to gain much understanding by looking at a set of numbers. Our
brains were not designed for that. We need to find ways to present the data that allow
us to note the important features of the data. The visual processing system in our brain
enables us to quickly perceive the overview we want, when the data are represented
pictorially in a sensible way. They say a picture is worth a thousand words. That
is true, provided the we have the correct picture. If the picture is incorrect, we can
mislead ourselves and others very badly!

3.1 GRAPHICALLY DISPLAYING A SINGLE VARIABLE

Often our data set consists of a set of measurements on a single variable for a single
sample of subjects or experimental units. We want to get some insight into the
distribution of the measurements of the whole population. A visual display of the
measurements of the sample helps with this.

0Introduction to Bayesian Statistics. By William M. Bolstad
ISBN 0-471-27020-2 Copyright c©John Wiley & Sons, Inc.
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Table 3.1 Earth density measurements by Cavendish

5.50 5.61 4.88 5.07 5.26 5.55 5.36 5.29 5.58 5.65

5.57 5.53 5.62 5.29 5.44 5.34 5.79 5.10 5.27 5.39

5.42 5.47 5.63 5.34 5.46 5.30 5.75 5.68 5.85

5.85.65.45.25.0

Figure 3.1 Dotplot of Earth density measurements by Cavendish.

Example 2 In 1798 the English scientist Cavendish performed a series of 29 mea-
surements on the density of the Earth using a torsion balance. This experiment and
the data set are described by Stigler (1977). Table 3.1 contains the 29 measurements.

Dotplot

A dotplot is the simplest data display for a single variable. Each observation is rep-
resented by a dot at its value along horizontal axis. This shows the relative positions
of all the observation values. It is easy to get a general idea of the distribution of the
values. Figure 3.1 shows the dotplot of Cavendish’s Earth density measurements.

Boxplot (Box-and-Whisker Plot)

Another simple graphical method to summarize the distribution of the data is to form
a boxplot. First we have to sort and summarize the data.

Originally, the sample values are y1, · · · , yn. The subscript denotes the order (in
time) the observation was taken, y1 is the first, y2 is the second, and so on up to yn

which is last. When we order the sample values by size from smallest to largest we
get the order statistics. They are denoted y[1], · · · , y[n], where y[1] is the smallest, y[2]

is the second smallest, on up to the largest y[n]. We divide the ordered observations
into quarters with the quartiles. Q1, the lower quartile, is the value that 25% of the
observations are less than or equal to it, and 75% or more of the observations are
greater than or equal to it. Q2, the middle quartile, is the value that 50% or more of
the observations are less than or equal to it, and 50% or more of the observations are
greater than or equal to it. Q2 is also known as the sample median. Similarly Q3, the
upper quartile is the value that 75% of the observations are less than or equal to it,
and 25% of the observations are greater than or equal to it. We can find these from
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the order statistics:
Q1 = y[ n+1

4 ] ,

Q2 = y[ n+1
2 ] ,

Q3 = y
[
3(n+1)

4 ]
.

If the subscripts are not integers, we take the weighted average of the two closest
order statistics. For example, Cavendish’s Earth density data n = 29,

Q1 = y[ 304 ] .

This is halfway between the 7’th and 8’th order statistics, so

Q1 = 1
2×y[7] + 1

2×y[8] .

The five number summary of a data set is y[1], Q1, Q2, Q3, y[n]. This gives the
minimum, the three quartiles, and the maximum of the observations. The boxplot
or box-and-whisker plot is a pictorial way of representing the five number summary.
The steps are:

• Draw and label an axis.

• Draw a box with ends at the first and third quartiles.

• Draw a line through the box at the second quartile (median).

• Draw a line (whisker) from the lower quartile to the lowest observation, and
draw a line (whisker) from the upper quartile to the highest observation.

• Warning: Minitab extends the whiskers only to a maximum length of 1.5 ×

the interquartile range. Any observation further out than that is identified with
an asterisk (*) to indicate the observation may be an outlier. This can seriously
distort the picture of the sample, because the criterion does not depend on the
sample size. A large sample can look very heavy-tailed because the asterisks
show that there are many possibly outlying values, when the proportion of
outliers is well within the normal range. In Exercise 6, we show how this
distortion works, and how we can control it by editing the attribute in the
Minitab dialog box.

The boxplot divides the observations into quarters. It shows you a lot about the
shape of the data distribution. Examining the length of the whiskers compared to the
box length shows whether the data set has light, normal, or heavy tails. Comparing
the lengths of the whiskers show whether the distribution of the data appears to be
skewed or symmetric. Figure 3.2 shows the boxplot for Cavendish’s Earth density
measurements. It shows the data distribution is fairly symmetric but with a slightly
longer lower tail.
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5.85.65.45.25.0

Figure 3.2 Boxplot of Earth density measurements by Cavendish.

Stem-and-Leaf Diagram

The stem-and-leaf diagram is a quick and easy way of extracting information about
the distribution of a sample of numbers. The stem represents the leading digit(s) to a
certain depth (power of 10) of each data item, and the leaf represents the next digit of
the data item. A stem-and-leaf diagram can be constructed by hand for a small data
set. It is often the first technique used on a set of numbers. The steps are

• Draw a vertical axis (stem) and scale it for the stem units. Always use a linear
scale!

• Plot leaf for the next digit. We could round off the leaf digit, but usually we
don’t bother if we are doing it by hand. In any case, we may have lost some
information by rounding off or by truncating.

• Order the leaves with the smallest near stem to the largest farthest away.

• State the leaf unit on your diagram.

The stem-and-leaf plot gives a picture of the distribution of the numbers when we
turn it on its side. It retains the actual numbers to within the accuracy of the leaf
unit. We can find the order statistics counting up from the lower end. This helps to
find the quartiles and the median. The Figure 3.3 shows a stem-and-leaf diagram for
Cavendish’s Earth density measurements. We use a two digit stem, units and tenths,
and a one digit leaf, hundredths.
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leaf unit .01
48 8
49
50 7
51 0
52 6799
53 04469
54 2467
55 03578
56 12358
57 59
58 5

Figure 3.3 Stem-and-leaf plot for Cavendish’s Earth density measurements.

There are 29 measurements. We can count down to the X 29+1
2

= X15 to find that
the median is 5.46. We can count down to X 29+1

4
= X7 1

2
. Thus the first quartile

Q1 = 1
2 × X7 + 1

2 × X8 which is 5.295

Frequency Table

Another main approach to simplify a set of numbers is to put it in a frequency table.
This is sometimes referred to as binning the data. The steps are:

• Partition possible values into nonoverlapping groups (bins). Usually we use
equal width groups. However this is not required.

• Put each item into the group it belongs in.

• Count the number of items in each group.

Frequency tables are a useful tool for summarizing data into an understandable form.
There is a trade-off between the loss of information in our summary, and the ease of
understanding the information that remains. We have lost information when we put
a number into a group. We know it lies between the group boundaries, but its exact
value is no longer known. The fewer groups we use, the more concise the summary,
but the greater loss of information. If we use more groups we lose less information,
but our summary is less concise and harder to grasp. Since we no longer have the
information about exactly where each value lies in a group, it seems logical that the
best assumption we can then make is that each value in the group is equally possible.
The Earth density measurements made by Cavendish are shown as a frequency table
in Table 3.2.

If there are two many groups, some of them may not contain any observations.
In that case, it is better to lump two or more adjacent groups into a bigger one to
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Table 3.2 Frequency table of Earth density measurements by Cavendish

Boundaries Frequency

4.80 < x ≤ 5.00 1

5.00 < x ≤ 5.20 2

5.20 < x ≤ 5.40 9

5.40 < x ≤ 5.60 9

5.60 < x ≤ 5.80 7

5.80 < x ≤ 6.00 1

get some observations in every group. There are two ways to show the data in a
frequency table pictorially. They are histograms and cumulative frequency polygons.

Histogram

This is the most common way to show the distribution of data in the frequency table.
The steps for constructing a histogram are:

• Put group boundaries on horizontal axis drawn on a linear scale.

• Draw a rectangular bar for each group where the area of bar is proportional to
the frequency of that group. For example, this means that if a group is twice
as wide as the others, its height is half that group’s frequency. The bar is flat
across the top to show our assumption that each value in the group is equally
possible.

• Do not put any gaps between the bars if the data are continuous.

• The scale on the vertical axis is density, which is group frequency divided by
group width. When the groups have equal width, the scale is proportional to
frequency, or relative frequency, and they could be used instead of density.
This is not true if unequal width groups are used. It is not necessary to label
the vertical axis on the graph. The shape of the graph is the important thing,
not its vertical scale.

• Warning: If you use unequal group widths in Minitab, you must click on
density in the options dialog box; otherwise, the wrong shape histogram will
result.

The histogram gives us a picture of how the sample data are distributed. We can see
the shape of the distribution and relative tail weights. We look at it as a representing
a picture of the underlying population the sample came from. This underlying



GRAPHICALLY DISPLAYING A SINGLE VARIABLE 35

population distribution1 would generally be reasonably smooth. There is always a
trade-off between too many and too few groups. If we use too many groups, the
histogram has a "saw tooth" appearance and the histogram is not representing the
population distribution very well. If we use too few groups, we lose details about the
shape. Figure 3.4 shows histogram of the Earth density measurements by Cavendish
using 12, 6, and 4 groups, respectively. This illustrates the trade-off between too
many and too few groups. We see the histogram with 12 groups has gaps, and a saw
tooth appearance. The histogram with 6 groups gives a better representation of the
underlying distribution of Earth density measurements. The histogram with 4 groups
has lost too much detail. The last histogram has unequal width groups. The height
of the wider bars is shortened to keep the area proportional to frequency.

Cumulative Frequency Polygon

The other way for displaying the data from a frequency table is to construct a
cumulative frequency polygon, sometimes called an ogive. It is particularly useful
because you can estimate the median and quartiles from the graph. The steps are:

• Group boundaries on horizontal axis drawn on a linear scale.

• Frequency or percentage shown on vertical axis.

• Plot (lower boundary of lowest class, 0).

• For each group, plot (upper class boundary, cumulative frequency). We don’t
know the exact value of each observation in the group. However, we do know
that all the values in a group must be less than or equal to the upper boundary.

• Join the plotted points with a straight line. Joining them with a straight line
shows that we consider each value in the group to be equally possible.

We can estimate the median and quartiles easily from the graph. To find median go
up to 50 % on vertical scale, draw line over to the cumulative frequency polygon, and
down to horizontal axis. The value where it hits the axis is the estimate of the median.
Similarly to find the quartiles, go up to 25% or 75%, across to cumulative frequency
polygon, and down to horizontal axis to find lower and upper quartile respectively.
The underlying assumption behind these estimates is that all values in a group are
evenly spread across the group. Figure 3.5 shows the cumulative frequency polygon
for the Earth density measurements by Cavendish.

1In this case, the population is the set of all possible Earth density measurements that Cavendish could
have obtained from his experiment. This population is theoretical, as each of its elements was only brought
into existence by Cavendish performing the experiment.
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6.05.44.8

6.05.85.65.45.25.04.8

6.05.75.45.14.8

6.05.85.65.55.45.35.25.04.8

Figure 3.4 Histograms of Earth density measurements by Cavendish with different bound-
aries. Note the area is always proportional to frequency.
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6.05.85.65.45.25.04.8

30

20

10

0

Figure 3.5 Cumulative frequency polygon of Earth density measurements by Cavendish.

3.2 GRAPHICALLY COMPARING TWO SAMPLES

Sometimes we have the same variable recorded for two samples. For instance, we
may have responses for the treatment group and control group from a randomized
experiment. We want to determine whether or not the treatment has been effective.

Often a picture can clearly show us this, and there is no need for any sophisticated
statistical inference. The key to making visual comparisons between two data samples
is "Don’t compare apples to oranges." By that, we mean that the pictures for the two
samples must be lined up, and with the same scale. Stacked dotplots and stacked
boxplots where they are lined up on the same axis give a good comparison of the
samples. Back-to-back stem-and-leaf diagrams are another good way of comparing
two small data sets. The two samples use common stem, and the leaves from one
sample are on one side of the stem, and the leaves from the other sample are on
the other side of the stem. The leaves of the two sample are ordered, from smallest
closest to stem to largest farthest away. We can put histograms back-to-back or stack
them. We can plot the cumulative frequency polygons for the two samples on the
same axis. If one is always to the left of the other, we can deduce its distribution is
shifted relative to the other.

All of these pictures can show us whether there are any differences between the
two distributions. For example, do the distributions seem to have the same location
on the number line, or does one appear to be shifted relative to the other? Do the
distributions seem to have the same spread, or is one more spread out than the other?
Are the shapes similar? If we have more than two samples, we can do any of these
pictures that is stacked. Of course, back-to-back ones only work for two samples.

Example 3 Between 1879 and 1882 scientists were devising experiments for deter-
mining the speed of light. Table 3.3 contains measurements collected by Michelson
in a series of experiments on the speed of light. The first 20 measurements were
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Table 3.3 Michelson’s speed of light measurements. Value in table plus 2999000km/s.

Michelson (1879) Michelson (1882)

850 740 883 816

900 1070 778 796

930 850 682 711

950 980 611 599

980 880 1051 781

1000 980 578 796

930 650 774 820

760 810 772 696

1000 1000 573 748

960 960 748 797

851 809

723

1080980880780680580

Michelson 1879

Michelson 1882

Figure 3.6 Dotplots of Michelsons speed of light measurements.

made in 1879, and the next 23 supplementary measurements were made in 1882. The
experiment and the data are described in Stigler (1977).

Figure 3.6 shows stacked dotplots for the two data sets. Figure 3.7 shows stacked
boxplots for the two data sets. The true value of the speed of light in the air is
2999710. We see from these plots that there was a systematic error (bias) in the first
series of measurements that was greatly reduced in the second.

Back-to-back stem-and-leaf diagrams are another good way to show the relation-
ship between two data sets. The stem goes in the middle. We put the leaves for
one data set on the right side, and leaves for the other on the left. The leaves are
ascending order moving away from the stem. Back-to-back stem-and-leaf diagrams
are shown for Michelson’s data in Figure 3.8. The stem is hundreds, and the leaf unit
is 10.
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11001000900800700600

Michelson 1882

Michelson 1879

Figure 3.7 Boxplot of Michelsons speed of light measurements.

977 5 leaf unit 10
1 6

98 6 5
4412 7 4

9998777 7 6
210 8 1
85 8 558

9 033
9 566888

10 000
5 10 7

Figure 3.8 Back-to-back stem-and-leaf plots for Michelson’s data.

3.3 MEASURES OF LOCATION

Sometimes we want to summarize our data set with numbers. The most important
aspect of the data set distribution is determining a value that summarizes its location
on the number line. The most commonly used measures of location are the mean and
the median. We will look at each ones’s advantages and disadvantages.

Both the mean and the median are members of the trimmed mean family which also
includes compromise values between them, depending on the amount of trimming.
We do not consider the mode (most common value) to be a suitable measure of
location for the following reasons. For continuous data values, each value is unique
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if we measure it accurately enough. In many cases, the mode is near one end of the
distribution, not the central region. The mode may not be unique.

Mean: Advantages and Disadvantages

The mean is the most commonly used measure of location, because of its simplicity,
and its good mathematical properties. The mean of a data set y1, · · · , yn is simply
the arithmetic average of the numbers.

ȳ =
1

n
×

n∑
i=1

yi =
1

n
× (y1 + · · · + yn) .

The mean is simple and very easy to calculate. You just make one pass
through the numbers and add them up. Then divide the sum by the size of the sample.

The mean has good mathematical properties. The mean of a sum is the
sum of the means. For example, if y is total income, u is "earned income" (wages and
salaries), v is "unearned income" (interest, dividends, rents), and w is "other income"
(social security benefits and pensions, etc.). Clearly, a persons total income is the
sum of the incomes he or she receives from each source yi = ui + vi + wi. Then

ȳ = ū + v̄ + w̄ .

So it doesn’t matter if we take the means from each income source and then add them
together to find the mean total income, or add the each individuals incomes from all
sources to get his/her total income and then take the mean of that. We get the same
value either way.

The mean combines well. The mean of a combined set is the weighted average
of the means of the constituent sets, where weights are proportions each constituent
set is to the combined set. For example, the data may come from two sources, males
and females who had been interviewed separately. The overall mean would be the
weighted average of the male mean and the female mean where the weights are the
proportions of males and females in the sample.

The mean is the first moment or center of gravity of the numbers. We
can think of the mean as the balance point if an equal weight was placed at each of the
data points on the (weightless) number line. The mean would be the balance point of
the line. This leads to the main disadvantage of the mean. It is strongly influenced
by outliers. A single observation much bigger than the rest of the observations has a
large effect on the mean. That makes using the mean problematic with highly skewed
data such as personal income. Figure 3.9 shows how the mean is influenced by an
outlier.

Calculating mean for grouped data. When the data have been put in a fre-
quency table, we only know between which boundaries each observation lies. We
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Figure 3.9 The mean as the balance point of the data is affected by moving the outlier.

no longer have the actual data values. In that case there are two assumptions we can
make about the actual values.

1. All values in a group lie at the group midpoint.

2. All the values in a group are evenly spread across the group.

Fortunately, both these assumptions lead us to the same calculation of the mean value.
The total contribution for all the observations in a group is the midpoint times the
frequency under both assumptions.

ȳ =
1

n

J∑
j=1

nj × mj

=

J∑
j=1

nj

n
× mj ,

where nj is the number of observations in the jth interval, n is the total number of
observations, and mj is the midpoint of the jth interval.

Median: Advantages and Disadvantages

The median of a set of numbers is the number such that 50% of the numbers are less
than or equal to it, and 50% of the numbers are greater than or equal to it. Finding
the median requires us to sort the numbers. It is the middle number when the sample
size is odd, or it is the average of the two numbers closest to middle when the sample
size is even.

m = y[ n+1
2 ] .

The median is not influenced by outliers at all. This makes it very suitable
for highly skewed data like personal income. This is shown in Figure 3.10. However
it does not have same good mathematical properties as mean. The median of a sum
is not necessarily the sum of the medians. Neither does it have good combining
properties similar to those of the mean. The median of the combined sample is not
necessarily the weighted average of the medians. For these reasons, the median is
not used as often as the mean. It is mainly used for very skewed data such as incomes
where there are outliers which would unduly influence the mean, but don’t affect the
median.
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Figure 3.10 The median as the middle point of the data is not affected by moving the
outlier.

Trimmed mean. We find the trimmed mean with degree of trimming equal to k by
first ordering the observations, then trimming the lower k and upper k order statistics,
and taking the average of those remaining.

x̄k =

∑n−k

i=k+1 x[i]

n − 2k
.

We see that x̄0 (where there is no trimming) is the mean. If n is odd and we let
k = n

2 then x̄k is the median. Similarly if n is even and we let k = n−2
2 then x̄k is

the median. If k is small, the trimmed mean will have properties similar to the mean.
If k is large, the trimmed mean has properties similar to the median.

3.4 MEASURES OF SPREAD

After we have determined where the data set is located on the number line, the next
important aspect of the data set distribution is determining how spread out the data
distribution is. If the data are very variable, the data set will be very spread out. So
measuring spread gives a measure of the variability. We will look at some of the
common measures of variability.

Range: Advantage and Disadvantage

The range is the largest observation minus smallest:

R = y[n] − y[1] .

The range is very easy to find. However, the largest and smallest observation are
the observations that are most likely to be outliers. Clearly, the range is extremely
influenced by outliers.

Interquartile Range: Advantages and Disadvantages

The interquartile range measures the spread of the middle 50% of the observations.
It is the third quartile minus first quartile

IQR = Q3 − Q1 .

The quartiles are not outliers, so the interquartile range is not influenced by outliers.
Nevertheless it is not used very much in inference because like the median it doesn’t
have good math or combining properties.
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Variance: Advantages and Disadvantages

The variance of a data set is the average squared deviation from the mean.2

V ar(y) =
1

n
×

n∑
i=1

(yi − ȳ)2 .

In physical terms, it is the second moment of inertia about the mean. Engineers
refer to the variance as the MSD, mean squared deviation. It has good mathematical
properties, although more complicated than those for the mean. The variance of a
sum (of independent variables) is the sum of the individual variances.

It has good combining properties, although more complicated than those for the
mean. The variance of a combined set is the weighted average of the variances of the
constituent sets, plus the weighted average of the squares of the constituent means
away from the combined mean, where weights are proportions each constituent set
is to the combined set.

Squaring the deviations from the mean emphasizes the observations far from the
mean. Those observations have large magnitude in a positive or negative direction
already, and squaring them makes them much larger still, and all positive. Thus the
variance is very influenced by outliers. The variance is in squared units. Thus its size
is not comparable to mean.

Calculating variance for grouped data. The variance is the average squared
deviation from the mean. When the data have been put in a frequency table, we no
longer have the actual data values. In that case there are two assumptions we can
make about the actual values.

1. All values in a group lie at the group midpoint.

2. All the values in a group are evenly spread across the group.

Unfortunately, these two assumptions lead us to different calculation of the variance.
Under the first assumption we get the approximate formula

V ar(y) =
1

n

J∑
j=1

nj × (mj − ȳ)2 ,

where nj is the number of observations in the jth interval, n is the total number
of observations, mj is the midpoint of the jth interval. This formula only contains
between group variation, and ignores the variation for the observations in the same

2Note that we are defining the variance of a data set using the divisor n. We aren’t making any distinction
over whether our data set is the whole population or only a sample from the population. Some books
define the variance of a sample data set using divisor n− 1. One degree of freedom has been lost because
for a sample, we are using the sample mean instead of the unknown population mean. When we use the
divisor n − 1 we are calculating the sample estimate of the variance, not the variance itself.
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group. Under the second assumption we add in the variation within each group to
get the formula

V ar(y) =
1

n

J∑
j=1

(
nj × (mj − ȳ)2 + nj ×

R2
j

12

)
,

where Rj is the upper boundary minus the lower boundary for the jth group.

Standard Deviation: Advantages and Disadvantages

The standard deviation is the square root of the variance.

sd(y) =

√√√√ 1

n
×

n∑
i=1

(yi − ȳ)2 .

Engineers refer to it as the RMS, root mean square. It is not as affected by outliers
as variance, but still quite affected. It inherits good mathematical properties and
good combining properties from the variance. The standard deviation is the most
widely used measure of spread. It is in the same units as mean, so its size is directly
comparable to the mean.

3.5 DISPLAYING RELATIONSHIPS BETWEEN TWO OR MORE
VARIABLES

Sometimes our data are measurements for two variables for each experimental unit.
This is called bivariate data. We want to investigate the relationship between the two
variables.

Scatterplot

The scatterplot is just a two-dimensional dotplot. Mark off the horizontal axis for
the first variable, the vertical axis for the second. Each point is plotted on the graph.
The shape of the "point cloud" gives us an idea as to whether the two variables are
related, and if so, what type relationship.

When we have two samples of bivariate data, and want to see if the relationship
between the variables is similar in the two samples, we can plot the points for both
samples on the same scatterplot using different symbols so we can tell them apart.

Example 4 The Bears.mtw file stored in Minitab contains 143 measurements on wild
bears that were anesthetized, measured, tagged, and released. Figure 3.11 shows
a scatterplot of head length versus head width for these bears. From this we can
observe that head length and head width are related. Bears with large width heads
tend to have heads that are long. We can also see that male bears tend to have larger
heads than female bears.
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Female
Male

Figure 3.11 Head length versus head width in black bears.

Scatterplot Matrix

Sometimes our data consists of measurements of several variables on each experi-
mental unit. This is called multivariate data. To investigate the relationships between
the variables, form a scatterplot matrix. This means that we construct the scatterplot
for each pair of variables, then display them in an array like a matrix. We look at each
scatterplot in turn to investigate the relationship between that pair of the variables.
More complicated relationships between three or more of the variables may be hard
to see on this plot.

Example 4 (continued) Figure 3.12 shows a scatterplot matrix showing scatter-
plots of head length, head width, neck girth, length, chest girth, and weight for the
bear measurement data. We see there are strong positive relationships among the
variables, and some of them appear to be nonlinear.
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Head.L

Head.W

Neck.G

Length

Chest.G

Weight

Figure 3.12 Scatterplot matrix of bear data.

3.6 MEASURES OF ASSOCIATION FOR TWO OR MORE VARIABLES

Covariance and Correlation between Two Variables

The covariance of two variables is the average of first variable minus its mean times
second variable minus its mean:

Cov(x, y) =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ) .

This measures how the variables vary together. Correlation between two variables is
the covariance of the two variables divided by product of standard deviations of the
two variables. This standardizes the correlation to lie between −1 and +1.

Corr(x, y) =
Cov(x, y)√

V ar(x) × V ar(y)
.

Correlation measures the strength of the linear relationship between two variables.
A correlation of +1 indicates the points lie on a straight line with positive slope. A
correlation of −1 indicates the points lie on a straight line with negative slope. A
positive correlation that is less than one indicates that the points are scattered, but
generally low values of the first variable are associated with low values of the second,
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Table 3.4 Correlation matrix for bear data

Head.L Head.W Neck.G Length Chest.G Weight

Head.L 1.000 .744 .862 .895 .854 .833

Head.W .744 1.000 .805 .736 .756 .756

Neck.G .862 .805 1.000 .873 .940 .943

Length .895 .736 .873 1.000 .889 .875

Chest.G .854 .756 .940 .889 1.000 .966

Weight .833 .756 .943 .875 .966 1.000

and high values of the first are associated with high values of the second. The higher
the correlation, the more closely the points are bunched around a line. A negative
correlation has low values of the first associated with high values of the second, and
high values of the first associated with low values of the second. A correlation of
0 indicates that there is no association of low values or high values of the first with
either high or low values of the second. It does not mean the variables are not related,
only that they are not linearly related.

When we have more than two variables, we put the correlations in a matrix. The
correlation between x and y equals the correlation between y and x, so the correlation
matrix is symmetric about the main diagonal. The correlation of any variable with
itself equals one.

Example 4 (continued) The correlation matrix for the bear data is given in Table
3.4. We see that all the variables are correlated with each other. Looking at the
matrix plot we see that Head.L and Head.W have a correlation of .744, and the
scatterplot of those two variables is spread out. We see that the Head.L and Length
have a higher correlation of .895, and on the scatterplot of those variables, we see
the points lie much closer to a line. We see that Chest.G and Weight are highly
correlated at .966. On the scatterplot we see those points lie much closer to a line,
although we can also see that actually they seem to lie on a curve that is quite close
to a line.

Main Points

• Data should always be looked at in several ways as the first stage in any
statistical analysis. Often a good graphical display is enough to show what is
going on, and no further analysis is needed. Some elementary data analysis
tools are:

◦ Order Statistics. The data when ordered smallest to largest. y[1], · · · , y[n].

◦ Median. The value that has 50% of the observations above it and 50% of
the observations below it. This is

y[ n+1
2 ] .
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It is the middle value of the order statistics when n is odd. When n is even,
the median is the weighted average of the two closest order statistics:

y[ n+1
2 ] = 1

2×y[ n

2
]+

1
2×y[ n

2
+1] .

The median is also known as the second quartile.

◦ Lower quartile. The value that 25 % of the observations are below it and
75 % of the observations are above it. It is also known as the first quartile.
It is

Q1 = y[ n+1
4 ] .

If n+1
4 is not an integer, we find it by taking the weighted average of the

two closest order statistics.

◦ Upper quartile. The value that 75 % of the observations are below it
and 25 % of the observations are above it. It is also known as the upper
quartile. It is

Q3 = x
[
3(n+1)

4 ]
.

If 3(n+1)
4 is not an integer, the quartile is found by taking the weighted

average of the two closest order statistics .

• When we are comparing samples graphically, it is important that they be on the
same scale. We have to be able to get the correct visual comparison without
reading the numbers on the axis. Some elementary graphical data displays are:

◦ Stem-and-leaf diagram. An quick and easy graphic which allows us to
extract information from a sample. A vertical stem is drawn with a num-
bers up to stem digit along linear scale. Each number is represented using
its next digit as a leaf unit at the appropriate place along the stem. The
leaves should be ordered away from the stem. It is easy to find (approx-
imately) the quartiles by counting along the graphic. Comparisons are
done with back-to-back stem-and-leaf diagrams.

◦ Boxplot. A graphic along a linear axis where the central box contains the
middle 50% of the observation, and a whisker goes out from each end of
the box to the lowest and highest observation. There is a line through the
box at the median. So it is a visual representation of the five numbers
y[1], Q1, Q2, Q3, y[n] that give a quick summary of the data distribution.
Comparisons are done with stacked boxplots.

◦ Histogram. A graphic where the group boundaries are put on a linear
scaled horizontal axis. Each group is represented by a vertical bar where
the area of the bar is proportional to the frequency in the group.

◦ Cumulative frequency polygon (ogive). A graphic where the group
boundaries are put on a linearly scaled horizontal axis. The point (lower
boundary of lowest group, 0) and the points (upper group boundary, cu-
mulative frequency) are plotted and joined by straight lines. The median
and quartiles can be found easily using the graph.
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• It is also useful to summarize the data set using a few numerical summary
statistics. The most important summary statistic of a variable is a measure of
location which indicates where the values lie along the number axis. Some
possible measures of location are:

◦ Mean. The average of the numbers. It is easy to use, has good mathemat-
ical properties, and combines well. It is the most widely used measure of
location. It is sensitive to outliers, so it is not particularly good for heavy
tailed distributions.

◦ Median. The middle order statistic, or the average of the two closest to
the middle. This is harder to find as it requires sorting the data. It is
not affected by outliers. The median doesn’t have the good mathematical
properties or good combining properties of the mean. Because of this, it
is not used as often as the mean. Mainly it is used with distributions that
have heavy tails or outliers, where it is preferred to the mean.

◦ Trimmed mean. This is a compromise between the mean and the median.
Discard the k largest and the k smallest order statistics and take the
average of the rest.

• The second important summary statistic is a measure of spread, which shows
how spread out are the numbers. Some commonly used measures of spread
are:

◦ Range. This is the largest order statistic minus the smallest order statistic.
Obviously very sensitive to outliers.

◦ Interquartile range (IQR). This is the upper quartile minus the lower
quartile. It measures the spread of the middle 50% of the observations.
It is not sensitive to outliers.

◦ Variance. The average of the squared deviations from the mean. Strongly
influenced by outliers. The variance has good mathematical properties,
and combines well, but it is in squared units and is not directly comparable
to the mean.

◦ Standard deviation. The square root of the variance. This is less sensitive
to outliers than the variance and is directly comparable to the mean since
it is in the same units. It inherits good mathematical properties and
combining properties from the variance.

• Graphical display for relationship between two or more variables.

◦ Scatterplot. Look for pattern.

◦ Scatterplot matrix. An array of scatterplots for all pairs of variables.

• Correlation is a numerical measure of the strength of the linear relationship
between the two variables. It is standardized to always lie between −1 and
+1. If the points lie on a line with negative slope, the correlation is −1, and if
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they lie on a line with positive slope, the correlation is +1. A correlation of 0
doesn’t mean there is no relationship, only that there is no linear relationship.

Exercises

3.1 A study on air pollution in a major city measured the concentration of sulphur
dioxide on 25 summer days. The measurements were:

3 9 16 23 29

3 11 17 25 35

5 13 18 26 43

7 13 19 27 44

9 14 23 28 46

(a) Form a stem-and-leaf diagram of the sulphur dioxide measurements.

(b) Find the median, lower quartile, and upper quartile of the measurements.

(c) Sketch a boxplot of the measurements.

3.2 Dutch elm disease is spread by bark beetles that breed in the diseased wood.
A sample of 100 infected elms was obtained, and the number of bark beetles
on each tree was counted. The data are summarized in the following table:

Boundaries Frequency

0 < x ≤ 50 8

50 < x ≤ 100 24

100 < x ≤ 150 33

150 < x ≤ 200 21

200 < x ≤ 400 14

(a) Graph a histogram for the bark beetle data.

(b) Graph a cumulative frequency polygon of the bark beetle data. Show the
median and quartiles on your cumulative frequency polygon.

3.3 A manufacturer wants to determine whether the distance between two holes
stamped into a metal part is meeting specifications. A sample of 50 parts was
taken, and the distance was measured to nearest tenth of a millimeter. The
results were:
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300.6 299.7 300.2 300.0 300.1

300.0 300 .1 299.9 300.2 300.1

300.5 299.6 300.7 299.9 300.2

299.9 300.4 299.8 300.4 300.4

300.4 300.2 299.4 300.6 299.8

299.7 300.1 299.9 300.0 300.0

300.5 300.1 299.9 299.8 300.2

300.7 300.4 300.0 300.1 300.0

300.2 300.3 300.5 300.0 300.1

300.3 299.9 300.1 300.2 299.5

(a) Form a stem-and-leaf diagram of the measurements.

(b) Find the median, lower quartile, and upper quartile of the measurements.

(c) Sketch a boxplot of the measurements.

(d) Put the measurements in a frequency table with the following classes:

Boundaries Frequency

299.2 < x ≤ 299.6

299.6 < x ≤ 299.8

299.8 < x ≤ 300.0

300.0 < x ≤ 300.2

300.2 < x ≤ 300.4

300.4 < x ≤ 300.8

(e) Construct a histogram of the measurements.

(f) Construct a cumulative frequency polygon of the measurements. Show
the median and quartiles.

3.4 The manager of a government department is concerned about the efficiency in
which his department serves the public. Specifically he is concerned about the
delay experienced by members of the public waiting to be served. He takes a
sample of 50 arriving customers, and measures the time each waits until service
begins. The times (rounded off to the nearest second) are:
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98 5 6 39 31

46 129 17 1 64

40 121 88 102 50

123 50 20 37 65

75 191 110 28 44

47 6 43 60 12

150 16 182 32 5

106 32 26 87 137

44 13 18 69 107

5 53 54 173 118

(a) Form a stem-and-leaf diagram of the measurements.

(b) Find the median, lower quartile, and upper quartile of the measurements.

(c) Sketch a boxplot of the measurements.

(d) Put the measurements in a frequency table with the following classes:

Boundaries Frequency

0 < x ≤ 20

20 < x ≤ 40

40 < x ≤ 60

60 < x ≤ 80

80 < x ≤ 100

100 < x ≤ 200

(e) Construct a histogram of the measurements.

(f) Construct a cumulative frequency polygon of the measurements. Show
the median and quartiles.

3.5 A random sample of 50 families reported the dollar amount they had available
as a liquid cash reserve. The data have been put in the following frequency
table:
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Boundaries Frequency

0 < x ≤ 500 17

500 < x ≤ 1000 15

1000 < x ≤ 2000 7

2000 < x ≤ 4000 5

4000 < x ≤ 6000 3

6000 < x ≤ 10000 3

(a) Construct a histogram of the measurements.

(b) Construct a cumulative frequency polygon of the measurements. Show
the median and quartiles.

(c) Calculate the grouped mean for the data.

3.6 In this exercise we see how the default setting in the Minitab boxplot command
can be misleading, since it doesn’t take the sample size into account. We
will generate three samples of different sizes from the same distribution, and
compare their Minitab boxplots. Generate 250 normal (0, 1) observations and
put them in column c1 by pulling down the calc menu to the random data
command over to normal and filling in the dialog box. Generate 1000 normal
(0, 1) observations the same way and put them in column c2, and generate 4000
normal (0, 1) observations the same way and put them in column c3. Stack
these three columns by pulling down the manip menu down to stack/unstack
and over to stack columns and filling in the dialog box to put the stacked column
into c4, with subscripts into c5. Form stacked boxplots by pulling down graph
menu to boxplot command and filling in dialog box. Y is c4 and x is c5.

(a) What do you notice from the resulting boxplot?

(b) Which sample seems to have a heavier tail?

(c) Why is this misleading?

(d) Redo the boxplot highlighting the outlier symbol in the dialog box, and
clicking on edit attributes and select dot.

(e) Is the graph still as misleading as the original?

3.7 McGhie and Barker (1984) collected 100 slugs from the species Limax maximus
around Hamilton, New Zealand. They were preserved in a relaxed state, and
their length in mm and weight in gm were recorded. Thirty of the observations
are shown below. The full data are in the Minitab worksheet slug.mtw.
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length weight length weight length weight

(mm) (gm) (mm) (gm) (mm) (gm)

73 3.68 21 0.14 75 4.94

78 5.48 26 0.35 78 5.48

75 4.94 26 0.29 22 0.36

69 3.47 36 0.88 61 3.16

60 3.26 16 0.12 59 1.91

74 4.36 35 0.66 78 8.44

85 6.44 36 0.62 90 13.62

86 8.37 22 0.17 93 8.70

82 6.40 24 0.25 71 4.39

85 8.23 42 2.28 94 8.23

(a) Plot weight on length using Minitab. What do you notice about the shape
of the relationship?

(b) Often when we have a nonlinear relationship, we can transform the vari-
ables by taking logarithms and achieve linearity. In this case, weight is
related to volume which is related to length times width times height.
Taking logarithms of weight and length should give a more linear re-
lationship. Plot log(weight) on log(length) using Minitab. Does this
relationship appear to be linear?

(c) From the scatterplot of log(weight) on log(length) can you identify any
points that do not appear to fit the pattern?



4
Logic, Probability,

and Uncertainty

Most situations we deal with in everyday life are not completely predictable. If I
think about the weather tomorrow at noon, I cannot be certain whether it will or will
not be raining. I could contact the Meteorological Service and get the most up to date
weather forecast possible, which is based on the latest available data from ground
stations and satellite images. The forecast could be that it will be a fine day. I decide
to take that forecast into account, and not take my umbrella. Despite the forecast it
could rain and I could get soaked going to lunch. There is always uncertainty.

In this chapter we will see that deductive logic can only deal with certainty. This
is of very limited use in most real situations. We need to develop inductive logic that
allows us to deal with uncertainty.

Since we can’t completely eliminate uncertainty, we need to model it. In real life
when we are faced with uncertainty, we use plausible reasoning. We adjust our belief
about something, based on the occurrence or nonoccurrence of something else. We
will see how plausible reasoning should be based on the rules of probability which
were originally derived to analyze the outcome of games based on random chance.
Thus the rules of probability extend logic to include plausible reasoning where there
is uncertainty.

0Introduction to Bayesian Statistics. By William M. Bolstad
ISBN 0-471-27020-2 Copyright c©John Wiley & Sons, Inc.
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Figure 4.1 "If A is true then B is true." Deduction is possible.

4.1 DEDUCTIVE LOGIC AND PLAUSIBLE REASONING

Suppose we know "If proposition A is true, then proposition B is true." We are
then told "proposition A is true." Therefore we know that "B is true." It is the only
conclusion consistent with the condition. This is a deduction.

Again suppose we know "If proposition A is true, then proposition B is true." Then
we are told "B is not true." Therefore we know that "A is not true." This is also a
deduction. When we determine a proposition is true by deduction using the rules of
logic, it is certain. Deduction works from the general to the particular.

We can represent propositions using diagrams. Propositions "A is true" and "B is
true" are each represented by the interior of a circle. The proposition "if A is true then
B is true" is represented by having circle representing A lie completely inside B. This
is shown in Figure 4.1. The essence of the first deduction is that if we are in a circle
A that lies completely inside circle B, then we must be inside circle B. Similarly, the
essence of the second induction is that if we are outside of a circle B that completely
contains circle A, then we must be outside circle A.

Other propositions can be seen in the diagram. Proposition "A and B are both
true" is represented by the intersection, the region in both the circles simultaneously.
In this instance, the intersection equals A by itself. The proposition "A or B is true"
is represented by the union, region in either one or the other, or both of the circles.
In this instance, the union equals B by itself.

On the other hand, suppose we are told "A is not true." What can we now say about
B? Traditional logic has nothing to say about this. Both "B is true" and "B is not
true" are consistent with the conditions given. Some points outside circle A are inside
circle B, and some are outside circle B. No deduction is possible. Intuitively though,
we would now believe that it was less plausible that B is true than we previously did
before we were told "A is not true." This is because one of the ways B could be true,
namely that A and B are both true is now no longer a possibility. And the ways that
B could be false have not been affected.
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Figure 4.2 Both "A is true" and " A is false" are consistent with both "B is true" and "B is
false." No deduction is possible here.

Similarly, when we are told "B is true," traditional logic has nothing to contribute.
Both "A is true" and "A is not true" are consistent with the conditions given. Never-
theless, we see that "B is true" increases the plausibility of "A is true" because one of
the ways A could be false, namely both A and B are false is no longer possible, and
the ways that A are true have not been affected.

Often propositions are related in such a way that no deduction is possible. Both
"A is true" and "A is false" are consistent with both "B is true" and "B is false." Figure
4.2 shows this by having the two circles intersect, and neither is completely inside
the other.

Suppose we try to use numbers to measure plausibility of propositions. When we
change our plausibility for some proposition on the basis of the occurrence of some
other proposition, we are making an induction. Induction works from the particular
to the general.

Desired Properties of Plausibility Measures

1. Degrees of plausibility are represented by nonnegative real numbers.

2. They qualitatively agree with common sense. Larger numbers mean greater
plausibility.

3. If a proposition can be represented more than one way, then all representations
must give the same plausibility.

4. We must always take all the relevant evidence into account.

5. Equivalent states of knowledge are always given the same plausibility.

R. T. Cox showed that any set of plausibilities that satisfies the desired properties
given above, must operate according to the same rules as probability. Thus the
sensible way to revise plausibilities is by using the rules of probability. Bayesian
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statistics uses the rules of probability to revise our belief given the data. Probability
is used as an extension of logic to cases where deductions cannot be made. Jaynes
(1995) gives an excellent discussion on using probability as logic.

4.2 PROBABILITY

We start this section with the idea of a random experiment. In a random experiment,
though we make the observation under known repeatable conditions, the outcome is
uncertain. When we repeat the experiment under identical conditions, we may get a
different outcome. We start with the following definitions:

• Random experiment. An experiment that has an outcome that is not completely
predictable. We can repeat the experiment under the same conditions and not
get the same result. Tossing a coin is an example of a random experiment.

• Outcome. The result of one single trial of the random experiment.

• Sample space. The set of all possible outcomes of one single trial of the
random experiment. We denote it Ω. The sample space contains everything
we are considering in this analysis of the experiment, so we also can call it the
universe. In our diagrams we will call it U .

• Event. Any set of possible outcomes of a random experiment.

Possible events include the universe, U, and the set containing no outcomes, the
empty set φ. From any two events E and F we can create other events by the
following operations.

• Union of two events. The union of two events E and F is the set of outcomes
in either E or F (inclusive or). Denoted E ∪ F

• Intersection of two events. The intersection of two events E and F is the set
of outcomes in both E and F simultaneously. Denoted E ∩ F .

• Complement of an event. The complement of an event E is the set of outcomes
not in E. Denoted Ẽ

We will use Venn diagrams to illustrate the relationship between events. Events
are denoted as regions in the universe. The relationship between two events depends
on the outcomes they have in common. If all the outcomes in one event are also in
the other event, the first event is a subset of the other. This is shown in Figure 4.3.

If the events have some outcomes in common, but each has some outcomes that
are not in the other, they are intersecting events. This is shown in Figure 4.4. Neither
event is contained in the other.

If the two events have no outcomes in common, they are mutually exclusive events.
In that case the occurrence of one of the events excludes the occurrence of the other,
and vice versa. They are also referred to as disjoint events. This is shown in Figure
4.5
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Figure 4.3 Event F is a subset of event E.

Figure 4.4 E and F are intersecting events.

4.3 AXIOMS OF PROBABILITY

The probability assignment for a random experiment is an assignment of probabilities
to all possible events the experiment generates. These probabilities are real numbers
between 0 and 1. The higher the probability of an event is, the more likely it is to occur.
A probability that equals 1 means that event is certain to occur, and a probability
of 0 means the event cannot possibly occur. To be consistent, the assignment of
probabilities to events must satisfy the following axioms.

1. P (A) ≥ 0 for any event A. (Probabilities are nonnegative.)

2. P (U) = 1. (Probability of universe = 1. Some outcome occurs every time you
conduct the experiment.)

3. If A and B are mutually exclusive events, then P (A ∪ B) = P (A) + P (B).
(Probability is additive over disjoint events.)

The other rules of probability can be proved from the axioms.
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Figure 4.5 Event E and event F are mutually exclusive or disjoint events.

1. P (φ) = 0. (The empty set has zero probability.)

• U = U ∪ φ and U ∩ φ = φ. Therefore by axiom 3

• 1 = 1 + P (φ) .
qed

2. P (Ã) = 1 − P (A). (The probability of a complement of an event.)

• U = A ∪ Ã and A ∩ Ã = φ . Therefore by axiom 3

• 1 = P (A) + P (Ã) .
qed

3. P (A ∪ B) = P (A) + P (B) − P (A ∩ B). (The addition rule of probability.)

• A ∪ B = A ∪ (Ã ∩ B) and they are disjoint. Therefore by axiom 3

• P (A ∪ B) = P (A) + P (Ã ∩ B) .

• B = (A ∩ B) ∪ (Ã ∩ B) , and they are disjoint. Therefore by axiom 3

• P (B) = P (A ∩ B) + P (Ã ∩ B). Substituting this in previous equation
gives

• P (A ∪ B) = P (A) + P (B) − P (A ∩ B) .
qed

An easy way to remember this rule is to look at the Venn diagram of the events.
The probability of the part A ∩ B has been included twice, once in P (A) and
once in P (B), so it has to be subtracted out once.

4.4 JOINT PROBABILITY AND INDEPENDENT EVENTS

Figure 4.6 shows the Venn diagram for two events A and B in the universe U. The joint
probability of events A and B is the probability that both events occur simultaneously,
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Figure 4.6 Two events A and B in the universe U .

on the same repetition of the random experiment. This would be the probability of
the set of outcomes that are in both event A and event B, the intersection A ∩ B. In
other words the joint probability of events A and B is P (A ∩ B), the probability of
their intersection.

If event A and event B are independent, then P (A ∩ B) = P (A) × P (B). The
joint probability is the product of the individual probabilities. If that does not hold
the events are called dependent events. Note that whether or not two events A and B

are independent or dependent depends on the probabilities assigned.

Distinction between independent events and mutually exclusive events.
People often get confused between independent events and mutually exclusive events.
This semantic confusion arises because the word independent has several meanings.
The primary meaning of something being independent of something else is that the
second thing has no affect on the first. This is the meaning of the word independent
we are using in the definition of independent events. The occurrence of one event
does not affect the occurrence or nonoccurrence of the other events.

There is another meaning of the word independent. That is the political meaning
of independence. When a colony becomes independent of the mother country, it
becomes a distinct separate country. That meaning is covered by the definition of
mutually exclusive or disjoint events.

Independence of two events is not a property of the events themselves, rather it is a
property that comes from the probabilities of the events and their intersection. This is
in contrast to mutually exclusive events, which have the property that they contain no
elements in common. Mutually exclusive events with nonnegative probability cannot
be independent. Their intersection is the empty set, so it must have probability zero,
which cannot equal the product of the probabilities of the two events!
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r
=

Figure 4.7 The reduced universe, given event A has occurred.

Marginal probability. The probability of one of the events A, in the joint event
setting is called its marginal probability. It is found by summing P (A ∩ B) and
P (A ∩ B̃) using the axioms of probability.

• A = (A ∩ B) ∪ (A ∩ B̃) , and they are disjoint. Therefore by axiom 3

• P (A) = P (A∩B)+P (A∩ B̃) . The marginal probability of event A is found
by summing its disjoint parts.
qed

4.5 CONDITIONAL PROBABILITY

If we know that one event has occurred, does that affect the probability that another
event has occurred? To answer this, we need to look at conditional probability.

Suppose we are told that the event A has occurred. Everything outside of A is no
longer possible. We only have to consider outcomes inside event A. The reduced
universe Ur = A. The only part of event B that is now relevant is that part which
is also in A. This is B ∩ A. Figure 4.7 shows that, given event A has occurred, the
reduced universe is now the event A, and the only relevant part of event B is B ∩A.

Given that event A has occurred, the total probability in the reduced universe must
equal 1. The probability of B given A is the unconditional probability of that part of
B that is also in A, multiplied by the scale factor 1

P (A) . That gives the conditional
probability of event B given event A:

P (B|A) =
P (A ∩ B)

P (A)
. (4.1)

We see the conditional probability P (B|A) is proportional to the joint probability
P (A ∩ B) but has been rescaled so the probability of the reduced universe equals 1.
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Conditional probability for independent events. Notice that when A and B

are independent events
P (B|A) = P (B) ,

since P (B ∩ A) = P (B) × P (A) for independent events, and the factor P (A)
will cancel out. Knowledge about A does not affect the probability of B occurring
when A and B are independent events! This shows that the definition we used for
independent events is a reasonable one.

Multiplication rule. Formally, we could reverse the roles of the two events A and
B. The conditional probability of A given B would be

P (A|B) =
P (A ∩ B)

P (B)
.

However, we will not consider the two events the same way. B is an unobservable
event. That is, the occurrence or nonoccurrence of event B is not observed. A

is an observable event that can occur either with event B or with its complement
B̃. However, the chances of A occurring may depend on which one of B or B̃ has
occurred. In other words, the probability of event A is conditional on the occurrence or
nonoccurrence of event B. When we clear the fractions in the conditional probability
formula we get

P (A ∩ B) = P (B) × P (A|B) . (4.2)

This is known as the multiplication rule for probability. It restates the conditional
probability relationship of an observable event given an unobservable event in a way
that is useful for finding the joint probability P (A ∩ B). Similarly

P (A ∩ B̃) = P (B̃) × P (A|B̃) .

4.6 BAYES’ THEOREM

From the definition of conditional probability

P (B|A) =
P (A ∩ B)

P (A)
.

We know that the marginal probability of event A is found by summing the proba-
bilities of its disjoint parts. Since A = (A∩B)∪ (A∩ B̃), and clearly (A∩B) and
(A ∩ B̃) are disjoint,

P (A) = P (A ∩ B) + P (A ∩ B̃) .

We substitute this into the definition of conditional probability to get

P (B|A) =
P (A ∩ B)

P (A ∩ B) + P (A ∩ B̃)
.
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Now we use the multiplication rule to find each of these joint probabilities. This
gives Bayes’ theorem for a single event:

P (B|A) =
P (A|B) × P (B)

P (A|B) × P (B) + P (A|B̃) × P (B̃)
. (4.3)

Summarizing, we see Bayes’ theorem is a restatement of the conditional probability
P (B|A) where:

1. The probability of A is found as the sum of the probabilities of its disjoint
parts, (A ∩ B) and (A ∩ B̃), and

2. Each of the joint probabilities are found using the multiplication rule.

The two important things to note are that the union of B and B̃ is the whole universe
U, and that they are disjoint. We say that events B and B̃ partition the universe.

A set of events partitioning the universe. Often we have a set of more
than two events that partition the universe. For example, suppose we have n events
B1, · · · , Bn such that:

• The union B1 ∪ B2 ∪ · · · ∪ Bn = U , the universe, and

• Every distinct pair of the events are disjoint, Bi ∩ Bj = φ for i = 1, . . . , n,
j = 1, . . . , n, and i �= j.

Then we say the set of events B1, · · · , Bn partitions the universe. An observable
event A will be partitioned into parts by the partition. A = (A ∩ B1) ∪ (A ∩ B2) ∪
. . . (A∩Bn). (A∩Bi) and (A∩Bj) are disjoint since Bi and Bj are disjoint. Hence

P (A) =

n∑
j=1

P (A ∩ Bj) .

This is known as the law of total probability. It just says the probability of an event
A is the sum of the probabilities of its disjoint parts. Using the multiplication rule on
each joint probability gives

P (A) =

n∑
j=1

P (A|Bj) × P (Bj) .

The conditional probability P (Bi|A) for i = 1, . . . , n is found by dividing each joint
probability by the probability of the event A.

P (Bi|A) =
P (A ∩ Bi)

P (A)
.

Using the multiplication rule to find the joint probability in the numerator, and the
law of total probability in the denominator gives

P (Bi|A) =
P (A|Bi) × P (Bi)∑n

j=1 P (A|Bj) × P (Bj)
. (4.4)
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Figure 4.8 Four events Bi for i = 1, . . . , 4 that partition the universe U , and event A.

r
=

Figure 4.9 The reduced universe given event A has occurred, together with the four events
partitioning the universe.

This is a result known as Bayes’ theorem published posthumously in 1763 after the
death of its discoverer, Reverend Thomas Bayes.

Example 5 Suppose n = 4. Figure 4.8 shows the four unobservable events B1, . . . , B4

that partition the universe U , and an observable event A. Now let us look at the
conditional probability of Bi given A has occurred. Figure 4.9 shows the reduced
universe, given event A has occurred. The conditional probabilities are the probabil-
ities on the reduced universe, scaled up so they sum to 1. They are given by Equation
4.4.

Bayes’ theorem is really just a restatement of the conditional probability formula,
where the joint probability in the numerator is found by the multiplication rule, and
the marginal probability found in the denominator is found using the law of total
probability followed by the multiplication rule. Note how the events A and Bi for
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i = 1, . . . , n are not treated symmetrically. The events Bi for i = 1, . . . , n are
considered unobservable. We never know which one of them occurred. The event
A is an observable event. The marginal probabilities P (Bi) for i = 1, . . . , n are
assumed known before we start, and called our prior probabilities.

Bayes’ Theorem: The Key to Bayesian Statistics

To see how we can use Bayes’ theorem to revise our beliefs on the basis of evidence
we need to look at each part. Let B1, . . . , Bn be a set of unobservable events which
partition the universe. We start with P (Bi) for i = 1, . . . , n, the prior probability
for the events Bi, for i = 1, . . . , n. This distribution gives the weight we attach to
each of the Bi from our prior belief. Then we find that A has occurred.

The likelihood of the unobservable events B1, . . . , Bn is the conditional proba-
bility that A has occurred given Bi for i = 1, . . . , n. Thus the likelihood of event
Bi is given by P (A|Bi). We see the likelihood is a function defined on the events
B1, . . . , Bn. The likelihood is the weight given to each of the Bi events given by the
occurrence of A.

P (Bi|A) for i = 1, . . . , n is the posterior probability of event Bi given A has
occurred. This distribution contains the weight we attach to each of the events Bi for
i = 1, . . . n after we know event A has occurred. It combines our prior beliefs with
the evidence given by the occurrence of event A.

The Bayesian universe. We can get better insight into Bayes’ theorem if we
think of the universe as having two dimensions, one observable, and one unob-
servable. We let the observable dimension be horizontal, and let the unobservable
dimension be vertical. The unobservable events no longer partition the universe hap-
hazardly. Instead, they partition the universe as rectangles that cut completely across
the universe in a horizontal direction. The whole universe consists of these horizon-
tal rectangles in a vertical stack. Since we don’t ever observe which of these events
occurred, we never know what vertical position we are in the Bayesian universe.

Observable events are vertical rectangles, that cut the universe from top to bottom.
We observe that vertical rectangle A has occurred, so we observe the horizontal
position in the universe.

Each event Bi ∩ A is a rectangle at the intersection of Bi and A. The probability
of the event Bi ∩ A is found by multiplying the prior probability of Bi times the
conditional probability of A given Bi. This is the multiplication rule.

The event A is the union of the disjoint parts A ∩ Bi for i = 1, . . . , n. The
probability of A is clearly the sum of the probabilities of each of the disjoint parts.
The probability of A is found by summing the probabilities of each disjoint part down
the vertical column represented by A. This is the marginal probability of A.

The posterior probability of any particular Bi given A is the proportion of A that
is also in Bi. In other words, the probability of that Bi ∩ A divided by the sum of
Bj ∩ A summed over all j = 1, . . . , n.

In Bayes’ theorem, each of the joint probabilities are found by multiplying the
prior probability P (Bi) times the likelihood P (A|Bi). In Chapter 5, we will see that
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Figure 4.10 The Bayesian universe U with four unobservable events Bi for i = 1, . . . , 4

which partition it shown in the vertical dimension, and the observable event A shown in the
horizontal dimension.

the universe set out with two dimensions for two jointly distributed discrete random
variables is very similar to that shown in Figures 4.10 and 4.11. One random variable
will be observed, and we will determine the conditional probability distribution of
the other random variable, given our observed value of the first. In Chapter 6, we will
develop Bayes’ theorem for two discrete random variables in an analogous manner
to our development of Bayes’ theorem for events in this chapter.

Example 5 (continued) Figure 4.10 shows the four unobservable events Bi for
i = 1, . . . , 4 that partition the Bayesian universe, together with event A which is
observable. Figure 4.11 shows the reduced universe, given event A has occurred.
These figures will give us better insight than Figures 4.8 and 4.9. We know where
in the Bayesian universe we are in the horizontal direction since we know event A

occurred. However we don’t know where we are in the vertical direction since we
don’t know which one of the Bi occurred.

Multiplying by constant. The numerator of Bayes’ theorem is the prior probabil-
ity times the likelihood. The denominator is the sum of the prior probabilities times
likelihoods over the whole partition. This division of the prior probability times
likelihood by the sum of prior probabilities times likelihoods makes the posterior
probability sum to 1.

Note, if we multiplied each of the likelihoods by a constant, the denominator
would also be multiplied by the same constant. The constant would cancel out in
the division, and we would be left with the same posterior probabilities. Because of
this, we only need to know the likelihood to within a constant of proportionality. The
relative weights given to each of the possibilities by the likelihood is all we need.
Similarly, we could multiply each prior probability by a constant. The denominator
would again be multiplied by the same constant, so we would be left with the same
posterior probabilities. The only thing we need in the prior is the relative weights we
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Figure 4.11 The reduced Bayesian universe, given A has occurred, together with the four
unobservable events Bi for i = 1, . . . , 4 that partition it.

give to each of the possibilities. We often write Bayes theorem in its proportional
form as

posterior ∝ prior × likelihood

This gives the relative weights for each of the events Bi for i = 1, . . . , n after we
know A has occurred. Dividing by the sum of the relative weights rescales the relative
weights so they sum to 1. This makes it a probability distribution.

We can summarize the use of Bayes’ theorem for events by the following three
steps:

1. Multiply prior times likelihood for each of the Bi. This finds the probability
of Bi ∩ A by the multiplication rule.

2. Sum them for i = 1, . . . , n. This finds the probability of A by the law of total
probability.

3. Divide each of the prior times likelihood values by their sum. This finds the
conditional probability of that particular Bi given A.

4.7 ASSIGNING PROBABILITIES

Any assignment of probabilities to all possible events must satisfy the probability
axioms. Of course, to be useful the probabilities assigned to events must correspond
to the real world. There are two methods of probability assignment that we will use:

1. Long run relative frequency probability assignment : the probability of an event
is considered to be the proportion of times it would occur if the experiment
was repeated an infinite number of repetitions. This is the method of assigning
probabilities used in frequentist statistics. For example, if I was trying to
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assign the probability of getting a head on a toss of a coin, I would toss it a
large number of times, and use the proportion of heads that occurred as an
approximation to the probability.

2. Degree of belief probability assignment: the probability of an event is what I
believe it is from previous experience. This is subjective. Someone else can
have a different belief. For example, I could say that I believe the coin is a
fair one, so for me, the probability of getting a head equals .5. Someone else
might look at the coin and observing a slight asymmetry he/she might decide
the probability of getting a head equals .49.

In Bayesian statistics, we will use long run relative frequency assignments of
probabilities for events that are outcomes of the random experiment, given the value
of the unobservable variable. We call the unobservable variable the parameter.
Think about repeating the experiment over and over again an infinite number of times
while holding the parameter (unobservable) at a fixed value. The set of all possible
observable values of the experiment is called the sample space of the experiment.
The probability of an event is long run relative frequency of the event over all these
hypothetical repetitions. We see the sample space is the observable (horizontal)
dimension of the Bayesian universe.

The set of all possible values of the parameter (unobservable) is called the param-
eter space. It is the unobservable (vertical) dimension of the Bayesian universe. In
Bayesian statistics we also consider the parameter value to be random. The proba-
bility I assign to an event "the parameter has a certain value" can’t be assigned by
long run relative frequency. To be consistent with the idea of a fixed but unknown
parameter value, I must assign probabilities by degree of belief. This shows the
relative plausibility I give to all the possible parameter values, before the experiment.
Someone else would have different probabilities assigned according to his/her belief.

I am modelling my uncertainty about the parameter value by a single random
draw from my prior distribution. I do not consider hypothetical repetitions of this
draw. I want to make my inference about the parameter value drawn this particular
time, given this particular data. Earlier in the chapter we saw that using the rules
of probability is the only consistent way to update our beliefs given the data. So
probability statements about the parameter value are always subjective, since they
start with subjective prior belief.

4.8 ODDS RATIOS AND BAYES FACTOR

Another way of dealing with uncertain events that we are modelling as random, is to
form the odds ratio of the event. The odds ratio for an event C equals the probability
of the event occurring divided by the probability of the event not occurring:

odds(C) =
P (C)

P (C̃)
.
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Since the probability of the event not occurring equals one minus the probability of
the event, there is a one to one relationship between the odds of an event and its
probability.

odds(C) =
P (C)

(1 − P (C))
.

If we are using prior probabilities, we get the prior odds ratio. In other words, the
ratio before we have analyzed the data. If we are using posterior probabilities we get
the posterior odds ratio.

Solving the equation for the probability of event C we get

P (C) =
odds(C)

(1 + odds(C))
.

We see that there is a one-to-one correspondence between odds ratios and probabili-
ties.

Bayes Factor (B)

The Bayes factor B contains the evidence in the data D that occurred relevant to the
question about C occurring. It is the factor by which the prior odds is changed to the
posterior odds:

prior odds(C) × B = posterior odds(C) .

We can solve this relationship for the Bayes factor to get

B =
posterior odds

prior odds
.

We can substitute in the ratio of probabilities for both the posterior and prior odds
ratios to find

B =
P (D|C)

P (D|C̃)
.

Thus the Bayes factor is the ratio of the probability of getting the data which occurred
given the event, to the probability of getting the data which occurred given the
complement of the event. If the Bayes factor is greater than 1, then the data has made
us believe that event is more probable than we thought before. If the Bayes factor
is less than 1, then the data has made us believe the event is less probable than we
originally thought.

Main Points

• Deductive logic. A logical process for determining the truth of a statement
from knowing the truth or falsehood of other statements that the first statement
is a consequence of. Deduction works from the general to the particular. We
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can make a deduction from a known population distribution to determine the
sampling distribution of a statistic.

• Deductions do not have the possibility of error.

• Inductive logic. A process, based on plausible reasoning, for inferring the
truth of the statement from knowing the truth or falsehood of other statements
which are consequences of the first statement. It works from the particular to
the general. Statistical inference is an inductive process for making inferences
about the parameter, on the basis of the observed statistic from the sampling
distribution given the parameter.

• There is always the possibility of error when making an inference.

• Plausible reasoning should be based on the rules of probability to be consistent.
They are:

◦ Probability of an event is a nonnegative number.

◦ Probability of the sample space (universe) equals 1.

◦ The probability is additive over disjoint events.

• A random experiment is an experiment where the outcome is not exactly pre-
dictable, even when the experiment is repeated under the identical conditions.

• The set of all possible outcomes of a random experiment is called the sample
space Ω. In frequentist statistics, the sample space is the universe for analyzing
events based on the experiment.

• The union of two events A and B is the set of outcomes in A or B. This is an
inclusive or. The union is denoted A ∪ B.

• The intersection of two events A and B is the set of outcomes in both A and
B simultaneously. The intersection is denoted A ∩ B.

• The complement of event A is the set of outcomes not in A. The complement
of event A is denoted Ã.

• Mutually exclusive events have no elements in common. There intersection
P (A ∩ B) equals the empty set, φ.

• The conditional probability of event B given event A is given by

P (B|A) =
P (A ∩ B)

P (A)
.

• The event B is unobservable. The event A is observable. We could nominally
write the conditional probability formula for P (A|B), but the relationship is not
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used in that form. We do not treat the events symmetrically. The multiplication
rule is the definition of conditional probability cleared of the fraction.

P (A ∩ B) = P (B) × P (A|B) .

It is used to assign probabilities to compound events.

• The law of total probability says that given events B1, . . . , Bn that partition
the sample space (universe), and another event A, then

P (A) =

n∑
j=1

P (Bj ∩ A)

because probability is additive over the disjoint events, (A∩B1) . . . (A∩Bn).
When we find the probability of each of the intersections A ∩ Bj by the
multiplication rule, we get

P (A) =
∑

j

P (Bj) × P (A|Bj) .

• Bayes’ theorem is the key to Bayesian statistics:

P (Bi|A) =
P (Bi) × P (A|Bi)∑
j P (Bj) × P (A|Bj)

.

This comes from the definition of conditional probability. The marginal prob-
ability of the event A is found by the law of total probability, and each of the
joint probabilities is found from the multiplication rule. P (Bi) is called the
prior probability of event Bi, and P (Bi|A) is called the posterior probability
of event Bi.

• In the Bayesian universe, the unobservable events B1, . . . , Bn which partition
the universe are horizontal slices, and the observable event A is a vertical slice.
The probability P (A) is found by summing the P (A ∩ Bi) down the column.
Each of the P (A ∩ Bi) is found by multiplying the prior P (Bi) times the
likelihood P (A|Bi). So Bayes’ theorem can be summarized by saying the
posterior probability is the prior times likelihood divided by the sum of the
prior times likelihood.

• The Bayesian universe has two dimensions. The sample space forms the
observable (horizontal) dimension of the Bayesian universe. The parameter
space is the unobservable (vertical) dimension. In Bayesian statistics, the
probabilities are defined on both dimensions of the Bayesian universe.

• The odds ratio of an event A is the ratio of the probability of the event to the
probability of its complement:

odds(A) =
P (A)

P (Ã)
.
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If it is found before analyzing the data, it is the prior odds ratio. If it is found
after analyzing the data, it is the posterior odds ratio.

• The Bayes factor is the amount of evidence in the data that changes the prior
odds to the posterior odds:

prior odds = B × posterior odds .

Exercises

4.1 There are two events A and B. P (A) = .4 and P (B) = .5. The events A and
B are independent.

(a) Find P (Ã).

(b) Find P (A ∩ B).

(c) Find P (A ∪ B).

4.2 There are two events A and B. P (A) = .5 and P (B) = .3. The events A and
B are independent.

(a) Find P (Ã).

(b) Find P (A ∩ B).

(c) Find P (A ∪ B).

4.3 There are two events A and B. P (A) = .4 and P (B) = .4. P (Ã ∩B) = .24.

(a) Are A and B independent events? Explain why or why not.

(b) Find P (A ∪ B).

4.4 There are two events A and B. P (A) = .7 and P (B) = .8. P (Ã ∩ B̃) = .1.

(a) Are A and B independent events? Explain why or why not.

(b) Find P (A ∪ B).

4.5 A single fair die is rolled. Let the event A be "the face showing is even." Let
the event B be "the face showing is divisible by 3."

(a) List out the sample space of the experiment.

(b) List the outcomes in A, and find P (A).

(c) List the outcomes in B, and find P (B).

(d) List the outcomes in A ∩ B, and find P (A ∩ B).

(e) Are the events A and B independent? Explain why or why not.

4.6 Two fair dice, one red and one green, are rolled. Let the event A be "the sum
of the faces showing is equal to seven." Let the event B be "the faces showing
on the two dice are equal."
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(a) List out the sample space of the experiment.

(b) List the outcomes in A, and find P (A).

(c) List the outcomes in B, and find P (B).

(d) List the outcomes in A ∩ B, and find P (A ∩ B).

(e) Are the events A and B independent? Explain why or why not.

(f) How would you describe the relationship between event A and event B?

4.7 Two fair dice, one red and one green, are rolled. Let the event A be "the sum
of the faces showing is an even number." Let the event B be "the sum of the
faces showing is divisible by 3."

(a) List the outcomes in A, and find P (A).

(b) List the outcomes in B, and find P (B).

(c) List the outcomes in A ∩ B, and find P (A ∩ B).

(d) Are the events A and B independent? Explain why or why not.

4.8 Two dice are rolled. The red die has been loaded. Its probabilities are P (1) =
P (2) = P (3) = P (4) = 1

5 and P (5) = P (6) = 1
10 . The green die is fair. Let

the event A be "the sum of the faces showing is an even number." Let the event
B be "the sum of the faces showing is divisible by 3."

(a) List the outcomes in A, and find P (A).

(b) List the outcomes in B, and find P (B).

(c) List the outcomes in A ∩ B, and find P (A ∩ B).

(d) Are the events A and B independent? Explain why or why not.

4.9 Suppose there is a medical diagnostic test for a disease. The sensitivity of the
test is .95. This means that if a person has the disease, the probability that the
test gives a positive response is .95. The specificity of the test is .90. This
means that if a person does not have the disease, the probability that the test
gives a negative response is .90, or that the false positive rate of the test is .10.
In the population, 1% of the people have the disease. What is the probability
that a person tested has the disease, given the results of the test is positive? Let
D be the event "the person has the disease" and let T be the event "the test
gives a positive result."

4.10 Suppose there is a medical screening procedure for a specific cancer that has
sensitivity = .90, and specificity = .95. Suppose the underlying rate of the
cancer in the population is .001. Let B be the event "the person has that
specific cancer" and A be the event "the screening procedure gives a positive
result."

(a) What is the probability that a person has the disease given the results of
the screening is positive?

(b) Does this show that screening is effective in detecting this cancer?



5
Discrete

Random Variables

In the previous chapter, we looked at random experiments in terms of events. We
also introduced probability defined on events as a tool for understanding random
experiments. We showed how conditional probability is the logical way to change
our belief about an unobserved event, given we observed another related event. In
this chapter, we introduce discrete random variables and probability distributions.

A random variable describes the outcome of the experiment in terms of a number.
If the only possible outcomes of the experiment are distinct numbers separated from
each other (e.g., counts), we say that the random variable is discrete. There are good
reasons why we introduce random variables and their notation:

• It is quicker to describe an outcome as a random variable having a particular
value than to describe that outcome in words. Any event can be formed from
outcomes described by the random variable using union, intersection, and
complements.

• The probability distribution of the discrete random variable is a numerical
function. It is easier to deal with a numerical function than with probabilities
being a function defined on sets (events). The probability of any possible event
can be found from the probability distribution of the random variable using
the rules of probability. So instead of having to know the probability of every
possible event, we only have to know the probability distribution of the random
variable.

0Introduction to Bayesian Statistics. By William M. Bolstad
ISBN 0-471-27020-2 Copyright c©John Wiley & Sons, Inc.
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Table 5.1 Typical results of rolling a fair die

Proportion After

Value 10 Rolls 100 Rolls 1,000 Rolls 10,000 Rolls . . . Probability

1 .1 .15 .198 .1704 . . . .1666

2 .3 .08 .163 .1661 . . . .1666

3 .1 .20 .156 .1670 . . . .1666

4 .2 .16 .153 .1698 . . . .1666

5 .0 .22 .165 .1583 . . . .1666

6 .3 .19 .165 .1684 . . . .1666

• It becomes much easier to deal with compound events made up from repetitions
of the experiment.

5.1 DISCRETE RANDOM VARIABLES

A number that is determined by the outcome of a random experiment is called a
random variable. Random variables are denoted with uppercase letters, e.g., Y . The
value the random variable takes is denoted by lowercase letter, e.g., y. A discrete
random variable, Y , can only take on separated values yk. There can be a finite
possible number of values, for example, the random variable defined as "number
of heads in n tosses of a coin" has possible values 0, 1, . . . , n. Or there can be a
countably infinite number of possible values, for example the random variable defined
as "number of tosses until the first head" has possible values 1, 2, · · · ,∞ . The key
thing for discrete random variables is that the possible values are separated by gaps.

Thought Experiment 1: Roll of a die
Suppose we have a fair six-faced die. Our random experiment is to roll it, and we let
the random variable Y be the number on the top face. There are six possible values
1, 2, . . . , 6. Since the die is fair, those six values are equally likely. Now, suppose
we take independent repetitions of the random variable, and record each occurrence
of Y . Table 5.1 shows the proportion of times each face has occurred in a typical
sequence of rolls of the die, after 10, 100, 1,000, and 10,000 rolls. The last column
shows the true probabilities for a fair die.

We note that the proportions taking any value are getting closer and closer to the
true probability of that value as n increases to ∞. We could draw graphs of the
proportions having each value. These are shown in Figure 5.1. The graphs are at
zero for any other y value, and have a spike at each possible value where the spike
height equals the proportion of times that value occurred. The sum of spike heights
equals one.
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Figure 5.1 Proportions resulting from 10, 100, 1,000, and 10,000 rolls of a fair die.

Thought Experiment 2: Random sampling from a finite population
Suppose we have a finite population of size N. There can be at most a finite number of
possible values, and they must be discrete, since there must be a gap between every
pair of two real numbers. Some members of the population have the same value, so
there are only K possible values y1, . . . , yK . The probability of observing the value
yk is the proportion of population having that value.

We start by randomly drawing from the population with replacement. Each draw
is done under identical conditions. If we continue doing the sampling, eventually
we have seen all possible values. After each draw we update the proportions in
the accumulated sample that have each value. We sketch a graph with a spike at
each value in the sample equal to the proportion in the sample having that value.
The updating of the graph at step n is made by scaling all the existing spikes down
by the ratio n−1

n
and adding 1

n
to the spike at the value observed. The scaling

changes the proportions after the first n− 1 observations to the proportions after the
first n observations. As the sample size increases, the sample proportions get less
variable. In the limit as the sample size n approaches infinity, the spike at each value
approaches its probability.

Thought Experiment 3: Number of tails before first head from independent coin
tosses
Each toss of a coin results in either a head or a tail. The probability of getting a
head remains the same on each toss. The outcomes of each toss are independent of
each other. This is an example of what we call Bernoulli trials. The outcome of a
trial is either a success (head) or failure (tail), the probability of success remains
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constant over all trials, and we are taking independent trials. We are counting the
number of failures before the first success. Every nonnegative integer is a possible
value, and there are an infinite number of them. They must be discrete, since there is
a gap between every pair of nonnegative integers.

We start by tossing the coin and counting the number of tails until the first head
occurs. Then we repeat the whole process. Eventually we reach a state where most of
the time we get a value we have gotten before. After each sequence of trials until the
first head, we update the proportions that have each value. We sketch a graph with
a spike at each value equal to the proportion having that value. As in the previous
example, the updating of the graph at step n is made by scaling all the existing
spikes down by the ratio n−1

n
and adding 1

n
to the spike at the value observed. The

sample proportions get less variable as the sample size increases, and in the limit as
n approaches infinity, the spike at each value approaches its probability.

5.2 PROBABILITY DISTRIBUTION OF A DISCRETE RANDOM
VARIABLE

The proportion functions that we have seen in the three thought experiments are spike
functions. They have a spike at each possible value, zero at all other values, and
the sum of the spike heights equals one. In the limit as the sample size approaches
infinity, the proportion of times a value occurs approaches the probability of that
value, and the proportion graphs approach the probability function

f(yk) = P (Y = yk)

for all possible values y1, . . . , yk of the discrete random variable. For any other value
y it equals zero.

Expected Value of a Discrete Random Variable

The expected value of a discrete random variable Y is defined to be the sum over all
possible values of each possible value times its probability:

E(Y ) =
∑
k=1

yk × f(yk) . (5.1)

The expected value of a random variable is often called the mean of the random
variable, and denoted µ. It is like the sample mean of an infinite sample of independent
repetitions of the random variable. The sample mean of a random sample of size n

repetitions of the random variable is

ȳ =
1

n

n∑
i=1

yi .

Here yi is the value that occurs on the ith repetition. We are summing over all
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repetitions. Grouping together all repetitions that have the same possible value we
get

ȳ =
∑

k

nk

n
× yk ,

where nk is the number of observations that have value yk, and we are now summing
over all possible values. Note that each of the yi (observed values) equals one of the
yk (possible values). But in the limit as n approaches ∞, the relative frequency nk

n

approaches the probability f(yk), so the sample mean, ȳ, approaches the expected
value, E(Y ). This shows that the expected value of a random variable is like the
sample mean of an infinite size random sample of that variable.

The Variance of a Discrete Random Variable

The variance of a random variable is the expected value of square of the variable
minus its mean.

V ar(Y ) = E(Y − E(Y ))2 =
∑

k

(yk − µ)2 × f(yk) . (5.2)

This is like the sample variance of an infinite size random sample of that variable.
We note that if we square the term in brackets, break the sum into three sums, and
factor the constant terms out of each sum, we get

V ar(Y ) =
∑

k

y2

k × f(yk) − 2µ ×
∑

k

ykf(yk) + µ2 ×
∑

k

f(yk)

= E(Y 2) − µ2 .

Since µ = E(Y ) this gives another useful formula for computing the variance.

V ar(Y ) = E(Y 2) − [E(Y )]2 . (5.3)

Example 6 Let Y be a discrete random variable with probability function given in
the following table.

yi f(yi)

0 .20
1 .15
2 .25
3 .35
4 .05

To find E(Y ) we use Equation 5.1 which gives

E(Y ) = 0 × .20 + 1 × .15 + 2 × .25 + 3 × .35 + 4 × .05

= 1.90 .
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Note that the expected value does not have to be a possible value of the random
variable Y . It represents an average. We will find V ar(Y ) in two ways and see that
they give equivalent results. First, we use the definition of variance given in Equation
5.2.

V ar(Y ) = (0 − 1.90)2 × .20 + (1 − 1.90)2 × .15 + (2 − 1.90)2 × .25

+(3 − 1.90)2 × .35 + (4 − 1.90)2 × .05

= 1.49 .

Second, we will use Equation 5.3. We calculate

E(Y 2) = 02 × .20 + 12 × .15 + 22 × .25 + 32 × .35 + 42 × .05

= 5.10 .

Putting that result in Equation 5.3, we get

V ar(Y ) = 5.10 − 1.902

= 1.49 .

The Mean and Variance of a Linear Function of a Random Variable

Suppose W = a × Y + b, where Y is a discrete random variable. Clearly, W is
another number that is the outcome of the same random experiment that Y came
from. Thus W , a linear function of a random variable Y , is another random variable.
We wish to find its mean.

E(aY + b) =
∑

k

(ayk + b) × f(yk)

=
∑

k

ayk × f(yk) +
∑

b × f(yk)

= a
∑

ykf(yk) + b
∑

f(yk) .

Since
∑

ykf(yk) = µ and
∑

f(yk) = 1, the mean of the linear function is the linear
function of the mean:

E(aY + b) = aE(Y ) + b . (5.4)

Similarly we may wish to know its variance.

V ar(aY + b) =
∑

k

(ayk + b − E(aY + b))2f(yk)

=
∑

k

[a(yk − E(Y )) + b − b)]2f(yk)

= a2
∑

k

(yk − E(Y ))2f(yk) .
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Thus the variance of a linear function is the square of the multiplicative constant a

times the variance :
V ar(aY + b) = a2V ar(Y ) . (5.5)

The additive constant b doesn’t enter into it.

Example 6 (continued) Suppose W = −2Y + 3. Then from Equation 5.4, we have

E(W ) = −2E(Y ) + 3

= −2 × 1.90 + 3

= −.80

and from Equation 5.5, we have

V ar(W ) = (−2)2 × V ar(Y )

= 4 × 1.49

= 5.96 .

5.3 BINOMIAL DISTRIBUTION

Let us look at three situations and see what characteristics they have in common.

Coin tossing. Suppose we toss the same coin n times, and count the number of
heads that occur. We consider that any one toss is not influenced by the outcomes of
previous tosses, in other words, the outcome of one toss is independent of the out-
comes of previous tosses. Since we are always tossing the same coin, the probability
of getting a head on any particular toss remains constant for all tosses. The possible
values of the total number of heads observed in the n tosses are 0, . . . , n.

Drawing from an urn with replacement. An urn contains balls of two colors,
red and green. The proportion of red balls is π. We draw a ball at random from the
urn, record its color, then return it to the urn, and remix the balls before the next
random draw. We make a total of n draws, and count the number of times we drew a
red ball. Since we replace and remix the balls between draws, each draw takes place
under identical conditions. The outcome of any particular draw is not influenced by
the previous draw outcomes. The probability of getting a red ball on any particular
draw remains equal to π, the proportion of red balls in the urn. The possible values
of the total number of red balls drawn are 0, . . . , n.

Random sampling from a very large population. Suppose we draw a ran-
dom sample of size n from a very large population. The proportion of items in the
population having some attribute is π. We count the number of items in the sample
that have the attribute. Since the population is very large compared to the sample size,
removing a few items from the population does not perceptibly change the proportion
of remaining items having the attribute. For all intents and purposes it remains π.
The random draws are taken under almost identical conditions. The outcome of any
draw is not influenced by the previous outcomes. The possible values of the number
of items drawn that have the attribute is 0, . . . , n.
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Characteristics of the Binomial Distribution

These three cases all have the following things in common.

• There are n independent trials. Each trial can result either in a "success" or a
"failure."

• The probability of "success" is constant over all the trials. Let π be the
probability of "success."

• Y is the number of "successes" that occurred in the n trials. Y can take on
integer values 0, 1, . . . , n.

These are the characteristics of the binomial (n, π) distribution. The probability
function of the binomial random variable Y given the parameter value π is written
as

f(y|π) =

(
n

y

)
πy(1 − π)n−y (5.6)

for y = 0, 1, . . . , n where the binomial coefficient(
n

y

)
=

n!

y! × (n − y)!
.

Mean of binomial. The mean of the binomial(n, π) distribution is the sample
size times the probability of success since

E(Y |π) =
n∑

y=0

y × f(y|π)

=
n∑

y=0

y ×

(
n

y

)
πy(1 − π)n−y .

We write this as a conditional mean because it is the mean of Y given the value of
the parameter π. The first term in the sum is 0, so we can start the sum at y = 1. We
cancel y in the remaining terms, and factor out nπ. This gives

E(Y |π) =

n∑
y=1

nπ

(
n − 1
y − 1

)
πy−1(1 − π)n−y .

Factoring nπ out of the sum and substituting n′ = n − 1 and y′ = y − 1 we get

E(Y |π) = nπ

n′∑
y′=0

(
n′

y′

)
πy′

(1 − π)n′
−y′

.

We see the sum is a binomial probability function summed over all possible values.
Hence it equals one, and the mean of the binomial is

E(Y |π) = nπ . (5.7)
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Variance of binomial. The variance is the sample size times the probability of
success times the probability of failure. We write this as a condtional variance since
it is the variance of Y given the value of the parameter π. Note that

E(Y (Y − 1)|π) =
n∑

y=0

y(y − 1) × f(y|π)

=
n∑

y=0

y(y − 1) ×

(
n

y

)
πy(1 − π)n−y .

The first two terms in the sum equal 0, so we can start summing at y = 2. We cancel
y(y − 1) out of the remaining terms and factor out n(n − 1)π2 to get

E(Y (Y − 1)|π) =
n∑

y=2

n(n − 1)π2

(
n − 2
y − 2

)
πy−2(1 − π)n−y .

Substituting y′ = y − 2 and n′ = n − 2 we get

E(Y (Y − 1)|π) = n(n − 1)π2

n−2∑
y′=0

(
n′

y′

)
πy′

(1 − π)n′

= n(n − 1)π2

since we are summing a binomial distribution over all possible values. The variance
can be found by

V ar(Y |π) = E(Y 2|π) − [E(Y |π)]2

= E(Y (Y − 1)|π) + E(Y |π) − [E(Y |π)]2

= n(n − 1)π2 + nπ − [nπ]2 .

Hence the variance of the binomial is the sample size times the probability of success
times the probability of failure.

V ar(Y |π) = nπ(1 − π) . (5.8)

5.4 HYPERGEOMETRIC DISTRIBUTION

The hypergeometric distribution models sampling from an urn without replacement.
There is an urn containing N balls, R of which are red. A sequence of n balls is
drawn randomly from the urn without replacement. Drawing a red ball is called a
"success." The probability of success π does not stay constant over all the draws.
At each draw the probability of "success" is the proportion of red balls remaining in
the urn, which does depend on the outcomes of previous draws. Y is the number of
"successes" in the n trials. Y can take on integer values 0, 1, . . . , n.
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Probability Function of Hypergeometric

The probability function of the hypergeometric random variable Y given the param-
eters N,n,R is written as

f(y|N,R, n) =

(
R

y

)
×

(
N − R

n − y

)
(

N

n

)

for possible values y = 0, 1, . . . , n.

Mean and variance of hypergeometric. The conditional mean of the hyper-
geometric distribution is given by

E(Y |N,R, n) = n ×
R

N
.

The conditional variance of the hypergeometric distribution is given by

V ar(Y |N,R, n) = n ×
R

N
×

(
1 −

R

N
)

)
×

(
N − n

N − 1

)
.

We note that R
N

is the proportion of red balls in the urn. The mean and variance of the
hypergeometric are similar to that of the binomial, except that the variance is smaller
due to the finite population correction factor N−n

N−1
.

5.5 JOINT RANDOM VARIABLES

When two (or more) numbers are determined from the outcome of a random ex-
periment, we call it a joint experiment. The two numbers are called joint random
variables and denoted X,Y . If both the random variables are discrete, they each have
separated possible values xi for i = 1, . . . , I , and yj for j = 1, . . . , J . The universe
for the experiment is the set of all possible outcomes of the experiment which are
all possible ordered pairs of possible values. The universe of the joint experiment is
shown in Table 5.2.

The joint probability function of two discrete joint random variables is defined at
each point in the universe:

f(xi, yj) = P (X = xi, Y = yj)

for i = 1, . . . , I , and j = 1, . . . , J . This is the probability that X = xi and
Y = yj simultaneously, in other words, the probability of the intersection of the
events X = xi and Y = yj . These joint probabilities can be put in a table.

We might want to consider the probability distribution of just one of the joint
random variables, for instance, Y . The event Y = yj for some fixed value yj is the
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Table 5.2 Universe of joint experiment

(x1, y1) . . . (x1, yj) . . . (x1, yJ )

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

(xi, y1) . . . (xi, yj) . . . (xi, yJ )

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

(xI , y1) . . . (xI , yj) . . . (xI , yJ )

union of all events X = xi, Y = yj , where i = 1, . . . , I , and they are all disjoint.
Thus

P (Y = yj) = P (∪i(X = xi, Y = yj)) =
∑

i

P (X = xi, Y = yj)

for j = 1, . . . , J , since probability is additive over a disjoint union. This probability
distribution of Y by itself is called the marginal distribution of Y . Putting this
relationship in terms of the probability function we get

f(yj) =
∑

i

f(xi, yj) (5.9)

for j = 1, . . . J . So we see that the individual probabilities of Y is found by summing
the joint probabilities down the columns. Similarly the individual probabilities of X

can be found by summing the joint probabilities across the rows. We can write them
on the margins of the table, hence the names marginal probability distribution of Y

and X respectively. The joint probability distribution and the marginal probability
distributions are shown in Table 5.3. The joint probabilities are in the main body of
the table, and the marginal probabilities for X and Y are in the right column and
bottom row, respectively.

The expected value of a function of the joint random variables is given by

E(h(X,Y )) =
∑

i

∑
j

h(xi, yj) × f(xi, yj) .

Often we wish to find the expected value of a sum of random variables. In that case

E(X + Y ) =
∑

i

∑
j

(xi + yj) × f(xi, yj)

=
∑

i

∑
j

xi × f(xi, yj) +
∑

i

∑
j

yj × f(xi, yj)
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Table 5.3 Joint and marginal probability distributions

y1 . . . yj . . . yJ

x1 f(x1, y1) . . . f(x1, yj) . . . f(x1, yJ ) f(x1)

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

xi f(xi, y1) . . . f(xi, yj) . . . f(xi, yJ ) f(xi)

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

xI f(xI , y1) . . . f(xI , yj) . . . f(xI , yJ ) f(xI)

f(y1) . . . f(yj) . . . f(yJ)

=
∑

i

xi

∑
j

f(xi, yj) +
∑

j

yj

∑
i

f(xi, yj)

=
∑

i

xi × f(xi) +
∑

j

yj × f(yj) .

We see the mean of the sum of two random variables is the sum of the means.

E(X + Y ) = E(X) + E(Y ) . (5.10)

This equation always holds.

Independent Random Variables

Two (discrete) random variables X and Y are independent of each other if and only
if every element in the joint distribution table equals the product of the corresponding
marginal distributions. In other words,

f(xi, yj) = f(xi) × f(yj)

for all possible xi and yj .
The variance of a sum of random variables is given by

V ar(X + Y ) = E(X + Y − E(X + Y ))2

=
∑

i

∑
j

(xi + yj − (E(X) + E(Y ))2 × f(xi, yj)

=
∑

i

∑
j

[(xi − E(X)) + (yj − E(Y ))]2 × f(xi, yj) .
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Multiplying this out and breaking it into three separate sums gives

V ar(X + Y ) =
∑

i

∑
j

(xi − E(X))2 × f(xi, yj)

+
∑

i

∑
j

2(xi − E(X))(yj − E(Y ))f(xi, yj)

+
∑

i

∑
j

(yj − E(Y ))2 × f(xi, yj) .

The middle term is 2 × the covariance of the random variables. For independent
random variables the covariance

Cov(X,Y ) =
∑

i

∑
j

(xi − E(X)) × (yj − E(Y ))f(xi, yj)

=
∑

i

(xi − E(X))f(xi) ×
∑

j

(yj − E(Y ))f(yj) .

This is clearly equal to 0. Hence for independent random variables

V ar(X + Y ) =
∑

i

(xi − E(X)))2 × f(xi) +
∑

j

(yj − E(Y ))2 × f(yj) .

We see the variance of the sum of two independent random variables is the sum of
the variances.

V ar(X + Y ) = V ar(X) + V ar(Y ) . (5.11)

This equation only holds for independent1 random variables!

Example 7 Let X and Y be jointly distributed discrete random variables. Their
joint probability distribution is given in the following table:

Y f(x)
1 2 3 4

1 .02 .04 .06 .08
X 2 .03 .01 .09 .17

3 .05 .15 .15 .15
f(y)

We find the marginal distributions of X and Y by summing across the rows and
summing down the columns respectively. That gives the table

1In general, the variance of a sum of two random variables is given by V ar(X + Y ) = V ar(X) + 2 ×

Cov(X, Y ) + V ar(Y ).
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Y f(x)
1 2 3 4

1 .02 .04 .06 .08 .2
X 2 .03 .01 .09 .17 .3

3 .05 .15 .15 .15 .5
f(y) .1 .2 .3 .4

We see that the joint probability f(xi, yj) is not always equal to the product of the
marginal probabilities f(xi)× f(yj). Therefore the two random variables X and Y

are not independent.

Mean and variance of a difference between two independent random
variables. When we combine the results of Equations 5.10 and 5.11 with the
results of Equations 5.4 and 5.5, we find the that mean of a difference between
random variables is

E(X − Y ) = E(X) − E(Y ) . (5.12)

If the two random variables are independent, we find that the variance of their
difference is

V ar(X − Y ) = V ar(X) + V ar(Y ) . (5.13)

Variability always adds for independent random variables, regardless of whether we
are taking the sum or taking the difference.

5.6 CONDITIONAL PROBABILITY FOR JOINT RANDOM VARIABLES

If we are given Y = yj , the reduced universe is the set of ordered pairs where the
second element is yj . This is shown in Table 5.4. It is the only part of the universe that
remains, given Y = yj . The only part of the event X = xi that remains is the part
in the reduced universe. This is the intersection of the events X = xi and Y = yj .
Table 5.5 shows the original joint probability function in the reduced universe, and
the marginal probability. We see that this is not a probability distribution. The sum
of the probabilities in the reduced universe sums to the marginal probability, not to
one!

The conditional probability that random variable X = xi, given Y = yj is the
probability of the intersection of the events X = xi and Y = yj divided by the
probability that Y = yj from Equation 4.1. Dividing the joint probability by the
marginal probability scales it up so the probability of the reduced universe equals 1.
The conditional probability is given by

f(xi|yj) = P (X = xi|Y = yj) =
P (X = xi, Y = yj)

P (Y = yj)
. (5.14)

When we put this in terms of the joint and marginal probability functions we get

f(xi|yj) =
f(xi, yj)

f(yj)
. (5.15)
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Table 5.4 Reduced universe given Y = yj

. . . . (x1, yj) . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . (xi, yj) . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . (xI , yj) . . . .

Table 5.5 Joint probability function values in the reduced universe Y = yj . The marginal
probability is found by summing down the column.

. . . . f(x1, yj) . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . f(xi, yj) . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . f(xI , yj) . . . .

. . . . f(yj) . . . .

The conditional probability distribution. Letting xi vary across all possible
values of X gives us the conditional probability distribution of X|Y = yj . The
conditional probability distribution is defined on the reduced universe given Y = yj .
The conditional probability distribution is shown in Table 5.6. Each entry was
found by dividing the i,j entry in the joint probability table by jth element in the
marginal probability. The marginal probability f(yj) =

∑
i f(xi, yj), and is found

by summing down the jth column of the joint probability table. So the conditional
probability of xi given yj is the jth column in the joint probability table, divided by
the sum of the joint probabilities in the jth column.
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Table 5.6 The conditional probability function defined on the reduced universe Y = yj

. . . . f(x1|yj) . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . f(xi|yj) . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . f(xI |yj) . . . .

Example 7 (continued) If we want to determine the conditional probability P (X =
2|Y = 2) we plug in the joint and marginal probabilities into Equation 5.14. This
gives

P (X = 2|Y = 2) =
P (X = 2, Y = 2)

P (Y = 2)
=

.01

.2
= .05 .

Conditional probability as multiplication rule. Using similar arguments, we
could find that the conditional probability function of Y given X = xi is given by

f(yj |xi) =
f(xi, yj)

f(xi)
.

However, we will not use the relationship in this form, since we do not consider
the random variables interchangeably. In Bayesian statistics, the random variable
X is the unobservable parameter. The random variable Y is an observable random
variable that has a probability distribution depending on the parameter. In the next
chapter we will use the conditional probability relationship as the multiplication rule

f(xi, yj) = f(xi) × f(yj |xi) (5.16)

when we develop Bayes’ theorem for discrete random variables.

Main Points

• A random variable Y is a number associated with the outcome of a random
experiment.

• If the only possible values of the random variable are a finite set of separated
values, y1, . . . , yK the random variable is said to be discrete.
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• The probability distribution of the discrete random variable gives the probabil-
ity associated with each possible value.

• The probability of any event associated with the random experiment can be
calculated from the probability function of the random variable using the laws
of probability.

• The expected value of a discrete random variable is

E(Y ) =
∑

k

ykf(yk) ,

where the sum is over all possible values of the random variable. It is the mean
of the distribution of the random variable.

• The variance of a discrete random variable is the expected value of the squared
deviation of the random variable from its mean.

V ar(Y ) = E(Y − E(Y ))2 =
∑

k

(yk − E(Y ))2f(yk) .

Another formula for the variance is

V ar(Y ) = E(Y 2) − [E(Y )]2 .

• The mean and variance of a linear function of a random variable aY + b are

E(aY + b) = aE(Y ) + b

and
V ar(aY + b) = a2 × V ar(Y ) .

• The binomial (n, π) distribution models the number of successes in n inde-
pendent trials where each trial has the same success probability, π.

• The joint probability distribution of two discrete random variables X and Y is
written as joint probability function

f(xi, yj) = P (X = xi, Y = yj) .

Note: (X = xi, Y = yj) is another way of writing the intersection (X =
xi ∩ Y = yj). This joint probability function can be put in a table.

• The marginal probability distribution of one of the random variables can be
found by summing the joint probability distribution across rows (for X) or by
summing down columns (for Y ).

• The mean and variance of a sum of independent random variables are

E(X + Y ) = E(X) + E(Y )
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and
V ar(X + Y ) = V ar(X) + V ar(Y ) .

• The mean and variance of a difference between independent random variables
are

E(X − Y ) = E(X) − E(Y )

and
V ar(X − Y ) = V ar(X) + V ar(Y ) .

• Conditional probability function of X given Y = yj is found by

f(xi|yj) =
f(xi, yj)

f(yj)
.

This is the joint probability divided by the marginal probability that Y = yj

• The joint probabilities on the reduced universe Y = yj are not a probability
distribution. They sum to the marginal probability f(yj), not to one.

• Dividing the joint probabilities by the marginal probability scales up the prob-
abilities, so the sum of probabilities in the reduced universe is one.

Exercises

5.1 A discrete random variable Y has discrete distribution given in the following
table:

yi f(yi)
0 .2
1 .3
2 .3
3 .1
4 .1

(a) Calculate P (1 < Y ≤ 3).

(b) Calculate E(Y ).

(c) Calculate V ar(Y ).

(d) Let W = 2Y + 3. Calculate E(W ).

(e) Calculate V ar(W ).

5.2 A discrete random variable Y has discrete distribution given in the following
table:
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yi f(yi)

0 .1
1 .2
2 .3
5 .4

(a) Calculate P (0 < Y < 2).

(b) Calculate E(Y ).

(c) Calculate V ar(Y ).

(d) Let W = 3Y − 1. Calculate E(W ).

(e) Calculate V ar(W ).

5.3 Let Y be binomial (n = 5, π = .6).

(a) Calculate the mean and variance by filling in the following table:

yi f(yi) yi × f(yi) y2

i × f(yi)
0
1
2
3
4
5

Sum

i. E(Y ) =

ii. V ar(Y ) =

(b) Calculate the mean and variance of Y using Equations 5.7 and 5.8,
respectively. Do you get the same results as in part (a)?

5.4 Let Y be binomial (n = 4, π = .3).

(a) Calculate the mean and variance by filling in the following table:

yi f(yi) yi × f(yi) y2

i × f(yi)
0
1
2
3
4

Sum
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i. E(Y ) =

ii. V ar(Y ) =

(b) Calculate the mean and variance of Y using Equations 5.7 and 5.8,
respectively. Do you get the same as you got in part (a)?

5.5 Let X and Y be jointly distributed discrete random variables. Their joint
probability distribution is given in the following table:

Y f(x)
1 2 3 4 5

1 .02 .04 .06 .08 .05
X 2 .08 .02 .10 .02 .03

3 .05 .05 .03 .02 .10
4 .10 .04 .05 .03 .03

f(y)

(a) Calculate the marginal probability distribution of X .

(b) Calculate the marginal probability distribution of Y .

(c) Are X and Y independent random variables? Explain why or why not.

(d) Calculate the conditional probability P (X = 3|Y = 1).

5.6 Let X and Y be jointly distributed discrete random variables. Their joint
probability distribution is given in the following table:

Y f(x)
1 2 3 4 5

1 .015 .030 .010 .020 .025
X 2 .030 .060 .020 .040 .050

3 .045 .090 .030 .060 .075
4 .060 .120 .040 .080 .100

f(y)

(a) Calculate the marginal probability distribution of X .

(b) Calculate the marginal probability distribution of Y .

(c) Are X and Y independent random variables? Explain why or why not.

(d) Calculate the conditional probability P (X = 2|Y = 3).



6
Bayesian Inference

for Discrete Random
Variables

In this chapter we introduce Bayes’ theorem for discrete random variables. Then we
see how we can use it to revise our beliefs about the parameter, given the sample data
that depends on the parameter. This is how we will perform statistical inference in a
Bayesian manner.

We will consider the parameter to be random variable X , which has possible
values x1, . . . , xI . We never observe the parameter random variable. The random
variable Y , which depends on the parameter, has possible values y1, . . . , yJ . We
make inferences about the parameter random variable X given the observed value
Y = yj using Bayes’ theorem.

The Bayesian universe consists of the all possible ordered pairs (xi, yj) for i =
1, . . . , I and j = 1, . . . , J . This is analogous to the universe we used for joint random
variables in the last chapter. However, we will not consider the random variables X
and Y the same way. The events (X = x1), . . . , (X = xI) partition the universe,
but we never observe which one has occurred. The event Y = yj is observed.

We know that the Bayesian universe has two dimensions, the horizontal dimension
which is observable, and the vertical dimension which is unobservable. In the
horizontal direction it goes across the sample space which is the set of all possible
values, {y1, . . . , yJ}, of the observed random variable Y . In the vertical direction it
goes through the parameter space, which is the set of all possible parameter values,
{x1, . . . , xI}. The Bayesian universe for discrete random variables is shown in Table
6.1. This is analogous the Bayesian universe for events described in Chapter 4. The

0Introduction to Bayesian Statistics. By William M. Bolstad
ISBN 0-471-27020-2 Copyright c©John Wiley & Sons, Inc.
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Table 6.1 The Bayesian universe

(x1, y1) (x1, y2) . . . (x1, yj) . . . (x1, yJ )

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

(xi, y1) (xi, y2) . . . (xi, yj) . . . (xi, yJ )

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

(xI , y1) (x1, y2) . . . (xI , yj) . . . (xI , yJ )

parameter value is unobserved. Probabilities are defined at all points in the Bayesian
universe.

We will change our notation slightly. We will use f() to denote a probability dis-
tribution (conditional or unconditional) that contains the observable random variable
Y , and g() to denote a probability distribution (conditional or unconditional) that
only contains the (unobserved) parameter random variable X . This clarifies the dis-
tinction between Y , the random variable that we will observe, and X , the unobserved
parameter random variable that we want to make our inference about. Each of the
joint probabilities in the Bayesian universe is found using the multiplication rule

f(xi, yj) = g(xi) × f(yj |xi) .

The marginal distribution of Y is found by summing the columns. We show the joint
and marginal probability function in Table 6.2. Note that this is similar to how we
presented the joint and marginal distribution for two discrete random variables in the
previous chapter (Table 5.3). However, now we have moved the marginal probability
function of X over to the left-hand side and call it the prior probability function of
the parameter X to indicate it is known to us at the beginning. We also note the
changed notation.

When we observe Y = yj , the reduced Bayesian universe is the set of ordered
pairs in the jth column. This is shown in Table 6.3. The posterior probability function
of X given Y = yj is given by

g(xi|yj) =
g(xi) × f(yj |xi)∑ni

i=1
g(xi) × f(yj |xi)

.

Let us look at the parts of the formula.

• The prior distribution of the discrete random variable X is given by the prior
probability function g(xi), for i = 1, . . . , n. This is what we believe the
probability of each xi to be before we look at the data. It must come from prior
experience, not from the current data.
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Table 6.2 The joint and marginal distributions of X and Y

prior y1 . . . yj . . . yJ

x1 g(x1) f(x1, y1) . . . f(x1, yj) . . . f(x1, yJ )

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

xi g(xi) f(xi, y1) . . . f(xi, yj) . . . f(xi, yJ )

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

xI g(xI) f(xI , y1) . . . f(xI , yj) . . . f(xI , yJ )

f(y1) . . . f(yj) . . . f(yJ )

Table 6.3 The reduced Bayesian universe given Y = yj

. . . . (x1, yj) . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . (xi, yj) . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . (xI , yj) . . . .

• Since we observed Y = yj , the likelihood of the discrete parameter random
variable is given by the likelihood function f(yj |xi) for i = 1, . . . , n. This is
the conditional probability function of Y given X = xi evaluated at yj , the
value that actually occurred and where X is allowed to vary over its whole
range for xi, . . . , xn. We must know the form of the conditional observation
distribution as it shows how the distribution of the observation Y depends
on the value of the random variable X , but we see that it only needs to be
evaluated at the value that actually occurred, yj . The likelihood function is the
conditional observation distribution evaluated on the reduced universe.

• The posterior probability distribution of the discrete random variable is given
by the posterior probability function g(xi|yj) evaluated at xi for i = 1, . . . , n,
given Y = yj
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The formula gives us a method for revising our belief probabilities about the possible
values of X given that we observed Y = yj .

Example 8 There is an urn containing a total of 5 balls, some of which are red and
the rest of which are green. We don’t know how many of the balls are red. Let the
random variable X be the number of red balls in the urn. Possible values of X are
xi = i for i = 0, . . . , 5. Since we don’t have any idea about the number of red balls,
we will assume all possible values are equally likely. Our prior distribution of X is
g(0) = g(1) = g(2) = g(3) = g(4) = g(5) = 1/6

We will draw a ball at random from the urn. The random variable Y =1 if draw
is red, 0 otherwise. Conditional observation distribution of Y |X is P (Y = 1|X =
xi) = i/5 and P (Y = 0|X = xi) = (5 − i)/5. The joint probabilities are found by
multiplying the prior probabilities times the conditional observation probabilities.
The marginal probabilities of Y are found by summing the joint probabilities down
the columns. These are shown in Table 6.4.

Suppose the selected ball is red, so the reduced universe is in the column labelled
yj = 1. The conditional observation probabilities in that column are highlighted.
They form the likelihood function. Table 6.5 shows the steps for finding the posterior
distribution of X given Y = 1.

Notice that the only column that was used to find the posterior probability distri-
bution was the in the reduced universe, the column Y = 1. The joint probability came
from multiplying the prior probabilities times the likelihood function. The posterior
probability equals the prior probability times likelihood divided by the sum of prior
probabilities times likelihoods:

f(xi|yj) = P (X = xi|Y = yj) =
g(xi) × f(yj |xi)∑ni

i=1
g(xi) × f(yj |xi)

.

Thus a simpler way of finding the posterior probability is to use only the column in
the reduced universe. Its probability is product of the prior times the likelihood. This
is shown in Table 6.6.

Steps for Bayes’ Theorem Using Table

• Set up a table with columns for parameter value, prior, likelihood, prior ×
likelihood and posterior.

• Put in the parameter values, the prior, and the likelihood in their respective
columns.

• Multiply each element in the prior column by the corresponding element in
the likelihood column and put the results in the prior × likelihood column.

• Sum the prior × likelihood column.

• Divide each element of prior × likelihood column by the sum.

• Put these posterior probabilities in the posterior column!
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Table 6.4 The joint and marginal probability distributions

xi prior yj = 0 yj = 1

probability

0 1/6 1

6
× 5

5
= 5

30

1

6
× 0

5
=0

1 1/6 1

6
× 4

5
= 4

30

1

6
× 1

5
= 1

30

2 1/6 1

6
× 3

5
= 3

30

1

6
× 2

5
= 2

30

3 1/6 1

6
× 2

5
= 2

30

1

6
× 3

5
= 3

30

4 1/6 1

6
× 1

5
= 1

30

1

6
× 4

5
= 4

30

5 1/6 1

6
× 0

5
= 0

30

1

6
× 5

5
= 5

30

f(yj)
15

30

15

30
= 1

2

Table 6.5 Finding the posterior probabilities of X|Y = 1

xi prior yj = 0 yj = 1 posterior

probability probability

0 1/6 1

6
× 5

5
= 5

30

1

6
× 0

5
=0 0

1 1/6 1

6
× 4

5
= 4

30

1

6
× 1

5
= 1

30

1

30
/ 1

2
= 1

15

2 1/6 1

6
× 3

5
= 3

30

1

6
× 2

5
= 2

30

2

30
/ 1

2
= 2

15

3 1/6 1

6
× 2

5
= 2

30

1

6
× 3

5
= 3

30

3

30
/ 1

2
= 3

15

4 1/6 1

6
× 1

5
= 1

30

1

6
× 4

5
= 4

30

4

30
/ 1

2
= 4

15

5 1/6 1

6
× 0

5
= 0

30

1

6
× 5

5
= 5

30

5

30
/ 1

2
= 5

15

f(yj)
15

30

15

30
= 1

2

Table 6.6 Simplified table for finding the posterior probabilities of X|Y = 1

xi prior likelihood prior × likelihood posterior

0 1/6 0

5

1

6
× 0

5
=0 0

1 1/6 1

5

1

6
× 1

5
= 1

30

1

30
/ 1

2
= 1

15

2 1/6 2

5

1

6
× 2

5
= 2

30

2

30
/ 1

2
= 2

15

3 1/6 3

5

1

6
× 3

5
= 3

30

3

30
/ 1

2
= 3

15

4 1/6 4

5

1

6
× 4

5
= 4

30

4

30
/ 1

2
= 4

15

5 1/6 5

5

1

6
× 5

5
= 5

30

5

30
/ 1

2
= 5

15

f(yj)
15

30
= 1

2
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Table 6.7 The posterior probability distribution after second observation

xi prior likelihood prior × likelihood posterior

0 0 ?? 0 0/ 1

3
= 0

1 1/15 4

4

1

15

1

15
/ 1

3
= 1

5

2 2/15 3

4

1

10

1

10
/ 1

3
= 6

20

3 3/15 2

4

1

10

1

10
/ 1

3
= 6

20

4 4/15 1

4

1

15

1

15
/ 1

3
= 1

5

5 5/15 0

4
0 0/ 1

3
= 0

1

3
1.00

6.1 TWO EQUIVALENT WAYS OF USING BAYES’ THEOREM

We may have more than one data set concerning a parameter. They might not even
become available at the same time. Should we wait for the second data set, combine
it with the first, and then use Bayes’ theorem on the combined data set? This would
mean that we have to go back to scratch every time more data became available,
which would result in a lot of work. Another approach requiring less work would
be to use the posterior probabilities given the first data set, as the prior probabilities
for analyzing the second data set. We will find that these two approaches lead to the
same posterior probabilities. This is a significant advantage to Bayesian methods.
In frequentist statistics, we would have to use the first approach, re-analyzing the
combined data set when the second one arrives.

Analyzing the observations in sequence. Suppose that we randomly draw
a second ball out of the urn without replacing the first. Suppose the second draw
resulted in a green ball, so Y = 0. We want to find the posterior probabilities of X
given the results of the two observations, red first, green second. We will analyze
the observations in sequence using Bayes’ theorem each time. We will use the same
prior probabilities as before for the first draw. However, we will use the posterior
probabilities from the first draw as the prior probabilities for the second draw. The
results are shown in Table 6.7.

Analyzing the observations all together. Alternatively, we could consider
both draws together, then revise the probabilities using Bayes’ theorem only once.
Initially, we are in the same state of knowledge as before. So we take the same prior
probabilities that we originally used for the first draw when we were analyzing the
observations in sequence. All possible values of X are equally likely. The prior
probability function is g(x) = 1

6
for x = 0, . . . , 5.

Let Y1 and Y2 be the outcome of the first and second draw, respectively. The
probabilities of the second draw depend on the balls left after the first draw. By the
multiplication rule, the observation probability conditional on X is

f(y1, y2|x) = f(y1|x) × f(y2|y1, x) .



TWO EQUIVALENT WAYS OF USING BAYES’ THEOREM 101

Table 6.8 The joint distribution of X, Y1, Y2 and marginal distribution of Y1, Y2

xi prior yj1 , yj2 yj1 , yj2 yj1 , yj2 yj1 , yj2

0,0 0,1 1,0 1,1

0 1/6 1

6
× 5

5
× 4

4

1

6
× 5

5
× 4

4

1

6
× 0

5
× 4

4

1

6
× 0

5
× 4

4

1 1/6 1

6
× 4

5
× 3

4

1

6
× 4

5
× 1

4

1

6
× 1

5
× 4

4

1

6
× 1

5
× 0

4

2 1/6 1

6
× 3

5
× 2

4

1

6
× 3

5
× 2

4

1

6
× 2

5
× 3

4

1

6
× 2

5
× 1

4

3 1/6 1

6
× 2

5
× 1

4

1

6
× 2

5
× 3

4

1

6
× 3

5
× 2

4

1

6
× 3

5
× 2

4

4 1/6 1

6
× 1

5
× 0

4

1

6
× 1

5
× 4

4

1

6
× 4

5
× 1

4

1

6
× 4

5
× 3

4

5 1/6 1

6
× 0

5
× 0

4

1

6
× 0

5
× 4

4

1

6
× 5

5
× 0

4

1

6
× 5

5
× 4

4

f(y1, y2) 40/120 20/120 20/120 40/120

Table 6.9 The posterior probability distribution given Y1 = 1 and Y2 = 0

xi prior yj1 , yj2 yj1 , yj2 yj1 , yj2 yj1 , yj2 posterior

0,0 0,1 1,0 1,1

0 1/6 20

120
0 0 0 0 =0

1 1/6 12

120

4

120

4

120
0 4

120
/ 20

120
= 1

5

2 1/6 6

120

6

120

6

120

2

120

6

120
/ 20

120
= 3

10

3 1/6 2

120

6

120

6

120

6

120

6

120
/ 20

120
= 3

10

4 1/6 0 4

120

4

120

12

120

4

120
/ 20

120
= 1

5

5 1/6 0 0 0
20

120
0 = 0

f(y1, y2) 20/120 1.00

The joint distribution of X and Y1, Y2 is given in Table 6.8. The first ball was red,
second was green, so the reduced universe probabilities are in column yj1 , yj2 = 1, 0.
The likelihood function given by the conditional observation probabilities in that
column are highlighted.

The first ball was red, second was green, so the reduced universe probabilities are
in column yj1 , yj2 = 1, 0. The posterior probability of X given Y1 = 1 and Y2 = 0
is found by rescaling the probabilities in the reduced universe so they sum to 1. This
is shown in Table 6.9.

We see this is the same as the posterior probabilities we found analyzing the
observations sequentially, using the posterior after the first as the prior for the second.
This shows that it makes no difference whether you analyze the observations one at
a time in sequence using the posterior after the previous step as the prior for the next
step, or whether you analyze all observations together in a single step starting with
your initial prior!
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Table 6.10 The posterior probability distribution after both observations

xi prior likelihood prior × likelihood posterior

0 1/6 0

20

0

120

0

120
/ 1

6
=0

1 1/6 4

20

4

120

4

120
/ 1

6
= 1

5

2 1/6 6

20

6

120

6

120
/ 1

6
= 3

10

3 1/6 6

20

6

120

6

120
/ 1

6
= 3

10

4 1/6 4

20

4

120

4

120
/ 1

6
= 1

5

5 1/6 0

20

0

120

0

120
/ 1

6
= 0

1

6
1.00

Since we only use the column corresponding to the reduced universe, it is simpler
to finding the posterior by multiplying prior times likelihood and rescaling to make
it a probability distribution. This is shown in Table 6.10

6.2 BAYES’ THEOREM FOR BINOMIAL WITH DISCRETE PRIOR

We will look at using Bayes’ theorem when the observation comes from the binomial
distribution, and there are only a few possible values for the parameter. Y |π has the
binomial n, π distribution. (There are n independent trials, each of which can result
in "success" or "failure" and the probability of success π remains the same for all
trials. Y is the total number of "successes" over the n trials.) There are I discrete
possible values of π1, . . . , πI .

Set up a table for the observation distributions. Row i correspond to the binomial
n, πi probability distribution. Column j corresponds to Y = j (There are n + 1
columns corresponding to 0, . . . , n.) These binomial probabilities can be found in
Table B.1 in Appendix B. The conditional observation probabilities in the reduced
universe (column that corresponds to the actual observed value) is called the likeli-
hood.

• We decide on our prior probability distribution of the parameter. They give our
prior belief about each possible value of the parameter π. If we have no idea
beforehand, we can choose the prior distribution that has all values equally
likely.

• The joint probability distribution of the parameter π and the observation Y is
found by multiplying the conditional probability of Y |π by the prior probability
of π.

• The marginal distribution of Y is found by summing the joint distribution down
the columns.

Now take the observed value of Y . It is the only column that is now relevant. It
contains the probabilities of the reduced universe. Note that it is the prior times the
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Table 6.11 The joint probability distribution found by multiplying marginal distribution of
π (the prior) by the conditional distribution of Y given π (which is binomial). Y = 3 was
observed, so the binomial probabilities of Y = 3 (the likelihood) are highlighted.

π prior 0 1 2 3 4

.4 1

3

1

3
×.1296 1

3
×.3456 1

3
×.3456 1

3
× .1536

1

3
×.0256

.5 1

3

1

3
×.0625 1

3
×.2500 1

3
×.3750 1

3
× .2500

1

3
×.0625

.6 1

3

1

3
×.0256 1

3
×.1536 1

3
×.3456 1

3
× .3456

1

3
×.1296

Table 6.12 The joint and marginal probability distributions. Y = 3 was observed, so those
probabilities are highlighted.

π prior 0 1 2 3 4

.4 1

3
.0432 .1152 .1152 .0512 .0085

.5 1

3
.0208 .0833 .1250 .0833 .0208

.6 1

3
.0085 .0512 .1152 .1152 .0432

marginal .0725 .2497 .3554 .2497 .0725

likelihood. The posterior probability of each possible value of π is found by dividing
that row’s element in the relevant column by the marginal probability of Y in that
column.

Example 9 Let Y |π be binomial (n = 4, π). Suppose we consider there are only
three possible values for π, .4,.5, and .6. We will assume they are equally likely.
The prior distribution of π and joint distribution of π and Y are given in Table 6.11.
The joint probability distribution f(πi, yj) is found by multiplying the conditional
observation distribution f(yj |πi) times the prior distribution g(πi). In this case, the
conditional observation probabilities come from the binomial (n = 4, π) distribution.
These binomial probabilities come from Table B.1 in Appendix B. Suppose Y = 3
was observed. The reduced universe is the column for Y = 3. The conditional
observation probabilities in that column is called the likelihood and is highlighted.

The marginal distribution of Y is found by summing the joint distribution of π and
Y down the columns. The prior distribution of π , joint probability distribution of
(π, Y ) , and marginal probability distribution of Y are shown in Table 6.12.

Given Y = 3 was observed, only the column labelled 3 is relevant. The prior
distribution of π, joint probability distribution of (π, Y ) , marginal probability dis-
tribution of Y , and posterior probability distribution of π|Y = 3 are shown in Table
6.13.

Note that the posterior is proportional to prior times likelihood. We didn’t have
to set up the whole joint probability table. It is easier to only look at the reduced
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Table 6.13 The joint, marginal, and posterior probability distribution of π given Y = 3.
Note the posterior is found by dividing the joint probabilities in the relevant column by their
sum.

π prior 0 1 2 3 4 posterior

.4 1

3
.0432 .1152 .1152 .0512 . 0085 .0512

.2497
=.205

.5 1

3
.0208 .0833 .1250 .0833 .0208 .0833

.2497
=.334

.6 1

3
.0085 .0512 .1152 .1152 .0432 .1152

.2497
=.461

marginal .0725 .2497 .3554 .2497 .0725 1.000

Table 6.14 The simplified table for finding posterior distribution given Y = 3

π prior likelihood prior × likelihood posterior

.4 1

3
.1536 .0512 .0512

.2497
= .205

.5 1

3
.2500 .0833 .0833

.2497
= .334

.6 1

3
.3456 .1152 .1152

.2497
= .461

marginal .2497 1.000

universe column. The posterior is equal to prior times likelihood divided by the
marginal probability of the observed value. The results are shown in Table 6.14.

Setting up the Table for Bayes’ Theorem on Binomial with Discrete Prior

• Set up a table with columns for parameter value, prior, likelihood, prior ×
likelihood, and posterior.

• Put in the parameter values, the prior, and the likelihood in their respective
columns. The likelihood values are binomial(n,πi) evaluated at the observed
value of y. They can be found in Table B.2, or evaluated from the formula.

• Multiply each element in the prior column by the corresponding element in
the likelihood column and put in the prior × likelihood column.

• Sum these prior × likelihood.

• Divide each element of prior × likelihood column by the sum of prior ×
likelihood column. (This rescales them to sum to 1.)

• Put these in the posterior column!
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Table 6.15 The simplified table for finding posterior distribution given Y = 3. Note
we are using the proportional likelihood where we have absorbed that part of the binomial
distribution that does not depend on π into the constant.

π prior likelihood posterior

(proportional) (proportional)

.4 1 .43 × .61=.0384 .0384
.1873

=.205

.5 1 .53 × .51=.0625 .0625
.1873

=.334

.6 1 .63 × .41=.0864 .0864
.1873

=.461

marginal P (Y = 3) .1873 1.000

6.3 IMPORTANT CONSEQUENCES OF BAYES’ THEOREM

Multiplying all the prior probabilities by a constant does not change
the result of Bayes’ theorem. Each of the prior × likelihood entries in the
table would be multiplied by the constant. The marginal entry found by summing
down the column would also be multiplied by the same constant. Thus the posterior
probabilities would be the same as before, since the constant would cancel out. The
relative weights we are giving to each parameter value, not the actual weights, are
what counts. If there is a formula for the prior, any part of it that does not contain the
parameter can be absorbed into the constant. This may make calculations simpler for
us!

Multiplying the likelihood by a constant does not change the result of
Bayes’ theorem. The prior× likelihood values would also be multiplied by the
same constant, which would cancel out in the posterior probabilities. The likelihood
can be considered the weights given to the possible values by the data. Again, it is
the relative weights that are important, not the actual weights. If there is a formula
for the likelihood, any part that does not contain the parameter can be absorbed into
the constant, simplifying our calculations!

Example 9 (continued) We used a prior that gave each value equal prior probability.
In this example there are three possible values, so each has a prior probability equal
to 1

3
. Let’s multiply each of the 3 prior probabilities by the constant 3 to give prior

weights equal to 1. This will simplify our calculations. The observations are binomial
(n = 4, π), and y = 3 was observed. The formula for the binomial likelihood is

f(y|π) =

(
4
3

)
π3(1 − π)1 .

The binomial coefficient

(
4
3

)
does not contain the parameter, so it is a constant

over the likelihood column. To simplify our calculations, we will absorb it into the
constant and use only the part of the likelihood that contains the parameter. In Table
6.15 we see this gives us the same result we obtained before.
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Main Points

• The Bayesian universe has two dimensions. The vertical dimension is the
parameter space and is unobservable. The horizontal dimension is the sample
space and we observe which value occurs.

• The reduced universe is the column for the observed value.

• For discrete prior and discrete observation, the posterior probabilities are found
by multiplying the prior × likelihood, and then dividing by their sum.

• When our data arrives in batches, we can use the posterior from the first batch
as the prior for the second batch. This is equivalent to combining both batches
and using Bayes’ theorem only once, using our initial prior.

• Multiplying the prior by a constant doesn’t change the result. Only relative
weights are important.

• Multiplying the likelihood by a constant doesn’t change the result.

• This means we can absorb any part of formula that doesn’t contain the parameter
into the constant. This greatly simplifies calculations.

Exercises

6.1 There is an urn containing 9 balls, which can be either green or red. The
number of red balls in the urn is not known. One ball is drawn at random from
the urn, and its color is observed.

(a) What is the Bayesian universe of the experiment.

(b) Let X be the number of red balls in the urn. Assume that all possible
values of X from 0 to 9 are equally likely. Let Y1 =1 if the first ball
drawn is red, and Y1=0 otherwise. Fill in the joint probability table for
X and Y1 given below:

X prior Y1 = 0 Y1 = 1

(c) Find the marginal distribution of Y1 and put it in the table.

(d) Suppose a red ball was drawn. What is the reduced Bayesian universe?

(e) Calculate the posterior probability distribution of X .
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(f) Find the posterior distribution of X by filling in the simplified table:

X prior likelihood prior × likelihood posterior

marginal P (Y1 = 1)

6.2 Suppose that a second ball is drawn from the urn, without replacing the first.
Let Y2 = 1 if the second ball is red, and let it be 0 otherwise. Use the posterior
distribution of X from the previous question as the prior distribution for X .
Suppose the second ball is green. Find the posterior distribution of X by filling
in the simplified table:

X prior likelihood prior × likelihood posterior

marginal P (Y2 = 0)

6.3 Suppose we look at the two draws from the urn (without replacement) as a
single experiment. The results were first draw red, second draw green. Find
the posterior distribution of X by filling in the simplified table.



108 BAYESIAN INFERENCE FOR DISCRETE RANDOM VARIABLES

X prior likelihood prior × likelihood posterior

marginal P (Y1 = 1, Y2 = 0)

6.4 In the game of "blackjack" also known as "twenty-one," the player and the
dealer are dealt one card face-down, and one card face-up. The object is to get
as close as possible to the score 21, without exceeding that. Aces count either
1 or 11, face cards count 10, and all other cards count at their face value. The
player can ask for more cards to be dealt to him, provided he hasn’t gone bust
(exceed 21) and lost. Getting 21 on the deal (an ace and a face card or 10) is
called a "blackjack." Suppose 4 decks of cards are shuffled together and dealt
from. What is the probability the player gets a "blackjack."

6.5 After the hand, the cards are discarded, and the next hand continues with the
remaining cards in the deck. The player has had an opportunity to see some of
the cards in the previous hand, those that were dealt face-up. Suppose he saw a
total of 4 cards, and none of them were aces, nor were any of them a face card
or a ten. What is the probability the player gets a "blackjack" on this hand.

Computer Exercises

6.1 Use the Minitab macro BinoDP.mac to find the posterior distribution of the
binomial probability π when the observation distribution of Y |π is binomial
(n, π) and we have a discrete prior for π.

Suppose we have 8 independent trials and each has one of two possible either
success or failure. The probability of success remains constant for each trial.
In that case, Y |π is binomial (n = 8, π). Suppose we only allow that there are
6 possible values of π, 0, .2, .4, .6, .8, and 1.0. In that case we say that we have
a discrete distribution for π. Initially we have no reason to favor one possible
value over another. In that case our we would give all the possible values of π
probability equal to 1

6
.
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π g(π)

0 .166666

.2 .166666

.4 .166666

.6 .166666

.8 .166666

1.0 .166666

Suppose we observe 3 "successes" in the 8 trials. Use BinoDP.mac or the
equivalent R function to find the posterior distribution g(π|y). Details for
invoking BinoDP.mac are in Appendix 3. The details for the equivalent R
function are in Appendix 4.

(a) Identify the matrix of conditional probabilities from the output. Relate
these conditional probabilities to the binomial probabilities in Table B.1.

(b) What column in the matrix contains the likelihoods?

(c) Identify the matrix of joint probabilities from the output. How are these
joint probabilities found?

(d) Identify the marginal probabilities of Y from the output. How are these
found?

(e) How are the posterior probabilities found?

6.2 Suppose we take an additional 7 trials, and achieve 2 successes.

(a) Let the posterior after the 8 trials and 3 successes in the previous problem
be the prior and use BinoDP.mac or the equivalent R function to find the
new posterior distribution for π.

(b) In total, we have taken 15 trials and achieved 5 successes. Go back to the
original prior and use BinoDP.mac or the equivalent R function to find
the posterior after the 15 trials and 5 successes.

(c) What does this show?



7
Continuous

Random Variables

When we have a continuous random variable, we believe all values over some
range are possible if our measurement device is sufficiently accurate. There are
an uncountably infinite number of real numbers in an interval, so the probability
of getting any particular value must be zero. This makes it impossible to find the
probability function of a continuous random variable the same way we did for a
discrete random variable. We will have to find a different way to determine its
probability distribution. First we consider a thought experiment similar to those done
in Chapter 5 for discrete random variables.

Thought Experiment 1: Independent trials of a continuous random variable
We start taking a sequence of independent trials of the random variable. We sketch a
graph with a spike at each value in the sample equal to the proportion in the sample
having that value. After each draw we update the proportions in the accumulated
sample that have each value, and update our graph. The updating of the graph at step
n is made by scaling all the existing spikes down by the ratio n−1

n and adding 1
n to the

spike at the value observed at trial n. This keeps the sum of the spike heights equal to
1. Figure 7.1 shows this after 25 draws. Because there are infinitely many possible
numbers, it is almost inevitable that we don’t draw any of the previous values, so we
get a new spike at each draw. After n draws we will have n spikes, each having height
1
n . Figure 7.2 shows this after 100 draws. As the sample size, n, approaches infinity,
the heights of the spikes shrink to zero. This means the probability of getting any
particular value is zero. The output of this thought experiment is not the probability

0Introduction to Bayesian Statistics. By William M. Bolstad
ISBN 0-471-27020-2 Copyright c©John Wiley & Sons, Inc.
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Figure 7.1 Sample probability function after 25 draws.

Figure 7.2 Sample probability function after 100 draws.

function, which gives the probability of each possible value. This is not like the output
of the thought experiments in Chapter 5 where the random variable was discrete.

What we do notice is that there are some places with many spikes close by, and
there are other places with very few spikes close by. In other words, the density
of spikes varies. We can think of partitioning the interval into subintervals, and
recording the number of observations that fall into each subinterval. We can form
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Figure 7.3 Density histogram after 100 draws.

a density histogram by dividing the number in each subinterval by the width of the
subinterval. This makes the area under the histogram equal to one. Figure 7.3 shows
the density histogram for the first 100 observations.

Now let n increase, and let the width of the subintervals decrease, but at a slower
rate than n. Figures 7.4 and 7.5 show the density histogram for the first 1000 and
for the first 10,000 observations, respectively. The proportion of observations in a
subinterval approaches the probability of being in the subinterval. As n increases,
we get a larger number of shorter subintervals. The histograms get closer and closer
to a smooth curve.

7.1 PROBABILITY DENSITY FUNCTION

The smooth curve is called the probability density function. It is the limiting shape
of the histograms as n goes to infinity, and the width of the bars goes to 0. Its height
at a point is not the probability of that point. The thought experiment showed us that
probability was equal to zero at every point. Instead, the height of the curve measures
how dense is the probability at that point.

Since the areas under the histograms all equaled one, the total area under the
probability density function must also equal 1:∫ ∞

−∞
f(y) dy = 1 . (7.1)

The proportion of the observations that lie in an interval (a, b) is given by the area of
the histogram bars that lie in the interval. In the limit as n increases to infinity, the
histograms become the smooth curve, the probability density function. The area of
the bars that lie in the interval becomes the area under the curve over that interval.
The proportion of observations that lie in the interval becomes the probability that
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Figure 7.4 Density histogram after 1000 draws.

Figure 7.5 Density histogram after 10,000 draws.

the random variable lies in the interval. We know the area under a curve is found by
integration, so we can find the probability that the random variable lies in the interval
(a, b) by integrating the probability density function over that range:

P (a < Y < b) =

∫ b

a

f(y) dy . (7.2)
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Mean of a Continuous Random Variable

In Section 3.3 we defined the mean of the random sample of observations from the
random variable to be

ȳ =

∑n
i=1 yi

n
.

Suppose we put the observations in a density histogram where all groups have equal
width. The grouped mean of the data is

ȳ =
∑

j

mj
nj

n
,

where mj is the midpoint of the jth bar and nj

n is its relative frequency. Multiplying
and dividing by the width of the bars, we get

ȳ =
∑

j

mj × width × nj

n × width
,

where the relative frequency density nj

n×width gives the height of bar j. Multiplying
it by width gives the area of the bar. Thus the sample mean is the midpoint of each
bar times the area of that bar summed over all bars.

Suppose we let n increase without bound, and let the number of bars increase, but
at a slower rate. For example, as n increases by a factor of 4, we let the number of
bars increase by a factor of 2 so the width of each bar is divided by 2. As n increases
without bound, each observation in a group becomes quite close to the midpoint of
the group, the number of bars increase without bound, and the width of each bar goes
to zero. In the limit, the midpoint of the bar containing the point y approaches y,
and the height of the bar containing point y (which is the relative frequency density)
approaches f(y). So, in the limit, the relative frequency density approaches the
probability density and the sample mean reaches its limit

E(Y ) =

∫ ∞

−∞
yf(y) dy , (7.3)

which is called the expected value of the random variable. The expected value is like
the mean of all possible values of the random variable. Sometimes it is referred to as
the mean of the random variable Y and denoted µ.
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Variance of a Continuous Random Variable

The expected value E(Y − E(Y ))2 is called the variance of the random variable.
We can look at the variance of a random sample of numbers, and let the sample size
increase.

V ar(y) =
1

n
×

n∑
i=1

(yi − ȳ)2 .

As we let n increase, we decrease the width of the bars. This makes each observation
become closer to the midpoint of the bar it is in. Now, when we sum over all groups,
the variance becomes

V ar(y) =
∑

j

nj

n
(mj − ȳ)2 .

We multiply and divide by the width of the bar to get

V ar(y) =
∑

j

nj

n × width
× width × (mj − ȳ)2 .

This is the square of the midpoint minus the mean times the area of the bar summed
over all bars. As n increases to ∞, the relative frequency density approaches the
probability density , the midpoint of the bar containing the point y approaches y, and
the sample mean ȳ approaches the expected value E(Y ), so in the limit the variance
becomes

V ar(Y ) = E[(Y − E(Y )2] =

∫ ∞

−∞
(y − µ)2f(y) dy . (7.4)

The variance of the random variable is denoted σ2. We can square the term in
brackets,

V ar(Y ) =

∫ ∞

−∞
(y2 − 2µy + µ2)f(y) dy

and break the integral into three terms,

V ar(Y ) =

∫ ∞

−∞
y2 f(y) dy − 2µ

∫ ∞

−∞
y f(y) dy + µ2

∫ ∞

−∞
f(y) dy ,

and simplify to get an alternate form for the variance:

V ar(Y ) = E(Y 2) − [E(Y )]2 . (7.5)

7.2 SOME CONTINUOUS DISTRIBUTIONS

Uniform Distribution

The random variable has the uniform (0, 1) distribution if its probability density
function is constant over the interval [0,1], and 0 everywhere else.

g(x) =

{
1 for 0 ≤ x ≤ 1
0 for /∈ [0, 1]

.
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Figure 7.6 The curve g(x) = kx1
(1 − x)

2 for several values of k.

It is easily shown that the mean and variance of a uniform (0,1) random variable are
1
2 and 1

12 respectively.

Beta Family of Distributions

The Beta(a,b) distribution is another commonly used distribution for a continuous
random variable that can only take on values 0 ≤ x ≤ 1. It has the probability
density function

g(x; a, b) =

{
k × xa−1(1 − x)b−1 for 0 ≤ x ≤ 1

0 for /∈ [0, 1]
.

The most important thing is that xa−1(1 − x)b−1 determines the shape of the curve,
and k is only the constant needed to make this a probability density function. Figure
7.6 shows the graphs of this for a = 2 and b = 3 for a number of values of k. We
see that the curves all have the same basic shape but have different areas under the
curves. The value of k = 12 gives area equal to 1, so that is the one that makes a
density function.

The distribution with shape given by xa−1(1 − x)b−1 is called the beta (a, b)
distribution. The constant needed to make the curve a density function is given by
the formula

k =
Γ(a + b)

Γ(a)Γ(b)
,
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where Γ(c) is the Gamma function, which is a generalization of the factorial function.1

The probability density function of the beta (a, b) distribution is given by

g(x; a, b) =
Γ(a + b)

Γ(a)Γ(b)
xa−1(1 − x)b−1 . (7.6)

All we need remember is that Γ(a+b)
Γ(a)Γ(b) is the constant needed to make the curve with

shape given by xa−1(1 − x)b−1 a density. a equals one plus the power of x and b
equals one plus the power of (1 − x).

This curve can have different shapes depending on the values a and b, so the
beta(a,b) is actually a family of distributions. The uniform(0,1) distribution is a
special case of the beta(a,b) distribution, where a = 1 and b = 1.

Mean of a beta distribution. The expected value of a continuous random vari-
able x is found by integrating the variable times the density function over the whole
range of possible values. (Since the beta(a,b) density equals 0 for x outside the
interval [0, 1], the integration only has to go from 0 to 1, not −∞ to ∞.) For a
random variable having the beta(a,b) distribution,

E(X) =

∫ 1

0

x × g(x; a, b)dx =

∫ 1

0

x × Γ(a + b)

Γ(a)Γ(b)
xa−1(1 − x)b−1 dx .

However, by using our understanding of the beta distribution, we can evaluate this
integral without having to do the integration. First move the constant out in front of
the integral, then combine the x terms by adding exponents:

E(X) =
Γ(a + b)

Γ(a)Γ(b)

∫ 1

0

x × xa−1(1 − x)b−1dx =
Γ(a + b)

Γ(a)Γ(b)

∫ 1

0

xa(1 − x)b−1 dx .

We recognize the part under the integral sign as a curve that has the beta(a+1,b)
shape. So we must multiply inside the integral by the appropriate constant to make
it integrate to 1, and multiply by the reciprocal of the constant outside of the integral
to keep the balance:

E(X) =
Γ(a + b)

Γ(a)Γ(b)

Γ(a + 1)Γ(b)

Γ(a + b + 1)

∫ 1

0

Γ(a + b + 1)

Γ(a + 1)Γ(b)
xa(1 − x)b−1 dx .

The integral equals 1, and when we use the fact that Γ(c) = (c − 1) × Γ(c − 1) and
do some cancellation, we get the simple formula

E(X) =
a

a + b
(7.7)

for the mean of a beta(a,b) random variable.

1When c is an integer, Γ(c) = (c − 1)!. The Gamma function always satisfies the equation Γ(c) =
(c − 1) × Γ(c − 1) whether or not c is an integer.



SOME CONTINUOUS DISTRIBUTIONS 119

Variance of a beta distribution. For a continuous random variable the expected
value of a function of a random variable is found by integrating the function times
the density function over the whole range of possible values.

For a random variable having the beta(a,b) distribution,

E(X2) =

∫ 1

0

x2 × Γ(a + b)

Γ(a)Γ(b)
xa−1(1 − x)b−1 dx .

When we evaluate this integral using the properties of the beta(a,b) distribution, we
get

E(X2) =
a(a + 1)

(a + b + 1)(a + b)
.

When we substitute this formula and the formula for the mean into Equation 7.5 and
simplify, we find the variance of the random variable having the beta(a,b) distribution
is

V ar(X) = E(X2) − [E(X)]2 =
ab

(a + b)2(a + b + 1)
. (7.8)

Normal Distribution

Very often data appear to have a symmetric bell-shaped distribution. In the early
years of statistics, this shape seemed to occur so frequently that it was thought
to be normal. The family of distributions with this shape has become known as
the normal distribution family. It is also known as the Gaussian distribution after
the mathematician Gauss who studied its properties. It is the most widely used
distribution in statistics. We will see that there is a good reason for its frequent
occurrence. However, we must remain aware that the term normal distribution is
only a name, and distributions with other shapes are not abnormal.

The normal(µ, σ2) distribution is the member of the family having mean µ and
variance σ2. The probability density function of a normal(µ, σ2) distribution is given
by

g(x|µ, σ2) = ke−
1

2σ2
(x−µ)2

for −∞ < x < ∞ where k is the constant value needed to make this a probability

density. The shape of the curve is determined by e−
1

2σ2
(x−µ)2 . Figure 7.7 shows the

curve ke−
1

2σ2
(x−µ)2 for several values of k. Changing the value of k only changes

the area under the curve, not its basic shape. To be a probability density function, the
area under the curve must equal 1. The value of k that makes the curve a probability
density is k = 1√

2πσ
.

Central limit theorem. The central limit theorem says that if you take a random
sample y1, . . . , yn from any shape distribution having mean µ and variance σ2,
then the limiting distribution of ȳ−µ

σ/
√

n
is normal (0, 1). The shape of the limiting

distribution is normal despite the original distribution not necessarily being normal.
A linear transformation of a normal distribution is also normal, so the shape of ȳ
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Figure 7.7 The curve g(x) = ke−
1

2
(x−0)2 for several values of k.

and
∑

y are also normal. Amazingly, n doesn’t have to be particularly large for the
shape to be approximately normal, n ≥ 25 is sufficient.

The key factor of the central limit distribution is that when we are averaging a
large number of independent effects, each of which is small in relation to the sum, the
distribution of the sum approaches the normal shape regardless of the shapes of the
individual distributions. Thus any random variable that arises as the sum of a large
number of independent effects will be approximately normal! This explains why the
normal distribution is encountered so frequently.

Finding probabilities using standard normal table. The standard normal
density has mean µ = 0 and variance σ2 = 1. Its probability density function is
given by

f(z) =
1√
2π

e−
1

2
z2

.

We note that this curve is symmetric about z = 0. Unfortunately, Equation 7.2,
the general form for finding the probability P (a ≤ z ≤ b) isn’t any practical use
here. There is no closed form for integrating the standard normal probability density
function. Instead, the area between 0 and z for values of z between 0 and 3.99 has
been numerically calculated and tabulated in Table B.2 in Appendix B. We use this
table to calculate the probability we need.

Example 10 Suppose we want to find P (−.62 ≤ Z ≤ 1.37). In Figure 7.8 we see
that the shaded area between −.62 and 1.37 is the sum of the two areas between −.62
and 0 and between 0 and 1.37 respectively. The area between −.62 and 0 is the same
as the area between 0 and +.62 because the standard normal density is symmetric
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Figure 7.8 The area between −.62 and 1.37 split into two parts.

about 0. In Table B.2 we find this area equals .2291. The area between 0 and 1.37
equals .4147 from the table. So

P (−.62 ≤ Z ≤ 1.37) = .2291 + .4147

= .6338 .

Any normal distribution can be transformed into a standard normal by subtracting
the mean and then dividing by the standard deviation. This lets us find any normal
probability using the areas under the standard normal density found in Table B.2.

Example 11 Suppose we know Y is normal with mean µ = 10.8 and standard
deviation σ = 2.1, and suppose we want to find the probability P (Y ≥ 9.9).

P (Y ≥ 9.9) = P (Y − 10.8 ≥ 9.9 − 10.8)

= P

(
Y − 10.8

2.1
≥ 9.9 − 10.8

2.1

)
.

The left side is a standard normal. The right side is a number. We find this probability
from the standard normal:

P (Y ≥ 9.9) = P (Z ≥ −.429)

= .1659 + .5000

= .6659 .

Finding beta probabilities using normal approximation. We can approxi-
mate a beta (a, b) distribution by the normal distribution having the same mean and
variance. This approximation is very effective when both a and b are greater than or
equal to ten.

Example 12 Suppose Y has the beta (12, 25) distribution and we wish to find
P (Y > .4). The mean and variance of Y are

E(Y ) =
12

37
= .3243 and V ar(Y ) =

12 × 25

372 × 38
= .005767

respectively. We approximate the beta (12, 25) distribution with a normal (.3243, .005767)
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Figure 7.9 A joint density.

distribution. The approximate probability is

P (Y > .4) = P

(
Y − .3243√

.005767
>

.4 − .3243√
.005767

)

= P (Z > .997)

= .3406 .

7.3 JOINT CONTINUOUS RANDOM VARIABLES

We consider two (or more) random variables distributed together. If both X and Y
are continuous random variables, they have joint density f(x, y), which measures
the probability density at the point (x, y). This would be found by dividing the plane
into rectangular regions by partitioning both the x axis and y axis. We look at the
proportion of the sample that lie in a region. We increase n, the sample size of the
joint random variables without bound, and at the same time decrease the width of
the regions (in both dimensions) at a slower rate. In the limit, the proportion of the
sample lying in the region centered at (x, y) approaches the joint density f(x, y).
Figure 7.9 shows a joint density function.

We might be interested in determining the density of one of the joint random
variables by itself, its marginal density. When X and Y are joint random variables
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that are both continuous, the marginal density of Y is found by integrating the joint
density over the whole range of X:

f(y) =

∫ ∞

−∞
f(x, y) dx ,

and vice versa. (Finding the marginal density by integrating the joint density over
the whole range of one variable is analogous to finding the marginal probability
distribution by summing the joint probability distribution over all possible values of
one variable for jointly distributed discrete random variables.)

Conditional Probability Density

The conditional density of X given Y = y is given by

f(x|y) =
f(x, y)

f(y)
.

We see that the conditional density of X given Y = y is proportional to the joint
density where Y = y is held fixed. Dividing by the marginal density f(y) makes the
integral of the conditional density over the whole range of x equal 1. This makes it
a proper density function.

7.4 JOINT CONTINUOUS AND DISCRETE RANDOM VARIABLES

It may be that one of the variables is continuous, and the other is discrete. For
instance, let X be continuous, and let Y be discrete. In that case f(x, yj) is a joint
probability-probability density function. In the x direction it is continuous, and in
the y direction it is discrete. This is shown in Figure 7.10. In this case, the marginal
density of the continuous random variable X is found by

f(x) =
∑

j

f(x, yj) ,

and the marginal probability function of the discrete random variable Y is found by

f(yj) =

∫
f(x, yj) dx .

The conditional density of X given Y = yj is given by

f(x|yj) =
f(x, yj)

f(yj)
=

f(x, yj)∫
f(x, yj) dx

.

We see that this is proportional to the joint probability-probability density function
f(x, yj) where x is allowed to vary over its whole range. Dividing by the marginal
probability f(yj) just scales it to be a proper density function (integrates to 1).
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Figure 7.10 A joint continuous and discrete distribution.

Similarly, the conditional distribution of Y = yj given x is found by

f(yj |x) =
f(x, yj)

f(x)
=

f(x, yj)∑
j f(x, yj)

.

This is also proportional to the joint probability-probability density function f(x, yj)
where x is fixed, and Y is allowed to take on all the possible values y1, . . . , yJ .

Main Points

• The probability that a continuous random variable equals any particular value
is zero!

• The probability density function of a continuous random variable is a smooth
curve that measures the density of probability at each value. It is found as the
limit of density histograms of random samples of the random variable, where
the sample size increases to infinity and the width of the bars goes to zero.

• The probability a continuous random variable lies between two values a and
b is given by the area under the probability density function between the two
values. This is found by the integral

P (a < X < b) =

∫ b

a

f(x) dx .
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• The expected value of a continuous random variable X is found by integrating
x times the density function f(x) over the whole range.

E(X) =

∫ ∞

−∞
x f(x) dx .

• A beta (a, b) random variable has probability density

f(x|a, b) =
Γ(a + b)

Γ(a)Γ(b)
xa−1(1 − x)b−1 for 0 ≤ x ≤ 1 .

• The mean and variance of a beta (a, b) random variable are given by

E(X) =
a

a + b
and V ar(X) =

a × b

(a + b)2 × (a + b + 1)
.

• A normal (µ, σ2) random variable has probability density

g(x|µ, σ2) =
1√
2πσ

e−
1

2σ2
(x−µ)2

where µ is the mean, and σ2 is the variance.

• The central limit theorem says that for a random sample y1, . . . yn from any
distribution f(y) having mean µ and variance σ2, the distribution of

ȳ − µ

σ/
√

n

is approximately normal (0, 1) for n > 25. This is regardless of the shape of
the original density f(y).

• By reasoning similar to that of the central limit theorem, any random variable
that is the sum of a large number of independent random variables will be
approximately normal. This is the reason why the normal distribution occurs
so frequently.

• The marginal distribution of y is found by integrating the joint distribution
f(x, y) with respect to x over its whole range.

• The conditional distribution of x given y is proportional to the joint distribution
f(x, y) where y fixed and x is allowed to vary over its whole range.

f(x|y) =
f(x, y)

f(y)
.

Dividing by the marginal distribution of f(y) scales it properly so that f(y|x)
integrates to 1 and is a probability density function.
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Exercises

7.1 Let X have a beta (3, 5) distribution.

(a) Find E(X).

(b) Find V ar(X).

7.2 Let X have a beta (12, 4) distribution.

(a) Find E(X).

(b) Find V ar(X).

7.3 Let X have the uniform distribution.

(a) Find E(X).

(b) Find V ar(X).

(c) Find P (X ≤ .25).

(d) Find P (.33 < X < .75).

7.4 Let X be a random variable having probability density function

f(x) = 2x for 0 ≤ x ≤ 1 .

(a) Find P (X ≥ .75).

(b) Find P (.25 ≤ X ≤ .6).

7.5 Let Z have the standard normal distribution.

(a) Find P (0 ≤ Z ≤ .65).

(b) Find P (Z ≥ .54).

(c) Find P (−.35 ≤ Z ≤ 1.34).

7.6 Let Z have the standard normal distribution.

(a) Find P (0 ≤ Z ≤ 1.52).

(b) Find P (Z ≥ 2.11).

(c) Find P (−1.45 ≤ Z ≤ 1.74).

7.7 Let Y be normally distributed with mean µ = 120 and variance σ2 = 64.

(a) Find P (Y ≤ 130).

(b) Find P (Y ≥ 135).

(c) Find P (114 ≤ Y ≤ 127).

7.8 Let Y be normally distributed with mean µ = 860 and variance σ2 = 576.

(a) Find P (Y ≤ 900).

(b) Find P (Y ≥ 825).

(c) Find P (840 ≤ Y ≤ 890).
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7.9 Let Y be distributed according to the beta (10, 12) distribution.

(a) Find E(Y ).

(b) Find V ar(Y ).

(c) Find P (Y > .5) using the normal approximation.

7.10 let Y be distributed according to the beta (15, 10) distribution.

(a) Find E(Y ).

(b) Find V ar(Y ).

(c) Find P (Y < .5) using the normal approximation.



8
Bayesian Inference

for Binomial Proportion

Frequently there is a large population where π, a proportion of the population, has
some attribute. For instance, the population could be registered voters living in a
city, and the attribute is "plans to vote for candidate A for mayor." We take a random
sample from the population and let Y be the observed number in the sample having
the attribute, in this case the number who say they plan to vote candidate A for mayor.

We are counting the total number of "successes" in n independent trials where each
trial has two possible outcomes, "success" and "failure." Success on trial i means the
item drawn on trial i has the attribute. The probability of success on any single trial
is π, the proportion in the population having the attribute. This proportion remains
constant over all trials because the population is large.

The conditional distribution of the observation Y , the total number of successes
in n trials given the parameter π, is binomial (n, π). The conditional probability
function for y given π is given by

f(y|π) =

(
n

y

)
πy(1 − π)n−y for y = 1, . . . , n .

Here we are holding π fixed, and looking at the probability distribution of y over its
possible values.

If we look at this same relationship between π and y, but hold y fixed at the
number of successes we observed, and let π vary over its possible values, we have

0Introduction to Bayesian Statistics. By William M. Bolstad
ISBN 0-471-27020-2 Copyright c©John Wiley & Sons, Inc.
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the likelihood function given by

f(y|π) =

(
n

y

)
πy(1 − π)n−y for 0 ≤ π ≤ 1 .

We see that we are looking at the same relationship as the distribution of the obser-
vation y given the parameter π, but the subject of the formula has changed to the
parameter, for the observation held at the value that actually occurred.

To use Bayes’ theorem, we need a prior distribution g(π) that gives our belief
about the possible values of the parameter π before taking the data. It is important
to realize that the prior must not be constructed from the data. Bayes’ theorem
is summarized by posterior is proportional to the prior times the likelihood. The
multiplication in Bayes’ theorem can only be justified when the prior is independent
of the likelihood!1 This means the observed data must not have any influence on the
choice of prior! The posterior distribution is proportional to prior distribution times
likelihood:

g(π|y) ∝ g(π) × f(y|π) .

This gives us the shape of the posterior density, but not the exact posterior density
itself. To get the actual posterior, we need to divide this by some constant k to
make sure it is a probability distribution, meaning that the area under the posterior
integrates to 1. We find k by integrating g(π)× f(y|π) over the whole range. So, in
general,

g(π|y) =
g(π) × f(y|π)∫ 1

0
g(π) × f(y|π) dπ

, (8.1)

which requires an integration. Depending on the prior g(π) chosen, there may
not necessarily be a closed form for the integral, so it may be necessary to do the
integration numerically. We will look at some possible priors.

8.1 USING A UNIFORM PRIOR

If we don’t have any idea beforehand what the proportion π is, we might like to
choose a prior that does not favor any one value over another. Or, we may want to
be as objective as possible, and not put our personal belief into the inference. In that
case we should use the uniform prior that gives equal weight to all possible values
of the success probability π. Although this does not achieve universal objectivity

1We know that for independent events (or random variables) the joint probability (or density) is the
product of the marginal probabilities (or density functions). If they are not independent this does not hold.
Likelihoods come from probability functions or probability density functions, so the same pattern holds.
They can only be multiplied when they are independent.
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(which is impossible to achieve), it is objective for this formulation of the problem:2

g(π) = 1 for 0 ≤ π ≤ 1 .

Clearly, we see that in this case, the posterior density is proportional to the likelihood:

g(π|y) =

(
n

y

)
πy(1 − π)n−y for 0 ≤ π ≤ 1 .

We can ignore the part that doesn’t depend on π. It is a constant for all values of
π, so it doesn’t affect the shape of the posterior. When we examine that part of the
formula that shows the shape of the posterior as a function of π, we recognize this
is a beta(a,b) distribution where a = y + 1 and b = n − y + 1. So in this case, the
posterior distribution of π given y is easily obtained. All that is necessary is look at
the exponents of π and (1 − π). We didn’t have to do the integration.

8.2 USING A BETA PRIOR

Suppose a beta (a,b) prior density is used for π:

g(π; a, b) =
Γ(a + b)

Γ(a)Γ(b)
πa−1(1 − π)b−1 for 0 ≤ π ≤ 1 .

The posterior is proportional to prior times likelihood. We can ignore the constants
in the prior and likelihood that don’t depend on the parameter, since we know
multiplying either the prior or the likelihood by a constant won’t affect the results of
Bayes’ theorem. This gives

g(π|y) ∝ πa+y−1(1 − π)b+n−y−1 for 0 ≤ π ≤ 1

which is the shape of the posterior as a function of π. We recognize that this is the
beta distribution with parameters a′ = a + y and b′ = b + n− y. That is, we add the
number of successes to a, and add the number of failures to b:

g(π|y) =
Γ(n + a + b)

Γ(y + a)Γ(n − y + b)
πy+a−1(1 − π)n−y+b−1

for 0 ≤ π ≤ 1. Again, the posterior density of π has been easily obtained without
having to go through the integration.

Figure 8.1 shows the shapes of beta(a,b) densities for values of a = .5, 1, 2, 3 and
b = .5, 1, 2, 3. This shows the variety of shapes members of the beta(a,b) family can
take. When a < b, the density has more weight in the lower half. The opposite is
true when a > b. When a = b, the beta(a,b) density is symmetric. We note that the
uniform prior is a special case of the beta(a,b) prior where a = 1 and b = 1.

2There are many possible parameterizations of the problem. Any one-to-one function of the parameter
would also be a suitable parameter. The prior density for the new parameter could be found from the
prior density of the original parameter using the change of variable formula, and would not be flat. In
other words, it would favor some values of the new parameter over others. You can be objective in a
given parameterization, but it would not be objective in the new formulation. Universal objectivity is not
attainable.
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Figure 8.1 Some beta distributions.

Conjugate Family of Priors for Binomial Observation is the Beta Family

When we examine the shape of the binomial likelihood function as a function of π,
we see that this is of the same form as the beta(a,b) distribution, a product of π to a
power times (1 − π) to another power. When we multiply the beta prior times the
binomial likelihood, we add the exponents of π and (1−π), respectively. So we start
with a beta prior, we get a beta posterior by the simple rule "add successes to a, add
failures to b." This makes using beta(a,b) priors when we have binomial observations
particularly easy. Using Bayes’ theorem moves us to another member of the same
family.
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We say that the beta distribution is the conjugate3 family for the binomial obser-
vation distribution. When we use a prior from the conjugate family, we don’t have
to do any integration to find the posterior. All we have to do is use the observations
to update the parameters of the conjugate family prior to find the conjugate family
posterior. This is a big advantage.

8.3 CHOOSING YOUR PRIOR

Bayes’ theorem gives you a method to revise your (belief) distribution about the
parameter, given the data. In order to use it, you must have a distribution that
represents your belief about the parameter, before we look at the data.4 This is your
prior distribution. In this section we propose some methods to help you choose your
prior, and things to consider in prior choice.

Choosing a Conjugate Prior When You Have Vague Prior Knowledge

When you have vague prior knowledge, one of the beta(a,b) prior distributions shown
in Figure 8.1 would be a suitable prior. For example, if your prior knowledge about
π, is that π is very small, then beta(.5,1), beta(.5,2), beta(.5,3), beta(1,2), or beta(1,3)
would all be satisfactory priors. All of these conjugate priors offer easy computation
of the posterior, together with putting most of the prior probability at small values of
π. It doesn’t much matter very much which one you chose; the resulting posteriors
given the data would be very similar.

Choosing a Conjugate Prior When You Have Real Prior Knowledge by
Matching Location and Scale

The beta(a,b) family of distributions is the conjugate family for binomial(n, π)
observations. We saw in the previous section that priors from this family have
significant advantages computationally. The posterior will be a member of the same
family, with the parameters updated by simple rules. We can find the posterior without
integration. The beta distribution can have a number of shapes. The prior chosen
should correspond to your belief. We suggest choosing a beta(a,b) that matches your
prior belief about the (location) mean and (scale) standard deviation5. Let π0 be your

3Conjugate priors only exists when the observation distribution comes from the exponential family. In that
case the observation distribution can be written f(y|θ) = a(θ)b(y)ec(θ)×T (y). The conjugate family of
priors will then have the same functional form as the likelihood of the observation distribution.
4This could be elicited from your coherent betting strategy about the parameter value. Having a coherent
betting strategy means that if someone started offering you bets about the parameter value, you would not
take a worse bet than one you already rejected, nor would you refuse to take a better bet than one you
already accepted.
5Some people would say that you should not use a conjugate prior just because of these advantages.
Instead, you should elicit your prior from your coherent betting strategy. I don’t think most people carry
around a coherent betting strategy in their head. Their prior belief is less structured. They have a belief
about the location and scale of the parameter distribution. Choosing a prior by finding the conjugate
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prior mean for the proportion, and let σ0 be your prior standard deviation for the
proportion.

The mean of beta(a,b) distribution is a
a+b

. Set this equal to what your prior belief
about the mean of the proportion to give

π0 =
a

a + b
.

The standard deviation of beta distribution is
√

ab
(a+b)2(a+b+1) . Set this equal to

what your prior belief about the standard deviation for the proportion. Noting that
a

a+b
= π0 and b

a+b
= 1 − π0, we see

σ0 =

√
π0(1 − π0)

a + b + 1
.

Solving these two equations for a and b gives your beta(a,b) prior.

Precautions Before Using Your Conjugate Prior

1. Graph your beta(a,b) prior. If the shape looks reasonably close to what you
believe, you will use it. Otherwise, you can adjust π0 and σ0 until you find a
prior whose graph approximately corresponds to your belief. As long as the
prior has reasonable probability over the whole range you think the parameter
could possibly be in, it will be a satisfactory prior.

2. Calculate the equivalent sample size of the prior. We note that the sample
proportion π̂ = y

n
from a binomial(n,π) distribution has variance equal to

π(1−π)
n

. We equate this variance (at π0, the prior mean) to the prior variance.

π0(1 − π0)

neq

=
ab

(a + b)2 × (a + b + 1)
.

Since π0 = a
a+b

and (1 − π0) = b
a+b

, the equivalent sample size is neq =
a + b + 1. It says that the amount of information about the parameter from
your prior is equivalent to the amount from a random sample of that size. You
should always check if this is unrealistically high. Ask yourself, "Is my prior
knowledge about π really equal to the knowledge about π that I would obtain
if I checked a random sample of size neq? If it is not, you should increase your
prior standard deviation and recalculate your prior. Otherwise, you would be
putting too much prior information about the parameter relative to the amount
of information that will come from the data.

family member that matches these beliefs will give a prior on which a coherent betting strategy could be
based!
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Table 8.1 Chris’s prior weights. His continuous prior is found by linearly interpolating
between them.

Value Weight

0 0

.05 1

.1 2

.3 2

.4 1

.5 0

Constructing a General Continuous Prior

Your prior shows the relative weights you give each possible value before you see the
data. The shape of your prior belief may not match the beta shape. You can construct
a discrete prior that matches your belief weights at several values over the range you
believe possible, and then interpolate between them to make the continuous prior.
You can ignore the constant needed to make this a density, because when you multiply
the prior by a constant, the constant gets cancelled out by Bayes’ theorem. However,
if you do construct your prior this way, you will have to evaluate the integral of
the prior times likelihood numerically to get the posterior. This will be shown in
Example 13.

Example 13 Three students are constructing their prior belief about π, the propor-
tion of Hamilton residents who support building a casino in Hamilton. Anna thinks
that her prior mean is .2, and her prior standard deviation is .08. The beta(a,b) prior
that satisfies her prior belief is found by

.2 × .8

a + b + 1
= .082 .

Therefore her equivalent sample size is a + b + 1 = 25. For Anna’s prior, a = 4.8
and b = 19.2.

Bart is a newcomer to Hamilton, so he is not aware of the local feeling for or
against the proposed casino. He decides to use a uniform prior. For him, a = b = 1.
His equivalent sample size is a + b + 1 = 3.

Chris can’t fit a beta(a,b) prior to match his belief. He believes his prior probability
has a trapezoidal shape. He gives heights of his prior in the Table 8.1, and linearly
interpolates between them to get his continuous prior. When we interpolate between
these points, we see that Chris’s prior is given by

g(π) =




20π for 0 ≤ π ≤ .20
.2 for .20 ≤ π ≤ .30

5 − 10π for .30 ≤ π ≤ .50
.
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Figure 8.2 Anna’s, Bart’s, and Chris’ prior distributions.

The three priors are shown in the Figure 8.2. Note that Chris’s prior is not actually
a density since it doesn’t have area equal to one. However, remember this is not a
problem since it is only the relative weights that are important.

Effect of the Prior

When we have enough data, the effect of the prior we choose will be small compared
to the data. In that case we will find that we can get very similar posteriors despite
starting from quite different priors. All that is necessary is that they give reasonable
weight over the range that is indicated by the likelihood. The exact shape of the prior
doesn’t much matter. The data are said to "swamp the prior."

Example 13 (continued) The three students take a random sample of n = 100
Hamilton residents and find their views on the casino. Out of the random sample,
y = 26 said they support building a casino in Hamilton. Anna’s posterior is beta(4.8
+ 26, 19.2 + 74). Bart’s posterior is beta(1 + 26, 1 + 74). Chris’ posterior is
found using Equation 8.1. We need to evaluate Chris’ prior numerically. To do this,
we integrate Chris’ prior × likelihood using the Minitab macro tintegral.mac. The
three posteriors are shown in Figure 8.3. We see that the three students end up with
very similar posteriors, despite starting with priors having quite different shapes.

8.4 SUMMARIZING THE POSTERIOR DISTRIBUTION

The posterior distribution summarizes our belief about the parameter after seeing
the data. It takes into account our prior belief (the prior distribution) and the data
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Figure 8.3 Anna’s, Bart’s, and Chris’ posterior distributions.

(likelihood). A graph of the posterior shows us all we can know about the parameter,
after the data. A distribution is hard to interpret. Often we want to find a few
numbers that characterize it. These include measures of location that determine
where most of the probability is on the number line, and measures of spread that
determine how widely the probability is spread. They could also include percentiles
of the distribution. We may want to determine an interval that has a high probability
of containing the parameter. These are known as Bayesian credible intervals and
are somewhat analogous to confidence intervals. However, they have the direct
probability interpretation that confidence intervals lack.

Measures of Location

First, we want to know where the posterior distribution is located on the number
line. There are three possible measures of location we will consider: posterior mode,
posterior median, and posterior mean.

Posterior mode. This is the value that maximizes the posterior distribution. If
the posterior distribution is continuous, it can be found by setting the derivative of
the posterior density equal to zero. When the posterior g(π|y) is beta(a′, b′), its
derivative

g′(π|y) = (a′ − 1)πa′
−2 × (1 − π)b′−1 + πa′

−1 × (−1)(b′ − 1)(1 − π)b′−2 .

(Note: the prime ′ has two meanings in this equation; g′(π|y) is the derivative of
the posterior, a′ and b′ are the constants of the beta posterior found by the updating
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rules.) Setting g′(π|y) equal to 0 and solving gives the posterior mode

mode =
a′ − 1

a′ + b′ − 2
.

The posterior mode has some potential disadvantages as a measure of location. First,
it may lie at or near one end of the distribution, and thus not be representative of the
distribution as a whole. Second, there may be multiple local maximums. When we
set the derivative function equal to zero and solve, we will find all of them and the
local minimums as well.

Posterior median. This is the value that has 50% of posterior distribution below
it, 50% above it. If g(π|y) is beta(a′, b′), it is the solution of

∫ median

0

g(π|y) dπ = .5 .

The only disadvantage of the posterior median is that it has to be found numerically.
It is an excellent measure of location.

Posterior mean. The posterior mean is a very frequently used measure of loca-
tion. It is the expected value, or mean, of the posterior distribution.

m′ =

∫ 1

0

πg(π|y) dπ . (8.2)

The posterior mean is strongly affected when the distribution has a heavy tail. For a
skewed distribution with one heavy tail, the posterior mean may be quite a distance
away from most of the probability. When the posterior g(π|y) is beta(a′, b′) the
posterior mean equals

m′ =
a′

a′ + b′
. (8.3)

The beta(a,b) distribution is bounded between 0 and 1, so it does not have heavy
tails. The posterior mean will be a good measure of location for a beta posterior.

Measures of Spread

The second thing we want to know about the posterior distribution is how spread
out it is. If it has large spread, then our knowledge about the parameter, even after
analyzing the observed data, is still imprecise.

Posterior variance. This is the variance of posterior distribution.

V ar(π|y) =

∫ 1

0

(π − m′)2g(π|y) dπ . (8.4)
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When we have a β(a′, b′) posterior the posterior variance is

V ar(π|y) =
a′ × b′

(a′ + b′)2 × (a′ + b′ + 1)
. (8.5)

The posterior variance is very affected for heavy tailed distributions. For a heavy
tailed distribution, the variance will be very large, yet most of the probability is
very concentrated quite close the middle of the distribution. It is also in squared
units, which makes it hard to interpret its size in relation to the size of the mean.
We overcome these disadvantages of the posterior variance by using the posterior
standard deviation.

Posterior standard deviation. This is the square root of posterior variance. It
is in terms of units, so its size can be compared to the size of the mean, and it will be
less affected by heavy tails.

Percentiles of the posterior distribution. The kth percentile of the posterior
distribution is the value πk, which has k% of the area below it. It is the found
numerically by solving

k = 100 ×

∫ πk

−∞

g(π|y) dπ .

Some percentiles are particularly important. The first (or lower) quartile Q1 is the
25th percentile. The second quartile , Q2 (or median) is the 50th percentile, and the
third (or upper) quartile Q3 is the 75th percentile.

The interquartile range. The interquartile range

IQR = Q3 − Q1

is a useful measure of spread that is not affected by heavy tails.

Example 13 (continued) Anna, Bart, and Chris computed some measures of loca-
tion and spread for their posterior distributions. Anna and Bart used Equations 8.3
and 8.5 to find their posterior mean and variance, respectively, since they had beta
posteriors. Chris used Equations 8.2 and 8.4 to find his posterior mean and variance
since his posterior did not have the beta distribution. He evaluated the integrals
numerically using the Minitab macro tintegral.mac. Their posterior means, medians,
standard deviations, and interquartile ranges are shown in Table 8.2. We see clearly
that the posterior distributions have similar summary statistics, despite the different
priors used.

8.5 ESTIMATING THE PROPORTION

A point estimate π̂ is a statistic calculated from the data used as an estimate of the
parameter π. Suitable Bayesian point estimates are single values such as measures of
location calculated from the posterior distribution. The posterior mean and posterior
median are often used as point estimates.
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Table 8.2 Measures of location and spread of posterior distributions

Person Posterior Mean Median Std. Dev. IQR

Anna beta(30.8,93.2) .248 .247 .039 .053

Bart beta(27,75) .270 .263 .044 .059

Chris numerical .261 .255 .041 .057

The posterior mean square of an estimate. The posterior mean square of
an estimator π̂ of the proportion π is

PMS(π̂) =

∫ 1

0

(π − π̂)2 g(π|y) dπ . (8.6)

It measures the average squared distance (with respect to the posterior) that the
estimate is away from the true value. Adding and subtracting the posterior mean m′

we get

PMS(π̂) =

∫ 1

0

(π − m′ + m′ − π̂)2 g(π|y) dπ .

Multiplying out the square we get

PMS(π̂) =

∫ 1

0

[(π − m′)2 + 2(π − m′)(m′ − π̂) + (m′ − π̂)2] g(π|y) dπ .

We split the integral into three integrals. Since both m′ and π̂ are constants with
respect to the posterior distribution when we evaluate the integrals we get

PMS(π̂) = V ar(π|y) + 0 + (m′ − π̂)2 . (8.7)

This is the posterior variance of π plus the square of the distance π̂ is away from the
posterior mean m′.

The last term is a square, and always greater than or equal to zero. We see that on
average, the squared distance the true value is away from the posterior mean m′ is less
than that for any other possible estimate π̂, given our prior belief and the observed
data. The posterior mean is the optimum estimator post-data. That’s a good reason
to use the posterior mean as the estimate, and explains why the posterior mean is the
most widely used Bayesian estimate. We will use the posterior mean as our estimate
for π.

8.6 BAYESIAN CREDIBLE INTERVAL

Often we wish to find a high probability interval for the parameter. A range of values
that has a known high posterior probability, (1 − α), of containing the parameter is
known as a Bayesian credible interval. It is sometimes called Bayesian confidence
interval. In the next chapter we will see that credible intervals answer a more
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relevant question than do ordinary frequentist confidence intervals, because of the
direct probability interpretation.

There are many possible intervals with same (posterior) probability. The shortest
interval with given probability is preferred. It would be found by having the equal
heights of the posterior density at the lower and upper endpoints, and total tail area
of 1 − α. The upper and lower tails would not necessarily have equal tail areas.
However, it is often easier to split the total tail area into equal parts and find the
interval with equal tail areas.

Bayesian Credible Interval for π

If we used a beta(a, b) prior, the posterior distribution of π|y is beta(a′, b′). An equal
tail area 95% Bayesian credible interval for π can be found by obtaining the difference
between the 97.5 th and the 2.5 th percentiles. Using Minitab, pull down calc menu to
probability distributions over to beta and fill in the dialog box. Without Minitab, we
approximate the beta(a′, b′) posterior distribution by the normal distribution having
the same mean and variance,

(π|y) is approximately N [m′; (s′)2]

where the posterior mean

m′ =
a′

a′ + b′
,

and the posterior variance

(s′)2 =
a′b′

(a′ + b′)2(a′ + b′ + 1)
.

The (1 − α) × 100% credible region for π is approximately

m′ ± zα

2
× s′ , (8.8)

where zα

2
is the value found from the standard normal table. For a 95% credible

interval, z.025 = 1.96. The approximation works very well if both a′ ≥ 10 and
b′ ≥ 10

Example 13 (continued) Anna, Bart, and Chris calculated 95% credible intervals
for π having equal tail areas two ways; using the exact (beta) density function, and
using the normal approximation. These are shown in Table 8.3. Anna, Bart, and
Chris have slightly different credible intervals because they started with different
prior beliefs. But the effect of the data was much greater than the effect of their
priors and they end up with very similar credible intervals. We see that in each case,
the 95% credible interval for π calculated using the normal approximation is nearly
identical to the corresponding exact 95% credible interval.
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Table 8.3 Exact and approximate 95% credible intervals

Person Posterior Credible Interval Credible Interval

Distribution Exact Normal Approximation

Lower Upper Lower Upper

Anna beta(30.8,93.2) .177 .328 .172 .324

Bart beta(27,75) .184 .354 .183 .355

Chris numerical .181 .340 .181 .341

Main Points

• The key relationship is posterior ∝ prior × likelihood. This gives us the
shape of the posterior density. We must find the constant to divide this by to
make it a density, eg. integrate to 1 over its whole range.

• The constant we need is k =
∫ 1

0
g(π) × f(y|π)dπ. In general, this integral

does not have a closed form, so we have to evaluate it numerically.

• If the prior is beta(a,b), then the posterior is beta(a′, b′) where the constants
are updated by simple rules a′ = a + y (add number of successes to a) and
b′ = b + n − y (add number of failures to b).

• The beta family of priors is called the conjugate family for binomial observation
distribution. This means that the posterior is also a member of the same family,
and it can easily be found without the need for any integration.

• It makes sense to choose a prior from the conjugate family, which makes
finding the posterior easier. Find the beta(a,b) prior that has mean and standard
deviation that correspond to your prior belief. Then graph it to make sure that
it looks similar to your belief. If so, use it. If you have no prior knowledge
about π at all, you can use the uniform prior which gives equal weight to all
values. The uniform is actually the beta(1,1) prior.

• If you have some prior knowledge, and you can’t find a member of the conjugate
family that matches it, you can construct a discrete prior at several values over
the range, and interpolate between them to make the prior continuous. Of
course, you may ignore the constant needed to make this a density, since any
constant gets cancelled out by when you divide by

∫
prior × likelihood to

find the exact posterior.

• The main thing is that your prior must have reasonable probability over all
values that realistically are possible. If that is the case, the actual shape doesn’t
matter very much. If there is a reasonable amount of data, different people will
get similar posteriors, despite starting from quite different shaped priors.
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• The posterior mean is the estimate that has the smallest posterior mean square.
This means that, on average (with respect to posterior), it is closer to the
parameter than any other estimate. In other words, given our prior belief
and the observed data, the posterior mean will be, on average, closer to the
parameter than any other estimate. It is the most widely used Bayesian estimate
because it is optimal post-data.

• A (1−α)× 100% Bayesian credible interval is an interval that has a posterior
probability of 1 − α of containing the parameter.

• The shortest (1 − α) × 100% Bayesian credible interval would have equal
posterior density heights at the lower and upper endpoints, however, the areas
of the two tails would not necessarily be equal.

• Equal tail area Bayesian credible intervals are often used instead, because they
are easier to find.

Exercises

8.1 In order to determine how effective a magazine is at reaching its target audience,
a market research company selects a random sample of people from the target
audience and interviews them. Out of the 150 people in the sample, 29 had
seen the latest issue.

(a) What is the distribution of y, the number who have seen the latest issue?

(b) Use a uniform prior for π, the proportion of the target audience that has
seen the latest issue. What is the posterior distribution of π?

8.2 A city is considering building a new museum. The local paper wishes to
determine the level of support for this project, and is going to conduct a poll
of city residents. Out of the sample of 120 people, 74 support the city building
the museum.

(a) What is the distribution of y, the number who support the building the
museum?

(b) Use a uniform prior for π, the proportion of the target audience that
support the museum. What is the posterior distribution of π?

8.3 Sophie, the editor of the student newspaper, is going to conduct a survey
of students to determine the level of support for the current president of the
students association. She needs to determine her prior distribution for π, the
proportion of students who support the president. She decides her prior mean
is .5, and her prior standard deviation is .15.

(a) Determine the beta (a, b) prior that matches her prior belief.

(b) What is the equivalent sample size of her prior?
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(c) Out of the 68 students that she polls, y = 21 support the current president.
Determine her posterior distribution.

8.4 You are going to take a random sample of voters in a city in order to estimate
the proportion π who support stopping the fluoridation of the municipal water
supply. Before you analyze the data, you need a prior distribution for π. You
decide that your prior mean is .4, and your prior standard deviation is .1.

(a) Determine the beta (a, b) prior that matches your prior belief.

(b) What is the equivalent sample size of your prior?

(c) Out of the 100 city voters polled, y = 21 support the removal of flu-
oridation from the municipal water supply. Determine your posterior
distribution.

8.5 In a research program on human health risk from recreational contact with
water contaminated with pathogenic microbiological material, the National
Institute of Water and Atmosphere (NIWA) instituted a study to determine
the quality of New Zealand stream water at a variety of catchment types.
This study is documented in McBride et al. (2002) where n = 116 one-liter
water samples from sites identified as having a heavy environmental impact
from birds (seagulls) and waterfowl. Out of these samples, y = 17 samples
contained Giardia cysts.

(a) What is the distribution of y, the number of samples containing Giardia
cysts?

(b) Let π be the true probability that a one-liter water sample from this type
of site contains Giardia cysts. Use a beta (1, 4) prior for π. Find the
posterior distribution of π given y.

(c) Summarize the posterior distribution by its first two moments.

(d) Find the normal approximation to the posterior distribution g(π|y).

(e) Compute a 95% credible interval for π using the normal approximation
in part (c).

8.6 The same study found that y = 12 out of n = 145 samples identified as having
a heavy environmental impact from dairy farms contained Giardia cysts.

(a) What is the distribution of y, the number of samples containing Giardia
cysts?

(b) Let π be the true probability that a one-liter water sample from this type
of site contains Giardia cysts. Use a beta (1, 4) prior for π. Find the
posterior distribution of π given y.

(c) Summarize the posterior distribution by its first two moments.

(d) Find the normal approximation to the posterior distribution g(π|y).
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(e) Compute a 95% credible interval for π using the normal approximation
in part (c).

8.7 The same study found that y = 10 out of n = 174 samples identified as having
a heavy environmental impact from pastoral (sheep) farms contained Giardia
cysts.

(a) What is the distribution of y, the number of samples containing Giardia
cysts?

(b) Let π be the true probability that a one-liter water sample from this type
of site contains Giardia cysts. Use a beta (1, 4) prior for π. Find the
posterior distribution of π given y.

(c) Summarize the posterior distribution by its first two moments.

(d) Find the normal approximation to the posterior distribution g(π|y).

(e) Compute a 95% credible interval for π using the normal approximation
in part (c).

8.8 The same study found that y = 6 out of n = 87 samples within municipal
catchments contained Giardia cysts.

(a) What is the distribution of y, the number of samples containing Giardia
cysts?

(b) Let π be the true probability that a one-liter water sample from a site
within a municipal catchment contains Giardia cysts. Use a beta (1, 4)
prior for π. Find the posterior distribution of π given y.

(c) Summarize the posterior distribution by its first two moments.

(d) Find the normal approximation to the posterior distribution g(π|y).

(e) Calculate a 95% credible interval for π using the normal approximation
in part (c).

Computer Exercises

8.1 We will use the Minitab macro BinoBP.mac or the equivalent R function to find
the posterior distribution of the binomial probability π when the observation
distribution of Y |π is binomial (n, π) and we have a beta (a, b) prior for π. The
beta family of priors is the conjugate family for binomial observations. That
means that if we start with one member of the family as the prior distribution,
we will get another member of the family as the posterior distribution. It is
especially easy, for when we start with a beta (a, b) prior, we get a beta (a′, b′)
posterior where a′ = a + y and b′ = b + n − y.

Suppose we have 15 independent trials and each trial results in one of two
possible outcomes, success or failure. The probability of success remains
constant for each trial. In that case, Y |π is binomial (n = 15, π). Suppose that
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we observed y = 6 successes. Let us start with a beta (1, 1) prior. The details
for invoking BinoBP.mac and the equivalent R function are given in Appendix
3 and Appendix 4, respectively. Store π, the prior g(π), the likelihood f(y|π),
and the posterior g(π|y) in columns c1-c4 respectively.

(a) What are the posterior mean and standard deviation?

(b) Find a 95% credible interval for π.

8.2 Repeat part (a) with a beta (2, 4) prior, storing the likelihood and posterior in
c5 and c6.

8.3 Graph both posteriors on the same graph. What do you notice? What do you
notice about the two posterior means and standard deviations? What do you
notice about the two credible intervals for π?

8.4 We will use the Minitab macro BinoGCP.mac or the equivalent R function to
find the posterior distribution of the binomial probability π when the observa-
tion distribution of Y |π is binomial (n, π) and we have a general continuous
prior for π. Suppose the prior has the shape given by

g(π) =




π for π ≤ .2
.2 for .2 < π < .3

.5 − π for .3 < π ≤ .5
0 for .5 < π

.

Store the values of π and prior g(π) in columns c1 and c2, respectively. Suppose
out of n = 20 independent trials, y = 7 successes were observed.

(a) Use BinoGCP.mac or the equivalent R function to determine the posterior
distribution g(π|y). Details for invoking BinoGCP.mac and the equivalent
R function are in Appendix 3 and Appendix 4, respectively.

(b) Use tintegral.mac ind the posterior mean and posterior standard deviation
of π. Details for invoking tintegral.mac and the equivalent R function
are in Appendix 3 and Appendix 4, respectively.

(c) Find a 95% credible interval for π by using tintegral.mac or the equivalent
R function.

8.5 Repeat the previous question with a uniform prior for π.

8.6 Graph the two posterior distributions on the same graph. What do you notice?
What do you notice about the two posterior means and standard deviations?
What do you notice about the two credible intervals for π?



9
Comparing

Bayesian and Frequentist
Inferences for Proportion

The posterior distribution of the parameter given the data gives the complete inference
from the Bayesian point of view. It summarizes our belief about the parameter after we
have analyzed the data. However, from the frequentist point of view there are several
different types of inference that can be made about the parameter. These include point
estimation, interval estimation, and hypothesis testing. These frequentist inferences
about the parameter require probabilities calculated from the sampling distribution
of the data, given the fixed but unknown parameter. These probabilities are based on
all possible random samples that could have occurred. These probabilities are not
conditional on the actual sample that did occur!

In this chapter we will see how we can do these types of inferences using the
Bayesian viewpoint. These Bayesian inferences will use probabilities calculated
from the posterior distribution. That makes them conditional on the sample that
actually did occur.

9.1 FREQUENTIST INTERPRETATION OF PROBABILITY AND
PARAMETERS

Most statistical work is done using the frequentist paradigm. A random sample of
observations is drawn from a distribution with an unknown parameter. The parameter
is assumed to be a fixed but unknown constant. This doesn’t allow any probability
distribution to be associated with it. The only probability considered is the probability

0Introduction to Bayesian Statistics. By William M. Bolstad
ISBN 0-471-27020-2 Copyright c©John Wiley & Sons, Inc.
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distribution of the random sample of size n given the parameter. This explains how the
random sample varies over all possible random samples, given the fixed but unknown
parameter value. The probability is interpreted as long run relative frequency.

Sampling Distribution of Statistic

Let Y1, . . . , Yn be a random sample from a distribution that depends on a parameter
θ. Suppose a statistic S is calculated from the random sample. This statistic can
be interpreted as a random variable, since the random sample can vary over all
possible samples. Calculate the statistic for each possible random sample of size n.
The distribution of these values is called the sampling distribution of the statistic.
It explains how the statistic varies over all possible random samples of size n. Of
course, the sampling distribution also depends on the unknown value of the parameter
θ. We will write this sampling distribution as

f(s|θ) .

However, we must remember that in frequentist statistics, the parameter θ is a fixed but
unknown constant, not a random variable. The sampling distribution measures how
the statistic varies over all possible samples given the unknown fixed parameter value.
This distribution does not have anything to do with the actual data that occurred. It is
the distribution of values of the statistic that could have occurred, given that specific
parameter value. Frequentist statistics uses the sampling distribution of the statistic to
perform inference on the parameter. From a Bayesian perspective, this is a backwards
form of inference.1

This contrasts with Bayesian statistics where the complete inference is the posterior
distribution of the parameter given the actual data that occurred:

g(θ|data) .

Any subsequent Bayesian inference such as a Bayesian estimate or a Bayesian cred-
ible interval is calculated from the posterior distribution. Thus the estimate or the
credible interval depends on the data that actually occurred. Bayesian inference is
straightforward.2

1Frequentist statistics performs inferences in the parameter space, which is the unobservable dimension
of the Bayesian universe, based on a probability distribution in the sample space, which is the observable
dimension.
2Bayesian statistics performs inference in the parameter space based on a probability distribution in the
parameter space.
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9.2 POINT ESTIMATION

The first type of inference we consider is point estimation, where a single statistic is
calculated from the sample data and used to estimate the unknown parameter. The
statistic depends on the random sample, so it is a random variable, and its distribution
is its sampling distribution. If its sampling distribution is centered close to the true but
unknown parameter value θ, and the sampling distribution does not have much spread,
the statistic could be used to estimate the parameter. We would call the statistic an
estimator of the parameter and the value it takes for the actual sample data an estimate.
There are several theoretical approaches for finding frequentist estimators, such as
maximum likelihood estimation (MLE)3 and uniformly minimum variance unbiased
estimation (UMVUE). We will not go into them here. Instead, we will use the sample
statistic that corresponds to the population parameter we wish to estimate, such as
the sample proportion as the frequentist estimator for the population proportion. This
turns out to be the same estimator that would be found using either of the main
theoretical approaches (MLE and UMVUE) for estimating the binomial parameter
π.

From a Bayesian perspective, point estimation means that we would use a sin-
gle statistic to summarize the posterior distribution. The most important number
summarizing a distribution would be its location. The posterior mean, or the poste-
rior median would be good candidates here. We will use the posterior mean as the
Bayesian estimate because it minimizes the posterior mean squared error, as we saw
in the previous chapter. This means it will be the optimal estimator, given our prior
belief and this sample data (i.e., post-data).

Frequentist Criteria for Evaluating Estimators

We don’t know the true value of the parameter, so we can’t judge an estimator from
the value it gives for the random sample. Instead, we will use a criterion based on
the sampling distribution of the estimator that is the distribution of the estimator over
all possible random samples. We compare possible estimators by looking at how
concentrated their sampling distributions are around the parameter value for a range
of fixed possible values. When we use the sampling distribution, we are still thinking
of the estimator as a random variable because we haven’t yet obtained the sample
data and calculated the estimate. This is a pre-data analysis.

Although this "what if the parameter has this value" type of analysis comes from
a frequentist point of view, it can be used to evaluate Bayesian estimators as well.
It can be done before we obtain the data and in Bayesian statistics it is called a
pre-posterior analysis. The procedure is used to evaluate how the estimator performs
over all possible random samples, given that parameter value. We often find that
Bayesian estimators perform very well when evaluated this way, sometimes even
better than frequentist estimators.

3Maximum likelihood estimation was pioneered by R. A. Fisher
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Unbiased Estimators

The expected value of an estimator is a measure of the center of its distribution. This
is the average value that the estimator would have averaged over all possible samples.
An estimator is said to be unbiased if the mean of its sampling distribution is the true
parameter value. That is, an estimator θ̂ is unbiased if and only if

E(θ̂) =

∫
θ̂f(θ̂|θ)dθ̂ = θ ,

where f(θ̂|θ) is the sampling distribution of the estimator θ̂ given the parameter
θ. Frequentist statistics emphasizes unbiased estimators because averaged over all
possible random samples, an unbiased estimator gives the true value. The bias of an
estimator θ̂ is the difference between its expected value and the true parameter value.

bias(θ̂) = E(θ̂) − θ . (9.1)

Unbiased estimators have bias equal to zero.
In contrast, Bayesian statistics does not place any emphasis on being unbiased. In

fact Bayesian estimators are usually biased.

Minimum Variance Unbiased Estimator

An estimator is said to be a minimum variance unbiased estimator if no other unbiased
estimator has a smaller variance. Minimum variance unbiased estimators are often
considered the best estimators in frequentist statistics. The sampling distribution of
a minimum variance unbiased estimator has the smallest spread (as measured by the
variance) of all sampling distributions that have mean equal to the parameter value.

However, it is possible that there may be biased estimators that, on average, are
closer to the true value than the best unbiased estimator. We need to look at a possible
trade-off between bias and variance. Figure 9.1 shows the sampling distributions of
three possible estimators of θ. Estimator 1 and estimator 2 are seen to be unbiased
estimators. Estimator 1 is the best unbiased estimator, since it has the smallest
variance among the unbiased estimators. Estimator 3 is seen to be a biased estimator,
but it has a smaller variance than estimator 1. We need some way of comparison
that includes biased estimators, to find which one will be closest, on average, to the
parameter value.

Mean Squared Error of an Estimator

The (frequentist) mean squared error of an estimator θ̂ is the average squared distance
the estimator is away from the true value:

MS(θ̂) = E(θ̂ − θ)2 (9.2)

=

∫
(θ̂ − θ)2 f(θ̂|θ) dθ̂ .
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1   
2   
3   

θ

Figure 9.1 Sampling distributions of three estimators.

The frequentist mean squared error is calculated from the sampling distribution of
the estimator, which means the averaging is over all possible samples given that fixed
parameter value. It is not the posterior mean square calculated from the posterior
distribution that we introduced in the previous chapter. It turns out that the mean
squared error of an estimator is the square of the bias plus the variance of the estimator:

MS(θ̂) = bias(θ̂)2 + V ar(θ̂) . (9.3)

Thus it gives a better frequentist criterion for judging estimators than the bias or the
variance alone. An estimator that has a smaller mean squared error is closer to the
true value averaged over all possible samples.

9.3 COMPARING ESTIMATORS FOR PROPORTION

Bayesian estimators often have smaller mean squared errors than frequentist estima-
tors. In other words, on average, they are closer to the true value. Thus Bayesian
estimators can be better than frequentist estimators, even when judged by the fre-
quentist criterion of mean squared error.

The frequentist estimator for π is

π̂f =
y

n
,

where y, the number of successes in the n trials, has the binomial (n, π) distribution.
π̂f is unbiased, and V ar(π̂f ) = π×(1−π)

n
. Hence the mean squared error of π̂f

equals

MS(π̂f ) = 02 + V ar(π̂f )
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=
π × (1 − π)

n
.

Suppose we use the posterior mean as the Bayesian estimate for π, where we use
the Beta(1,1) prior (uniform prior). The estimator is the posterior mean, so

π̂B = m′ =
a′

a′ + b′
,

where a′ = 1 + y and b′ = 1 + n − y. We can rewrite this as a linear function of y,
the number of successes in the n trials:

π̂B =
y + 1

n + 2
=

y

n + 2
+

1

n + 2
.

Thus, the mean of its sampling distribution is

nπ

n + 2
+

1

n + 2
,

and the variance of its sampling distribution is

[
1

n + 2

]2

× nπ(1 − π) .

Hence from Equation 9.3, the mean squared error is

MS(π̂B) =

[
nπ

n + 2
× π +

1

n + 2
− π

]2

+

[
1

n + 2

]2

× nπ(1 − π)

=

[
1 − 2π

n + 2

]2

+

[
1

n + 2

]2

× nπ(1 − π) .

For example, suppose π = .4 and the sample size is n = 10. Then

MS(π̂f ) =
.4 × .6

10
= .024

and

MS(π̂B) =

[
1 − 2 × .4

12

]2

+

[
1

12

]2

× 10 × .4 × .6

= .0169 .

Next, suppose π = .5 and n = 10. Then

MS(π̂f ) =
.5 × .5

10
= .025
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Figure 9.2 Mean squared error for the two estimators.

and

MS(π̂B) =

[
1 − 2 × .5

12

]2

+

[
1

12

]2

× 10 × .5 × .5

= .01736 .

We see that, on average (for these two values of π), the Bayesian posterior estimator
is closer to the true value than the frequentist estimator. Figure 9.2 shows the mean
squared error for the Bayesian estimator and the frequentist estimator as a function
of π. We see that over most (but not all) of the range, the Bayesian estimator (using
uniform prior) is better than the frequentist estimator.4

9.4 INTERVAL ESTIMATION

The second type of inference we consider is interval estimation. We wish to find
an interval (l, u) that has a predetermined probability of containing the parameter.
In the frequentist interpretation, the parameter is fixed but unknown, and before the
sample is taken, the interval endpoints are random because they depend on the data.
After the sample is taken, and the endpoints are calculated, there is nothing random,

4The frequentist estimator, π̂f = y

n
, would be Bayesian posterior mean if we used the prior g(π) ∝

π
−1(1 − π)−1. This prior is improper since it does not integrate to 1. An estimator is said to be

admissible if no other estimator has smaller mean squared error over the whole range of possible values.
Wald (1950) showed that Bayesian posterior mean estimators that arose from proper priors are always
admissible. Bayesian posterior mean estimators from improper priors sometimes are admissible, as in this
case.
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so the interval is said to be a confidence interval for the parameter. We know that
a predetermined proportion of intervals calculated for random samples using this
method will contain the true parameter. But it doesn’t say anything at all about the
specific interval we calculate from our data.

In Chapter 8, we found a Bayesian credible interval for the parameter π that has
the probability that we want. Because it is found from the posterior distribution, it
has the coverage probability we want for this specific data.

Confidence Intervals

Confidence intervals are how frequentist statistics tries to find an interval has a high
probability of containing the true value of the parameter θ. A (1 − α) × 100%
confidence interval for a parameter θ is an interval (l, u) such that

P (l ≤ θ ≤ u) = 1 − α .

This probability is found using the sampling distribution of an estimator for the
parameter. There are many possible values of l and u that satisfy this. The most
commonly used criteria for choosing them are (1) equal ordinates (heights) on the
sampling distribution and (2) equal tail area on the sampling distribution. Equal
ordinates will find the shortest confidence interval. However, the equal tail area
intervals are often used because they are easier to find. When the sampling distribution
of the estimator is symmetric, the two criteria will coincide.

The parameter θ is regarded as a fixed but unknown constant. The endpoints l

and u are random variables since they depend on the random sample. When we
plug in the actual sample data that occurred for our random sample and calculate the
values for l and u, there is nothing left that is random. The interval either contains
the unknown fixed parameter or it doesn’t, and we don’t know which is true. The
interval can no longer be regarded as a probability interval.

Under the frequentist paradigm, the correct interpretation is that (1− α)× 100%
of the random intervals calculated this way will contain the true value. Therefore we
have (1 − α) × 100% confidence that our interval does. It is a misinterpretation to
make a probability statement about the parameter θ from the calculated confidence
interval.

Often, the sampling distribution of the estimator used is approximately normal,
with mean equal to the true value. In this case, the confidence interval has the form

estimator ± critical value × standard deviation of the estimator,

where the critical value comes from the standard normal table. For example if n is
large, then the sample proportion

πf =
y

n
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is approximately normal with mean π and standard deviation
√

π(1−π)
n

. This gives
an approximate (1 − α) × 100% equal tail area confidence interval for π:

πf ± zα

2
×

√
πf (1 − πf )

n
. (9.4)

Comparing Confidence and Credible Intervals for π

The probability calculations for the confidence interval are based on the sampling
distribution of the statistic. In other words, how it varies over all possible samples.
Hence the probabilities are pre-data. They do not depend on the particular sample
that occurred. This is in contrast to the Bayesian credible interval calculated from
the posterior distribution that has a direct (degree of belief) probability interpretation
conditional on the observed sample data. The Bayesian credible interval is more
useful to the scientist whose data we are analyzing. It summarizes our beliefs about
the parameter values that could credibly be believed given the observed data that
occurred. In other words, it is post-data. He/she is not concerned about data that
could have occurred but did not.

Example 13 (continued from Chapter 8) Out of a random sample of 100 Hamilton
residents, y=26 said they support building a casino in Hamilton. A frequentist 95 %
confidence interval for π is

.26 ± 1.96

√
.26 × .74

100

= (.174, .346) .

Compare this with the 95% credible intervals for π calculated by the three students
in Chapter 8 and shown in Table 8.3.

9.5 HYPOTHESIS TESTING

The third type of inference we consider is hypothesis testing. Scientists do not like
to claim the existence of an effect where the discrepancy in the data could be due to
chance alone. If they make their claims too quickly, later studies would show their
claim was wrong, and their scientific reputation would suffer.

Hypothesis testing, sometimes called significance testing5, is the frequentist sta-
tistical method widely used by scientists to guard against making claims unjustified
by the data. The nonexistence of the treatment effect is set up as the null hypothesis
that "the shift in the parameter value caused by the treatment is zero." The competing

5Significance testing was developed by R. A. Fisher as an inferential tool to weigh the evidence against a
particular hypothesis. Hypothesis testing was developed by Neymann and Pearson as a method to control
the error rate in deciding between two competing hypotheses. These days, the two terms are used almost
interchangeably, despite their differing goals and interpretations. This continues to cause confusion.
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hypothesis that there is a nonzero shift in the parameter value caused by the treatment
is called the alternative hypothesis. Two possible explanations for the discrepancy
between the observed data and what would be expected under the null hypothesis are
proposed.

1. The null hypothesis is true, and the discrepancy is due to random chance alone.

2. The null hypothesis is false. This causes at least part of the discrepancy.

To be consistent with Ockham’s razor, we will stick with explanation (1), which
has the null hypothesis being true and the discrepancy being due to chance alone,
unless the discrepancy is so large that it is very unlikely to be due to chance alone.
This means that when we accept the null hypothesis as true, it doesn’t mean that we
believe it is literally true. Rather, it means that chance alone remains a reasonable
explanation for the observed discrepancy, so we can’t discard chance as the sole
explanation.

When the discrepancy is too large, we are forced to discard explanation (1) leaving
us with explanation (2), that the null hypothesis is false. This gives us a backward
way to establish the existence of an effect. We conclude the effect exists (the
null hypothesis is false) whenever the probability of the discrepancy between what
occurred and what would be expected under the null hypothesis is too small to be
attributed to chance alone.

Because hypothesis testing is very well established in science, we will show how it
can be done in a Bayesian manner. There are two situations we will look at. The first
is testing a one-sided hypothesis where we are only interested in detecting the effect
in one direction. We will see that in this case, Bayesian hypothesis testing works
extremely well, without the contradictions required in frequentist tests. The Bayesian
test of a one-sided null hypothesis is evaluated from the posterior probability of the
null hypothesis.

The second situation is where we want to detect a shift in either direction. This is
a two-sided hypothesis test, where we test a point hypothesis (that the effect is zero)
against a two-sided alternative. The prior density of a continuous parameter measures
probability density, not probability. The prior probability of the null hypothesis (shift
equal to zero) must be equal to 0. So its posterior probability must also be zero,6

and we cannot test a two-sided hypothesis using the posterior probability of the null
hypothesis. Rather, we will test the credibility of the null hypothesis by seeing
if the null value lies in the credible interval. If the null value does lie within the
credible interval, we cannot reject the null hypothesis, because the null value remains
a credible value.

6We are also warned that frequentist hypothesis tests of a point null hypothesis never "accept" the null
hypothesis, rather, they "can’t reject the null hypothesis."
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9.6 TESTING A ONE-SIDED HYPOTHESIS

The effect of the treatment is included as a parameter in the model. The hypothesis
that the treatment has no effect becomes the null hypothesis the parameter representing
the treatment effect has the null value that corresponds to no effect of the treatment.

Frequentist Test of One-Sided Hypothesis

The probability of the data (or results even more extreme) given that the null hypoth-
esis is true is calculated. If this is below a threshold called the level of significance,
the results are deemed to be incompatible with the null hypothesis, and the null
hypothesis is rejected at that level of significance. This establishes the existence of
the treatment effect. This is similar to a "proof by contradiction." However, because
of sampling variation, complete contradiction is impossible. Even very unlikely
data are possible when there is no treatment effect. So hypothesis tests are actually
more like "proof by low probability." The probability is calculated from the sampling
distribution given the null hypothesis is true. This makes it a pre-data probability.

Example 14 Suppose we wish to determine if a new treatment is better than the
standard treatment. If so, π, the proportion of patients who benefit from the new
treatment, should be better than π0, the proportion who benefit from the standard
treatment. It is known from historical records that π0 = .6. A random group of 10
patients are given the new treatment. Y , the number who benefit from the treatment
will be binomial(n, π). We observe y = 8 patients benefit. This is better than we
would expect if π = .6. But, is it enough better for us to conclude that π > .6 at the
10% level of significance?

The steps are:

1. Set up a null hypothesis about the (fixed but unknown) parameter. For example,
H0 : π ≤ .6. (The proportion who would benefit from the new treatment is
less than or equal to the proportion who benefit from the standard treatment.)
We include all π values less than the null value .6 in with the null hypothesis
because we are trying to determine if the new treatment is better. We have no
interest in determining if the new treatment is worse. We won’t recommend it
unless it is demonstrably better than the standard treatment.

2. The alternative hypothesis is H1 : π > .6. (The proportion who would benefit
from the new treatment is greater than the proportion who benefit from the
standard treatment.)

3. The null distribution of the test statistic is the sampling distribution of the test
statistic, given the null hypothesis is true. In this case, it will be binomial(n, .6)
where n = 10 is the number of patients given the new treatment.

4. We choose level of significance for the test to be as close as possible to α = 5%.
Since y has a discrete distribution, only some values of α are possible, so we
will have to choose a value either just above or just below 5%.
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Table 9.1 Null distribution of Y with a rejection region for a one-sided hypothesis test

Value f(y|π = .6) Region

0 .0001 accept

1 .0016 accept

2 .0106 accept

3 .0425 accept

4 .1115 accept

5 .2007 accept

6 .2508 accept

7 .2150 accept

8 .1209 accept

9 .0403 reject

10 .0060 reject

5. The rejection region is chosen so that it has a probability of α under the null
distribution.7 If we choose the rejection region y ≥ 9, then the α = .0463.
The null distribution with the rejection region for the one-sided hypothesis test
is shown in Table 9.1.

6. If the value of the test statistic for the given sample lies in the rejection region,
then reject the null hypothesis H0 at level α. Otherwise, we can’t reject H0.
In this case, y = 8 was observed. This lies in the acceptance region.

7. The p-value is the probability of getting what we observed, or something even
more unlikely, given the null hypothesis is true. The p-value is put forward as
measuring the strength of evidence against the null hypothesis8. In this case,
the p-value = .1672.

8. If the p-value < α the test statistic lies in the rejection region, and vice versa.
So an equivalent way of testing the hypothesis is to reject if p-value < α9

Looking at it either way, we cannot reject the null hypothesis H0 : π ≤ .6.
y = .8 lies in the acceptance region, and the p-value > .05. The evidence is
not strong enough to conclude that π > .6.

There is much confusion about the p-value of a test. It is not the posterior
probability of the null hypothesis being true given the data. Instead, it is the tail

7This approach is from Neyman and Pearson
8This approach is from R. A. Fisher.
9Both α and p-value are tail areas calculated from the null distribution. However, α represents the long
run rate of rejecting a true null hypothesis, and p-value is looked at as the evidence against this particular
null hypothesis by this particular data set. Using tail areas as simultaneously representing both the long
run and a particular result is inherently contradictory.



TESTING A TWO-SIDED HYPOTHESIS 159

probability calculated using the null distribution. In the binomial case

p-value =
n∑

yobs

f(y|π0) ,

where yobs is the observed value of y. Frequentist hypothesis tests use a probability
calculated on all possible data sets that could have occurred (for the fixed parameter
value), but the hypothesis is about the parameter value being in some range of values.

Bayesian Tests of a One-Sided Hypothesis

We wish to test
H0 : π ≤ π0 versus H1 : π > π0

at the level of significance α using Bayesian methods. We can calculate the posterior
probability of the null hypothesis being true by integrating the posterior density over
the correct region:

P (H0 : π ≤ π0|y) =

∫ π0

0

g(π|y) dπ . (9.5)

We reject the null hypothesis if that posterior probability is less than the level of
significance α. Thus a Bayesian one-sided hypothesis test is a "test by low probabil-
ity" using the probability calculated directly from the posterior distribution of π. We
are testing a hypothesis about the parameter using the posterior distribution of the
parameter. Bayesian one-sided tests use post-data probability.

Example 14 (continued) Suppose we use a beta (1, 1) prior for π. Then given
y = 8, the posterior density is beta (9, 3). The posterior probability of the null
hypothesis is

P (π ≤ .6|y = 8) =

∫ .6

0

Γ(12)

Γ(3)Γ(9)
π2(1 − π)8dπ

= .1189

when we evaluate it numerically. This is not less than .05, so we cannot reject the
null hypothesis at the 5% level of significance 5%. Figure 9.3 shows the posterior
density. The probability of the null hypothesis is the area under the curve to the right
of π = .6.

9.7 TESTING A TWO-SIDED HYPOTHESIS

Sometimes we might want to detect a change in the parameter value in either direction.
This is known as a two-sided test since we are wanting to detect any changes from
the value π0. We set this up as testing the point null hypothesis H0 : π = π0 against
the alternative hypothesis H1 : π �= π0.
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Figure 9.3 Posterior probability of null hypothesis.

Frequentist Test of a Two-Sided Hypothesis

The null distribution is evaluated at π0, and the rejection region is two-sided, as are
p-values calculated for this test.

Example 15 A coin is tossed 15 times, and we observe 10 heads. Are 10 heads out
of 15 tosses enough to determine that the coin is not fair? In other words, is π the
probability of getting a head different than 1

2?
The steps are:

1. Set up the null hypothesis about the fixed but unknown parameter π. It is
H0 : π = .5.

2. The alternative hypothesis is H1 : π �= .5. We are interested in determining a
difference in either direction, so we will have a two-sided rejection region.

3. The null distribution is the sampling distribution of Y when the null hypothesis
is true. It is binomial(n = 15, π = .5).

4. Since Y has a discrete distribution, we choose the level of significance for the
test to be as close to 5% as possible.

5. The rejection region is chosen so that it has a probability of α under the
null distribution. If we choose rejection region {Y ≤ 3} ∪ {Y ≥ 12}, then
α = .0352. The null distribution and rejection region for the two-sided
hypothesis are shown in Table 9.2.

6. If the value of the test statistic lies in the rejection region, then we reject the
null hypothesis H0 at level α. Otherwise, we can’t reject H0. In this case,
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Table 9.2 Null distribution of Y with the rejection region for two-sided hypothesis test

Value f(y|π = .5) Region

0 .0000 reject

1 .0005 reject

2 .0032 reject

3 .0139 reject

4 .0417 accept

5 .0916 accept

6 .1527 accept

7 .1964 accept

8 .1964 accept

9 .1527 accept

10 .0916 accept

11 .0417 accept

12 .0139 reject

13 .0032 reject

14 .0005 reject

15 .0000 reject

y = 10 was observed. This lies in the region where we can’t reject the null
hypothesis. We must conclude that chance alone is sufficient to explain the
discrepancy, so π = .5 remains a reasonable possibility.

7. The p-value is the probability of getting what we got (10) or something more
unlikely, given the null hypothesis H0 is true. In this case we have a two-sided
alternative, so the p-value is the P (Y ≥ 10) + P (Y ≤ 5) = .274. This is
larger than α, so we can’t reject the null hypothesis.

Relationship between two-sided hypothesis tests and confidence inter-
vals. While the null value of the parameter usually comes from the idea of no
treatment effect, it is possible to test other parameter values. There is a close re-
lationship between two-sided hypothesis tests and confidence intervals. If you are
testing a two-sided hypothesis at level α, there is a corresponding (1 − α) × 100%
confidence interval for the parameter. If the null hypothesis

H0 : π = π0

is rejected, then the value π0 lies outside the confidence interval, and vice versa. If
the null hypothesis is accepted (can’t be rejected), then π0 lies inside the confidence
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interval, and vice versa. The confidence interval "summarizes" all possible null
hypotheses that would be accepted if they were tested.

Bayesian Test of a Two-Sided Hypothesis

From the Bayesian perspective, the posterior distribution of the parameter given the
data sums up our entire belief after the data. However, the idea of hypothesis testing
as a protector of scientific credibility is well established in science. So we look
at using the posterior distribution to test a point null hypothesis versus a two-sided
alternative in a Bayesian way.

If we use a continuous prior, we will get a continuous posterior. The probability
of the exact value represented by the point null hypothesis will be zero. We can’t
use posterior probability to test the hypothesis. Instead, we use a correspondence
similar to the one between confidence intervals and hypothesis tests, but with credible
interval instead.

Compute a (1 − α) × 100% credible interval for π. If π0 lies inside the credible
interval, accept (do not reject) the null hypothesis H0 : π = π0, and if π0 lies outside
the credible interval, then reject the null hypothesis.

Example 15 (continued) If we use a uniform prior distribution, the posterior is the
beta(10+1,5+1) distribution. A 95% Bayesian credible interval for π found using
the normal approximation is

11

17
+ 1.96 ×

√
11 × 6

((11 + 6)2 × (11 + 6 + 1))

= .647 ± .221 = (.426, .868) .

The null value π = .5 lies within the credible interval, so we cannot reject the null
hypothesis. It remains a credible value.

Main Points

• The posterior distribution of the parameter given the data is the entire infer-
ence from a Bayesian perspective. Probabilities calculated from the posterior
distribution are post-data because the posterior distribution is found after the
observed data has been taken into the analysis.

• Under the frequentist perspective there are specific inferences about the pa-
rameter: point estimation, confidence intervals, and hypothesis tests.

• Frequentist statistics considers the parameter a fixed but unknown constant.
The only kind of probability allowed is long run relative frequency.

• The sampling distribution of a statistic is its distribution over all possible
random samples given the fixed parameter value. Frequentist statistics is based
on the sampling distribution.
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• Probabilities calculated using the sampling distribution are pre-data because
they are based on all possible random samples, not the specific random sample
we obtained.

• An estimator of a parameter is unbiased if its expected value calculated from
the sampling distribution is the true value of the parameter.

• Frequentist statistics often call the minimum variance unbiased estimator the
best estimator.

• The mean squared error of an estimator measures its average squared distance
from the true parameter value. It is the square of the bias plus the variance.

• Bayesian estimators are often better than frequentist estimators even when
judged by the frequentist criteria such as mean squared error.

• Seeing how a Bayesian estimator performs using frequentist criteria for a range
of possible parameter values is called a pre-posterior analysis, because it can
be done before we obtain the data.

• A (1 − α) × 100% confidence interval for a parameter θ is an interval (l, u)
such that

P (l ≤ θ ≤ u) = 1 − α ,

where the probability is found using the sampling distribution of an estimator
for θ. The correct interpretation is that (1−α)×100% of the random intervals
calculated this way do contain the true value. When the actual data are put
in and the endpoints calculated, there is nothing left to be random. The
endpoints are numbers; the parameter is fixed but unknown. We say that
we are (1 − α) × 100% confident that the calculated interval covers the true
parameter. The confidence comes from our belief in the method used to
calculate the interval. It does not say anything about the actual interval we got
for that particular data set.

• A (1 − α) × 100% Bayesian credible interval for θ is a range of parameter
values that has posterior probability (1 − α).

• Frequentist hypothesis testing is used to determine whether the actual parameter
could be a specific value. The sample space is divided into a rejection region
and an acceptance region such that the probability the test statistic lies in the
rejection region if the null hypothesis is true is less than the level of significance
α. If the test statistic falls into the rejection region, we reject the null hypothesis
at level of significance α.

• Or we could calculate the p-value. If the p-value< α, we reject the null
hypothesis at level α.

• The p-value is not the probability the null hypothesis is true. Rather, it is the
probability of observing what we observed, or even something more extreme,
given that the null hypothesis is true.
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• We can test a one-sided hypothesis in a Bayesian manner by computing the
posterior probability of the null hypothesis. This probability is found by
integrating the posterior density over the null region. If this probability is less
than the level of significance α, then we reject the null hypothesis.

• We cannot test a two-sided hypothesis by integrating the posterior probability
over the null region because, with a continuous prior, the prior probability of
a point null hypothesis is zero, so the posterior probability will also be zero.
Instead, we test the credibility of the null value by observing whether or not
it lies within the Bayesian credible interval. If it does, the null value remains
credible and we can’t reject it.

Exercises

9.1 Let π be the proportion of students at a university who approve the governments
policy on students allowances. The students newspaper is going to take a
random sample of n = 30 students at a university and ask if they approve of
the governments policy on student allowances.

(a) What is the distribution of y, the number who answer "yes"?

(b) Suppose out of the 30 students, 8 answered yes. What is the frequentist
estimate of π.

(c) Find the posterior distribution g(π|y) if we use a uniform prior.

(d) What would be the Bayesian estimate of π?

9.2 The standard method of screening for a disease fails to detect the presence
of the disease in 15% of the patients who actually do have the disease. A
new method of screening for the presence of the disease has been developed.
A random sample of n = 75 patients who are known to have the disease is
screened using the new method. Let π be the probability the new screening
method fails to detect the disease.

(a) What is the distribution of y, the number of times the new screening
method fails to detect the disease?

(b) Of these n = 75 patients, the new method failed to detect the disease in
y = 6 cases. What is the frequentist estimator of π?

(c) Use a beta (1, 6) prior for π. Find g(π|y), the posterior distribution of π.

(d) Find the posterior mean and variance.

(e) If π ≥ .15, then the new screening method is no better than the standard
method. Test

H0 : π ≥ .15 versus H1 : π < .15

at the 5% level of significance in a Bayesian manner.
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9.3 In the study of water quality in New Zealand streams documented in McBride
et al. (2002) a high level of Campylobacter was defined as a level greater than
100 per 100 ml of stream water. n = 116 samples were taken from streams
having a high environmental impact from birds. Out of these y = 11 had a
high Campylobacter level. Let π be the true probability that a sample of water
from this type of stream has a high Campylobacter level.

(a) Find the frequentist estimator for π.

(b) Use a beta (1, 10) prior for π. Calculate the posterior distribution g(π|y).

(c) Find the posterior mean and variance. What is the Bayesian estimator for
π?

(d) Find a 95% Credible interval for π.

(e) Test the hypothesis

H0 : π = .10 versus H1 : π �= .10

at the 5% level of significance.

9.4 In the same study of water quality, n = 145 samples were taken from streams
having a high environmental impact from dairying. Out of these y = 9 had a
high Campylobacter level. Let π be the true probability that a sample of water
from this type of stream has a high Campylobacter level.

(a) Find the frequentist estimator for π.

(b) Use a beta (1, 10) prior for π. Calculate the posterior distribution g(π|y).

(c) Find the posterior mean and variance. What is the Bayesian estimator for
π?

(d) Find a 95% Credible interval for π.

(e) Test the hypothesis

H0 : π = .10 versus H1 : π �= .10

at the 5% level of significance.

9.5 In the same study of water quality, n = 176 samples were taken from streams
having a high environmental impact from sheep farming. Out of these y = 24
had a high Campylobacter level. Let π be the true probability that a sample of
water from this type of stream has a high Campylobacter level.

(a) Find the frequentist estimator for π.

(b) Use a beta (1, 10) prior for π. Calculate the posterior distribution g(π|y).

(c) Find the posterior mean and variance. What is the Bayesian estimator for
π?
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(d) Test the hypothesis

H0 : π ≥ .15 versus H1 : π < .15

at the 5% level of significance.

9.6 In the same study of water quality, n = 87 samples were taken from streams
in municipal catchments. Out of these y = 8 had a high Campylobacter level.
Let π be the true probability that a sample of water from this type of stream
has a high Campylobacter level.

(a) Find the frequentist estimator for π.

(b) Use a beta (1, 10) prior for π. Calculate the posterior distribution g(π|y).

(c) Find the posterior mean and variance. What is the Bayesian estimator for
π?

(d) Test the hypothesis

H0 : π ≥ .10 versus H1 : π < .10

at the 5% level of significance.

Monte Carlo Exercises

9.1 Comparing Bayesian and frequentist estimators for π. In Chapter 1 we
learned that the frequentist procedure for evaluating a statistical procedure,
namely looking at how it performs in the long run, for a (range of) fixed but
unknown parameter values can also be used to evaluate a Bayesian statistical
procedure. This "what if the parameter has this value " type of analysis would
be done before we obtained the data and is called a pre-posterior analysis. It
evaluates the procedure by seeing how it performs over all possible random
samples, given that parameter value. In Chapter 8 we found that the posterior
mean used as a Bayesian estimator minimizes the posterior mean squared error.
Thus it has optimal post-data properties, in other words after making use of
the actual data. We will see that Bayesian estimators have excellent pre-data
(frequentist) properties as well, often better than the corresponding frequentist
estimators.

We will perform a Monte Carlo study approximating the sampling distribution
of two estimators of π. The frequentist estimator we will use is π̂f = y

n
, the

sample proportion. The Bayesian estimator we will use is π̂B = y+1
n+1 which

equals the posterior mean when we used a uniform prior for π. We will compare
the sampling distributions (in terms of bias, variance, and mean squared error)
of the two estimators over a range of π values from 0 to 1. However, unlike the
exact analysis we did in Section 9.3, here we will do a Monte Carlo study. For
each of the parameter values, we will approximate the sampling distribution
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of the estimator by an empirical distribution based on 5000 samples drawn
when that is the parameter value. The true characteristics of the sampling
distribution (mean, variance, mean squared error) are approximated by the
sample equivalent from the empirical distribution. You can use either Minitab
or R for your analysis.

(a) For π = .1, .2, . . . , .9

i. Draw 5000 random samples from binomial (n = 10, π).
ii. Calculate the frequentist estimator π̂f = y

n
for each of the 5000

samples.
iii. Calculate the Bayesian estimator π̂B = y+1

n+2 for each of the 5000
samples.

iv. Calculate the means of these estimators over the 5000 samples, and
subtract π to give the biases of the two estimators. Note that this is
a function of π.

v. Calculate the variances of these estimators over the 5000 samples.
Note that this is also a function of π.

vi. Calculate the mean squared error of these estimators over the 5000
samples. The first way is

MS(π̂) = (bias(π̂))2 + V ar(π̂) .

The second way is to take the sample mean of the squared distance
the estimator is away from the true value over all 5000 samples. Do
it both ways, and see that they give the same result.

(b) Plot the biases of the two estimators versus π at those values and connect
the adjacent points. (Put both estimators on the same graph.)

i. Does the frequentist estimator appear to be unbiased over the range
of π values?

ii. Does the Bayesian estimator appear to be unbiased over the range of
the π values?

(c) Plot the mean squared errors of the two estimators versus π over the range
of π values, connecting adjacent points. (Put both estimators on the same
graph.)

i. Does your graph resemble Figure 9.2?
ii. Over what range of π values does the Bayesian estimator have smaller

mean squared error than that of the frequentist estimator?



10
Bayesian Inference for

Normal Mean

Many random variables seem to follow the normal distribution, at least approximately.
The reasoning behind the central limit theorem suggests why this is so. Any random
variable that is the sum of a large number of similar sized random variables from
independent causes will be approximately normal. The shapes of the individual
random variables "average out" to the normal shape. Sample data from the sum
distribution will be well approximated by a normal. The most widely used statistical
methods are those that have been developed for random samples from a normal
distribution. In this chapter we show how Bayesian inference on a random sample
from a normal distribution is done.

10.1 BAYES’ THEOREM FOR NORMAL MEAN WITH A DISCRETE
PRIOR

For a Single Normal Observation

We are going to take a single observation from the conditional density f(y|µ) that is
known to be normal with known variance σ2. The standard deviation, σ, is the square
root of the variance. There are only m possible values µ1, · · · , µm for the mean. We
choose a discrete prior probability distribution over these values, which summarizes
our prior belief about the parameter, before we take the observation. If we really
don’t have any prior information, we would give all values equal prior probability.

0Introduction to Bayesian Statistics. By William M. Bolstad
ISBN 0-471-27020-2 Copyright c©John Wiley & Sons, Inc.
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We only need to choose the prior probabilities up to a multiplicative constant, since
is only the relative weights we give to the possible values that are important.

The likelihood gives relative weights to all the possible parameter values according
to how likely the observed value was given each parameter value. It looks like
the conditional observation distribution given the parameter, µ, but instead of the
parameter being fixed and the observation varying, we fix the observation at the one
that actually occurred, and vary the parameter over all possible values. We only
need to know it up to a multiplicative constant since the relative weights are all
that is needed to apply Bayes’ theorem. The posterior is proportional to prior times
likelihood, so it equals

g(µ|y) =
prior × likelihood∑
prior × likelihood

.

Any multiplicative constant in either the prior or likelihood would cancel out.

Likelihood of Single Observation

The conditional observation distribution of y|µ is normal with mean µ and variance
σ2, which is known. Its density is

f(y|µ) =
1√
2π σ

e−
1

2σ2 (y−µ)2 .

The likelihood of each parameter value is the value of the observation distribution at
the observed value. The part that doesn’t depend on the parameter µ is the same for
all parameter values, so it can be absorbed into the proportionality constant. The part
that gives the shape as a function of the parameter µ is the important part. Thus the
likelihood shape is given by

f(y|µ) ∝ e−
1

2σ2 (y−µ)2 , (10.1)

where y is held constant at the observed value and µ is allowed to vary over all
possible values.

Table for Performing Bayes’ Theorem

We set up a table to help us find the posterior distribution using Bayes’ theorem.
The first and second columns contain the possible values of the parameter µ and
their prior probabilities. The third column contains the likelihood, which is the
observation distribution evaluated for each of the possible values µi where y is held
at the observed value. This puts a weight on each possible value µi proportional to
the probability of getting the value actually observed if µi is the parameter value.
There are two methods we can use to evaluate the likelihood.
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Table 10.1 Method 1: Finding posterior using likelihood from Table B.3 "ordinates of
normal distribution"

µ Prior z Likelihood Prior × Likelihood Posterior

2.0 .2 -1.2 .1942 .03884 .1238

2.5 .2 -.7 .3123 .06246 .1991

3.0 .2 -.2 .3910 .0782 .2493

3.5 .2 .3 .3814 .07628 .2431

4.0 .2 .8 .2897 .05794 .1847

.31372 1.00

Finding likelihood from the "ordinates of normal distribution" table.
The first method is to find the likelihood from the "ordinates of the normal distribu-
tion" table. Let

z =
y − µ

σ

for each possible value of µ. Z has a standardized normal (0, 1) distribution. The
likelihood can be found by looking up f(z) in the "ordinates of the standard normal
distribution" given in Table B.3 in Appendix B. Note that f(−z) = f(z) because of
standard normal distribution is symmetric about 0 .

Finding the likelihood from the normal density function. The second
method is to use the normal density formula given in Equation 10.1, holding y fixed
at the observed value and varying µ over all possible values.

Example 16 Suppose y|µ is normal with mean µ and known variance σ2 = 1. We
know there are only five possible values for µ. They are 2.0, 2.5, 3.0, 3.5, and 4. We
let them be equally likely for our prior. We take a single observation of y and obtain
the value y = 3.2. Let

z =
y − µ

σ
.

The values for the likelihood f(z) are found in Table B.3, "ordinates of normal
distribution," in Appendix B. Note that f(−z) = f(z) because of standard normal
density is symmetric about 0. The posterior probability is the prior × likelihood
divided by sum of prior × likelihood. The results are shown in Table 10.1.

If we evaluate the likelihood using the normal density formula, the likelihood is
proportional to

e−
1

2σ2 (y−µ)2 ,

where y is held at 3.2 and µ varies over all possible values. Note, we are absorbing
everything that doesn’t depend on µ into the proportionality constant. The posterior
probability is the prior × likelihood divided by sum of prior × likelihood. The results
are shown in Table 10.2. We note that the results agree with what we found before
except for small round-off errors.
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Table 10.2 Method 2: Finding posterior using likelihood from normal density formula

µ Prior Likelihood Prior × Likelihood Posterior

(ignoring constant)

2.0 .2 e−
1
2 (3.2−2.0)2 =.4868 .0974 .1239

2.5 .2 e−
1
2 (3.2−2.5)2 =.7827 .1565 .1990

3.0 .2 e−
1
2 (3.2−3.0)2 =.9802 .1960 .2493

3.5 .2 e−
1
2 (3.2−3.5)2 =.9560 .1912 .2432

4.0 .2 e−
1
2 (3.2−4.0)2 =.7261 .1452 .1846

.7863 1.00

For a Random Sample of Normal Observations

Usually we have a random sample y1, . . . , yn of observations instead of a single
observation. The posterior is always proportional to the prior × likelihood. The
observations in a random sample are all independent of each other, so the joint
likelihood of the sample is the product of the individual observation likelihoods.
This gives

f(y1, . . . , yn|µ) = f(y1|µ) × f(y2|µ) × · · · × f(yn|µ) .

Thus given a random sample1, Bayes’ theorem with a discrete prior is given by

g(µ|y1, . . . , yn) ∝ g(µ) × f(y1|µ) × . . . × f(yn|µ)

We are considering the case where the distribution of each observation yj |µ is normal
with mean µ and variance σ2, which is known.

Finding the posterior probabilities analyzing observations one at a time.
We could analyze the observations one at a time, in sequence y1, . . . , yn , letting the
posterior from the previous observation become the prior for the next observation.
The likelihood of a single observation yj is the column of values of the observation
distribution at each possible parameter value at that observed value. The posterior is
proportional to prior times likelihood.

Example 17 Suppose we take a random sample of four observations from a normal
distribution having mean µ and known variance σ2 = 1. The observations are 3.2,
2.2, 3.6, and 4.1.

1De Finetti introduced a condition weaker than independence called exchangeability. Observations are
exchangeable if the conditional density of the sample f(y1, . . . , yn) is the unchanged for any permutation
of the subscripts. In other words, the order the observations were taken has no useful information.
De Finetti (1991) shows that when the observations are exchangeable, f(y1, . . . , yn) =

∫
v(θ) ×

w(y1|θ) × w(yn|θ) dθ, for some parameter θ where v(θ) is some prior distribution and w(y|θ) is
some conditional distribution. The observations are conditionally independent given θ. The posterior
g(θ) ∝ v(θ) × w(y1|θ) × w(yn|θ). This allows us to treat the exchangeable observations as if they
come from a random sample.
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The possible values of µ are 2.0, 2.5, 3.0, 3.5, and 4.0. Again, we will use the
prior that gives them all equal weight. We want to use Bayes’ theorem to find our
posterior belief about µ given the whole random sample. The posterior equals

g(µ|y) =
prior × likelihood∑
prior × likelihood

.

The results of analyzing the observations one at a time are shown in Table 10.3. This
is clearly a lot of work for a large sample. We will see that it is much easier to use
the whole sample together.

Finding the posterior probabilities analyzing the sample all at once.
The posterior is proportional to the prior × likelihood, and the joint likelihood of the
sample is the product of the individual observation likelihoods. Each observation is
normal, so it has a normal likelihood. This gives the joint likelihood

f(y1, . . . , yn|µ) ∝ e−
1

2σ2 (y1−µ)2 × e−
1

2σ2 (y2−µ)2 × · · · × e−
1

2σ2 (yn−µ)2 .

Adding the exponents gives

f(y1, . . . , yn|µ) ∝ e−
1

2σ2 [(y1−µ)2+(y2−µ)2+···+(yn−µ)2] .

We look at the term in brackets

[(y1 − µ)2 + · · · + (yn − µ)2] = y2
1 − 2y1µ + µ2 + · · · + y2

n − 2ynµ + µ2

and combine similar terms to get

= (y2
1 + · · · + y2

n) − 2µ(y1 + · · · + yn) + nµ2 .

When we substitute this back in, factor out n, and complete the square we get

f(y1, . . . , yn|µ) ∝ e
−

n
2σ2

[
µ2

−2µȳ+ȳ2
−ȳ2+

y2
1
+···+y2

n
n

]

∝ e−
n

2σ2 [µ2
−2µȳ+ȳ2] × e

−
n

2σ2

[
y2
1
+···+y2

n
n −ȳ2

]
.

The likelihood of the normal random sample y1, . . . , yn is proportional
to the likelihood of the sample mean ȳ. When we absorb the part that doesn’t
involve µ into the proportionality constant we get

f(y1, . . . , yn|µ) ∝ e
−

1
2σ2/n

(ȳ−µ)2

.

We recognize that this likelihood has the shape of a normal distribution with mean µ

and variance σ2

n
. We know ȳ, the sample mean, is normally distributed with mean µ

and variance σ2

n
. So the joint likelihood of the random sample is proportional to the

likelihood of the sample mean, which is

f(ȳ|µ) ∝ e
−

1
2σ2/n

(ȳ−µ)2

. (10.2)
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Table 10.3 Analyzing observations one at a time 2

µ Prior1 Likelihood1 prior1 × likelihood1 posterior1
(ignoring constant)

2.0 .2 e−
1
2 (3.2−2.0)2=.4868 .0974 .1239

2.5 .2 e−
1
2 (3.2−2.5)2=.7827 .1565 .1990

3.0 .2 e−
1
2 (3.2−3.0)2=.9802 .1960 .2493

3.5 .2 e−
1
2 (3.2−3.5)2=.9560 .1912 .2432

4.0 .2 e−
1
2 (3.2−4.0)2=.7261 .1452 .1846

.7863

µ Prior2 Likelihood2 prior2 × likelihood2 posterior2
(ignoring constant)

2.0 .1239 e−
1
2 (2.2−2.0)2=.9802 .1214 .1916

2.5 .1990 e−
1
2 (2.2−2.5)2=.9560 .1902 .3002

3.0 .2493 e−
1
2 (2.2−3.0)2=.7261 .1810 .2857

3.5 .2432 e−
1
2 (2.2−3.5)2=.4296 .1045 .1649

4.0 .1846 e−
1
2 (2.2−4.0)2=.1979 .0365 .0576

.6336

µ Prior3 Likelihood3 prior3 × likelihood3 posterior3
(ignoring constant)

2.0 .1916 e−
1
2 (3.6−2.0)2=.2780 .0533 .0792

2.5 .3002 e−
1
2 (3.6−2.5)2=.5461 .1639 .2573

3.0 .2857 e−
1
2 (3.6−3.0)2=.8353 .2386 .3745

3.5 .1649 e−
1
2 (3.6−3.5)2=.9950 .1641 .2576

4.0 .0576 e−
1
2 (3.6−4.0)2=.9231 .0532 .0835

.6731

µ Prior4 Likelihood4 prior4 × likelihood4 posterior4
(ignoring constant)

2.0 .0792 e−
1
2 (4.1−2.0)2=.1103 .0087 .0149

2.5 .2573 e−
1
2 (4.1−2.5)2=.2780 .0715 .1226

3.0 .3745 e−
1
2 (4.1−3.0)2=.5461 .2045 .3508

3.5 .2576 e−
1
2 (4.1−3.5)2=.8352 .2152 .3691

4.0 .0835 e−
1
2 (4.1−4.0)2=.9950 .0838 .1425

.5830 1.0000
2Note: the prior for observation i is the posterior after previous observation i − 1.
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Table 10.4 Analyze the observations all together using likelihood of sample mean

µ Prior1 Likelihoodȳ Prior1 × Likelihoodȳ Posteriorȳ
2.0 .2 e−

1
2×1/4

(3.275−2.0)2=.0387 .0077 .0157

2.5 .2 e−
1

2×1/4
(3.275−2.5)2=.3008 .0602 .1228

3.0 .2 e−
1

2×1/4
(3.275−3.0)2=.8596 .1719 .3505

3.5 .2 e−
1

2×1/4
(3.275−3.5)2=.9037 .1807 .3685

4.0 .2 e−
1

2×1/4
(3.275−4.0)2=.3495 .0699 .1425

.4904 1.000

We can think of this as drawing a single value, ȳ, the sample mean, from the normal
distribution with mean µ and variance σ2

n
. This will make analyzing the random

sample much easier.
We substitute in the observed value of ȳ, the sample mean, and calculate its

likelihood. Then we just find the posterior probabilities using Bayes’ theorem in
only one table. This is much less work !

Example 17 (continued) In the preceding sample the mean ȳ = 3.275. We use the
likelihood of ȳ which is proportional to the likelihood of the whole sample. The
results are shown in Table 10.4. We see that they agree with the previous results
to three figures. The slight discrepancy in the fourth decimal place is due to the
accumulation of round off errors when we analyze the observations one at a time. It
is clearly easier to use ȳ to summarize the sample, and perform the calculations for
Bayes’ theorem only once.3

10.2 BAYES’ THEOREM FOR NORMAL MEAN WITH A CONTINUOUS
PRIOR

We have a random sample y1, · · · , yn from a normal distribution with mean µ and
known variance σ2. It is more realistic to believe that all values of µ are possible,
at least all those in an interval. This means we should use a continuous prior. We
know that Bayes’ theorem can be summarized as posterior proportional to prior
times likelihood

g(µ|y1, · · · , yn) ∝ g(µ) × f(y1, · · · , yn|µ) .

Here we allow g(µ) to be a continuous prior density. When the prior was discrete,
we evaluated the posterior by dividing the prior × likelihood by the sum of the prior
× likelihood over all possible parameter values. Integration for continuous variables

3ȳ is said to be a sufficient statistic for the parameter µ. The likelihood of a random sample y1, · · · , yn

can be replaced by the likelihood of a single statistic only if the statistic is sufficient for the parameter.
One-dimensional sufficient statistics only exist for some distributions, notably those that come from the
one-dimensional exponential family.
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is analogous to summing for discrete variables. Hence we can evaluate the posterior
by dividing the prior × likelihood by the integral of the prior × likelihood over the
whole range of possible parameter values. Thus

g(µ|y1, · · · , yn) =
g(µ) × f(y1, · · · , yn|µ)∫
g(µ) × f(y1, · · · , yn|µ) dµ

. (10.3)

For a normal distribution, the likelihood of the random sample is proportional to the
likelihood of the sample mean, ȳ. So

g(µ|y1, · · · , yn) =
g(µ) × e

−
1

2σ2/n
(ȳ−µ)2

∫
g(µ) × e

−
1

2σ2/n
(ȳ−µ)2

dµ
.

This works for any continuous prior density g(µ). However, it requires an integration,
which may have to be done numerically. We will look at some special cases where
we can find the posterior without having to do the integration. For these cases, we
have to be able to recognize when a density must be normal from the shape given in
Equation 10.1.

Flat Prior Density for µ

We know that the actual values the prior gives to each possible value is not important.
Multiplying all the values of the prior by the same constant would multiply the
integral of the prior times likelihood by the same constant, so it would cancel out,
and we would obtain the same posterior. What is important is that the prior gives the
relative weights to all possible values that we believe before looking at the data.

The flat prior gives each possible value of µ equal weight. It does not favor any
value over any other value, g(µ) = 1. The flat prior is not really a proper prior
distribution since −∞ < µ < ∞, so it can’t integrate to 1. Nevertheless, this
improper prior works out all right. Even though the prior is improper, the posterior
will integrate to 1, so it is proper.

A single normal observation y. Let y be a normally distributed observation
with mean µ and known variance σ2. The likelihood

f(y|µ) ∝ e−
1

2σ2 (y−µ)2 ,

if we ignore the constant of proportionality. Since the prior always equals 1, the
posterior is proportional to this. Rewrite it as

g(µ|y) ∝ e−
1

2σ2 (µ−y)2 .

We recognize from this shape that the posterior is a normal distribution with mean y
and variance σ2.
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A normal random sample y1, . . . yn. In the previous section we showed that
the likelihood of a random sample from a normal distribution is proportional to
likelihood of the sample mean ȳ. We know that ȳ is normally distributed with mean
µ and variance σ2

n
. Hence the likelihood has shape given by

f(ȳ|µ) ∝ e
−

1
2σ2/n

(ȳ−µ)2

,

where we are ignoring the constant of proportionality. Since the prior always equals
1, the posterior is proportional to this. Rewrite it as

g(µ|ȳ) ∝ e
−

1
2σ2/n

(µ−ȳ)2

.

We recognize from this shape that the posterior distribution is normal with mean ȳ

and variance σ2

n
.

Normal Prior Density for µ

Single observation. The observation y is a random variable taken from a normal
distribution with mean µ and variance σ2 which is assumed known. We have a prior
distribution that is normal with mean m and variance s2. The shape of the prior
density is given by

g(µ) ∝ e−
1

2s2
(µ−m)2 ,

where we are ignoring the part that doesn’t involve µ because multiplying the prior
by any constant of proportionality will cancel out in the posterior. The shape of the
likelihood is

f(y|µ) ∝ e−
1

2σ2 (y−µ)2 ,

where we ignore the part that doesn’t depend on µ because multiplying the likelihood
by any constant will cancel out in the posterior. The prior times likelihood is

g(µ) × f(y|µ) ∝ e
−

1
2

[
(µ−m)2

s2
+

(y−µ)2

σ2

]
.

Putting the terms in exponent over the common denominator and expanding them
out gives

∝ e
−

1
2

[
σ2(µ2

−2µm+m2)+s2(y2
−2yµ+µ2)

σ2s2

]
.

We combine the like terms

∝ e
−

1
2

[
(σ2+s2)µ2

−2(σ2m+s2y)µ+m2σ2+y2s2

σ2s2

]

and factor out (σ2 + s2)/(σ2s2). Completing the square and absorbing the part that
doesn’t depend on µ into the proportionality constant, we have

∝ e
−

1
2σ2s2/(σ2+s2)

[
µ2

−2
(σ2m+s2y)

σ2+s2
µ+(

(σ2m+s2y)

σ2+s2
)2

]
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∝ e
−

1
2σ2s2/(σ2+s2)

[
µ−

(σ2m+s2y)

σ2+s2

]2

.

We recognize from this shape that the posterior is a normal distribution having mean
and variance given by

m′ =
(σ2m + s2y)

σ2 + s2
and (s′)2 =

σ2s2

(σ2 + s2)
(10.4)

respectively. We started with a normal(m, s2) prior, and ended up with a nor-
mal[m′, (s′)2] posterior. This shows that the normal(m, s2) distribution is the con-
jugate family for the normal observation distribution with known variance. Bayes’
theorem moves from one member of the conjugate family to another member. Be-
cause of this we don’t need to perform the integration in order to evaluate the posterior.
All that is necessary is to determine the rule for updating the parameters.

Simple updating rule for normal family. The updating rules given in Equation
10.4 can be simplified. First we introduce the precision of a distribution that is the
reciprocal of the variance. Precisions are additive. The posterior precision

1

(s′)2
=

(
σ2s2

σ2 + s2

)−1

=
σ2 + s2

σ2s2
=

1

s2
+

1

σ2
.

Thus the posterior precision equals prior precision plus the observation precision.
The posterior mean is given by

m′ =
(σ2m + s2y)

σ2 + s2
=

σ2

σ2 + s2
× a +

s2

σ2 + s2
× y .

This can be simplified to

m′ =
1/s2

1/σ2 + 1/s2
× a +

1/σ2

1/σ2 + 1/s2
× y .

Thus the posterior mean is the weighted average of the prior mean and the observation,
where the weights are the proportions of the precisions to the posterior precision.

This updating rule also holds for the flat prior. The flat prior has infinite variance,
so it has zero precision. The posterior precision will equal the prior precision

1/σ2 = 0 + 1/σ2 ,

and the posterior variance equals the observation variance σ2. The flat prior doesn’t
have a well-defined prior mean. It could be anything. We note that

0

1/σ2
× anything +

1/σ2

1/σ2
× y = y ,

so the posterior mean using flat prior equals the observation y
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A random sample y1, . . . , yn. A random sample y1, . . . , yn is taken from a
normal distribution with mean µ and variance σ2, which is assumed known. We have
a prior distribution that is normal with mean m and variance s2 given by

g(µ) ∝ e−
1

2s2
(µ−m)2 ,

where we are ignoring the part that doesn’t involve µ because multiplying the prior
by any constant will cancel out in the posterior.

We use the likelihood of the sample mean, ȳ which is normally distributed with
mean µ and variance σ2

n
. The precision of ȳ is ( n

σ2 ). We see that this is the sum of
all the observation precisions for the random sample.

We have reduced the problem to updating given a single normal observation of ȳ,
which we have already solved. Posterior precision equals the prior precision plus the
precision of ȳ.

1

(s′)2
=

1

s2
+

n

σ2
=

σ2 + ns2

σ2s2
. (10.5)

The posterior variance equals the reciprocal of posterior precision. The posterior
mean equals the weighted average of the prior mean and ȳ where the weights are the
proportions of the posterior precision:

m′ =
1/s2

n/σ2 + 1/s2
× m +

n/σ2

n/σ2 + 1/s2
× ȳ . (10.6)

10.3 CHOOSING YOUR NORMAL PRIOR

The prior distribution you choose should match your prior belief. When the observa-
tion is from a normal distribution with known variance, the conjugate family of priors
for µ is the normal(m, s2). If you can find a member of this family that matches your
prior belief, it will make finding the posterior using Bayes’ theorem very easy. The
posterior will also be a member of the same family where the parameters have been
updated by the simple rules given in Equations 10.5 and 10.6. You won’t need to do
any numerical integration.

First, decide on your prior mean m. This is the value your prior belief is centered
on. Then decide on your prior standard deviation s. Think of the points above and
below m that you consider not to be reasonably possible. Divide the distance between
them by 6 to get your prior standard deviation m. This way you will get reasonable
probability over all the region you believe possible.

A useful check on your prior is to consider the "equivalent sample size". Set your
prior variance s2 = σ2/neq and solve for neq . This relates your prior precision to the
precision from a sample. Your belief is of equal importance to a sample of size neq .
If neq is large, it shows you have very strong prior belief about µ. It will take a lot
of sample data to move your posterior belief far from your prior belief. If it is small,
your prior belief is not strong, and your posterior belief will be strongly influenced
by a more modest amount of sample data.
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Arnie's prior 
Barb's prior  
Chuck's prior 

5040302010

Figure 10.1 Arnie’s, Barb’s, and Chuck’s priors.

If you can’t find a prior distribution from the conjugate family that corresponds
to your prior belief, then you should determine your prior belief for a selection of
points over the range you believe possible, and linearly interpolate between them.
Then you can determine your posterior distribution by

g(µ|y1, · · · , yn) =
f(y1, · · · , yn|µ) × g(µ)∫
f(y1, · · · , yn|µ) × g(µ)dµ

.

Example 18 Arnie, Barb, and Chuck are going to estimate the mean length of one-
year-old rainbow trout in a stream. Previous studies in other streams have shown
the length of yearling rainbow trout to be normally distributed with known standard
deviation of 2 cm. Arnie decides his prior mean is 30 cm. He decides that he doesn’t
believe it is possible for a yearling rainbow to be less than 18 cm or greater than 42
cm. Thus his prior standard deviation is 4 cm. Thus he will use a normal(30, 42)
prior. Barb doesn’t know anything about trout, so she decides to use the "flat" prior.
Chuck decides his prior belief is not normal. His prior has a trapezoidal shape. His
prior gives zero weight at 18 cm. It gives weight one at 24 cm, and is level up to 40
cm, and then goes down to zero at 46 cm. He linearly interpolates between those
values. The three priors are shown in Figure 10.1.

They take a random sample of 12 yearling trout from the stream and find the
sample mean ȳ = 32cm. Arnie and Barb find their posterior distributions using the
simple updating rules for the normal conjugate family given by Equations 10.5 and
10.6. For Arnie

1

(s′)2
=

1

42
+

12

22
.
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Arnie's posterior 
Barb's posterior  
Chuck's posterior 

343332313029

Figure 10.2 Arnie’s, Barb’s, and Chuck’s posteriors. (Barb and Chuck have nearly identical
posteriors.)

Solving for this gives his posterior variance (s′)2 = .3265. His posterior standard
deviation is s′ = .5714. His posterior mean is found by

m′ =
1
42

1.57142
× 30 +

12
22

1.57142
= 31.96 .

Barb is using the "flat" prior, so her posterior variance is

(s′)2 =
12

22
= .3333

and her posterior standard deviation is s′ = .5774. Her posterior mean m′ = 32,
the sample mean. Both Arnie and Barb have normal posterior distributions.

Chuck finds his posterior using Equation 10.3 which requires numerical integra-
tion. The three posteriors are shown in Figure 10.2. Since Chuck used a prior that
was flat over the whole region where the likelihood was appreciable, his posterior is
virtually indistinguishable from Barb’s who used the flat improper prior. Arnie who
used an informative prior has a posterior that is also close to Barb’s. This shows that
given the data, the posteriors are similar despite starting from quite different priors.

10.4 BAYESIAN CREDIBLE INTERVAL FOR NORMAL MEAN

The posterior distribution g(µ|y1, · · · , yn) is the inference we make for µ given the
observations. It summarizes our entire belief about the parameter given the data.
Sometimes we want to summarize our posterior belief into a range of values that
we believe cannot be ruled out at some probability level, given the sample data.
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An interval like this is called a Bayesian credible interval. It summarizes the range
of possible values that are credible at that level. There are many possible credible
intervals for a given probability level. Generally, the shortest one is preferred.
However, in some cases it is easier to find the credible interval with equal tail
probabilities.

Known Variance

When y1, . . . , yn is a random sample from a normal (µ, σ2) distribution, the sampling
distribution of ȳ, the sample mean, is normal (µ, σ2/n). Its mean equals that for a
single observation from the distribution, and its variance equals the variance of single
observation divided by sample size. Using either a "flat" prior, or a normal (m, s2)
prior, the posterior distribution of µ given ȳ is normal [m′, (s′)2], where we update
according to the rules:

1. Precision is the reciprocal of the variance.

2. Posterior precision equals prior precision plus the precision of sample mean.

3. Posterior mean is weighted sum of prior mean and sample mean, where the
weights are the proportions of the precisions to the posterior precision.

Our (1 − α) × 100% Bayesian credible interval for µ is

m′ ± zα
2
× s′ , (10.7)

which is the posterior mean plus or minus the z-value times the posterior standard
deviation, where the z-value is found in the standard normal table. Our posterior
probability that the true mean µ lies outside the credible interval is α. Since the
posterior distribution is normal and thus symmetric, the credible interval found using
Equation 10.7 is the shortest, as well as having equal tail probabilities.

Unknown Variance

If we don’t know the variance, we don’t know the precision, so we can’t use the
updating rules directly. The obvious thing to do is to calculate the sample variance

σ̂2 =
1

n − 1

n∑
i=1

(yi − ȳ)2

from the data. Then we use Equations 10.5 and 10.6 to find (s′)2 and m′ where we
use the sample variance σ̂2 in place of the unknown variance σ2.

There is extra uncertainty here, the uncertainty in estimating σ2. We should widen
the credible interval to account for this added uncertainty. We do this by taking the
values from the Student’s t table instead of the standard normal table. The correct
Bayesian credible interval is

m′ ± tα
2
× s′ . (10.8)
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Table 10.5 95% credible intervals

Person Posterior Credible interval

distribution lower upper

Arnie Normal(31.96,.3265) 30.84 33.08

Barb Normal(32.00,.3333) 30.87 33.13

Chuck numerical 30.8 33.1

The t value is taken from the row labelled df = n − 1 (degrees of freedom equals
number of observations minus 1)4.

Nonnormal Prior

When we started with a nonnormal prior, we find the posterior distribution for µ using
Bayes’ theorem where we have to integrate numerically. The posterior distribution
will be nonnormal. We can find a (1 − α) × 100% credible interval by finding a
lower value µl and an upper value µu such that

∫ µu

µl

g(µ|y1, · · · , yn) dµ = 1 − α .

There are many such values. The best choice µl and µu would give us the shortest
possible credible interval. These values also satisfy

g(µl|y1, · · · , yn) = g(µu|y1, · · · , yn) .

Sometimes it is easier to find the credible interval with lower and upper tail areas that
are equal.

Example 18 (continued) Arnie, Barb, and Chuck each calculated their 95% credi-
ble interval from their respective posterior distributions using Equation 10.7. Chuck
had to calculate his numerically from his numerical posterior using the Minitab
macro tintegral.mac. The credible intervals are shown in Table 10.5. Arnie, Barb,
and Chuck end up with slightly different credible intervals because they started with
different prior beliefs. But the effect of the data was much greater than the effect of
their priors and their credible intervals are quite similar.

4The resulting Bayesian credible interval is exactly the same one that we would find if we did the full
Bayesian analysis with σ2 as a nuisance parameter, using the joint prior distribution for µ and σ2 made
up of the same prior for µ|σ2 that we used before ["flat" or normal(m, s2) ]times the prior for σ2 given
by g(σ2) ∝ (σ2)−1 . We would find the joint posterior by Bayes’ theorem. We would find the marginal
posterior distribution of µ by marginalizing out σ2. We would get the same Bayesian credible interval
using Student’s t critical values.
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10.5 PREDICTIVE DENSITY FOR NEXT OBSERVATION

Bayesian statistics has a general method for developing the conditional distribution
of the next random observation, given the previous random sample. This is called
the predictive distribution. This is a clear advantage over frequentist statistics, which
can only determine the predictive distribution for some situations. The problem is
how to combine the uncertainty from the previous sample with the uncertainty in
the observation distribution. The Bayesian approach is called marginalization. It
entails finding the joint posterior for the next observation and the parameter, given the
random sample. The parameter is treated as a nuisance parameter, and the marginal
distribution of the next observation given the random sample is found by integrating
the parameter out of the joint posterior distribution.

Let yn+1 be the next random variable drawn after the random sample y1, . . . , yn.
The predictive density of yn+1|y1, . . . , yn is the conditional density

f(yn+1|y1, . . . , yn) .

This can be found by Bayes’ theorem. y1, . . . , yn, yn+1 is a random sample from
f(y|µ), which is a normal distribution with mean µ and known variance σ2 . The
conditional distribution of the random sample y1, · · · , yn and the next random obser-
vation yn+1 given the parameter µ is

f(y1, . . . , yn, yn+1|µ) = f(y1|µ) × · · · × f(yn|µ) × f(yn+1|µ) .

Let the prior distribution be g(µ) (either flat prior or normal(m, s2) prior). The joint
distribution of the observations and the parameter µ is

g(µ) × f(y1|µ) × . . . × f(yn|µ) × f(yn+1|µ) .

The conditional density of yn+1 and µ given y1, . . . , yn is

f(yn+1, µ|y1, . . . , yn) = f(yn+1|µ, y1, . . . , yn) × g(µ|y1, . . . , yn) .

We have already found that the posterior g(µ|y1, . . . , yn, ) is normal with posterior
precision equal to prior precision plus the precision of ȳ and mean equal to the
weighted average of the prior mean and ȳ where the weights are proportions of the
precisions to the posterior precision. Say it is normal with mean mn and variance s2

n.
The distribution of yn+1 given µ and y1, . . . , yn only depends on µ, because yn+1 is
another random draw from the distribution g(y|µ). Thus the joint posterior (to first
n observations) distribution is

f(yn+1, µ|y1, . . . , yn) = f(yn+1|µ) × g(µ|y1, . . . , yn) .

The conditional distribution we want is found by integrating µ out of the joint
posterior distribution. This is the marginal posterior distribution

f(yn+1|y1, . . . , yn) =

∫
f(yn+1, µ|y1, . . . , yn) dµ

=

∫
f(yn+1|µ) × g(µ|y1, . . . , yn) dµ .
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These are both normal under our assumed model, so

f(yn+1|y1, . . . , yn) ∝
∫

e−
1

2σ2 (yn+1−µ)2e
−

1

2s2n
(µ−mn)2

dµ .

Adding the exponents and combining like terms.

f(yn+1|y1, . . . , yn) ∝
∫

e
−

1
2

[
(µ2

−2µyn+1+y2
n+1

)

σ2 +
(µ2

−2µmn+m2
n)

s2n

]
dµ

∝
∫

e
−

1
2

[
( 1

σ2 + 1

s2n
)µ2

−2(
yn+1

σ2 + mn
s2n

)µ+
y2

n+1

σ2 +
m2

n
s2n

]
dµ .

Factoring out ( 1
σ2 + 1

s2
n
) of the exponent and completing the square

∝
∫

e
−

1

2(σ2s2n)/(σ2+s2n)

[
µ−

(s2nyn+1+σ2mn)

σ2+s2n

]2

×e
−

1

2(σ2s2n)/(σ2+s2n)

[
−

(
s2nyn+1+σ2mn

σ2+s2n

)2

+
s2ny2

n+1
+σ2m2

n

s2n+σ2

]
dµ .

The first line is the only part that depends on µ, and we recognize that it is
proportional to a normal density, so integrating it over its whole range gives a
constant. Reorganizing the second part gives

∝ e
−

1

2(σ2s2n)/(σ2+s2n)

[
(s2ny2

n+1
+σ2m2

n)(σ2+s2n)−(s4ny2
n+1

+2s2nσ2yn+1mn+σ4m2
n)

(σ2+s2n)2

]
,

which simplifies to

∝ e
−

1

2(σ2+s2n)
(yn+1−mn)2

. (10.9)

We recognize this as a normal density with mean mn and variance σ2 + s2
n. The

predictive mean for the observation yn+1 is the posterior mean of µ given the obser-
vations y1, . . . , yn. The predictive variance is the observation variance σ2 plus the
posterior variance of µ given the observations y1, . . . , yn. (Part of the uncertainty in
the prediction is due to the uncertainty in estimating the posterior mean.)

This is one of the advantages of the Bayesian approach. It has a single clear
approach (marginalization) that is always used to construct the predictive distribution.
There is no single clear cut way this can be done in frequentist statistics, although in
many problems such as the normal case we just did, they can come up with similar
results.

Main Points

• Analyzing the observations sequentially one at a time, using the posterior from
the previous observation as the next prior gives the same results as analyzing
all the observations at once using the initial prior.
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• The likelihood of a random sample of normal observations is proportional to
the likelihood of the sample mean.

• The conjugate family of priors for normal observations with known variance
is the normal(m, s2) family.

• If we have a random sample of normal observations and use a normal(m, s2)
prior the posterior is normal[m′, (s′)2], where m′ and (s′)2 are found by the
simple updating rules:

◦ The precision is the reciprocal of the variance.

◦ Posterior precision is the sum of the prior precision and the precision of
the sample.

◦ The posterior mean is the weighted average of the prior mean and the
sample mean, where the weights are the proportions of their precisions
to the posterior precision.

• The same updating rules work for the flat prior, remembering the flat prior has
precision equal to zero.

• A Bayesian credible interval for µ can be found using the posterior distribution.

• If the variance σ2 is not known, we use the estimate of the variance calculated
from the sample, σ̂2, and use the critical values from the Student’s t table where
the degrees of freedom is n − 1, the sample size minus 1. Using the Student’s
t critical values compensates for the extra uncertainty due to not knowing σ2.
(This actually gives the correct credible interval if we used a prior g(σ2) ∝ 1

σ2 ,
and marginalized σ2 out of the joint posterior.)

• The predictive distribution of the next observation is normal(m′, s′2 + σ2).
Its mean is the same as the posterior mean, and its variance is the posterior
variance plus the observation variance. (The posterior variance s′2 allows
for the uncertainty in estimating µ.) The predictive distribution is found by
marginalizing µ out of the joint distribution f(yn+1, µ|y1, . . . , yn).

Exercises

10.1 You are the statistician responsible for quality standards at a cheese factory.
You want the probability that a randomly chosen block of cheese labelled
"1 kg" is actually less than 1 kilogram (1000 grams) to be 1% or less. The
weight (in grams) of blocks of cheese produced by the machine is normal
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(µ, σ2) where σ2 = 32. The weights (in grams) of 20 blocks of cheese are:

994 997 999 1003 994

998 1001 998 996 1002

1004 995 994 995 998

1001 995 1006 997 998

You decide to use a discrete prior distribution for µ with the following proba-
bilities:

Value Prior Probability

991 .05

992 .05

993 .05

994 .05

995 .05

996 .05

997 .05

998 .05

999 .05

1000 .05

1001 .05

1002 .05

1003 .05

1004 .05

1005 .05

1006 .05

1007 .05

1008 .05

1009 .05

1010 .05

(a) Calculate your posterior probability distribution.

(b) Calculate your posterior probability that µ < 1000.

(c) Should you adjust the machine?

10.2 The city health inspector wishes to determine the mean bacteria count per liter
of water at a popular city beach. Assume the number of bacteria per liter of
water is normal with mean µ and standard deviation known to be σ = 15. She
collects 10 water samples and found the bacteria counts to be:
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175 190 215 198 184

207 210 193 196 180

She decides that she will use a discrete prior distribution for µ with the follow-
ing probabilities:

Value Prior Probability

160 .125

170 .125

180 .125

190 .125

200 .125

210 .125

220 .125

230 .125

(a) Calculate her posterior distribution.

10.3 The standard process for making a polymer has mean yield 35%. A chemical
engineer has developed a modified process. He runs the process on 10 batches
and measures the yield (in percent) for each batch. They are:

38.7 40.4 37.2 36.6 35.9

34.7 37.6 35.1 37.5 35.6

Assume that yield is normal (µ, σ2) where the standard deviation σ = 3 is
known.

(a) Use a normal (30, 102) prior for µ. Find the posterior distribution.

(b) The engineer wants to know if the modified process increases the mean
yield. Set this up as a hypothesis test stating clearly the null and alternative
hypotheses.

(c) Perform the test at the 5% level of significance.

10.4 An engineer takes a sample of 5 steel I beams from a batch, and measures the
amount they sag under a standard load. The amounts in mm are:

5.19 4.72 4.81 4.87 4.88

It is known that the sag is normal (µ, σ2) where the standard deviation σ = .25
is known.
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(a) Use a normal (5, .52) prior for µ. Find the posterior distribution.

(b) For a batch of I beams to be acceptable, the mean sag under the standard
load must be less than 5.20. ( µ < 5.20). Set this up as a hypothesis test
stating clearly the null and alternative hypotheses.

(c) Perform the test at the 5% level of significance.

10.5 New Zealand was the last major land mass to be settled by human beings.
The Shag River Mouth in Otago (lower South Island), New Zealand, is one
of the sites of early human inhabitation that New Zealand archeologists have
investigated, in trying to determine when the Polynesian migration to New
Zealand occurred and documenting local adaptations to New Zealand condi-
tions. Petchey and Higham (2000) describe the Radiocarbon dating of well-
preserved barracouta thyrsites atun bones found at the Shag River Mouth site.
They obtained four acceptable samples, which were analyzed by the Waikato
University Carbon Dating Unit. Assume that the conventional radiocarbon age
(CRA) of a sample follows the normal (µ, σ2) distribution, where the standard
deviation σ = 40 is known. The observations are:

Observation 1 2 3 4

CRA 940 1040 910 990

(a) Use a normal (1000, 2002) prior for µ. Find the posterior distribution
g(µ|y1, . . . , y4).

(b) Find a 95% credible interval for µ.

(c) To find the θ, the calibrated date, the Stuiver, Reimer, and Braziunas
marine curve was used. We will approximate this curve with the linear
function

θ = 2203 − .835 × µ .

Find the posterior distribution of θ given y1, . . . , y4.

(d) Find a 95% credible interval for θ, the calibrated date.

10.6 The Houhora site in Northland (top of North Island) New Zealand is one of
the sites of early human inhabitation that New Zealand archeologists have
investigated, in trying to determine when the Polynesian migration to New
Zealand occurred and documenting local adaptations to New Zealand con-
ditions. Petchey (2000) describe the Radiocarbon dating of well-preserved
snapper Pagrus auratus bones found at the Houhora site. They obtained four
acceptable samples which were analyzed by the Waikato University Carbon
Dating Unit. Assume that the conventional radiocarbon age (CRA) of a sample
follows the normal (µ, σ2) distribution where the standard deviation σ = 40
is known. The observations are:

Observation 1 2 3 4

CRA 1010 1000 950 1050
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(a) Use a normal (1000, 2002) prior for µ. Find the posterior distribution
g(µ|y1, . . . , y4).

(b) Find a 95% credible interval for µ.

(c) To find the θ, the calibrated date, the Stuiver, Reimer, Braziunas marine
curve was used. We will approximate this curve with the linear function

θ = 2203 − .835 × µ .

Find the posterior distribution of θ given y1, . . . , y4.

(d) Find a 95% credible interval for θ, the calibrated date.

Computer Exercises

10.1 Use the Minitab macro NormDP.mac to find the posterior distribution of the
mean µ when we have a random sample of observations from a normal (µ, σ2),
where σ2 is known, and we have a discrete prior for µ.

Suppose we have a random sample of n = 10 observations from a normal
(µ, σ2) distribution where it is known σ2 = 4. The random sample of obser-
vations are:

3.07 7.51 5.95 6.83 8.80 4.19 7.44 7.06 9.67 6.89

We only allow that there are 12 possible values for µ, 4.0, 4.5, 5.0, 5.5, 6.0,
6.5, 7.0, 7.5, 8.0, 8.5, 9.0, and 9.5. If we don’t favor any possible value over
another, so we give all possible values of µ probability equal to 1

12 . The prior
distribution is:

µ g(µ)

4.0 .083333

4.5 .083333

5.0 .083333

5.5 .083333

6.0 .083333

6.5 .083333

7.0 .083333

7.5 .083333

8.0 .083333

8.5 .083333

9.0 .083333

9.5 .083333
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Use NormDP.mac to find the posterior distribution g(µ|y1, . . . , y10). Details
for invoking NormDP.mac are in Appendix 3.

10.2 Suppose another 6 random observations come later. They are:

6.22 3.99 3.67 6.35 7.89 6.13

Use NormDP.mac to find the posterior distribution, where we will use the
posterior after the first ten observations y1, . . . , y10, as the prior for the next
six observations y11, . . . , y16.

10.3 Instead, combine all the observations together to give a random sample of size
n = 16, and use NormDP.mac to find the posterior distribution where we go
back the original prior that had all the possible values equally likely. What do
the results of the last two problems show us?

10.4 Instead of thinking of a random sample of size n = 16, let’s think of the sample
mean as a single observation from its distribution.

(a) What is the distribution of ȳ? Calculate the observed value of ȳ?

(b) Use NormDP.mac to find the posterior distribution g(µ|ȳ).

(c) What does this show us?

10.5 We will use the Minitab macro NormNP.mac to find the posterior distribution
of the normal mean µ when we have a random sample of size n from a
normal (µ, σ2) distribution with known σ2, and we use a normal (m, s2)
prior for µ. The normal family of priors is the conjugate family for normal
observations. That means that if we start with one member of the family as the
prior distribution, we will get another member of the family as the posterior
distribution. It is especially easy; if we start with a normal (m, s2) prior, we
get a normal (m′, (s′)2) posterior where (s′)2 and m′ are given by

1

(s′)2
=

1

s2
+

n

σ2

and

m′ =
1/s2

1/(s′)2
× m +

n/σ2

1/(s′)2
× ȳ

respectively. Suppose the n = 15 observations from a normal (µ, σ2 = 42) are:

26.8 26.3 28.03 28.5 26.3

31.9 28.5 27.2 20.9 27.5

28.0 18.6 22.3 25.0 31.5

Use NormNP.mac to find the posterior distribution g(µ|y1, . . . , y15, where
we choose a normal (m = 20, s2 = 52) prior for µ. The details for invoking
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NormNP.mac are in Appendix 3. Store the likelihood and posterior in c3 and
c4, respectively.

(a) What are the posterior mean and standard deviation?

(b) Find a 95% credible interval for µ.

10.6 Repeat part (a) with a normal (30, 42) prior, storing the likelihood and posterior
in c5 and c6.

10.7 Graph both posteriors on the same graph. What do you notice? What do you
notice about the two posterior means and standard deviations? What do you
notice about the two credible intervals for π?

10.8 We will use the Minitab macro NormGCP.mac to find the posterior distribution
of the normal mean µ when we have a random samples of size n of normal
(µ, σ2) observations with known σ2 = 22, and we have a general continuous
prior for µ. Suppose the prior has the shape given by

g(µ) =




µ for 0 < µ ≤ 3
3 for 3 < µ < 5

8 − µ for 5 < µ ≤ 8
0 for 8 < µ

Store the values of µ and prior g(µ) in column c1 and c2, respectively. Suppose
the random sample of size n = 16 is:

4.09 4.68 1.87 2.62 5.58 8.68 4.07 4.78

4.79 4.49 5.85 5.90 2.40 6.27 6.30 4.47

(a) Use NormGCP.mac to determine the posterior distribution g(µ|y1, . . . , y16).
Details for invoking NormGCP.mac are in Appendix 3.

(b) Use tintegral.mac to find the posterior mean and posterior standard devi-
ation of µ. Details for invoking tintegral.mac are in Appendix 3.

(c) Find a 95% credible interval for µ by using tintegral.mac.



11
Comparing

Bayesian and Frequentist
Inferences for Mean

Making inferences about the population mean when we have a random sample from
a normally distributed population is one of the most widely encountered situations
in statistics. From the Bayesian point of view, the posterior distribution sums up
our entire belief about the parameter given the sample data. It really is the complete
inference. However, from the frequentist perspective, there are several distinct types
of inference that can be done: point estimation, interval estimation, and hypothesis
testing. Each of these types of inference can be performed in a Bayesian manner,
where they would be considered summaries of the complete inference, the posterior.
In Chapter 9 we compared the Bayesian and frequentist inferences about the pop-
ulation proportion π. In this chapter we look at the frequentist methods for point
estimation, interval estimation, and hypothesis testing about µ, the mean of a normal
distribution, and compare them with their Bayesian counterparts using frequentist
criteria.

11.1 COMPARING FREQUENTIST AND BAYESIAN POINT
ESTIMATORS

A frequentist point estimator for a parameter is a statistic that we use to estimate the
parameter. The simple rule we use to determine a frequentist estimator for µ is to use

0Introduction to Bayesian Statistics. By William M. Bolstad
ISBN 0-471-27020-2 Copyright c©John Wiley & Sons, Inc.
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the statistic that is the sample analog of the parameter to be estimated. So we use the
sample mean ȳ to estimate the population mean µ.1

In Chapter 9 we learned that frequentist estimators for unknown parameters are
evaluated by considering their sampling distribution. In other words, we look at the
distribution of the estimator over all possible samples. A commonly used criterion
is that the estimator be unbiased. That is, the mean of its sampling distribution is
the true unknown parameter value. The second criterion is that the estimator have
small variance in the class of all possible unbiased estimators. The estimator that
has the smallest variance in the class of unbiased estimators is called the minimum
variance unbiased estimator and is generally preferred over other estimators from
the frequentist point of view.

When we have a random sample from a normal distribution, we know that the
sampling distribution of ȳ is normal with mean µ and variance σ2

n
. The sample mean,

ȳ, turns out to be the minimum variance unbiased estimator of µ.
We take the mean of the posterior distribution to be the Bayesian estimator for µ:

µ̂B = E(µ|y1, · · · , yn) =
1/s2

n/σ2 + 1/s2
× m +

n/σ2

n/σ2 + 1/s2
× ȳ .

We know that the posterior mean minimizes the posterior mean square. This means
that µ̂B is the optimum estimator in the post-data setting. In other words, it is the
optimum estimator for µ given our sample data and using our prior.

We will compare its performance to that of µ̂f = ȳ under the frequentist assump-
tion that the true mean µ is a fixed but unknown constant. The probabilities will be
calculated from the sampling distribution of ȳ. In other words, we are comparing the
two estimators for µ in the pre-data setting.

The posterior mean is a linear function of the random variable ȳ, so its expected
value is

E(µ̂B) =
1/s2

n/σ2 + 1/s2
× m +

n/σ2

n/σ2 + 1/s2
× µ .

The bias of the posterior mean is its expected value minus the true parameter value,
which simplifies to

σ2

ns2 + σ2
(m − µ) .

The posterior mean is a biased estimator of µ. The bias could only be 0 if our prior
mean coincides with the unknown true value. The probability of that happening is
0. The bias increases linearly with the distance the prior mean m is from the true
unknown mean µ. The variance of the posterior mean is

[
n/σ2

n/σ2 + 1/s2

]2

×
σ2

n
=

s2

ns2 + σ2
σ2

1The maximum likelihood estimator is the value of the parameter that maximizes the likelihood function.
It turns out that ȳ is the maximum likelihood estimator of µ for a normal random sample.
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Figure 11.1 Biases of Arnold’s, Beth’s, and Carol’s estimators.

and is seen to be clearly smaller than σ2

n
, which is the variance of the frequentist

estimator µ̂f = ȳ. The mean squared error of an estimator combines both the bias
and the variance into a single measure:

MS(µ̂B) = bias2 + V ar(µ̂) .

The frequentist estimator µ̂f = ȳ is an unbiased estimator of µ, so its mean
squared error equals its variance:

MS(µ̂f ) =
σ2

n
.

When there is prior information, we will see that the Bayesian estimator has smaller
mean squared error over the range of µ values that are realistic.

Example 19 Arnold, Beth, and Carol want to estimate the mean weight of "1 kg"
packages of milk powder produced at a dairy company. The weight in individual
packages is subject to random variation. They know that when the machine is adjusted
properly, the weights are normally distributed with mean 1015 grams, and standard
deviation 5 gm. They are going to base their estimate on a sample of size 10. Arnold
decides to use a normal prior with mean 1000 gm and standard deviation 20 gm.
Beth decides she will use a normal prior with mean 1015 and standard deviation
15. Carol decides she will use a "flat" prior. They calculate the bias, variance, and
mean squared error of their estimators for various values of µ to see how well they
perform.

Figure 11.1 shows that only Carol’s prior will give an unbiased Bayesian estimator.
Her posterior Bayesian estimator corresponds exactly to the frequentist estimator
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Figure 11.2 Mean-squared errors of Arnold’s, Beth’s, and Carol’s estimators.

µ̂f = ȳ, since she used the "flat" prior. In Figure 11.2 we see the ranges over which
the Bayesian estimators have smaller MS than the frequentist estimator. In that range
they will be closer to the true value, on average, than the frequentist estimator. The
realistic range is the target mean (1015) plus or minus 3 standard deviations (5)
which is from 1000 to 1030.

Although both Arnold and Beth’s estimators are biased since they are using the
Bayesian approach, they have smaller mean squared error over the feasible range
than Carol’s estimator (which equals the ordinary frequentist estimator). Since they
have smaller mean squared error, on average, they will be closer to the true value in
the feasible range. In particular, Beth’s estimator seems to offer substantially better
performance over this range.

11.2 COMPARING CONFIDENCE AND CREDIBLE INTERVALS FOR
MEAN

Frequentist statisticians compute confidence intervals for the parameter µ to deter-
mine an interval that "has a high probability of containing the true value." Since they
are done from the frequentist perspective, the parameter µ is considered a fixed but
unknown constant. The coverage probability is found from the sampling distribution
of an estimator, in this case ȳ, the sample mean. The sampling distribution of ȳ is
normal with mean µ and variance σ2. We know before we take the sample that ȳ is
a random variable, so we can make the probability statement about ȳ:

P

(
µ − zα

2
×

σ
√

n
< ȳ < µ + zα

2
×

σ
√

n

)
= 1 − α ,



COMPARING CONFIDENCE AND CREDIBLE INTERVALS FOR MEAN 197

where zα

2
is the value from the standard normal table having tail area α

2
. We rearrange

this probability statement to have µ in the middle. The upper inequality in the first
statement becomes the lower inequality in the second statement, and vice versa:

P

(
ȳ − zα

2
×

σ
√

n
< µ < ȳ + zα

2
×

σ
√

n

)
= 1 − α .

The endpoints of the interval are random because they depend on ȳ, which is the
random variable in this interpretation. The parameter µ is considered a fixed but
unknown constant. So the correct interpretation is that (1 − α) × 100% of the
intervals calculated this way will contain the true value. When we take our random
sample and calculate ȳ, there is nothing random left to attach a probability to. The
actual interval we calculate either contains the true value or it does not. Only we
don’t know which is true. So we say that we are (1 − α) × 100% confident that the
interval we calculated using the observed value of ȳ,

ȳ ± zα

2
×

σ
√

n
, (11.1)

does contain the true value. Our confidence comes from the sampling distribution of
the statistic. It does not come from the actual sample values we used to calculate the
endpoints of the confidence interval. Sometimes we write the confidence interval as(

ȳ − zα

2
×

σ
√

n
, ȳ + zα

2
×

σ
√

n

)
.

This contrasts with the Bayesian credible interval for µ that we calculated in the
previous chapter. The probability statement we make is from the posterior distribution
of the parameter µ given the sample data y1, · · · , yn. It is conditional on the actual
sample data we obtained. The probability given in the statement is our probability
given the actual sample. It is a legitimate probability statement, since µ is considered
random. But it is subjective because we constructed it using our subjective prior.
Someone else who started with a different prior would end up with a (slightly)
different credible interval.

Relationship between Frequentist Confidence Interval and Bayesian
Credible Interval from "Flat" Prior

With a flat prior for µ, the posterior mean equals m′ = ȳ, and the posterior vari-
ance equals (s′)2 = σ2/n. So for this case the Bayesian credible interval and the
frequentist confidence interval will have the form(

ȳ − zα

2
×

σ
√

n
< µ < ȳ + zα

2
×

σ
√

n

)
.

However, they have different interpretations.
The frequentist interpretation is that µ is fixed. The endpoints of the random

interval are calculated using a probability statement on the sampling distribution of
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the statistic ȳ. There is no randomness left after the actual sample data have been
used to calculate the endpoints. No probability statements can be made about the
actual calculated interval. The confidence level (1 − α) × 100% associated with the
interval means that (1− α)× 100% of the random intervals calculated this way will
contain the true unknown parameter, so we are that (1 − α) × 100% confident that
the one we calculate does.

The Bayesian interpretation lets µ be a random variable, so probability statements
are allowed. The credible interval is calculated from the posterior distribution given
the actual sample data that occurred. The credible interval has the stated conditional
probability of containing µ, given the data.

Scientists are not interested in what would happen with hypothetical repetitions
of the experiment giving all possible data sets. The only data set that matters is
the one that occurred. They find direct probability statements about the parameter,
conditional on their actual data set to be the most useful. Scientists often take
the confidence interval given by the frequentist statistician and misinterpret it as a
probability interval for the parameter given the data. The statistician knows this is
interpretation is not the correct one but lets the scientist make the misinterpretation.
The correct interpretation is scientifically useless.

Fortunately for frequentist statisticians, when they allow their clients to make
the probability interpretation from the confidence interval for the mean of a normal
distribution, µ, they can get away with it. Their interval is equivalent to the Bayesian
credible interval from a "flat" prior, which allows the probability interpretation in this
case

Example 18 (continued) Previous studies have determined that the length of year-
ling trout have a normal (µ, σ2 = 22) distribution. Arnie, Barb, and Chuck obtained
a random sample of 12 yearling trout. The sample mean ȳ = 32 cm. The 95%
confidence interval for µ is given by

ȳ ± z.025 ×
σ
√

n
= 32 ± 1.96 ×

2
√

12
= (30.87, 33.13) .

Compare this with the 95% credible intervals they found in Table 10.5. We see that
it is the same as the credible interval Barb found because she used the "flat" prior.

11.3 TESTING A ONE-SIDED HYPOTHESIS ABOUT A NORMAL MEAN

Often we get data from a new population similar to a population we already know
about. For instance, the new population may be the set of all possible outcomes of an
experiment, where we have changed one of the experimental factors from its standard
value to a new value. We know the mean value of the standard population is µ0.
We assume each observation from the new population is normal (µ, σ2) where σ2

is known, and that the observations are independent of each other. The question we
want to answer is, Is the mean µ for the new population greater than the mean of the
standard population? A one-sided hypothesis test attempts to answer that question.
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We consider there are two possible explanations to any discrepancy between the
observed data and µ0.

1. The mean of the new population is less than or equal to the mean of the standard
population, and any discrepancy is due to chance alone.

2. The mean of the new population is greater than the mean of the standard
population and at least part of the discrepancy is due to this fact.

Hypothesis testing is a way to protect our credibility by making sure that we don’t
reject the first explanation unless it has probability less than our chosen level of
significance α. Note that we set up the positive answer to the question we are asking
as the alternative hypothesis. The null hypothesis will be the negative answer to the
question. We will compare the frequentist and Bayesian approaches.

Frequentist One-Sided Hypothesis Test about µ

As we saw in Chapter 9, frequentist tests are based on the sampling distribution of
a statistic. This makes the probabilities pre-data in that they arise from all possible
random samples that could have occurred. The steps are:

1. Set up the null and alternative hypothesis

H0 : µ ≤ µ0 versus H0 : µ > µ0 .

Note the alternative hypothesis is the change in the direction we are interested
in detecting. Any change in the other direction gets lumped into the null
hypothesis. (We are trying to detect µ > µ0. If µ < µ0, it is not of any interest
to us, so those values get included in the null hypothesis.)

2. The null distribution of ȳ is normal (µ0,
σ2

n
). This is the sampling distribution

of ȳ when the null hypothesis is true. Hence the null distribution of the
standardized variable

z =
ȳ − µ0

σ/
√

n

will be normal (0, 1).

3. Choose a level of significance α. Commonly this is .10, .05, or .01.

4. Determine the rejection region. This is a region that has probability α when
the null hypothesis is true (µ = µ0). When α = .05, the rejection region is
z > 1.645. This is shown in Figure 11.3.

5. Take the sample data and calculate ȳ. If the value falls in the rejection region,
we reject the hypothesis at level of significance α = .05, else we can’t reject
the null hypothesis.
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Figure 11.3 Null distribution of z =
ȳ−µ0
σ/

√

n
with rejection region for one-sided frequentist

hypothesis test at 5% level of significance.

6. Another way to perform the test is to calculate the p-value which is the proba-
bility of observing what we observed, or something even more extreme, given
the null hypothesis H0 : µ = µ0 is true:

p-value = P

(
Z ≥

ȳ − µ0

σ/
√

n

)
. (11.2)

If p-value≤ α, then we reject the null hypothesis, else we can’t reject it.

Bayesian One-Sided Hypothesis Test about µ

The posterior distribution g(µ|y1, · · · , yn) summarizes our entire belief about the
parameter, after viewing the data. Sometimes we want to answer a specific question
about the parameter. This could be, Given the data, can we conclude the parameter
µ is greater than µ0? The value µ0 ordinarily comes from previous experience. If
the parameter is still equal to that value, then the experiment has not demonstrated
anything new that requires explaining. We would lose our scientific credibility if we
go around concocting explanations for effects that may not exist. The answer to the
question can be resolved by testing

H0 : µ ≤ µ0 versus H1 : µ > µ0 .

This is an example of a one-sided hypothesis test. We decide on a level of significance
α that we wish to use. It is the probability below which we will reject the null
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hypothesis. Usually α is small, for instance, .10, .05, .01, .005, or .001. Testing
a one-sided hypothesis in Bayesian statistics is done by calculating the posterior
probability of the null hypothesis:

P (H0 : µ ≤ µ0|y1, . . . , yn) =

∫ µ0

−∞
g(µ|y1, . . . , yn) dµ . (11.3)

When the posterior distribution g(µ|y1, . . . , yn) is normal(m′, s′2) this can easily be
found from standard normal tables.

P (H0 : µ ≤ µ0|y1, . . . , yn) = P

(
µ − m′

s′
≤

µ0 − m′

s′

)
(11.4)

= P

(
Z ≤

µ0 − m′

s′

)
,

where Z is a standard normal random variable. If the probability is less than our
chosen α, we reject the null hypothesis and can conclude that µ > µ0. Only then can
we search for an explanation of why µ is now larger than µ0.

Example 18 (continued from Chapter 10.) Arne, Barb, and Chuck read in a jour-
nal that the mean length of yearling rainbow trout in a typical stream habitat is 31
cm. The each decide to determine if the mean length of trout in the stream they are
researching is greater than that by testing

H0 : µ ≤ 31 versus H1 : µ > 31

at the α = 5% level. For one-sided Bayesian hypothesis tests, they calculate the
posterior probability of the null hypothesis. Arnie and Barb have normal posteriors,
so they use Equation 11.4. Chuck has a nonnormal posterior that he calculated
numerically. He calculates the posterior probability of the null hypothesis using
Equation 11.3, and evaluates it numerically using the Minitab macro tintegral.mac.
The results of the Bayesian hypothesis tests are shown in Table 11.1.

They also decide that they will perform the corresponding frequentist hypothesis
test of

H0 : µ ≤ 31 versus H1 : µ > 31

and compare the results. The null distribution of z = ȳ−31

σ/
√

n
and the correct rejection

region are given in Figure 11.3. For this data, z = 32−31

2/
√

12
= 1.732. This lies in the

rejection region, hence the null hypothesis is rejected at the 5% level. The other way
we could perform this frequentist hypothesis test is to calculate the p-value using
Equation 11.3. For these data,

p-value = P

(
Z >

32 − 31

2/
√

12

)
= P (Z > 1.732)
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Table 11.1 Results of Bayesian one-sided hypothesis tests

Person Posterior P (µ ≤ 31|y1, . . . , yn)

Arnie normal(31.96, .57142) P (Z ≤ 31−31.96
.5714

) =.0465 reject

Barb normal(32.00, .57742) P (Z ≤ 31−32

.5774
) =.0416 reject

Chuck numerical
∫

31

∞ g(µ|y1, . . . , yn)dµ =.0489 reject

which equals .0416 from the standard normal table in Appendix B (Table B.2). This
is less than the level of significance α, so the null hypothesis is rejected, same as
before2.

11.4 TESTING A TWO-SIDED HYPOTHESIS ABOUT A NORMAL MEAN

Sometimes the question we want to have answered is, Is the mean for the new
population µ, the same as the mean for the standard population which we know
equals µ0? A two-sided hypothesis test attempts to answer this question. We are
interested in detecting a change in the mean, in either direction. We set this up as

H0 : µ = µ0 versus H1 : µ �= µ0 . (11.5)

The null hypothesis is known as a point hypothesis. This means that, it is true only
for the exact value µ0. This is only a single point along the number line. At all the
other values in the parameter space the null hypothesis is false. When we think of
the infinite number of possible parameter values in an interval of the real line, we
see that the it is impossible for the null hypothesis to be literally true. There are an
infinite number of values that are extremely close to µ0 but eventually differ from µ0

when we look at enough decimal places. So rather than testing whether we believe
the null hypothesis to actually be true, we are testing whether the null hypothesis is
in the range that could be true.

Frequentist Two-Sided Hypothesis Test About µ

1. The null and alternative hypothesis are set up as in Equation 11.5. Note that
we are trying to detect a change in either direction.

2. The null distribution of the standardized variable

z =
ȳ − µ0

σ/
√

n

will be normal (0, 1).

2We note that in this case, the p-value equals Barb’s probability of the null hypothesis because she used
the "flat" prior. For the normal case, the p-value can be interpreted as the posterior probability of the null
hypothesis when the noninformative "flat" prior was used. However, it is not generally true that p-value
has any meaning in the Bayesian perspective.
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Figure 11.4 Null distribution of z =
ȳ−µ0
σ/

√

n
with rejection region for two-sided frequentist

hypothesis test at 5% level of significance.

3. Choose α, the level of significance. This is usually a low value such as .10,
.05, .01, or .001.

4. Determine the rejection region. This is a region that has probability = α when
the null hypothesis is true. For a two-sided hypothesis test, we have a two-sided
rejection region. When α = .05, the rejection region is |z| > 1.96. This is
shown in Figure 11.4.

5. Take the sample and calculate z = ȳ−µ0

σ/
√

n
. If it falls in the rejection region,

reject the null hypothesis at level of significance α, else we can’t reject the null
hypothesis.

6. Another way to do the test is to calculate the p-value which is the probability
of observing what we observed, or something even more extreme than what
we observed, given the null hypothesis is true. Note that the p-value includes
probability of two tails:

p-value = P

(
Z < −

∣∣∣∣ ȳ − µ0

σ/
√

n

∣∣∣∣
)

+ P

(
Z >

∣∣∣∣ ȳ − µ0

σ/
√

n

∣∣∣∣
)

.

If p-value≤ α, then we can reject the null hypothesis, otherwise we can’t reject
it.
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Relationship between two-sided hypothesis test and confidence inter-
val. We note that the rejection region for the two-sided test at level α is

z =

∣∣∣∣ ȳ − µ0

σ/
√

n

∣∣∣∣ > zα

2
,

and this can be manipulated to give either

µ0 < ȳ − zα

2
×

σ
√

n
or µ0 < ȳ + zα

2
×

σ
√

n
.

We see that if we reject H0 : µ = µ0 at the level α, then µ0 lies outside the
(1 − α) × 100% confidence interval for µ. Similarly we can show that if we accept
H0 : µ = µ0 at level α, then µ0 lies inside (1 − α) × 100% confidence interval for
µ. So the confidence interval contains all those values of µ0 that would be accepted
if tested for.

Bayesian Two-Sided Hypothesis Test about µ

If we wish to test the two-sided hypothesis

H0 : µ = µ0 versus H1 : µ �= µ0

in a Bayesian manner, and we have a continuous prior, we can’t calculate the posterior
probability of the null hypothesis as we did for the one-sided hypothesis. Since we
have a continuous prior, we have a continuous posterior. We know that the probability
of any specific value of a continuous random variable always equals 0. The posterior
probability of the null hypothesis H0 : µ = µ0 will equal zero. This means we can’t
test this hypothesis by calculating the posterior probability of the null hypothesis and
comparing it to α.

Instead, we calculate a (1−α)× 100% credible interval for µ using our posterior
distribution. If µ0 lies inside the credible interval, we conclude that µ0 still has
credibility as a possible value. In that case we will not reject the null hypothesis
H0 : µ = µ0, so we consider that it is credible that there is no effect. (However,
we realize it has zero probability of being exactly true if we look at enough decimal
places.) There is no need to search for an explanation of a nonexistent effect.
However, if µ0 lies outside the credible interval we conclude that µ0 does not have
credibility as a possible value, and we will reject the null hypothesis. Then it is
reasonable to attempt to explain why the mean has shifted from µ0 for this experiment.

Main Points

• When we have prior information on the values of the parameter that are realistic,
we can find a prior distribution so that the mean of the posterior distribution of
µ (the Bayesian estimator) has a smaller mean squared error than the sample
mean (the frequentist estimator) over the range of realistic values. This means
that on the average, it will be closer to the true value of the parameter.
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• A confidence interval for µ is found by inverting a probability statement for
ȳ, and plugging in the sample value to compute the endpoints. It is called a
confidence interval because there is nothing left to be random, so no probability
statement can be made after the sample value is plugged in.

• The interpretation of a (1−α)× 100% frequentist confidence interval for µ is
that 1 − α) × 100% of the random intervals calculated this way would cover
the true parameter, so we are (1 − α) × 100% confident that the interval we
calculated does.

• A (1 − α) × 100% Bayesian credible interval is an interval such that the
posterior probability it contains the random parameter is (1 − α) × 100%.

• This is more useful to the scientist because he/she is only interested in his/her
particular interval.

• The (1 − α) × 100% frequentist confidence interval for µ corresponds to the
(1−α)×100% Bayesian credible interval for µ when we used the "flat prior."
So, in this case, frequentist statisticians can get away with misinterpreting their
confidence interval for µ as a probability interval.

• In the general, misinterpreting a frequentist confidence interval as a probability
interval for the parameter will be wrong.

• Hypothesis testing is how we protect our credibility, by not attributing an effect
to a cause if that effect could be due to chance alone.

• If we are trying to detect an effect in one direction, say µ > µ0, we set this up
as the one-sided hypothesis test

H0 : µ ≤ µ0 versus H1 : µ > µ0 .

Note that the alternative hypothesis contains the effect we wish to detect. The
null hypothesis is that the mean is still at the old value (or is changed in the
direction we aren’t interested in detecting).

• If we are trying to detect an effect in either direction, we set this up as the
two-sided hypothesis test

H0 : µ = µ0 versus H1 : µ �= µ0 .

The null hypothesis contains only a single value µ0 and is called a point
hypothesis.

• Frequentist hypothesis tests are based on the sample space.

• The level of significance α is the low probability we allow for rejecting the
null hypothesis when it is true. We choose α.
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• A frequentist hypothesis test divides the sample space into a rejection region,
and an acceptance region such that the probability the test statistic lies in the
rejection region if the null hypothesis is true is less than the level of significance
α. If the test statistic falls into the rejection region we reject the null hypothesis
at level of significance α.

• Or we could calculate the p-value. If the p-value< α, we reject the null
hypothesis at level α.

• The p-value is not the probability the null hypothesis is true. Rather it is the
probability of observing what we observed, or even something more extreme,
given the null hypothesis is true.

• We can test a one-sided hypothesis in a Bayesian manner by computing the
posterior probability of the null hypothesis by integrating the posterior density
over the null region. If this probability is less than the level of significance α,
then we reject the null hypothesis.

• We cannot test a two-sided hypothesis by integrating the posterior probability
over the null region because with a continuous prior, the prior probability of
a point null hypothesis is zero, so the posterior probability will also be zero.
Instead, we test the credibility of the null value by observing whether or not
it lies within the Bayesian credible interval. If it does, the null value remains
credible and we can’t reject it.

Exercises

11.1 A statistician buys a pack of 10 new golf balls, and drops each golf ball from
a height of one meter, and measures the height in centimeters it returns on the
first bounce. The ten values are:

79.9 80.0 78.9 78.5 75.6 80.5 82.5 80.1 81.6 76.7
Assume y, the height (in cm) a golf ball bounces when dropped from a one
meter height is normal (µ, σ2), where the standard deviation σ = 2.

(a) Assume a normal (75, 102) prior for µ. Find the posterior distribution of
µ.

(b) Calculate a 95% Bayesian credible interval for µ.

(c) Perform a Bayesian test of the hypothesis

H0 : µ ≥ 80 versus H1 : µ < 80

at the 5% level of significance.

11.2 The statistician buys ten used balls that have been recovered from a water
hazard. He drops each from a height of one meter and measures the height in
centimeters it returns on the first bounce. The values are:
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73.1 71.2 69.8 76.7 75.3 68.0 69.2 73.4 74.0 78.2
Assume y, the height (in cm) a golf ball bounces when dropped from a one
meter height is normal (µ, σ2), where the standard deviation σ = 2.

(a) Assume a normal (75, 102) prior for µ. Find the posterior distribution of
µ.

(b) Calculate a 95% Bayesian credible interval for µ.

(c) Perform a Bayesian test of the hypothesis

H0 : µ ≥ 80 versus H1 : µ < 80

at the 5% level of significance.

11.3 The local consumer watchdog group was concerned about the cost of elec-
tricity to residential customers over the New Zealand winter months (Southern
Hemisphere). They took a random sample of 25 residential electricity accounts
and looked at the total cost of electricity used over the three months of June,
July, and August. The costs were:

514 536 345 440 427
443 386 418 364 483
506 385 410 561 275
306 294 402 350 343
480 334 324 414 296

Assume that the amount of electricity used over the three months by a residential
account is normal (µ, σ2), where the known standard deviation σ = 80.

(a) Use a normal (325, 802) prior for µ. Find the posterior distribution for
µ.

(b) Find a 95% Bayesian credible interval for µ.

(c) Perform a Bayesian test of the hypothesis

H0 : µ = 350 versus H1 : µ �= 350

at the 5% level.

(d) Perform a Bayesian test of the hypothesis

H0 : µ ≤ 350 versus H1 : µ > 350

at the 5% level.

11.4 A medical researcher collected the systolic blood pressure reading for a ran-
dom sample of n = 30 female students under the age of 21 who visited the
Student’s Health Service. The blood pressures are:

120 122 121 108 133 119 136 108 106 105

122 139 133 115 104 94 118 93 102 114

123 125 124 108 111 134 107 112 109 125
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Assume that systolic blood pressure comes from a normal (µ, σ2) distribution
where the standard deviation σ = 12 is known.

(a) Use a normal (120, 152) prior for µ. Calculate the posterior distribution
of µ.

(b) Find a 95% Bayesian credible interval for µ.

(c) Suppose we had not actually known the standard deviation σ. Instead,
the value σ̂ = 12 was calculated from the sample and used in place of the
unknown true value. Recalculate the 95% Bayesian credible interval.



12
Bayesian Inference for

Difference between Means

Comparisons are the main tool of experimental science. When there is uncertainty
present due to observation errors or experimental unit variation, comparing observed
values can’t establish the existence of a difference because of the uncertainty within
each of the observations. Instead, we must compare the means of the two distributions
the observations came from. In many cases the distributions are normal, so we are
comparing the means of two normal distributions. There are two experimental
situations that the data could arise from.

The most common experimental situation is where there are independent random
samples from each distribution. The treatments have been applied to different random
samples of experimental units. The second experimental situation is where the
random samples are paired. It could be that the two treatments have been applied
to the same set of experimental units (at separate times). The two measurements on
the same experimental unit cannot be considered independent. Or it could be that
the experimental units were formed into pairs of similar units, and one of each pair
randomly assigned to each treatment group. Again, the two measurements in the
same pair cannot be considered independent. We say the observations are paired.
The random samples from the two populations are dependent.

In Section 12.1 we look at how to analyze data from independent random samples.
If the treatment effect is an additive constant, we get equal variances for the two
distributions. If the treatment effect is random, not constant, we get unequal variances
for the two distributions. In Section 12.2 we investigate the case where we have
independent random samples from two normal distributions with equal variances. In

0Introduction to Bayesian Statistics. By William M. Bolstad
ISBN 0-471-27020-2 Copyright c©John Wiley & Sons, Inc.
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Section 12.3, we investigate the case where we have independent random samples
from two normal distributions with unequal variances. In Section 12.4 we investigate
how to find the difference between proportions using the normal approximation,
when we have independent random samples. In Section 12.5 we investigate the case
where we have paired samples.

12.1 INDEPENDENT RANDOM SAMPLES FROM TWO NORMAL
DISTRIBUTIONS

We may want to determine whether or not a treatment is effective in increasing
growth rate in lambs. We know that lambs vary in their growth rate. Each lamb
in a flock is randomly assigned to either the treatment group or the control group
that will not receive the treatment. The assignments are done independently. This is
called a completely randomized design, and we discussed it in Chapter 2. The reason
the assignments are done this way is that any differences among lambs enters the
treatment group and control group randomly. There will be no bias in the experiment.
On average, both groups have been assigned similar groups of lambs over the whole
range of the flock. The distribution of underlying growth rates for lambs in each
group is assumed to be normal with the same means and variances σ2. The means
and variances for the two groups are equal because the assignment is done randomly.

The mean growth rate for a lamb in the treatment group, µ1, equals the mean
underlying growth rate plus the treatment effect for that lamb. The mean growth rate
for a lamb in the control group, µ2, equals the mean underlying growth rate plus
zero, since the control group doesn’t receive the treatment. Adding a constant to a
random variable doesn’t change the variance, so if the treatment effect is constant
for all lambs, the variances of the two groups will be equal. We call that an additive
model. If the treatment effect is different for different lambs, the variances of the two
groups will be unequal. This is called a nonadditive model.

If the treatment is effective, µ1 will be greater than µ2. In this chapter we will
develop Bayesian methods for inference about the difference between means µ1−µ2

for both additive and nonadditive models.

12.2 CASE 1: EQUAL VARIANCES

We often assume the treatment effect is the same for all units. The observed value for
a unit given the treatment is the mean for that unit plus the constant treatment effect.
Adding a constant doesn’t change the variance, so the variance of the treatment group
is equal to the variance of the control group. That sets up an additive model.

When the Variance Is Known

Suppose we know the variance σ2. Since we know the two samples are independent
of each other, we will use independent priors for both means. They can either be
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normal (m1, s
2
1) and normal(m2, s

2
2) priors, or we can use flat priors for one or both

of the means.
Because the priors are independent, and the samples are independent, the posteriors

are also independent. The posterior distributions are

µ1|y11, · · · , yn11 ∼ Normal(m′

1, (s
′

1)
2)

and
µ2|y12, · · · , yn22 ∼ Normal(m′

2, (s
′

2)
2) ,

where the m′

1, (s
′

1)
2,m′

2, and (s′2)
2 are found using the simple updating formulas

given by Equations 10.5 and 10.6.
Since µ1|y11, · · · , yn11 and µ2|y12, · · · , yn22 are independent of each other, we

can use the rules for mean and variance of a difference between independent random
variables. This gives the posterior distribution of µd = µ1 − µ2. It is

µd|y11, · · · , yn11, y12, · · · , yn22 ∼ Normal(m′

d, (s
′

d)
2) ,

where m′

d = m′

1 − m′

2, and (s′d)
2 = (s′1)

2 + (s′2)
2). We can use this posterior

distribution to make further inferences about the difference between means µ1 − µ2.

Credible interval for difference between means, known equal variance
case. The general rule for finding a (1−α)×100% Bayesian credible interval when
the posterior distribution is normal (m′, (s′)2) is to take the posterior mean ± critical
value × posterior standard deviation. When the observation variance (or standard
deviation) is assumed known, the critical value comes from the standard normal table.
In that case the (1 − α) × 100% Bayesian credible interval for µd = µ1 − µ2 is

m′

d ± zα

2
× s′d . (12.1)

This can be written as

m′

1 − m′

2 ± zα

2
×

√
(s′1)

2 + (s′2)
2 . (12.2)

Thus, given the data, the probability that µ1 − µ2 lies between the endpoints of the
credible interval equals (1 − α) × 100%.

Confidence interval for difference between means, known equal vari-
ance case. The frequentist confidence interval for µd = µ1 − µ2 when the two
distributions have equal known variance is given by

ȳ1 − ȳ2 ± zα

2
× σ

√
1

n1
+

1

n2
. (12.3)

This is the same formula as the Bayesian credible interval would be if we had
used independent "flat" priors for µ1 and µ2, but the interpretations are different.
The endpoints of the confidence interval are what is random under the frequentist
viewpoint. (1 − α) × 100% of the intervals calculated using this formula would
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contain the fixed, but unknown value µ1 − µ2. We would have that confidence that
the particular interval we calculated using our data contains the true value.

Example 20 In Example 3 (Chapter 3), we looked at two series of measurements
Michelson made on the speed of light, in 1879 and 1882, respectively. The data are
shown in Table 3.1. (The measurements are figures given plus 299,000.) Suppose we
assume each speed of light measurement is normally distributed with known standard
deviation 100. Let us use independent normal (m, s2) priors for the 1879 and 1882
measurements, where m = 300, 000 and s2 = 5002.

The posterior distributions of µ1879 and µ1882 can be found using the updating
rules. For µ1879 they give

1

(s′1879)
2

=
1

5002
+

20

1002
= .002004 ,

so (s′1879)
2 = 499, and

m′

1879 =
1

5002

.002004
× 300000 +

20
1002

.002004
× (299000 + 909) = 299909 .

Similarly, for µ1882 they give

1

(s′1882)
2

=
1

5002
+

23

1002
= .002304 ,

so (s′1882)
2 = 434, and

m′

1882 =
1

5002

.002304
× 300000 +

23
1002

.002304
× (299000 + 756) = 299757 .

The posterior distribution of µd = µ1879 − µ1882 will be normal (m′

d, (s
′

d)
2) where

m′

d = 299909 − 299757 = 152

and
(s′d)

2 = 499 + 434 = 30.52 .

The 95% Bayesian credible interval for µd = µ1879 − µ1882 is

152 ± 1.96 × 30.5 = (92.1, 211.9) .

One-sided Bayesian hypothesis test. If we wish to determine whether or not
the treatment mean µ1 is greater than the control mean µ2, we will use hypothesis
testing. We test the null hypothesis

H0 : µd ≤ 0 versus H1 : µd > 0

where µd = µ1 − µ2 is the difference between the two means. To do this test
in a Bayesian manner, we calculate the posterior probability of the null hypoth-
esis P (µd ≤ 0|data) where data includes the observations from both samples
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y11, . . . , yn11 and y12, . . . , yn22. Standardizing by subtracting the mean and dividing
by the standard deviation gives

P (µd ≤ 0|data) = P

(
µd − m′

d

s′d
≤ 0 − m′

d

s′d

)
(12.4)

= P

(
Z ≤ 0 − m′

d

s′d

)
,

where Z has the standard normal distribution. We find this probability in Table B.2
in Appendix B. If it is less than α, we can reject the null hypothesis at that level.
Then we can conclude that µ1 is indeed greater than µ2 at that level of significance.

Two-sided Bayesian hypothesis test. We can’t test the two-sided hypothesis

H0 : µ1 − µ2 = 0 versus H1 : µ1 − µ2 �= 0

in a Bayesian manner by calculating the posterior probability of the null hypothesis.
It is a point null hypothesis since it is only true for a single value µd = µ1 − µ2 = 0.
When we used the continuous prior, we got a continuous posterior, and the probability
that any continuous random variable takes on any particular value always equals 0.

Instead, we use the credible interval for µd. If 0 lies in the interval, we cannot
reject the null hypothesis and 0 remains a credible value for the difference between
the means. However, if 0 lies outside the interval, then 0 is no longer a credible value
at the significance level α.

Example 20 (continued) The 95% Bayesian credible interval for µd = µ1879 −
µ1882 is (92.1, 211.9). 0 lies outside the interval; hence we reject the null hypothesis
that the means for the two measurement groups were equal, and conclude that they are
different. This shows that there was a bias in Michelson’s first group of measurements,
which was very much reduced in the second group of measurements.

When the Variance Is Unknown and Flat Priors Are Used

Suppose we use independent "flat" priors for µ1 and µ2. Then (s′1)
2 = σ2

n1
, (s′2)

2 =
σ2

n2
, m′

1 = ȳ1 and m′

2 = ȳ2.

Credible interval for difference between means, unknown equal variance
case. If we knew the variance σ2 the credible interval could be written as

ȳ1 − ȳ2 ± zα

2
× σ

√
1

n1
+

1

n2
.

However, we don’t know σ2. We will have to estimate it from the data. We can
get an estimate from each of the samples. The best thing to do is to combine these
estimates to get the pooled variance estimate

σ̂2
p =

∑n1

i=1(yi1 − ȳ1)
2 +

∑n2

j=1(yj2 − ȳ2)
2

n1 + n2 − 2
. (12.5)
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Since we used the estimated σ̂2
p instead of the unknown true variance σ2, the credible

interval should be widened to allow for the additional uncertainty. We will get the
critical value from the Student’s t table with n1 + n2 − 2 degrees of freedom. The
approximate (1 − α) × 100% Bayesian credible interval for µ1 − µ2 is

ȳ1 − ȳ2 ± tα

2
× σ̂p

√
1

n1
+

1

n2
, (12.6)

where the critical value comes from the Student’s t table with n1 + n2 − 2 degrees
of freedom1.

Confidence interval for difference between means, unknown equal vari-
ance case. The frequentist confidence interval for µd = µ1 − µ2 when the two
distributions have equal unknown variance is

ȳ1 − ȳ2 ± tα

2
× σ̂p

√
1

n1
+

1

n2
, (12.7)

where the critical value again comes from the Student’s t table with n1 + n2 − 2
degrees of freedom. The confidence interval has exactly the same form as the
Bayesian credible interval when we use independent "flat" priors for µ1 and µ2. Of
course, the interpretations are different.

The frequentist has (1− α)× 100% confidence that the interval contains the true
value of the difference because (1 − α) × 100% of the random intervals calculated
this way do contain the true value. The Bayesian interpretation is that given the data
from the two samples, the posterior probability the random parameter µ1 − µ2 lies
in the interval is (1 − α).

In this case the scientist who misinterprets the confidence interval for a probability
statement about the parameter gets away with it, because it actually is a probability
statement using independent flat priors. It is fortunate for frequentist statisticians
that their most commonly used techniques (confidence intervals for means and pro-
portions) are equivalent to Bayesian credible intervals for some specific prior2. Thus
a scientist who misinterpret his/her confidence interval as a probability statement,
can do so in this case, but he/she is implicitly assuming independent flat priors. The

1Actually, we are treating the unknown σ
2 as a nuisance parameter, and using an independent prior

g(σ2) ∝ 1
σ2 for it. We find the marginal posterior distribution of µ1 − µ2 from the joint posterior of

µ1 − µ2 and σ
2 by integrating out the nuisance parameter. The marginal posterior will be Student’s t

with n1 + n2 − 2 degrees of freedom instead of normal. This gives us the credible interval with the z

critical value replaced by the t critical value. We see that our approximation gives us the correct credible
interval for these assumptions.
2In the case of a single random sample from a normal distribution, frequentist confidence intervals are
equivalent to Bayesian credible intervals with flat prior for µ. In the case of independent random samples
from normal distributions having equal unknown variance σ

2, confidence intervals for the difference
between means are equivalent to Bayesian credible intervals with independent flat priors for µ1 and µ2,
and the improper prior g(σ) ∝ σ

−1 for the nuisance parameter.
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only loss that the scientist will have incurred is he/she didn’t get to use any prior
information he/she may have had3.

One-sided Bayesian hypothesis test. If we want to test

H0 : µd ≤ 0 versus H1 : µd > 0

when we assume that the two random samples come from normal distributions having
the same unknown variance σ2, and we use the pooled estimate of the variance σ̂2

p in
place of the unknown σ2 and assume independent "flat" priors for the means µ1 and
µ2, we calculate the posterior probability of the null hypothesis using Equation 12.4,
but instead of finding the probability in the standard normal table, we find it from the
Student’s t distribution with n1 + n2 − 2 degrees of freedom. We could calculate it
using Minitab or R, or alternatively, we could find values that bound this probability
in the Student’s t table.

Two-sided Bayesian hypothesis test. When we assume both samples come
from normal distributions with equal unknown variance σ2, and we use the pooled
estimate of the variance σ̂2

p in place of the unknown variance σ2 and assume inde-
pendent "flat" priors, we can test the two-sided hypothesis

H0 : µ1 − µ2 = 0 versus H1 : µ1 − µ2 �= 0

using the credible interval for µ1 −µ2 given in Equation 12.6. There are n1 +n2 −2
degrees of freedom. If 0 lies in the credible interval, we cannot reject the null
hypothesis, and 0 remains a credible value for the difference between the means.
However, if 0 lies outside the interval, then 0 is no longer a credible value at the
significance level α.

12.3 CASE 2: UNEQUAL VARIANCES

When the Variances Are Known

In this section we will look at a nonadditive model, but with known variances. Let
y11, . . . , yn11 be a random sample from normal distribution having mean µ1 and
known variance σ2

1 . Let y12, . . . yn22 be a random sample from normal distribution
having mean µ2 and known variance σ2

2 . The two random samples are independent
of each other.

We use independent priors for µ1 and µ2. They can be either normal priors or "flat"
priors. Since the samples are independent, and the priors are independent, we can find
each posterior independently of the other. We find these using the simple updating
formulas given in Equations 10.5 and 10.6. The posterior of µ1|y11, · · · , yn11 is

3Frequentist techniques such as the confidence intervals used in many other situations do not have Bayesian
interpretations. Interpreting the confidence interval as the basis for a probability statement about the
parameter would be completely wrong in those situations.
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normal[m′

1, (s
′

1)
2]. The posterior of µ2|y12, · · · , yn22 is normal[m′

2, (s
′

2)
2]. The

posteriors are independent since the priors are independent and the samples are
independent. The posterior distribution of µd = µ1 − µ2 is normal with mean equal
to the difference of the posterior means, and variance equal to the sum of the posterior
variances.

(µd|y11, · · · , yn11, y12, · · · , yn22) ∼ Normal[m′

d, (s
′

d)
2] ,

where m′

d = m′

1 − m′

2 and (s′d)
2 = (s′1)

2 + (s′2)
2

Credible interval for difference between means, known unequal variance
case. A (1−α)×100% Bayesian credible interval for µd = µ1−µ2, the difference
between means is

m′

d ± zα

2
× (s′d) , (12.8)

which can be written as

m′

1 − m′

2 ± zα

2
×

√
(s′1)

2 + (s′2)
2 . (12.9)

Note these are identical to Equations 12.1 and 12.2.

Confidence interval for difference between means, known unequal vari-
ance case. The frequentist confidence interval for µd = µ1 − µ2 in this case
would be

ȳ1 − ȳ2 ± zα

2
×

√
σ2

1

n1
+

σ2
2

n2
. (12.10)

Note that this is identical to the Bayesian credible interval we would get if we had
used flat priors for both µ1 and µ2. However, the interpretations are different.

When the Variances Are Unknown

When the variances are unequal and unknown, each of them will have to be estimated
from the sample data

σ̂2
1 =

1

n1 − 1

n1∑
i=1

(yi1 − ȳ1)
2 and σ̂2

2 =
1

n2 − 1

n2∑
i=1

(yi2 − ȳ2)
2 .

These estimates will be used in place of the unknown true values in the simple
updating formulas. This adds extra uncertainty. To allow for this, we should use the
Student’s t table to find the critical values. However, it is no longer straightforward
what degrees of freedom should be used. Satterthwaite suggested that the adjusted
degrees of freedom be (

σ̂2
1

n1
+

σ̂2
2

n2

)2

(σ̂2
1/n1)2

n1+1 +
(σ̂2

2/n2)2

n2+1

rounded down to the nearest integer.
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Credible interval for difference between means, unequal unknown vari-
ances. When we use the sample estimates of the variances in place of the true
unknown variances in Equations 10.5 and 10.6, an approximate (1 − α) × 100%
credible interval for µd = µ1 − µ2 is given by

m′

1 − m′

2 ± tα

2
×

√
(s′1)

2 + (s′2)
2 ,

where we find the degrees of freedom using Satterthwaites adjustment. In the case
where we use independent "flat" priors for µ1 and µ2, this can be written as

m′

1 − m′

2 ± tα

2
×

√
σ̂2

1

n1
+

σ̂2
2

n2
. (12.11)

Confidence interval for difference between means, unequal unknown
variances. An approximate (1−α)×100% confidence interval for µd = µ1−µ2

is given by

m′

1 − m′

2 ± tα

2
×

√
σ̂2

1

n1
+

σ̂2
2

n2
. (12.12)

We see this is the same form as the (1−α)× 100% credible interval found when we
used independent flat priors4. However, the interpretations are different.

Bayesian hypothesis test of H0 : µ1 −µ2 ≤ 0 versus H1 : µ1 −µ2 > 0.
To test

H0 : µ1 − µ2 ≤ 0 versus H1 : µ1 − µ2 > 0

at the level α in a Bayesian manner, we calculate the posterior probability of the
null hypothesis. We would use Equation 12.4. If the variances σ2

1 and σ2
2 are

4Finding the posterior distribution of µ1−µ2−(ȳ1− ȳ2)|y11, · · · , yn11, y12, · · · , yn22 in the Bayesian
paradigm, or equivalently finding the sampling distribution of ȳ1 − ȳ2 − (µ1 − µ2) in the frequentist
paradigm when the variances are both unknown and not assumed equal has a long and controversial history.
In the one sample case, the sampling distribution of ȳ − µ is the same as the posterior distribution of
µ− ȳ|y1, . . . , yn when we use the flat prior for g(µ) = 1 and the noninformative prior g(σ2) ∝ 1

σ2 , and
marginalize σ

2 out of the joint posterior. This leads to the equivalence between the confidence interval
and the credible interval for that case. Similarly, in the two-sample case with equal variances, the sampling
distribution of ȳ1 − ȳ2 equals the posterior distribution of µ1 −µ2|y11, . . . , yn11, y12, . . . , yn22 where
we use flat priors for µ1 and µ2 and the noninformative prior g(σ2) ∝ 1

σ2 , and marginalized σ
2 out of

the joint posterior. Again, that led to the equivalence between the confidence interval and the credible
interval for that case. One might be led to believe this pattern would hold in general. However, it doesn’t
hold in the two sample case with unknown unequal variances. The Bayesian posterior distribution in this
case is known as the Behrens-Fisher distribution. The frequentist distribution depends on the ratio of the
unknown variances. Both of the distributions can be approximated by Student’s t with an adjustment made
to the degrees of freedom. Satterthwaite suggested that the adjusted degrees of freedom be(

σ̂2
1

n1
+

σ̂2
2

n2

)2

(σ̂2
1

/n1)2

n1+1
+

(σ̂2
2

/n2)2

n2+1

rounded down to the nearest integer.
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known, we get the critical value from the standard normal table. However, when
we use estimated variances instead of the true unknown variances, we will find the
probabilities using the Student’s t distribution with degrees of freedom given by
Satterthwaites approximation. If this probability is less than α, then we reject the
null hypothesis and conclude that µ1 > µ2. In other words, that the treatment is
effective. Otherwise, we can’t reject the null hypothesis.

12.4 BAYESIAN INFERENCE FOR DIFFERENCE BETWEEN TWO
PROPORTIONS USING NORMAL APPROXIMATION

Often we want to compare the proportions of a certain attribute in two populations.
The true proportions in population 1 and population 2 are π1 and π2, respectively.
We take a random sample from each of the populations and observe the number of
each sample having the attribute. The distribution of y1|π1 is binomial(n1, π1) and
the distribution of y2|π2 is binomial( n2, π2), and they are independent of each other

We know that if we use independent prior distributions for π1 and π2, we will get
independent posterior distributions. Let the prior for π1 be beta(a1, b1) and for π2 be
beta(a2, b2). The posteriors are independent beta distributions. The posterior for π1

is beta(a′

1, b
′

1), where a′

1 = a1 + y1 and b′1 = b1 + n1 − y1. Similarly the posterior
for π2 is beta(a2, b2), where a′

2 = a2 + y2 and b′2 = b2 + n2 − y2

Approximate each posterior distribution with the normal distribution having same
mean and variance as the beta. The posterior distribution of πd = π1 − π2 is
approximately normal(m′

d, (s
′

d)
2) where the posterior mean is given by

m′

d =
a′

1

a′

1 + b′1
− a′

2

a′

2 + b′2

and the posterior variance is given by

(s′d)
2 =

a′

1b
′

1

(a′

1 + b′1)
2(a′

1 + b′1 + 1)
+

a′

2b
′

2

(a′

2 + b′2)
2(a′

2 + b′2 + 1)
.

Credible interval for difference between proportions. We find the (1 −
α) × 100% Bayesian credible interval for πd = π1 − π2 using the general rule for
the (approximately) normal posterior distribution. It is

m′

d ± zα

2
× s′d . (12.13)

One-sided Bayesian hypothesis test for difference between proportions.
Suppose we are trying to detect whether πd = π1 − π2 > 0. We set this up as a test
of

H0 : πd ≤ 0 versus H1 : πd > 0 .

Note, the alternative hypothesis is what we are trying to detect. We calculate the
approximate posterior probability of the null distribution by

P (Z = πd ≤ 0) = P

(
πd − m′

d

s′d
≤ 0 − m′

d

s′d

)
(12.14)



BAYESIAN INFERENCE FOR DIFFERENCE BETWEEN TWO PROPORTIONS 219

= P

(
Z ≤ 0 − m′

d

s′d

)
.

If this probability is less than the level of significance α that we chose, we would
reject the null hypothesis at that level, and conclude π1 > π2. Otherwise, we can’t
reject the null hypothesis.

Two-sided Bayesian hypothesis test for difference between proportions.
To test the hypothesis

H0 : π1 − π2 = 0 versus H1 : π1 − π2 �= 0

in a Bayesian manner check whether the null hypothesis value (0) lies inside the
credible interval for πd given in Equation 12.13. If it lies inside the interval, we
cannot reject the null hypothesis H0 : π1 − π2 = 0 at the level α. If it lies outside
the interval, we can reject the null hypothesis at the level α and accept the alternative
H1 : π1 − π2 �= 0.

Example 21 The student newspaper wanted to write an article on the smoking habits
of students A random sample of 200 students (100 males and 100 females) between
ages of 16 and 21 were asked about whether they smoked cigarettes. Out of the 100
males, 22 said they were regular smokers, and out of the 100 females, 31 said they
were regular smokers. The editor of the paper asked Donna, a statistics student, to
analyze the data.

Donna considered the male and female samples would be independent. Her prior
knowledge was that a minority of students smoked cigarettes, so she decided to use
independent beta(1,2) priors for πm and πf , the male and female proportions re-
spectively. Her posterior distribution of πm will be beta(23,80), and her posterior
distribution of πf will be beta(32,71). Hence, her posterior distribution of the differ-
ence between proportions, πd = πm − πf , will be approximately normal(m′

d, (s
′

d)
2)

where

m′

d =
23

23 + 80
− 32

32 + 71
= −.087

and

(s′d)
2 =

23 ∗ 80

(23 + 80)2 ∗ (23 + 80 + 1)
+

32 ∗ 71

(32 + 71)2 ∗ (32 + 71 + 1)

= .0612 .

Her 95 % credible interval for πd will be (-.207, .032) which contains 0. She can’t
reject the null hypothesis H0 : πm − πf = 0 at the 5% level, so she tells the editor
that the data does not conclusively show that there is any difference between the
proportions of male and female students who smoke.



220 BAYESIAN INFERENCE FOR DIFFERENCE BETWEEN MEANS

12.5 NORMAL RANDOM SAMPLES FROM PAIRED EXPERIMENTS

Variation between experimental units often is a major contributor to the variation in the
data. When the two treatments are administered to two independent random samples
of the experimental units, this variation makes it harder to detect any difference
between the treatment effects, if one exists.

Often designing a paired experiment makes it much easier to detect the difference
between treatment effects. For a paired experiment, the experimental units are
matched into pairs of similar units. Then one of the units from each pair is assigned
to the first treatment, and the other in that pair is assigned the second treatment. This
is a randomized block experimental design, where the pairs are blocks. We discussed
this design in Chapter 2. For example, in the dairy industry, identical twin calves
are often used for experiments. They are exact genetic copies. One of each pair is
randomly assigned to the first treatment, and the other to the second treatment.

Paired data can arise other ways. For instance, if the two treatments are applied to
the same experimental units (at different times) giving the first treatment effect time
to dissipate before the second treatment is applied. Or, we can be looking at "before
treatment" and "after treatment" measurements on the same experimental units.

Because of the variation between experimental units, the two observations from
units in the same pair will be more similar than two observations from units in
different pairs. In the same pair, the only difference between the observation given
treatment A and the observation given treatment B is the treatment effect plus the
measurement error. In different pairs, the difference between the observation given
treatment A and the observation given treatment B is the treatment effect plus the
experimental unit effect plus the measurement error. Because of this we cannot treat
the paired random samples as independent of each other. The two random samples
come from normal populations with means µA and µB , respectively. The populations
will have equal variances σ2 when we have an additive model. We consider that the
variance comes from two sources, measurement error plus random variation between
experimental units.

Take Differences within Each Pair

Let yi1 be the observation from pair i given treatment A, and yi2 be the observation
from pair i given treatment B. If we take the difference between the observations
within each pair, di = yi1 − yi2, then these di will be a random sample from a
normal population with mean µd = µA − µB , and variance σ2

d. We can treat this
(differenced) data as a sample from a single normal distribution and do inference
using techniques found in Chapters 10 and 11.

Example 22 An experiment was designed to determine whether a mineral supple-
ment was effective in increasing annual yield in milk. Fifteen pairs of identical twin
dairy cows were used as the experimental units. One cow from each pair was ran-
domly assigned to the treatment group that received the supplement. The other cow
from the pair was assigned to the control group that did not receive the supplement.
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Table 12.1 Milk annual yield

Twin Set Milk Yield: Control (liters) Milk Yield: Treatment (liters)

1 3525 3340

2 4321 4279

3 4763 4910

4 4899 4866

5 3234 3125

6 3469 3680

7 3439 3965

8 3658 3849

9 3385 3297

10 3226 3124

11 3671 3218

12 3501 3246

13 3842 4245

14 3998 4186

15 4004 3711

The annual yields are given in Table 12.1. Assume that the annual yields from cows
receiving the treatment are normal (µt, σ

2
t ), and that the annual yields from the cows

in the control group are normal (µc, σ
2
c ). Aleece, Brad, and Curtis decided that since

the two cows in the same pair share identical genetic background, their responses
will be more similar than two cows that were from different pairs. There is natural
pairing. As the samples drawn from the two populations cannot be considered inde-
pendent of each other, they decided to take differences di = yi1−yi2. The differences
will be normal (µd, σ

2
d), where µd = µt − µc and we will assume that σ2

d = 2702 is
known.

Aleece decided she would use a "flat" prior for µd. Brad decided he would use
a normal (m, s2) prior for µd where he let m = 0 and s = 200. Curtis decided
that his prior for µd matched a triangular shape. He set up a numerical prior that
interpolated between the heights given in Table 12.2 The shapes of the priors are
shown in Figure 12.1.

Aleece used a "flat" prior, so her posterior will be normal[m′, (s′)2] where
m′ = ȳ = 7.07 and (s′)2 = 2702/15 = 4860. Her posterior standard deviation
s′ =

√
4860 = 69.71. Brad used a normal (0, 2002) prior, so his posterior will be

normal [m′, (s′)2] where m′ and s′ are found by using Equations 10.5 and 10.6.

1

(s′)2
=

1

2002
+

15

2702
= 0.000230761 ,
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Table 12.2 Curtis’ prior weights. His continuous prior is found by linearly interpolating
between them.

value weight

-300 0

0 3

300 0

Aleece's prior 
Brad's prior   
Curtis' prior  

5002500-250-500

Figure 12.1 Aleece’s, Brad’s and Curtis’ prior distributions.

so his s′ = 65.83, and

m′ =
1

2002

.000230761
× 0 +

15
2702

.000230761
× 7.07 = 6.33 .

Curtis has to find his posterior numerically using Equation 10.3. He uses the Minitab
macro NormGCP.mac to do the numerical integration. The three posteriors are shown
in Figure 12.2.

They decided that to determine whether or not the treatment was effective in
increasing the yield of milk protein, they would perform the one-sided hypothesis test

H0 : µd ≤ 0 vs H1 : µd > 0

at the 95% level of significance. Aleece and Brad had normal posteriors, so they used
Equation 11.4 to calculate the posterior probability of the null hypothesis. Curtis
had a numerical posterior, so he used Equation 11.3 and performed the integration
using the Minitab macro tintegral.mac. The results are shown in Table 12.3.
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Aleece's posterior 
Brad's posterior   
Curtis' posterior  

5004003002001000-100-200-300-400-500

Figure 12.2 Aleece’s, Brad’s and Curtis’s posterior distributions.

Table 12.3 Results of Bayesian one-sided hypothesis tests

person posterior P (µd ≤ 0|d1, . . . , dn)

Aleece normal(7.07, 69.712) P (Z ≤ 0−7.07
69.71 ) =.4596 don’t reject

Brad normal(6.33, 65.832) P (Z ≤ 0−6.33
65.83 ) =.4619 don’t reject

Curtis numerical
∫ 0

∞
g(µd|d1, . . . , dn)dµ =.4684 don’t reject

Main Points

• The difference between normal means are used to make inferences about the
size of a treatment effect.

• Each experimental unit is randomly assigned to the treatment group or control
group. The unbiased random assignment method ensures that both groups have
similar experimental units assigned to them. On average, the means are equal.

• The treatment group mean is the mean of the experimental units assigned to
the treatment group, plus the treatment effect.

• If the treatment effect is constant, we call it an additive model, and both sets
of observations have the same underlying variance, assumed to be known.

• If the data in the two samples are independent of each other, we use independent
priors for the two means. The posterior distributions µ1|y11, . . . , yn11 and
µ2|y12, . . . , yn22 are also independent of each other, and can be found using
methods from Chapter 10.
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• Let µd = µ1−µ2. The posterior distribution of µd|y11, . . . , yn11, y12, . . . , yn22

is normal with mean m′

d = m′

1 − m′

2 and variance (s′d)
2 = (s′1)

2 + (s′2)
2

• The (1 − α) × 100% credible interval for µd = µ1 − µ2 is given by

m′

d ± zα/2 × s′d .

• If the variance is unknown, use the pooled estimate from the two samples. The
credible interval will have to be widened to account for the extra uncertainty.
This is accomplished by taking the critical values from the Student’s t table
(with n1 + n2 − 2 degrees of freedom) instead of the standard normal table.

• The confidence interval for µd|y11, . . . , yn11, y12, . . . , yn22 is the same as the
Bayesian credible interval where flat priors are used.

• If the variances are unknown, and not equal, use the sample estimates as if
they were the correct values. Use the Student’s t for critical values, with the
degrees given by Satterthwaite’s approximation. This is true for both credible
intervals and confidence intervals.

• The posterior distribution for a difference between proportions can be found
using the normal approximation. The posterior variances are known, so the
critical values for credible interval come from standard normal table.

• When the observations are paired, the samples are dependent. Calculate the
differences di = yi1 − yi2 and treat them as a single sample from a normal
(µd, σ

2
d), where µd = µ1 − µ2. Inferences about µd are made using the single

sample methods found in Chapters 10 and 11.

Exercises

12.1 The Human Resources Department of a large company wishes to compare
two methods of training industrial workers to perform a skilled task. Twenty
workers are selected, and 10 of them are randomly assigned to be trained using
method A, and the other 10 are assigned to be trained using method B. After
the training is complete, all the workers are tested on the speed of performance
at the task. The times taken to complete the task are:



EXERCISES 225

Method A Method B

115 123

120 131

111 113

123 119

116 123

121 113

118 128

116 126

127 125

129 128

(a) We will assume that the observations come from normal(µA, σ2) and
normal(µB , σ2), where σ2 = 62. Use independent normal (m, s2) prior
distributions for µA and µB , respectively, where m = 100 and s2 = 202.
Find the posterior distributions of µA and µB , respectively.

(b) Find the posterior distribution of µA − µB .

(c) Find a 95% Bayesian credible interval for µA − µB .

(d) Perform a Bayesian test of the hypothesis

H0 : µA − µB = 0 versus H1 : µA − µB �= 0

at the 5% level of significance. What conclusion can we draw?

12.2 A consumer testing organization obtained samples of size 12 from two brands
of emergency flares, and measured the burning times. They are:
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Brand A Brand B

17.5 13.4

21.2 9.9

20.3 13.5

14.4 11.3

15.2 22.5

19.3 14.3

21.2 13.6

19.1 15.2

18.1 13.7

14.6 8.0

17.2 13.6

18.8 11.8

(a) We will assume that the observations come from normal(µA, σ2) and
normal(µB , σ2), where σ2 = 32. Use independent normal (m, s2) prior
distributions for µA and µB , respectively, where m = 20 and s2 = 82.
Find the posterior distributions of µA and µB , respectively.

(b) Find the posterior distribution of µA − µB .

(c) Find a 95% Bayesian credible interval for µA − µB .

(d) Perform a Bayesian test of the hypothesis

H0 : µA − µB = 0 versus H1 : µA − µB �= 0

at the 5% level of significance. What conclusion can we draw?

12.3 The quality manager of a dairy company is concerned whether the levels of
butterfat in a product are equal at two dairy factories which produce the product.
He obtains random samples of size 10 from each of the factories output, and
measures the butterfat. The results are:
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Factory 1 Factory 2

16.2 16.1

12.7 16.3

14.8 14.0

15.6 16.2

14.7 15.2

13.8 16.5

16.7 14.4

13.7 16.3

16.8 16.9

14.7 13.7

(a) We will assume that the observations come from normal(µ1, σ
2) and

normal(µ2, σ
2), where σ2 = 1.22. Use independent normal (m, s2) prior

distributions for µ1 and µ2, respectively, where m = 15 and s2 = 42.
Find the posterior distributions of µ1 and µ2, respectively.

(b) Find the posterior distribution of µ1 − µ1.

(c) Find a 95% Bayesian credible interval for µ1 − µ2.

(d) Perform a Bayesian test of the hypothesis

H0 : µA − µB = 0 versus H1 : µA − µB �= 0

at the 5% level of significance. What conclusion can we draw?

12.4 Independent random samples of ceramic produced by two different processes
were tested for hardness. The results were:

Process 1 Process 2

8.8 9.2

9.6 9.5

8.9 10.2

9.2 9.5

9.9 9.8

9.4 9.5

9.2 9.3

10.1 9.2

(a) We will assume that the observations come from normal(µ1, σ
2) and

normal(µ2, σ
2), where σ2 = .42. Use independent normal (m, s2) prior
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distributions for µ1 and µ2, respectively, where m = 10 and s2 = 12.
Find the posterior distributions of µ1 and µ2, respectively.

(b) Find the posterior distribution of µ1 − µ1.

(c) Find a 95% Bayesian credible interval for µ1 − µ2.

(d) Perform a Bayesian test of the hypothesis

H0 : µ1 − µ2 ≥ 0 versus H1 : µ1 − µ2 < 0

at the 5% level of significance. What conclusion can we draw?

12.5 A thermal power station discharges its cooling water into river. An environ-
mental scientist wants to determine if this has adversely affected the dissolved
oxygen level. She takes samples of water one kilometer upstream from the
power station, and one kilometer downstream from the power station, and
measures the dissolved oxygen level. The data are:

Upstream Downstream

10.1 9.7

10.2 10.3

13.4 6.4

8.2 7.3

9.8 11.7

8.9

(a) We will assume that the observations come from normal(µ1, σ
2) and

normal(µ2, σ
2), where σ2 = 22. Use independent normal (m, s2) prior

distributions for µ1 and µ2, respectively, where m = 10 and s2 = 22.
Find the posterior distributions of µ1 and µ2, respectively.

(b) Find the posterior distribution of µ1 − µ1.

(c) Find a 95% Bayesian credible interval for µ1 − µ2.

(d) Perform a Bayesian test of the hypothesis

H0 : µ1 − µ2 ≤ 0 versus H1 : µ1 − µ2 > 0

at the 5% level of significance. What conclusion can we draw?

12.6 Cattle being ruminants have multiple chambers in their stomaches. Stimu-
lating specific receptors causes reflex contraction of the reticular groove and
swallowed fluid then bypasses the reticulo-rumen and moves directly to the
abomasum. Scientists wanted to develop a simple nonradioactive, noninvasive
test to determine when this occurs. In a study to determine the fate of swal-
lowed fluids in cattle, McLeay, Carruthers, and Neil (1997) investigate a carbon
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13 (13C) octanoic acid breath test as a means of detecting a reticular groove
contraction in cattle. Twelve adult cows were randomly assigned to two groups
of 6 cows. The first group had 200 mg of 13C octanoic acid administered into
the reticulum, and the second group had the same dose of 13C octanoic acid
administered into the reticulo-osmasal orifice. Change in the enrichment of
13C in breath was measured for each cow 10 minutes later. The results are:

13C Administered into 13C Administered into
Reticulum Reticulo-omasal Orifice

Cow ID x Cow ID y

8 1.5 14 3.5

9 1.9 15 4.7

10 0.4 16 4.8

11 -1.2 17 4.1

12 1.7 18 4.1

13 0.7 19 5.3

(a) Explain why the observations of variables x and y can be considered
independent in this experiment.

(b) Suppose the change in the enrichment of 13C for cows administered in the
reticulum is normal (µ1, σ

2
1), where σ2

1 = 1.002. Use a normal (2, 22)
prior for µ1. Calculate the posterior distribution of µ1|x8 . . . , x13.

(c) Suppose the change in the enrichment of 13C for cows administered in
the reticulo-omasal orifice is normal (µ2, σ

2
2), where σ2

2 = 1.402. Use
a normal (2, 22) prior for µ2. Calculate the posterior distribution of
µ1|y14 . . . , y19.

(d) Calculate the posterior distribution of µd = µ1 − µ2, the difference
between the means.

(e) Calculate a 95% Bayesian credible interval for µd.

(f) Test the hypothesis

H0 : µ1 − µ2 = 0 versus H1 : µ1 − µ2 �= 0

at the 5% level of significance. What conclusion can be drawn.

12.7 Glass fragments found on a suspect’s shoes or clothes are often used to connect
the suspect to a crime scene. The index of refraction is the fragments are com-
pared to the refractive index of the glass from the crime scene. To make this
comparison rigorous, we need to know the variability the index of refraction
is over a pane of glass. Bennet et al. (2002) analyzed the refractive index in a
pane of float glass, searching for any spatial pattern. Here are samples of the
refractive index from the edge and from the middle of the pane.
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Edge of Pane Middle of Pane

1.51996 1.51997 1.52001 1.51999

1.51998 1.52000 1.52004 1.51997

1.51998 1.52004 1.52005 1.52000

1.52000 1.52001 1.52004 1.52002

1.52000 1.51997 1.52004 1.51996

For these data, ȳ1 = 1.51999, ȳ2 = 1.52001, σ1 = .00002257, and
σ2 = .00003075.

(a) Suppose glass at the edge of the pane is normal (µ1, σ
2
1), where σ1 =

.00003. Calculate the posterior distribution of µ1 when you use a normal
(1.52000, .00012) prior for µ1.

(b) Suppose glass in the middle of the pane is normal (µ2, σ
2
2), where σ2 =

.00003. Calculate the posterior distribution of µ2 when you use a normal
(1.52000, .00012) prior for µ2.

(c) Find the posterior distribution of µd = µ1 − µ2.

(d) Find a 95% credible interval for µd.

(e) Perform a Bayesian test of the hypothesis

H0 : µd = 0 versus µd �= 0

at the 5% level of significance.

The last half of the twentieth century saw great change in the role of women in New
Zealand society. These changes included education, employment, family formation,
and fertility, where women took control of these aspects of their lives. During those
years phrases such as "women’s liberation movement" and "the sexual revolution"
were used to describe the changing role of women in society. In 1995 the Population
Studies Centre at the University of Waikato sponsored the New Zealand Women
Family, Employment, and Education Survey (NZFEE) to investigate these changes.
A random sample of New Zealand women of all ages between 20 and 59 was taken,
and the women were interviewed about their educational, employment, and personal
history. The details of this survey are summarized in Marsault et al. (1997). Detailed
analysis of the data from this survey is in Johnstone et al. (2001).

12.8 Have the educational qualifications of younger New Zealand women changed
from those of previous generations of New Zealand women? To shed light on
this question, we will compare the educational qualifications of two generations
of New Zealand women 25 years apart. The women in the age group 25-29 at
the time of the survey were born between 1966 and 1970. The women in the
age group 50-54 at the time of the survey were born between 1941 and 1945.
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(a) Out of 314 women in the age group 25-29, 234 had completed a secondary
school qualification. Find the posterior distribution of π1, the proportion
of New Zealand women in that age group who have a completed a sec-
ondary school qualification. (Use a uniform prior for π1.)

(b) Out of 219 women in the age group 50-54, 120 had completed a secondary
school qualification. Find the posterior distribution of π2, the proportion
of New Zealand women in that age group who have a completed a sec-
ondary school qualification. (Use a uniform prior for π2.)

(c) Find the approximate posterior distribution of π1 − π2.

(d) Find a 99% Bayesian credible interval for π1 − π2.

(e) What would be the conclusion if you tested the hypothesis

H0 : π1 − π2 = 0 versus H1 : π1 − π2 �= 0

at the 1% level of significance?

12.9 Are younger New Zealand women more likely to be in paid employment than
previous generations of New Zealand women? To shed light on this question,
we will look at the current employment status of two generations of New
Zealand women 25 years apart.

(a) Out of 314 women in the age group 25-29, 171 were currently in paid
employment. Find the posterior distribution of π1, the proportion of New
Zealand women in that age group who are currently in paid employment.
(Use a uniform prior for π1.)

(b) Out of 219 women in the age group 50-54, 137 were currently in paid
employment. Find the posterior distribution of π2, the proportion of New
Zealand women in that age group who are currently in paid employment.
(Use a uniform prior for π2.)

(c) Find the approximate posterior distribution of π1 − π2.

(d) Find a 99% Bayesian credible interval for π1 − π2.

(e) What would be the conclusion if you tested the hypothesis

H0 : π1 − π2 = 0 versus H1 : π1 − π2 �= 0

at the 1% level of significance?

12.10 Are younger New Zealand women becoming sexually active at an earlier age
than previous generations of New Zealand women? To shed light on this
question, we look at the proportions of Zealand women who report having
experienced sexual intercourse before age 18 for the two generations of New
Zealand women.

(a) Out of the 298 women in the age group 25-29 who responded to this
question, 180 report having experienced sexual intercourse before reach-
ing the age of 18. Find the posterior distribution of π1, the proportion
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of New Zealand women in that age group who had experienced sexual
intercourse before age 18. (Use a uniform prior for π1.)

(b) Out of the 218 women in the age group 50-54 who responded to this
question, 52 report having experienced sexual intercourse before reaching
the age of 18. Find the posterior distribution of π2, the proportion of New
Zealand women in that age group who had experienced sexual intercourse
before age 18. (Use a uniform prior for π2.)

(c) Find the approximate posterior distribution of π1 − π2.

(d) Test the hypothesis

H : 0 : π1 − π2 ≤ 0 versus H1 : π1 − π2 > 0

in a Bayesian manner at the 1% level of significance. Can we conclude
that New Zealand women in the generation aged 25-29 have experienced
sexual intercourse at an earlier age than New Zealand women in the
generation aged 50-54?

12.11 Are younger New Zealand women marrying at a later age than previous gen-
erations of New Zealand women? To shed light on this question, we look at
the proportions of Zealand women who report having been married before age
22 for the two generations of New Zealand women.

(a) Out of the 314 women in the age group 25-29, 69 report having been
married before the age 22. Find the posterior distribution of π1, the
proportion of New Zealand women in that age group who have married
before age 22. (Use a uniform prior for π1.)

(b) Out of the 219 women in the age group 50-54, 114 report having been
married before age 22. Find the posterior distribution of π2, the proportion
of New Zealand women in that age group who have been married before
age 22. (Use a uniform prior for π2.)

(c) Find the approximate posterior distribution of π1 − π2.

(d) Test the hypothesis

H : 0 : π1 − π2 ≥ 0 versus H1 : π1 − π2 < 0

in a Bayesian manner at the 1% level of significance. Can we conclude
that New Zealand women in the generation aged 25-29 have married at
an earlier age than New Zealand women in the generation aged 50-54?

12.12 Family formation patterns in New Zealand have changed over the time frame
covered by the survey. New Zealand society has become more accepting of
couples co-habiting (living together before or instead of legally marrying).
When we take this into account, are younger New Zealand women forming
family like units at a similar age to previous generations?
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(a) Out of the 314 women in the age group 25-29, 199 report having formed
a domestic partnership (either co-habiting or legal marriage) before age
22. Find the posterior distribution of π1, the proportion of New Zealand
women in that age group who have formed a domestic partnership before
age 22. (Use a uniform prior for π1.)

(b) Out of the 219 women in the age group 50-54, 116 report having formed
a domestic partnership before age 22. Find the posterior distribution of
π2, the proportion of New Zealand women in that age group who have
formed a domestic partnership before age 22. (Use a uniform prior for
π2.)

(c) Find the approximate posterior distribution of π1 − π2.

(d) Find a 99% Bayesian credible interval for π1 − π2.

(e) What would be the conclusion if you tested the hypothesis

H0 : π1 − π2 = 0 versus H1 : π1 − π2 �= 0

at the 1% level of significance.

12.13 Are young New Zealand women having their children at a later age than
previous generations?

(a) Out of the 314 women in the age group 25-29, 136 report having given
birth to their first child before the age of 25. Find the posterior distribution
of π1, the proportion of New Zealand women in that age group who have
given birth before age 25. (Use a uniform prior for π1.)

(b) Out of the 219 women in the age group 50-54, 135 report having given
birth to their first child before age 25. Find the posterior distribution of
π2, the proportion of New Zealand women in that age group who have
given birth before age 25. (Use a uniform prior for π2.)

(c) Find the approximate posterior distribution of π1 − π2.

(d) Test the hypothesis

H : 0 : π1 − π2 ≥ 0 versus H1 : π1 − π2 < 0

in a Bayesian manner at the 1% level of significance. Can we conclude
that New Zealand women in the generation aged 25-29 have had their
first child at a later age than New Zealand women in the generation aged
50-54?

12.14 The experiment described in Exercise 6 was repeated on another set of 7
cows, McLeay, Carruthers, and Neil (1997). However, in this case, the second
treatment was given to the same set of 7 cows that were given the first treatment,
at a later time when the first dose of 13C had been eliminated from the cow.
The data are given below:
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13C Administered into 13C Administered into

Reticulum Reticulo-omasal Orifice

Cow ID x y

1 1.1 3.5

2 0.8 3.6

3 1.7 5.1

4 1.1 5.6

5 2.0 6.2

6 1.6 6.5

7 3.1 8.3

(a) Explain why the variables x and y cannot be considered independent in
this experiment.

(b) Calculate the differences di = xi − yi for i = 1, . . . , 7.

(c) Assume that the differences come from a normal (µd, σ
2
d) distribution,

where σ2
d = 1. Use a normal (0, 32) prior for µd. Calculate the posterior

for µd|d1, . . . , d7.

(d) Calculate a 95% Bayesian credible interval for µd.

(e) Test the hypothesis

H0 : µd = 0 versus H1 : µd �= 0

at the 5% level of significance. What conclusion can be drawn?

12.15 One of the advantages of Bayesian statistics is that evidence from different
sources can be combined. In Exercise 6 and Exercise 14, we found posterior
distributions of µd using data sets from two different experiments. In the
first experiment, the two treatments were given to two sets of cows, and the
measurements were independent. In the second experiment, the two treatments
were given to a third set of cows at different times and the measurements were
paired. When we want to find the posterior distribution given data sets from
two independent experiments, we should use the posterior distribution after the
first experiment as the prior distribution for the second.

(a) Explain why the two data sets can be considered independent.

(b) Find the posterior distribution of µd|data where the data include all of
the measurements x8 . . . , x13, y14 . . . , y19, d1, . . . , d7.

(c) Find a 95 % credible interval for µd based on all the data.

(d) Test the hypothesis

H0 : µd = 0 versus H1 : µd �= 0

at the 5 % level of significance. Can we conclude that 13C octanic acid
breath test is effective in detecting reticular groove contraction in cattle?
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Bayesian Inference for

Simple Linear Regression

Sometimes we want to model a relationship between two variables, x and y. We
might want to find an equation that describes the relationship. Often we plan to use
the value of x to help predict y using that relationship.

The data consist of n ordered pairs of points (xi, yi) for i = 1, . . . , n. We think
of x as the predictor variable (independent variable) and consider that we know it
without error. We think y is a response variable that depends on x in some unknown
way, but that each observed y contains an error term as well. We plot the points on a
two-dimensional scatterplot; the predictor variable is measured along the horizontal
axis, and the response variable is measured along the vertical axis.

We examine the scatterplot for clues about the nature of the relationship. To
construct a regression model, we first decide on the type of equation that appears to
fit the data. A linear relationship is the simplest equation relating two variables. This
would give a straight line relationship between the predictor x and the response y.
We leave the parameters of the line, the slope β, and the y-intercept α0 unknown, so
all lines are possible.

Then we determine the best estimates of the unknown parameters by some crite-
rion. The criterion that is most frequently used is least squares. This is where we
find the parameter values that minimize the sum of squares of the residuals, which
are the vertical distances of the observed points to the fitted equation. We do this for
the simple linear regression in Section 13.1. In Section 13.2 we look at how an ex-
ponential growth model can be fitted using least squares regression on the logarithm
of the response variable.

0Introduction to Bayesian Statistics. By William M. Bolstad
ISBN 0-471-27020-2 Copyright c©John Wiley & Sons, Inc.
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Figure 13.1 Scatterplot with three possible lines, and the residuals from each of the lines.
The third line is the least squares line. It minimizes the sum of squares of the residuals.

At this stage no inferences are possible because there is no probability model for
the data. In Section 13.3 we construct a regression model that makes assumptions on
how the response variable depends on the predictor variable, and how randomness
enters the data. Inferences can be done on the parameters of this model. The most
important one is determining the predictive distribution of new observations, given
the data. In Section 13.4 we fit a linear relationship between the two variables using
Bayesian methods, and perform Bayesian inferences on the parameters of the model.

13.1 LEAST SQUARES REGRESSION

We could draw any number of lines on the scatterplot. Some of them would fit
fairly well, others would be extremely far from the points. A residual is the vertical
distance from an observed point on the scatterplot to the line. We can put in any line
that we like, and calculate the residuals from that line. Least squares is a method for
finding the line that best fits the points in terms of minimizing sum of squares of the
residuals. Figure13.1 shows a scatterplot, three possible lines, and the residuals from
each line.

The equation of a line is determined by two things: its slope β and its y-intercept
α0. Actually its slope and any other point on the line will do, for instance, αx̄, the
intercept of the vertical line at x̄. Finding the least squares line is equivalent to finding
its slope and the y-intercept (or another intercept).

The Normal Equations

The sum of squares of the residuals from line y = α0 + βx is

SSres =

n∑
i=1

[yi − (α0 + βxi)]
2 .

To find values of α0 and β that minimize SSres using calculus, take derivatives
with respect to each α0 and β and set equal to 0, and solve the resulting set of
simultaneous equations. First, take the derivative with respect to intercept α0. This
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gives the equation

∂SS

∂α0
=

n∑
i=1

2 × [yi − (α0 + βxi)]
1 × (−1) = 0

which simplifies to
n∑

i=1

yi −
n∑

i=1

α0 −
n∑

i=1

βxi = 0

and further to
ȳ − α0 − βx̄ = 0 . (13.1)

Second, taking the derivative with respect to the slope β gives the equation

∂SS

∂β
=

n∑
i=1

2 × [yi − (α0 + βxi)]
1 × (−xi) = 0 ,

which simplifies to

n∑
i=1

xiyi −
n∑

i=1

α0xi −
n∑

i=1

βx2
i = 0

and further to
xy − α0x̄ − βx2 = 0 . (13.2)

Equation 13.1 and Equation 13.2 are known as the normal equations. Here normal
refers to right angles1 and has nothing to do with the normal distribution.

Solve Equation 13.1 for α0 in terms of β and substitute into Equation 13.2 and
solve for β

xy − (ȳ − βx̄)x̄ − βx2 = 0 .

The solution is the least squares slope2

B =
xy − x̄ȳ

x2 − x̄2
. (13.3)

Substitute this back into Equation 13.1 and solve for the least squares y-intercept,

A0 = ȳ − Bx̄ . (13.4)

The equation of the least squares line is

y = A0 + Bx . (13.5)

1Least squares finds the projection of the (n-dimensional) observation vector onto the plane containing all
possible values of (α0, β).
2There are many different formulas for the least squares slope. This can be a source of confusion as many
books give formulas that look quite dissimilar. However, all can be shown to be equivalent. I use this
one because it is easy to remember. The average of x × y minus the average of x × the average of y all
divided by the average of x2 minus the square of the average of x.
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The slope and any other point besides y-intercept also determines the line. Say
the point is Ax̄, where the least squares line intercepts the vertical line at x̄:

Ax̄ = A0 + Bx̄ = ȳ .

Thus the least squares line goes through the point (x̄, ȳ). An alternative equation for
the least squares line is

y = Ax̄ + B(x − x̄) = ȳ + B(x − x̄) , (13.6)

which is particularly useful.

Estimating the Variance around the Least Squares Line

The estimate of the variance around the least squares line is

σ̂2 =

∑n
i=1[yi − (Ax̄ + B(xi − x̄))]2

n − 2

which is the sum of squares of the residuals divided by n−2. The reason we use n−2
is that we have used two estimates, Ax̄ and B in calculating the sum of squares3.

Example 23 A company is manufacturing a food product, and must control the
moisture level in the final product. It is cheaper (and hence preferable) to measure
the level at an in-process stage rather than in the final product. Michael, the company
statistician, recommends to the engineers running the process that a measurement of
the moisture level at an in-process stage may give a good prediction of what the final
moisture level will be. He organizes the collection of data from 25 batches, giving
the moisture level at the in-process stage and the final moisture level for each batch.
These are shown in the first three columns of Table 13.1.

Summary statistics for these data are: x̄ = 14.389, ȳ = 14.221, x2 = 207.0703,
y2 = 202.3186, and xy = 204.6628. Note that he needs to keep all the significant
figures in the squared terms. The formula for B uses subtraction, and if he rounds
off too early, the differences will have too few significant figures and accuracy will
be lost.

He then calculates the least squares line relating the final moisture level to the
in-process moisture level:

B =
xy − x̄ȳ

x2 − (x̄)2
=

204.6628 − 14.389 × 14.221

207.0703 − (14.389)2
=

.042569

.032755
= 1.30 .

The equation of the least squares line is

y = 14.221 + 1.29963 × (x − 14.389).

3The general rule for finding an unbiased estimate of the variance is that the sum of squares is divided
by the degrees of freedom, and we lose a degree of freedom for every estimated parameter in the sum of
squares formula.
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Table 13.1 In-process and final moisture levels

Batch In-Process Final LS Fits Residual Residual2

Level Level

x y ŷ = A0 + Bxi y − ŷ (y − ŷ)2

1 14.36 13.84 14.1833 -0.343256 0.117825

2 14.48 14.41 14.3392 0.070792 0.005012

3 14.53 14.22 14.4042 -0.184188 0.033925

4 14.52 14.63 14.3912 0.238808 0.057029

5 14.35 13.95 14.1703 -0.220260 0.048514

6 14.31 14.37 14.1183 0.251724 0.063365

7 14.44 14.41 14.2872 0.122776 0.015074

8 14.23 13.99 14.0143 -0.024308 0.000591

9 14.32 13.89 14.1313 -0.241272 0.058212

10 14.57 14.59 14.4562 0.133828 0.017910

11 14.28 14.32 14.0793 0.240712 0.057942

12 14.36 14.31 14.1833 0.126744 0.016064

13 14.50 14.43 14.3652 0.064800 0.004199

14 14.52 14.44 14.3912 0.048808 0.002382

15 14.28 14.14 14.0793 0.060712 0.003686

16 14.13 13.90 13.8843 0.015652 0.000245

17 14.54 14.37 14.4172 -0.047184 0.002226

18 14.60 14.34 14.4952 -0.155160 0.024075

19 14.86 14.78 14.8331 -0.053056 0.002815

20 14.28 13.76 14.0793 -0.319288 0.101945

21 14.09 13.85 13.8324 0.017636 0.000311

22 14.20 13.89 13.9753 -0.085320 0.007280

23 14.50 14.22 14.3652 -0.145200 0.021083

24 14.02 13.80 13.7414 0.058608 0.003435

25 14.45 14.67 14.3002 0.369780 0.136737

Mean 14.389 14.221

The scatterplot of final moisture level and in-process moisture level together with the
least squares line is given in Figure 13.2.

He calculates the least squares fitted values ȳ + B(xi − x̄), the residuals, and the
squared residuals. They are in the last three columns of Table 13.1. The estimated
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Figure 13.2 Scatterplot and least squares line for the moisture data.

variance about the least squares line is

σ̂2 =

∑n
i=1(y − ŷ)2

n − 2
=

0.80188

23
= 0.0320753 .

To find the estimated standard deviation about the least squares line, he takes the
square root:

σ̂ =
√

(0.0320753) = 0.179096 .

13.2 EXPONENTIAL GROWTH MODEL

When we look at economic time series, the predictor variable is time t, and we want to
see how some response variable u depends on t. Often, when we graph the response
variable versus time on a scatterplot, we notice two things. First, the plotted points
seem to go up not at a linear rate but at a rate that increases with time. Second, the
variability of the plotted points seems to be increasing at about the same rate as the
response variable. This will be shown more clearly if we graph the residuals versus
time. In this case the exponential growth model will usually give a better fit:

u = eα0+β×t .

We note that if we let y = loge(u), then

y = α0 + β × t
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Table 13.2 Annual poultry production in New Zealand

Year Poultry Production Linear Exponential

t u Fitted Value loge(u) Fitted loge u Fitted Value

1987 44,085 47,757 10.7739 10.7776 47,934

1988 51,646 48,725 10.8522 10.8393 50,986

1989 57,241 53,364 10.9550 10.9010 54,232

1990 56,261 58,004 10.9378 10.9628 57,686

1991 58,257 62,643 10.9726 11.0245 61,359

1992 60,944 67,283 11.0177 11.0862 65,266

1993 68,214 71,922 11.1304 11.1479 69,421

1994 74,037 76,562 11.2123 11.2097 73,842

1995 88,646 81,201 11.3924 11.2714 78,543

1996 86,869 85,841 11.3722 11.3331 83,545

1997 86,534 90,480 11.3683 11.3949 88,864

1998 95,682 95,120 11.4688 11.4566 94,522

1999 97,400 99,759 11.4866 11.5183 100,541

2000 10,4927 104,398 11.5610 11.5801 106,943

2001 11,4010 109,038 11.6440 11.6418 113,752

is a linear relationship. We can estimate the parameters of the relationship using least
squares using response variable y. The fitted exponential growth model is

u = eA0+B×t ,

where B and A0 are the least squares slope and intercept for the logged data.

Example 24 The annual New Zealand poultry production (in tonnes) for the years
1987-2001 is given in Table 13.2.

The scatterplot showing the residuals and least squares line is shown in Figure
13.3. We see that the residuals are mostly positive at the ends of the data, and mostly
negative in the center. This indicates that an exponential growth model would give a
better fit. The scatterplot, and the exponential growth model found by exponentiating
the least squares line to the logged data are shown in Figure 13.4.

13.3 SIMPLE LINEAR REGRESSION ASSUMPTIONS

The method of least squares is nonparametric or distribution free, since it makes no
use of the probability distribution of the data. It is really a data analysis tool, and can
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Figure 13.3 Scatterplot and least squares line for the poultry production data.

be applied to any bivariate data. We can’t make any inferences about the slope and
intercept nor about any predictions from the least squares model, unless we make
some assumptions about the probability model underlying the data. The simple linear
regression assumptions are:

1. Mean assumption. The conditional mean of y given x is an unknown linear
function of x.

µy|x = α0 + βx ,

where β is the unknown slope and α0 is the unknown y intercept, the intercept
of the vertical line x = 0. In the alternate parameterization

µy|x = αx̄ + β(x − x̄) ,

where αx̄ is the unknown intercept of the vertical line x = x̄. In this parame-
terization the least squares estimates Ax̄ = ȳ and B will be independent under
our assumptions, so the likelihood will factor into a part depending on αx̄

and a part depending on β. This greatly simplifies things, so we will use this
parameterization. The mean assumption is shown in the first graph of Figure
13.5.

2. Error assumption. Observation equals mean plus error, which is normally
distributed with mean 0 and known variance σ2. All errors have equal variance.
The equal variance assumption is shown in the second graph of Figure 13.5.
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Figure 13.4 Scatterplot and fitted exponential growth model for the poultry production
data.

Figure 13.5 Assumptions of linear regression model. The mean of Y given X is a linear
function. The observation errors are normally distributed with mean 0 and equal variances.
The observations are independent of each other.

3. Independence assumption. The errors for all of the observations are indepen-
dent of each other. The independent draw assumption is shown in the third
graph of Figure 13.5.

Using the alternate parameterization

yi = αx̄ + β × (xi − x̄) + ei ,

where αx̄ is the mean value for y given x = x̄, and β is the slope. Each ei is normally
distributed with mean 0 and known variance σ2. The ei are all independent of each
other. Therefore yi|xi is normally distributed with mean ax̄ +β(xi− x̄) and variance
σ2 and all the yi|xi are all independent of each other.
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13.4 BAYES’ THEOREM FOR THE REGRESSION MODEL

Bayes’ theorem is always summarized by

posterior ∝ prior × likelihood ,

so we need to determine the likelihood and decide on our prior for this model.

The Joint Likelihood for β and αx̄

The joint likelihood of the ith observation is its probability density function as a
function of the two parameters αx̄ and β, where (xi, yi) are fixed at the observed
values. It gives relative weights to all possible values of both parameters ax̄ and β

from the observation. The likelihood of observation i is

likelihoodi(αx̄, β) ∝ e−
1

2σ2 [yi−(αx̄+β(xi−x̄))]2 ,

since we can ignore the part not containing the parameters. The observations are
all independent, so the likelihood of the whole sample of all the observations is the
product of the individual likelihoods:

likelihoodsample(αx̄, β) ∝
n∏

i=1

e−
1

2σ2 [yi−(αx̄+β(xi−x̄))]2 .

The product of exponentials is found by summing the exponents, so

likelihoodsample(αx̄, β) ∝ e
− 1

2σ2 [
∑n

i=1
[yi−(ax̄+β(xi−x̄))]2] .

The term in brackets in the exponent equals[
n∑

i=1

[yi − ȳ + ȳ − (αx̄ + β(xi − x̄))]2

]
.

Breaking this into three sums and multiplying it out gives us

n∑
i=1

(yi − ȳ)2 + 2
n∑

i=1

(yi − ȳ)(ȳ − (αx̄ + β(xi − x̄)))

+
n∑

i=1

(ȳ − (αx̄ + β(xi − x̄)))2 .

This simplifies into

SSy − 2βSSxy + β2SSx + n(αx̄ − ȳ)2 ,

where SSy =
∑n

i=1(yi − ȳ)2, and SSxy =
∑n

i=1(yi − ȳ)(xi − x̄)), and SSx =∑n
i=1(xi − x̄)2. Thus the joint likelihood can be written as

likelihoodsample(αx̄, β) ∝ e−
1

2σ2 [SSy−2βSSxy+β2SSx+n(αx̄−ȳ)2] .
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Writing this as a product of two exponentials gives

∝ e−
1

2σ2 [SSy−2βSSxy+β2SSx] × e−
1

2σ2 [n(αx̄−ȳ)2] .

We factor out SSx in the first exponential, complete the square, and Absorb the part
that doesn’t depend on any parameter into the proportionality constant. This gives us

likelihoodsample(αx̄, β) ∝ e
− 1

2σ2/SSx
[β−

SSxy
SSx

]2 × e
− 1

2σ2/n
[(αx̄−ȳ)2]

.

Note that SSxy

SSx
= B, the least squares slope, and ȳ = Ax̄, the least squares estimate

of the intercept of the vertical line x = x̄. We have factored the joint likelihood into
the product of two individual likelihoods

likelihoodsample(αx̄, β) ∝ likelihoodsample(αx̄) × likelihoodsample(β) ,

where
likelihoodsample(β) ∝ e

− 1
2σ2/SSx

(β−B)2

and
likelihoodsample(αx̄) ∝ e

− 1
σ2/n

(αx̄−Ax̄)2

.

Since the joint likelihood has been factored into the product of the individual like-
lihoods we know the individual likelihoods are independent. We recognize that the
likelihood of the slope β has the normal shape with mean B, the least squares slope,
and variance σ2

SSx
. Similarly the likelihood of αx̄ has the normal shape with mean

Ax̄ and variance σ2

n
.

The Joint Prior for β and αx̄

If we multiply the joint likelihood by a joint prior, it is proportional to the joint
posterior. We will use independent priors for each parameter. The joint prior of the
two parameters is the product of the two individual priors:

g(αx̄, β) = g(αx̄) × g(β) .

We can either use normal priors, or flat priors.

The Joint Posterior for β and αx̄

The joint posterior then is proportional to the joint prior times the joint likelihood.

g(αx̄, β|data) ∝ g(αx̄, β) × likelihoodsample(αx̄, β) ,

where the data is the set of ordered pair (x1, y1), . . . , (xn, yn). The joint prior and
the joint likelihood both factor into a part depending on αx̄ and a part depending on
β. Rearranging them gives the joint posterior factored into the marginal posteriors

g(αx̄, β|data) ∝ g(αx̄|data) × g(β|data) .
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Since the joint posterior is the product of the marginal posteriors, they are independent.
Each of these marginal posteriors can be found by using the simple updating rules
for normal distributions, which works for normal and flat priors. For instance, if we
use a normal(mβ , s2

β) prior for β, we get a normal(m′
β , (s′β)2), where

1

(s′β)2
=

1

s2
β

+
SSx

σ2
(13.7)

and

m′
β =

1
s2

β

1
(s′

β
)2

× mβ +
SSx

σ2

1
(s′

β
)2

× B . (13.8)

The posterior precision equals the prior precision plus the precision of the likelihood.
The posterior mean equals the weighted average of the prior mean and the likelihood
mean where the weights are the proportions of the precisions to the posterior precision.
And the posterior distribution is normal.

Similarly if we use a normal(mαx̄
, s2

αx̄
) prior for αx̄, we get a normal(m′

αx̄
, (s′αx̄

)2)
where

1

(s′αx̄
)2

=
1

s2
αx̄

+
n

σ2
,

and

m′
αx̄

=

1
s2

αx̄

1
(s′

αx̄
)2

× mαx̄
+

n
σ2

1
(s′

αx̄
)2

× Ax̄ .

Example 23 (continued) The statistician decides that he will use a normal (1, (.3)2)
prior for β and a normal (15, 12) prior for αx̄. Since he doesn’t know the true
variance, he will use the estimated variance about the least squares regression line
σ̂2 = 0.0320753. Note that SSx =

∑n
i=1(xi−x̄)2 = n(x̄2−x̄2) = 25∗(207.0703−

14.3892) = .674475.
The posterior precision of β is

1

(s′β)2
=

1

.32
+

25

.674475
= 48.177 ,

so the posterior standard deviation of β is

s′β = 48.177−
1
2 = .144 .

The posterior mean of β is

m′
β =

1
.32

48.177
× 1 +

25
.64775

48.177
× 1.29963 = 1.231 .

Similarly the posterior precision of αx̄ is

1

(s′αx̄
)2

=
1

12
+

25

.674475
= 38.066 ,
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so the posterior standard deviation is

s′αx̄
= 38.066−

1
2 = .162 .

The posterior mean of αx̄ is

m′
αx̄

=
1
12

38.066
× 15 +

25
.64775

38.066
× 14.221 = 14.242 .

Bayesian Credible Interval for Slope

The posterior distribution of β summarizes our entire belief about it after examining
the data. We may want to summarize it by a (1 − α) × 100% Bayesian credible
interval for slope β. This will be

m′
β ± zα

2
×

√
(s′β)2 . (13.9)

More realistically, we don’t know σ2. A sensible approach in that instance is to
use the estimate calculated from the residuals

σ̂2 =

∑n
i=1(yi − (Ax̄ + B(xi − x̄)))2

n − 2
.

We have to widen the confidence interval to account for the increased uncertainty
due to not knowing σ2. We do this by using a Student’s t critical value with n − 2
degrees of freedom4. The credible interval becomes

m′
β ± tα

2
×

√
(s′β)2 . (13.10)

Frequentist Confidence Interval for Slope

When the variance σ2 is unknown, the (1 − α) × 100% confidence interval for the
slope β is

B ± tα
2
× σ̂√

SSx

,

where σ̂2 is the estimate of the variance calculated from the residuals from the least
squares line. The confidence interval is the same form as the Bayesian credible
interval when we used flat priors for β and αx̄. Of course the interpretation is
different. Under the frequentist assumptions we are (1 − α) × 100% confident that
the interval contains the true, unknown parameter value. Once again, the frequentist
confidence interval is equivalent to a Bayesian credible interval, so if the scientist
misinterprets it as a probability interval, he/she will get away with it. The only
loss experienced will be that the scientist did not get to put in any of his/her prior
knowledge.

4Actually we are treating the unknown parameter σ2 as a nuisance parameter and using the prior g(σ2) ∝
(σ2)−1. The marginal posterior of β is found by integrating σ2 out of the joint posterior.
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Testing One-Sided Hypothesis about Slope

Often we want to determine whether or not the amount of increase in y associated
with one unit increase in x is greater than some value, β0. We can do this by testing

H0 : β ≤ β0 versus. H1 : β > β0

at the α level of significance in a Bayesian manner. To do the test in a Bayesian
manner, we calculate the posterior probability of the null hypothesis. This is

P (β ≤ β0|data) =

∫ β0

−∞

g(β|data)dβ (13.11)

= P


Z ≤ β0 − m′

β√
(s′

β
)2

SSx


 .

If this probability is greater than α, then we reject H0 and conclude that indeed, the
slope β is greater than β0. (If we used the estimate of the variance, then we would
use a Student’s t with n − 2 degrees of freedom instead of the standard normal Z.)

Example 23 (continued) Since he used the estimated variance in place of the un-
known true variance, he used Equation 13.10 to find the Bayesian credible interval
where there are 23 degrees of freedom. The interval is (.933,1.529).

Testing Two-Sided Hypothesis about Slope

If β = 0, then the mean of y does not depend on x at all. We really would like to test
H0 : β = 0 versus H1 : β �= 0 at the α level of significance in a Bayesian manner,
before we use the regression model to make predictions.

To do the test in a Bayesian manner, look where 0 lies in relation to the credible
interval. If it lies outside interval, reject H0. Otherwise, we can’t reject the null
hypothesis, and we should not use the regression model to help with predictions.

13.5 PREDICTIVE DISTRIBUTION FOR FUTURE OBSERVATION

Making predictions of future observations for specified x values is one of the main
purposes of linear regression modelling. When we have established that there is a
linear relationship between the explanatory variable x and the response variable y,
we often want to use that relationship to make predictions of future value yn+1 given
the value of the explanatory variable xn+1. We can make better predictions using the
value of the explanatory variable than without it. The best prediction is

ỹn+1 = α̂x̄ + β̂ × (xn+1 − x̄) ,

where β̂ is the slope estimate, and α̂x̄ is the estimate of the intercept of the line x = x̄.
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How good is the prediction? There are two sources of uncertainty. First, we are
using the estimated values of the parameters in the prediction, not the true values,
which are unknown. We are considering the parameters to be random variables
and have found their posterior distribution in the previous section. Second, the new
observation yn+1 contains its own observation error en+1, which will be independent
of all previous observation errors. The predictive distribution of the next observation
yn+1 given the value xn+1 and the data accounts for both sources of uncertainty. It
is denoted f(yn+1|xn+1, data) and is found by Bayes’ theorem.

Finding the Predictive Distribution

The predictive distribution is found by integrating the parameters αx̄ and β out of the
joint posterior distribution of the next observation yn+1 and the parameters given the
value xn+1 and the data that equals the previous observations (x1, y1), . . . , (xn, yn):

f(yn+1|xn+1, data)

=

∫ ∫
f(yn+1, αx̄, β|xn+1, data)dαx̄ dβ .

Integrating out nuisance parameters from the joint posterior like this is known as
marginalization. This is one of the clear advantages of Bayesian statistics. It has a
single method of dealing with nuisance parameters that always works. When we find
the predictive distribution, we consider all the parameters to be nuisance parameters.

First, we have to determine the joint posterior distribution of the parameters and
next observation, given the value xn+1 and the data:

f(yn+1, αx̄, β|xn+1, data)

= f(yn+1|αx̄, β, xn+1, data) × g(αx̄, β|xn+1, data) .

But the next observation yn+1 at the known value xn+1 is another random observation
from the regression model. Given the parameters αx̄ and β, the observations are all
independent of each other. This means that given the parameters, the new observation
yn+1 does not depend on the data, which are the previous observations from the
regression. Also the posterior of αx̄, β, given the data and the value xn+1 does not
depend on xn+1. The posterior was calculated from the data alone. So the joint
distribution of new observation and parameters simplifies to

f(yn+1, αx̄, β|xn+1, data)

= f(yn+1|αx̄, β, xn+1) × g(αx̄, β|data) .

This is the distribution of the next observation given the parameters, times the poste-
rior distribution of the parameters given the previous sample. The next observation
yn+1|αx̄, β, xn+1 is another random observation from the regression model. By our
assumptions it is normally distributed with mean given by the linear function of the
parameters µn+1 = αx̄ + β(xn+1 − x̄) and known variance σ2.
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The posterior distributions of the parameters given the previous data are inde-
pendently normal (m′

α, (s′α)2) and normal(m′
β , (s′β)2), which we found using the

updating rules in the previous section. The two components of the linear function are
independent. Thus posterior distribution of µn+1 will be normal with mean m′

n+1 =
m′

α + (xn+1 − x̄) × m′
β and variance (s′n+1)

2 = (s′α)2 + (xn+1 − x̄)2 × (s′β)2).
Since the next observation only depends on the parameters through the linear

function, µn+1 = αx̄ + β(xn+1 − x̄), we will let µn+1 be the parameter. We will
find the predictive distribution by marginalizing the µn+1 out of the joint posterior
of yn+1 and µn+1.

f(yn+1|xn+1, data) =

∫
f(yn+1|µn+1, xn+1, data) ×

g(µn+1|xn+1, data) dµn+1

=

∫
f(yn+1|µn+1) × g(µn+1|xn+1, data) dµn+1

∝
∫

e−
1

2σ2 (yn+1−µn+1)
2 × e

− 1
2(s′

n+1
)2

(µn+1−m′

n+1)
2

dµn+1

∝
∫

e
− 1

2σ2(s′
n+1

)2/(σ2+(s′
n+1

)2)

(
µ−

y(s′
n+1

)2+m′

n+1
σ2

((s′
n+1

)2+σ2

)2

×e
− 1

2((s′
n+1

)2+σ2)
(yn+1−m′

n+1)
2

dµn+1 .

The second factor doesn’t depend on µn+1, so it can be brought in front of the
integral. We recognize that the first term integrates out, so we are left with

f(yn+1|xn+1, data) ∝ e
− 1

2((s′
n+1

)2+σ2)
(yn+1−m′

n+1)
2

. (13.12)

We recognize that this as a normal (m′
µ, σ2 + (s′n+1)

2. The predictive distribution
of the next observation yn+1 at xn+1 is normal with mean equal to the posterior
mean of µn+1 = αx̄ + β(xi − x̄) and variance equal to the posterior variance of
µn+1 = αx̄ + β(xi − x̄) plus σ2. The predictive distribution allows for both sources
of uncertainty.

Main Points

• Our goal is to use one variable x, called the predictor variable to help us predict
another variable y, called the response variable.

• We think the two variables are related by a linear relationship, y = a0 + b×x.
b is the slope and a0 is the y-intercept (where the line intersects the y-axis.)

• The scatterplot of the points (x, y) would indicate a perfect linear relationship
if the points lie along a straight line.
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• However, the points usually do not lie perfectly along a line but are scattered
around, yet still show a linear pattern.

• We could draw any line on the scatterplot. The residuals from that line would
be the vertical distance from the plotted points to the line.

• Least squares is a method for finding a line that best fits a plotted points by
minimizing the sum of squares of residuals from a fitted line.

• The slope and intercept of the least squares line are found by solving the normal
equations.

• The linear regression model has three assumptions:

1. The mean of y is an unknown linear function of x. Each observation yi

is made at a known value xi.

2. Each observation yi is subject to a random error that is normally dis-
tributed with mean 0 and variance σ2. We will assume that σ2 is known.

3. The observation errors are independent of each other.

• Bayesian regression is much easier if we reparameterize the model to be
y = αx̄ + β × (x − x̄).

• The joint likelihood of the sample factors into a part dependent on the slope β

and a part dependant on αx̄.

• We use independent priors for the slope β and intercept αx̄. They can either be
normal priors or "flat" priors. The joint prior is the product of the two priors.

• The joint posterior is proportional to the joint prior times the joint likelihood.
Since both the joint prior and joint likelihood factor, the joint posterior is
the product of two individual posteriors. Each of them is normal where the
constants can be found from the simple updating rules.

• Ordinarily we are more interested in the posterior distribution of the slope
β, which is normal (m′, (s′)2). In particular, we are interested in knowing
whether the belief β = 0 is credible given the data. If so, we should not be
using x to help predict y.

• The Bayesian credible interval for β is the posterior mean ± the critical value
× the posterior standard deviation.

• The critical value is taken from the normal table if we assume the variance σ2

is known. If we don’t know it and use the sample estimate calculated from the
residuals then we take the critical value from the Student’s t table.

• The credible interval can be used to test the two-sided hypothesis H0 : β = 0
versus H1 : β �= 0.
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• We can test a one-sided hypothesis H0 : β ≤ 0 versus H1 : β > 0 by
calculating the probability of the null hypothesis, and comparing it to the level
of significance.

• We can compute the predictive probability distribution for the next observation
yn+1 taken when xn+1. It is the normal distribution with mean equal to the
mean of the linear function µn+1 = αx̄ + (xn+1 − x̄), and its variance equal
to the variance of the linear function plus the observation variance.

Exercises

13.1 A researcher measured heart rate (x) and oxygen uptake (y) for one person
under varying exercise conditions. He wishes to determine if heart rate which
is easier to measure can be used to predict oxygen uptake. If so, then the
estimated oxygen uptake based on the measured heart rate can be used in place
of the measured oxygen uptake for later experiments on the individual:

Heart Rate Oxygen Uptake

x y

94 .47

96 .75

94 .83

95 .98

104 1.18

106 1.29

108 1.40

113 1.60

115 1.75

121 1.90

131 2.23

(a) Plot a scatterplot of oxygen uptake y versus heart rate x.

(b) Calculate the parameters of the least squares line.

(c) Graph the least squares line on your scatterplot.

(d) Calculate the estimated variance about the least squares line.

(e) Suppose that we know that oxygen uptake given the heart rate is normal
(α0 + β ×x, σ2), where σ2 = .132 is known. Use a normal (0, 12) prior
for β. What is the posterior distribution of β?

(f) Find a 95% credible interval for β.
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(g) Perform a Bayesian test of

H0 : β = 0 versus H1 : β �= 0

at the 95 % level of significance.

13.2 A researcher is investigating the relationship between yield of potatoes (y) and
level of fertilizer (x.) She divides a field into eight plots of equal size and
applied fertilizer at a different level to each plot. The level of fertilizer and
yield for each plot is recorded below:

Fertilizer Level Yield

x y

1 25

1.5 31

2 27

2.5 28

3 36

3.5 35

4 32

4.5 34

(a) Plot a scatterplot of yield versus fertilizer level.

(b) Calculate the parameters of the least squares line.

(c) Graph the least squares line on your scatterplot.

(d) Calculate the estimated variance about the least squares line.

(e) Suppose that we know that yield given the fertilizer level is normal
(α0 + β ×x, σ2), where σ2 = 3.02 is known. Use a normal (2, 22) prior
for β. What is the posterior distribution of β?

(f) Find a 95% credible interval for β.

(g) Perform a Bayesian test of

H0 : β ≤ 0 versus H1 : β > 0

at the 95 % level of significance.

13.3 A researcher is investigating the relationship between fuel economy and driving
speed. He makes six runs on a test track, each at a different speed, and measures
the kilometers travelled on one liter of fuel. The speeds (in kilometers per hour)
and distances (in kilometers) are recorded below:
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Speed Distance

x y

80 55.7

90 55.4

100 52.5

110 52.1

120 50.5

130 49.2

(a) Plot a scatterplot of distance travelled versus speed.

(b) Calculate the parameters of the least squares line.

(c) Graph the least squares line on your scatterplot.

(d) Calculate the estimated variance about the least squares line.

(e) Suppose that we know distance travelled given the speed is normal (α0 +
β × x, σ2) where σ2 = .572 is known. Use a normal (0, 12) prior for β.
What is the posterior distribution of β?

(f) Perform a Bayesian test of

H0 : β ≥ 0 versus H1 : β < 0

at the 95 % level of significance.

13.4 The Police Department is interested in determining the effect of alcohol con-
sumption on driving performance. Twelve male drivers of similar weight, age,
and driving experience were randomly assigned to three groups of four. The
first group consumed two cans of beer within 30 minutes, the second group
consumed four cans of beer within 30 minutes, and the third group was the
control, and did not consume any beer. Twenty minutes later, each of the twelve
took a driving test under the same conditions, and their individual scores were
recorded. (The higher score, the better the driving performance.) The results
were:
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Cans Score

x y

0 78

0 82

0 75

0 58

2 75

2 42

2 50

2 55

4 27

4 48

4 49

4 39

(a) Plot a scatterplot of score versus cans.

(b) Calculate the parameters of the least squares line.

(c) Graph the least squares line on your scatterplot.

(d) Calculate the estimated variance about the least squares line.

(e) Suppose we know that the driving score given the number of cans of beer
drunk is normal (α0 + β × x, σ2), where σ2 = 122 is known. Use a
normal (0, 102) prior for β. What is the posterior distribution of β?

(f) Perform a Bayesian test of

H0 : β ≥ 0 versus H1 : β < 0

at the 95 % level of significance.

13.5 A textile manufacturer is concerned about the strength of cotton yarn. In
order to find out whether fiber length is an important factor in determining the
strength of yarn, the quality control manager checked the fiber length (x) and
strength (y) for a sample of 10 segments of yarn. The results are:
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Fiber Length Strength

x y

85 99

82 93

75 103

73 97

76 91

73 94

96 135

92 120

70 88

74 92

(a) Plot a scatterplot of strength versus fiber length.

(b) Calculate the parameters of the least squares line.

(c) Graph the least squares line on your scatterplot.

(d) Calculate the estimated variance about the least squares line.

(e) Suppose we know that the strength given the fiber length is normal
(α0 + β × x, σ2), where σ2 = 7.72 is known. Use a normal (0, 102)
prior for β. What is the posterior distribution of β.

(f) Find a 95% credible interval for β.

(g) Perform a Bayesian test of

H0 : β ≤ 0 versus H1 : β > 0

at the 95 % level of significance.

13.6 In Chapter 3, Exercise 7, we were looking at the relationship between log(mass)
and log(length) for a sample of 100 New Zealand slugs of the species Limax
maximus from a study conducted by Barker and McGhie (1984.) These data
are in the Minitab worksheet slug.mtw. We identified observation 90 that did
not appear to fit the pattern It is likely that this observation is an outlier that was
recorded incorrectly, so remove it from the data set. The summary statistics for
the 99 remaining observations are. Note: x is log(length), and y is log(weight)∑

x = 352.399
∑

y = −33.6547
∑

x2 = 1292.94

∑
xy = −18.0147

∑
y2 = 289.598
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(a) Calculate the least squares line for the regression of y on x from the
formulas.

(b) Using Minitab, calculate the least squares line. Plot a scatterplot of log
weight on log length. Include the least squares line on your scatterplot.

(c) Using Minitab, calculate the residuals from the least squares line, and plot
the residuals versus x. From this plot, does it appear the linear regression
assumptions are satisfied?

(d) Using Minitab, calculate the estimate of the standard deviation of the
residuals.

(e) Suppose we use a normal (3, .52) prior for β, the regression slope coef-
ficient. Calculate the posterior distribution of β|data. (Use the standard
deviation you calculated from the residuals as if it is the true observation
standard deviation.)

(f) Find a 95% credible interval for the true regression slope β.

(g) If the slug stay the same shape as they grow (allotropic growth) the height
and width would both be proportional to the length, so the weight would
be proportional to the cube of the length. In that case the coefficient of
log(weight) on log(length) would equal 3. Test the hypothesis

H0 : β = 3 versus H1 : β �= 3

at the 5% level of significance. Can you conclude this slug species shows
allotropic growth?

13.7 Endophyte is a fungus Neotyphodium lolli that lives inside ryegrass plants. It
does not spread between plants, but plants grown from endophyte-infected seed
will be infected. One of its effects is that it produces a range of compounds
that are toxic to Argentine stem weevil Listronotus bonariensis, which feeds on
ryegrass. AgResearch New Zealand did a study on the persistence of perennial
ryegrass at four rates of Argentine stem weevil infestation. For ryegrass that
was infected with endophyte the following data were observed:
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Infestation Rate Number of Ryegrass Plants (n) loge(n + 1)

x y

0 19 2.99573

0 23 3.17805

0 2 1.09861

0 0 0.00000

0 24 3.21888

5 20 3.04452

5 18 2.94444

5 10 2.39790

5 6 1.94591

5 6 1.94591

10 12 2.56495

10 2 1.09861

10 11 2.48491

10 7 2.07944

10 6 1.94591

20 3 1.38629

20 16 2.83321

20 14 2.70805

20 9 2.30259

20 12 2.56495

(a) Plot a scatterplot of number of ryegrass plants versus the infestation rate.

(b) The relationship between infestation rate and number of ryegrass plants
is clearly nonlinear. Look at the transformed variable y = loge(n + 1).
Plot y versus x on a scatterplot. Does this appear to be more linear?

(c) Find the least squares line relating y to x. Include the least squares line
on your scatterplot.

(d) Find the estimated variance about the least squares line.

(e) Assume that the observed yi are normally distributed with mean αx̄ +
β × (xi − x̄) and known variance σ2 equal to that calculated in part
(b.) Find the posterior distribution of β|(x1, y1), . . . , (x20, y20). Use a
normal (0, 12) prior for β.

13.8 For ryegrass that was not infected with endophyte the following data were
observed:
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Infestation Rate Number of Ryegrass Plants (n) loge(n + 1)

x y

0 16 2.83321

0 23 3.17805

0 2 1.09861

0 16 2.83321

0 6 1.94591

5 8 2.19722

5 6 1.94591

5 1 0.69315

5 2 1.09861

5 5 1.79176

10 5 1.79176

10 0 0.00000

10 6 1.94591

10 2 1.09861

10 2 1.09861

20 1 0.69315

20 0 0.00000

20 0 0.00000

20 1 0.69315

20 0 0.00000

(a) Plot a scatterplot of number of ryegrass plants versus the infestation rate.

(b) The relationship between infestation rate and number of ryegrass plants
is clearly nonlinear. Look at the transformed variable y = loge(n + 1).
Plot y versus x on a scatterplot. Does this appear to be more linear?

(c) Find the least squares line relating y to x.

(d) Find the estimated variance about the least squares line.

(e) Assume that the observed yi are normally distributed with mean αx̄ +
(xi − x̄) × β and variance equal to that calculated in part (b.) Find the
posterior distribution of β|(x1, y1), . . . , (x20, y20). Use a normal (0, 12)
prior for β.

13.9 In the previous two problems we found the posterior distribution of the slope
of y on x, the rate of weevil infestation for endophyte infected and noninfected
ryegrass. Let β1 be the slope for noninfected ryegrass, and let β2 be the slope
for infected ryegrass
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(a) Find the posterior distribution of β1 − β2.

(b) Calculate a 95 % credible interval for β1 − β2.

(c) Test the hypothesis

H0 : β1 − β2 ≤ 0 versus H1 : β1 − β2 > 0

at the 10 % level of significance.



14
Robust Bayesian Methods

Many statisticians hesitate to use Bayesian methods because they are reluctant to
let their prior belief into their inferences. In almost all cases they have some prior
knowledge, but they may not wish to formalize it into a prior distribution. They
know some values are more likely than others, and some are not realistically possible.
Scientists are studying and measuring something they have observed. They know the
scale of possible measurements. We saw in previous chapters that all priors that have
reasonable probability over the range of possible values will give similar, although
not identical posteriors. And we saw that Bayes’ theorem using the prior information
will give better inferences than frequentist ones that ignore prior information, even
when judged by frequentist criteria. The scientist would be better off if he formed a
prior from his prior knowledge and used Bayesian methods.

However, it is possible that a scientist could have a strong prior belief, yet that
belief could be incorrect. When the data are taken, the likelihood is found to be
very different from that expected from the prior. The posterior would be strongly
influenced by the prior. Most scientists would be very reluctant to use that posterior.
If there is a strong disagreement between the prior and the likelihood, the scientist
would want to go with the likelihood, since it came from the data.

In this chapter we look at how we can make Bayesian inference more robust
against a poorly specified prior. We find that using a mixture of conjugate priors
enables us to do this. We allow a small prior probability that our prior is misspecified.
If the likelihood is very different than what would be expected under the prior, the

0Introduction to Bayesian Statistics. By William M. Bolstad
ISBN 0-471-27020-2 Copyright c©John Wiley & Sons, Inc.
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posterior probability of misspecification is large, and our posterior distribution will
depend mostly on the likelihood.

14.1 EFFECT OF MISSPECIFIED PRIOR

One of the main advantages of Bayesian methods is that it uses your prior knowledge,
along with the information from the sample. Bayes’ theorem combines both prior
and sample information into the posterior. Frequentist methods only use sample
information. Thus Bayesian methods usually perform better than frequentist ones
because they are using more information. The prior should have relatively high
values over the whole range where the likelihood is substantial.

However, sometimes this does not happen. A scientist could have a strong prior
belief, yet it could be wrong. Perhaps he (wrongly) bases his prior on some past data
that arose from different conditions than the present data set. If a strongly specified
prior is incorrect, it has a substantial effect on the posterior. This is shown in the
following two examples.

Example 25 Archie is going to conduct a survey about how many Hamilton voters
say they will attend a casino if it is built in town. He decides to base his prior on
the opinions of his friends. Out of the 25 friends he asks, 15 say they will attend
the casino. So he decides on a beta(a, b) prior that matches those opinions. The
prior mean is .6, and the equivalent samples size is 25. Thus a + b + 1 = 25 and

a
a+b

= .6. Thus a = 14.4 and b = 9.6. Then he takes a random sample of 100
Hamilton voters and finds that 25 say they will attend the casino. His posterior
distribution is beta(39.4, 84.60). Archie’s prior, the likelihood, and his posterior are
shown in Figure 14.1. We see that the prior and the likelihood do not overlap very
much. The posterior is in between. It gives high posterior probability to values that
aren’t supported strongly by the data (likelihood) and aren’t strongly supported by
prior either. This is not satisfactory.

Example 26 Andrea is going to take a sample of measurements of dissolved oxygen
level from a lake during the summer. Assume that the dissolved oxygen level is
approximately normal with mean µ and known variance σ2 = 1. She had previously
done a similar experiment from the river that flowed into the lake. She considered that
she had a pretty good idea of what to expect. She decided to use a normal(8.5, .72)
prior for µ, which was similar to her river survey results. She takes a random
sample of size 5 and the sample mean is 5.45. The parameters of the posterior
distribution are found using the simple updating rules for normal. The posterior is
normal(6.334, .37692). The prior, likelihood, and posterior are shown in 2. The
posterior density is between the prior and likelihood, and gives high probability to
values that aren’t supported strongly either by the data or by the prior, which is a very
unsatisfactory result. Figure 14.2 shows Andrea’s prior, likelihood, and posterior.
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likelihood
posterior
prior

1.00.90.80.70.60.50.40.30.20.10.0

Figure 14.1 Archie’s prior, likelihood, and posterior.

These two examples show how an incorrect prior can arise. Both Archie and Andrea
based their priors on past data, each judged to arise from a situation similar the one to
be analyzed. They were both wrong. In Archie’s case he considered his friends to be
representative of the population. However, they were all similar in age and outlook
to him. They do not constitute a good data set to base a prior on. Andrea considered
that her previous data from the river survey would be similar to data from the lake.
She neglected the effect of water movement on dissolved oxygen. She is basing her
prior on data obtained from an experiment under different conditions than the one
she is now undertaking.

14.2 BAYES’ THEOREM WITH MIXTURE PRIORS

Suppose our prior density is g0(θ) and it is quite precise, because we have substantial
prior knowledge. However, we want to protect ourselves from the possibility that we
misspecified the prior by using prior knowledge that is incorrect. We don’t consider
it likely, but concede that it is possible that we failed to see the reason why our prior
knowledge will not applicable to the new data. If our prior is misspecified, we don’t
really have much of an idea what values θ should take. In that case the prior for θ is
g1(θ), which is either a very vague conjugate prior or a flat prior. Let g0(θ|y1, · · · , yn)
be the posterior distribution of θ given the observations when we start with g0(θ) as
the prior. Similarly we let g1(θ|y1, · · · , yn) be the posterior distribution of θ given
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Figure 14.2 Andrea’s prior, likelihood, and posterior.

the observations when we start with g1(θ) as the prior:

gi(θ|y1, · · · , yn) ∝ gi(θ)f(y1, · · · , yn|θ) .

These are found using the simple updating rules, since we are using priors that are
either from the conjugate family or are flat.

The Mixture Prior

We introduce a new parameter, I that takes two possible values. If i = 0, then θ

comes from g0(θ). However, if i = 1, then θ comes from g1(θ). The conditional
prior probability of θ given i is

g(θ|i) =

{
g0(θ) if i = 0
g1(θ) if i = 1

.

We let the prior probability distribution of I be P (I = 0) = p0, where p0 is some
high value like .9, .95, or .99, because we think our prior g0(θ) is correct. The prior
probability that our prior is misspecified is p1 = 1 − p0. The joint prior distribution
of θ and I is

g(θ, i) = pi × gi(θ) for i = 0, 1 .

We note this joint distribution is continuous in the parameter θ and discrete in the
parameter I . The marginal prior density of the random variable θ is found by
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marginalizing (summing I over all possible values) the joint density. It has a mixture
prior distribution since its density

g(θ) =

1∑
0

pigi(θ) (14.1)

is a mixture of the two prior densities.

The Joint Posterior

The joint posterior distribution of θ, I given the observations y1, . . . , yn is propor-
tional to the joint prior times the joint likelihood. This gives

g(θ, i|y1, · · · , yn) = c × g(θ, i) × f(y1, · · · , yn|θ, i) for i = 0, 1

for some constant c. But the sample only depends on θ, not on i, so the joint posterior

g(θ, i|y1, · · · , yn) = c × pigi(θ)f(y1, · · · , yn|θ) for i = 0, 1

= c × pihi(θ, y1, · · · , yn) for i = 0, 1 ,

where hi(θ, y1, · · · , yn) = gi(θ)f(y1, . . . , yn|θ) is the joint distribution of the param-
eter and the data, when gi(θ) is the correct prior. The marginal posterior probability
P (I = i|y1, · · · , yn) is found by integrating θ out of the joint posterior:

P (I = i|y1, · · · , yn) =

∫
g(θ, i|y1, · · · , yn)dθ

= c × pi

∫
hi(θ, y1, · · · , yn)dθ

= c × pifi(y1, . . . , yn)

for i = 0, 1, where fi(y1, . . . , yn) is the marginal probability (or probability density)
of the data when gi(θ) is the correct prior. The posterior probabilities sum to 1, and
the constant c cancels, so

P (I = i|y1, . . . , yn) =
pifi(y1, · · · , yn)∑1
i=0 pifi(y1, · · · , yn)

.

These can be easily evaluated.

The Mixture Posterior

We find the marginal posterior of θ by summing all possible values of i out of the
joint posterior:

g(θ|y1, · · · , yn) =

1∑
i=0

g(θ, i|y1, · · · , yn) .
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Figure 14.3 Ben’s mixture prior and components.

But there is another way the joint posterior can be rearranged from conditional
probabilities:

g(θ, i|y1, · · · , yn) = g(θ|i, y1, · · · , yn) × P (I = i|y1, · · · , yn) ,

where g(θ|i, y1, . . . , yn) = gi(θ|y1, . . . , yn) is the posterior distribution when we
started with gi(θ) as the prior. Thus the marginal posterior of θ is

g(θ|y1, · · · , yn) =
1∑

i=0

gi(θ|y1, · · · , yn) × P (I = i|y1, · · · , yn) . (14.2)

This is the mixture of the two posteriors, where the weights are the posterior proba-
bilities of the two values of i given the data.

Example 25 (continued) One of Archie’s friends, Ben, decided that he would re-
analyze Archie’s data with a mixture prior. He let g0 be the same beta(14.4,9.6)
prior that Archie used. He let g1 be the (uniform) beta(1,1) prior. He let the prior
probability p0 = .95. Ben’s mixture prior and its components are shown in Figure
14.3. His mixture prior is quite similar to Archie’s. However, it has heavier weight
in the tails. This gives makes his prior robust against prior misspecification. In
this case, hi(π, y) is a product of a beta times a binomial. Of course, we are only
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interested in y = 25, the value that occurred:

h0(π, y = 25) =
Γ(24)

Γ(14.4)Γ(9.6)
π13.4(1 − π)8.6 ×

(
100!

25!75!

)
π25(1 − π)75

=
Γ(24)

Γ(14.4)Γ(9.6)
×

(
100!

25!75!

)
× π38.4(1 − π)83.6

and

h1(π, y = 25) = π0(1 − π)0 ×

(
100!

25!75!

)
π25(1 − π)75

=

(
100!

25!75!

)
π25(1 − π)75 .

We recognize each of these as a constant times a beta distribution. So integrating
them with respect to π gives

∫ 1

0

h0(π, y = 25)dπ =
Γ(24)

Γ(14.4)Γ(9.6)
×

(
100!

25!75!

)
×

∫ 1

0

π38.4(1 − π)83.6dπ

=
Γ(24)

Γ(14.4)Γ(9.6)
×

(
100!

25!75!

)
×

Γ(39.4)Γ(84.6)

Γ(124)

and
∫ 1

0

h1(π, y = 25)dπ =

(
100!

25!75!

)
×

∫ 1

0

π25(1 − π)75dπ

=

(
100!

25!75!

)
×

Γ(26)Γ(76)

Γ(102)
.

Remember that Γ(a) = (a − 1) × Γ(a − 1) and if a is an integer, Γ(a) = (a − 1)! .
The second integral is easily evaluated and gives

f1(y = 25) =

∫ 1

0

h1(π, y = 25)dπ =
1

101
= 9.90099 × 10−3 .

We can evaluate the second integral numerically

f0(y = 25) =

∫ 1

0

h0(π, y = 25)dπ = 2.484 × 10−4 .

So the posterior probabilities are P (I = 0|25) = 0.323 and P (I = 1|25) = 0.677.
The posterior distribution is the mixture g(π|25) = .323×g0(π|25)+.677×g1(π|25),
where g0(π|y) and g1(π|y) are the conjugate posterior distributions found using g0

and g1 as the respective priors. Ben’s mixture posterior distribution and its two
components is shown in Figure 14.4. Ben’s prior and posterior, together with the
likelihood is shown in Figure 14.5. When the prior and likelihood disagree, we should
go with the likelihood because it is from the data. Superficially, Ben’s prior looks
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Figure 14.4 Ben’s mixture posterior and its two components.

very similar to Archie’s prior. However, it has a heavier tail allowed by the mixture,
and this has allowed his posterior to be very close to the likelihood. We see that this
is much more satisfactory than Archie’s analysis shown in Figure 14.1.

Example 26 (continued) Andrea’s friend Caitlin looked at Figure 14.2 and told
her it was not satisfactory. The values given high posterior probability were not
supported strongly either by the data, or by the prior. She considered it likely that the
prior was misspecified. She said to protect against that, she would do the analysis
using a mixture of normal priors. g0(θ) was the same as Andrea’s, normal(8.5, .72),
and g1(θ) would be normal (8.5, (4 × .7)2, which has the same mean as Andrea’s
prior, but with the standard deviation 4 times as large. She allows prior probability
.05 that Andrea’s prior was misspecified. Caitlin’s mixture prior and its components
are shown in Figure 14.6. We see that her mixture prior appears very similar to
Andrea’s except there is more weight in the tail regions. Caitlin’s posterior g0(θ|ȳ) is
normal(6.334, .37692), the same as for Andrea. Caitlin’s posterior when the original
prior was misspecified g1(θ|ȳ) is normal(5.526, .44162) where the parameters are
found by the simple updating rules for the normal. In the normal case

hi(µ, y1, · · · , yn) ∝ gi(µ) × f(ȳ|µ)

∝ e
−

1

2s2
i

(µ−mi)
2

× e
−

1

2σ2/n
(ȳ−µ)2

where mi and s2
i are the mean and variance of the prior distribution gi(µ). The

integral
∫

hi(µ, y1, · · · , yn)dµ gives the unconditional probability of the sample,
when gi is the correct prior. We multiply out the two terms, rearrange all the terms
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Figure 14.5 Ben’s mixture prior, likelihood, and mixture posterior.

containing µ which is normal and integrates. The terms that are left simplify to

fi(ȳ) =

∫
hi(µ, ȳ)dµ

∝ e
−

1

s2
i
+σ2/n

(ȳ−mi)
2

,

which we recognize as a normal density with mean mi and variance σ2

n
+ s2

i . In this
example, m0 = 8.5, s2

0 = .72,m1 = 8.5, s2
1 = (4 × .7)2), σ2 = 1, and n = 5. The

data are summarized by the value ȳ = 5.45 that occurred in the sample. Plugging in
these values we get P (I = 0|ȳ = 5.45) = .12 and P (I = 1|ȳ = 5.45) = .88. Thus
Caitlin’s posterior is the mixture .12 × g0(µ|ȳ) + .88 × g1(µ|ȳ). Caitlin’s mixture
posterior and its components are given in Figure 14.7. Caitlin’s prior, likelihood, and
posterior are shown in Figure 14.8. Comparing this with Andrea’s analysis shown in
Figure 14.2, we see that using mixtures has given her a posterior that is much closer
to the likelihood than the one obtained with the original misspecified prior. This is a
much more satisfactory result.

Summary

Our prior represents our prior belief about the parameter before looking at the data
from this experiment. We should be getting our prior from past data from similar
experiments. However, if we think an experiment is similar, but it is not, our prior
can be quite misspecified. We may think we know a lot about the parameter, but
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Figure 14.6 Caitlin’s mixture prior and its components.

what we think is wrong. That makes the prior quite precise, but wrong. It will be
quite a distance from the likelihood. The posterior will be in between, and will give
high probability to values neither supported by the data or the prior. That is not
satisfactory. If there is a conflict between the prior and the data, we should go with
the data.

We introduce a indicator random variable that we give a small prior probability
of indicating our original prior is misspecified. The mixture prior we use is the
P (I = 0)× g0(θ) + P (I = 1)× g1(θ), where g0 and g1 are the original prior, and a
more widely spread prior respectively. We find the joint posterior of distribution of I

and θ given the data. The marginal posterior distribution of θ given the data is found
by marginalizing the indicator variable out. It will be a the mixture distribution

gmixture(θ|y1, · · · , yn) = P (I = 0|y1, · · · , yn)g0(θ|y1, · · · , yn)

+P (I = 1|y1, · · · , yn)g1(θ|y1, · · · , yn) .

This posterior is very robust against a misspecified prior. If the original prior is
correct, the mixture posterior will be very similar to the original posterior. However,
if the original prior is very far from the likelihood, the posterior probability p(i =
0|y1, · · · , yn) will be very small, and the mixture posterior will be close to the
likelihood. This has resolved the conflict between the original prior and the likelihood
by giving much more weight to the likelihood.
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Figure 14.7 Caitlin’s mixture posterior and its two components.

Main Points

• If the prior places high probability on values that have low likelihood, and
low probability on values that have high likelihood, the posterior will place
high probability on values that are not supported either by the prior or by the
likelihood. This is not satisfactory.

• This could have been caused by a misspecified prior that arose when the scientist
based his/her prior on past data, which had been generated by a process that
differs from the process that will generate the new data in some important way
that the scientist failed to take into consideration.

• Using mixture priors protects against this possible misspecification of the prior.
We use mixtures of conjugate priors. We do this by introducing a mixture index
random variable that takes on the values 0 or 1. The mixture prior is

g(θ) = p0 × g0(θ) + p1 × g1(θ) ,

where g0(θ) is the original prior we believe in, and g1 is another prior that
has heavier tails, and thus allows for our original prior being wrong. The
respective posteriors that arise using each of the priors are g0(θ|y1, . . . , yn)
and g1(θ|y1, . . . , yn).

• We give the original prior g0 high prior probability by letting the prior probabil-
ity p0 = P (I = 0) be high and the prior probability p1 = (1−p0) = P (I = 1)
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Figure 14.8 Caitlin’s mixture prior, the likelihood, and her mixture posterior.

is low. We think the original prior is correct, but have allowed a small proba-
bility that we have it wrong.

• Bayes’ theorem is used on the mixture prior to determine a mixture posterior.
The mixture index variable is a nuisance parameter, and is marginalized out.

• If the likelihood has most of its value far from the original prior, the mixture
posterior will be close to the likelihood. This is a much more satisfactory result.
When the prior and likelihood are conflicting, we should base our posterior
belief mostly on the likelihood, because it is based on the data. Our prior was
based on faulty reasoning from past data that failed to note some important
change in the process we are drawing the data from.

• The mixture posterior is a mixture of the two posteriors, where the mixing
proportions P (I = i) for i = 0, 1, are proportional to the prior probability
times the the marginal probability (or probability density) evaluated at the data
that occurred.

P (I = i) ∝ pi × fi(y1, . . . yn) for i = 0, 1 .

• They sum to 1, so

P (I = i) =
pi × fi(y1, . . . yn)∑1
i=0 pi × fi(y1, . . . yn)

for i = 0, 1 .
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Exercises

14.1 You are going to conduct a survey of the voters in the city you live in. They
are being asked whether or not the city should build a new convention facility.
You believe that most of the voters will disapprove the proposal because it
may lead to increased property taxes for residents. As a resident of the city,
you have been hearing discussion about this proposal, and most people have
voiced disapproval. You think that only about 35% of the voters will support
this proposal, so you decide that a beta (7, 13) summarizes your prior belief.
However, you have a nagging doubt that the group of people you have heard
voicing their opinions is representative of the city voters. Because of this, you
decide to use a mixture prior:

g(π|i) =

{
g0(π) if i = 0
g1(π) if i = 1

,

where g0(π) is the beta (7, 13) density, and g1(π) is the beta (1, 1) (uniform)
density. The prior probability P (I = 0) = .95. You take a random sample of
n = 200 registered voters who live in the city. Of these, y = 10 support the
proposal.

(a) Calculate the posterior distribution of π when g0(π) is the prior.

(b) Calculate the posterior distribution of π when g1(π) is the prior.

(c) Calculate the posterior probability P (I = 0|Y ).

(d) Calculate the marginal posterior g(π|Y ).

14.2 You are going to conduct a survey of the students in your university to find
out whether they read the student newspaper regularly. Based on your friends
opinions, you think that a strong majority of the students do read the paper
regularly. However, you are not sure your friends are representative sample of
students. Because of this, you decide to use a mixture prior.

g(π|i) =

{
g0(π) if i = 0
g1(π) if i = 1

,

where g0(π) is the beta (20, 5) density, and g1(π) is the beta (1, 1) (uniform)
density. The prior probability P (I = 0) = .95. You take a random sample
of n = 100 students. Of these, y = 41 say they read the student newspaper
regularly.

(a) Calculate the posterior distribution of π when g0(π) is the prior.

(b) Calculate the posterior distribution of π when g1(π) is the prior.

(c) Calculate the posterior probability P (I = 0|Y ).

(d) Calculate the marginal posterior g(π|Y ).
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14.3 You are going take a sample of measurements of specific gravity of a chemical
product being produced. You know the specific gravity measurements are
approximately normal (µ, σ2) where σ2 = .0052. You have precise normal
(1.10, .0012) prior for µ because the manufacturing process is quite stable.
However, you have a nagging doubt about whether the process is correctly
adjusted, so you decide to use a mixture prior. You let g0(µ) be your precise
normal (1.10, .0012) prior, you let g1(µ) be a normal (1.10, .012), and you
let p0 = .95. You take a random sample of product and measure the specific
gravity. The measurements are:

1.10352 1.10247 1.10305 1.10415 1.10382 1.10187

(a) Calculate the joint posterior distribution of I and µ given the data.

(b) Calculate the posterior probability P (I = 0|y1, . . . , y6).

(c) Calculate the marginal posterior g(µ|y1, . . . , y6).

14.4 You are going take a sample of 500 gm blocks of cheese. You know they are
approximately normal (µ, σ2) where σ2 = 22. You have a precise normal
(502, 12) prior for µ because this is what the the process is set for. However,
you have a nagging doubt that maybe the machine needs adjustment, so you
decide to use a mixture prior. You let g0(µ) be your precise normal (502, 12)
prior, and you let g1(µ) be a normal (502, 22), and you let p0 = .95. You take
a random sample of ten blocks of cheese and weigh them. The measurements
are:

501.5 499.1 498.5 499.9 500.4

498.9 498.4 497.9 498.8 498.6

(a) Calculate the joint posterior distribution of I and µ given the data.

(b) Calculate the posterior probability P (I = 0|y1, . . . , y10).

(c) Calculate the marginal posterior g(µ|y1, . . . , y10).



A
Introduction to Calculus

FUNCTIONS

A function f(x) defined on a set of real numbers, A, is a rule that associates each
real number x in the set A with one and only one other real number y. The number x
is associated with the number y by the rule y = f(x). The set A is called the domain
of the function, and the set of all y that are associated with members of A is called
the range of the function.

Often the rule is expressed as an equation. For example, the domain A might be all
positive real numbers, and the function f(x) = loge(x) associates each element of
A with its natural logarithm. The range of this function is the set of all real numbers.

For a second example, the domain A might be the set of real numbers in the
interval [0, 1] and the function f(x) = x4 × (1 − x)6. The range of this function is
the set of real numbers in the interval [0, .44 × .66].

Note that the variable name is merely a cypher, or a place holder. f(x) = x2 and
f(z) = z2 are the same function, where the rule of the function is associate each
number with its square. The function is the rule by which the association is made.
We could refer to the function as f without the variable name, but usually we will
refer to it as f(x). The notation f(x) is used for two things. First, it represents the
specific value associated by the function f to the point x. Second, it represents the

*
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Figure A.1 Graph of function f(x) = x4 × (1 − x)6.

function by giving the rule which it uses. Generally, there is no confusion as it is
clear from the context which meaning we are using.

Combining Functions

We can combine two functions algebraically. Let f and g be functions having the
same domain A, and let k1 and k2 be constants. The function h = k1 × f associates
a number x with y = k1f(x). Similarly the function s = k1f ± k2g associates the
number x with y = k1 × f(x) ± k2 × g(x). The function u = f × g associates a
number x with y = f(x)×g(x). Similarly the function v = f

g associates the number

x with y = f(x)
g(x) .

If function g has domain A and function f has domain that is a subset of the range
of the function g, then the composite function (function of a function) w = f(g)
associates a number x with y = f(g(x)).

Graph of a Function

The graph of the function f is the graph of the equation y = f(x). The graph consists
of all points (x, f(x)) where x ∈ A plotted in the coordinate plane. The graph of the
function f defined on the closed interval A = [0, 1] where f(x) = x4 × (1 − x)6

is shown in Figure A.1. The graph of the function g defined on the open interval
A = (0, 1), where g(x) = x−

1
2 × (1 − x)−

1
2 is shown in the Figure A.2.
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Limit of a Function

The limit of a function at a point is one of the fundamental tools of calculus. We
write

lim
x→a

f(x) = b

to indicate that b is the limit of the function f when x approaches a. Intuitively,
this means that as we take x values closer and closer to (but not equal to) a, their
corresponding values of f(x) are getting closer and closer to b. We note that the
function f(x) does not have to be defined at a to have a limit at a. For example,
0 is not in the domain A of the function f(x) = sinx

x because division by 0 is not
allowed. Yet

lim
x→0

sin(x)

x
= 1

as seen in Figure A.3. We see that if we want to be within a specified closeness to
y = 1, we can find a degree of closeness to x = 0 such that all points x that are
within that degree of closeness to x = 0 and are in the domain A will have f(x)
values within that specified closeness to y = 1.

We should note that a function may not have a limit at a point a. For example, the
function f(x) = cos(1/x) does not have a limit at x = 0. This is shown in Figure
A.4, which shows the function at three scales. No matter how close we get to x = 0,
the possible f(x) values always range from −1 to 1.
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Figure A.3 Graph of f(x) = sin(x)
x

on A = (−1, 0) ∪ (0, 1). Note that f is not defined
at x = 0.
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Figure A.4 Graph of f(x) = cos
(

1
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)
at three scales. Note that f is defined at all real

numbers except for x = 0.

Theorem 1 Limit Theorems:
Let f(x) and g(x) be functions that each have limit at a, and let k1 and k2 be scalars.

1. Limit of a sum (difference) of functions

lim
x→a

[k1 × f(x) ± k2 × g(x)] = k1 × lim
x→a

f(x) ± k2 × lim
x→a

g(x) .

2. Limit of a product of functions

lim
x→a

[f(x) × g(x)] = lim
x→a

f(x) × lim
x→a

g(x) .
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3. Limit of a quotient of functions

lim
x→a

[
f(x)

g(x)

]
=

[
limx→a f(x)

limx→a g(x)

]
.

4. Limit of a power of a function

lim
x→a

[fn(x)] = [ lim
x→a

f(x)]n .

Let g(x) be a function that has limit at a equal to b, and let f(x) be a function that
has a limit at b. Let w(x) = f(g(x)) be a composite function.

5. Limit of a composite function

lim
x→a

w(x) = lim
x→a

f(g(x) = f( lim
x→a

g(x) = f(g(b)) .

CONTINUOUS FUNCTIONS

A function f(x) is continuous at point a if and only if

lim
x→a

f(x) = f(a).

This says three things. First, the function has a limit at x = a. Second, a is in the
domain of the function, so f(a) is defined. Third, the limit of the function at x = a
is equal to the value of the function at x = a. If we want f(x) to be some specified
closeness to f(a), we can find a degree of closeness so that for all x within that
degree of closeness to a, f(x) is within the specified closeness to f(a).

A function that is continuous at all values in an interval is said to be continuous
over the interval. Sometimes a continuous function is said to be a function that "can
be graphed over the interval without lifting the pencil." Strictly speaking, this is not
true for all continuous functions. However, it is true for all functions with formulas
made from polynomial, exponential, or logarithmic terms.
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Theorem 2 Let f(x) and g(x) be continuous functions, and let k1 and k2 be scalars.
Then:

1. A linear function of continuous functions

s(x) = k1 × f(x) + k2 × g(x) ,

2. A product of continuous functions

u(x) = f(x) × g(x) ,

3. A quotient of continuous functions

v(x) =
f(x)

g(x)
,

4. And a composite function of continuous functions

w(x) = f(g(x)) ,

are all continuous functions on their range of definition.

Minima and Maxima of Continuous Functions

One of the main achievements of calculus is that it gives us a method for finding
where a continuous function will achieve minimum and/or maximum values.

Suppose f(x) is a continuous function defined on a continuous domain A. The
function achieves a local maximum at the point x = c if and only if f(x) ≤ f(c) for
all points x ∈ A that are sufficiently close to c. Then f(c) is called a local maximum
of the function. The largest local maximum of a function in the domain A is called
the global maximum of the function.

Similarly the function achieves a local minimum at point x = c if and only if
f(x) ≥ f(c) for all points x ∈ A that are sufficiently close to c, and f(c) is called
a local minimum of the function. The smallest local minimum of a function in the
domain A is called the global minimum of the function.

A continuous function defined on a domain A that is a closed interval [a, b],
always achieves a global maximum ( and minimum). It can occur at either one of the
endpoints x = a or x = b, or an interior point c ∈ (a, b). For example, the function
f(x) = x4 × (1 − x)6 defined on A = [0, 1] achieves a global maximum at x = 4

6
and a global minimum at x = 0 and x = 1 as can be seen in Figure A.1.

A continuous function defined on a domain A that is an open interval (a, b) may
or may not achieve either a global maximum or minimum. For example, the function
f(x) = 1

x1/2×(x−1)1/2 defined on the open interval (0, 1) achieves a global minimum
at x = .5, but it does not achieve a global maximum as can be seen from Figure A.2.
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Figure A.5 The derivative at a point is the slope of the tangent to the curve at that point.

DIFFERENTIATION

The first important use of the concept of a limit is finding the derivative of a continuous
function. The process of finding the derivative is known as differentiation, and it is
extremely useful in finding values of x where the function takes a minimum or
maximum.

We assume that f(x) is a continuous function whose domain is an interval of the
real line. The derivative of the function at x = c, a point in the interval is

f ′(c) = lim
h→0

(
f(c + h) − f(c)

h

)

if this limit exists. When the derivative exists at x = c, we say the function f(x) is
differentiable at x = c. If this limit does not exist, the function f(x) does not have a
derivative at x = c. The limit is not easily evaluated, as plugging in h = 0 leaves the
quotient 0

0 which is undefined. We also use the notation for the derivative at point c

f ′(c) =
d

dx
f(x)

∣∣∣∣
x=c

.

We note that the derivative at point x = c is the slope of the curve y = f(x) evaluated
at x = c. It gives the "instantaneous rate of change" in the curve at x = c. This
is shown in Figure A.5, where f(x), the line joining the point (c, f(c)) and point
(c + h, f(c + h)) for decreasing values of h and its tangent at c are graphed.

The Derivative Function

When the function f(x) has a derivative at all points in an interval, the function

f ′(x) = lim
h→0

(
f(x + h) − f(x)

h

)

is called the derivative function. In this case we say that f(x) is a differentiable
function. The derivative function is sometimes denoted dy

dx . The derivatives of some
elementary functions are given in the following table:
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f(x) f ′(x)

a × x a
xb b × xb−1

ex ex

loge(x) 1
x

sin(x) cos(x)
cos(x) − sin(x)
tan(x) − sec2(x)

The derivatives of more complicated functions can be found from these using the
following theorems:

Theorem 3 Let f(x) and g be differentiable functions on an interval, and let k1 and
k2 be constants.

1. The derivative of a constant times a function is the constant times the derivative
of the function. Let h(x) = k1 × f(x). Then h(x) is also a differentiable
function on the interval, and

h′(x) = k1 × f ′(x) .

2. The sum (difference) rule
Let s(x) = k1 × f(x)± k2 × g(x). Then s(x) is also a differentiable function
on the interval, and

s′(x) = k1 × f ′(x) ± k2 × g′(x) .

3. The product rule.
Let u(x) = f(x) × g(x). Then u(x) is a differentiable function, and

u′(x) = f(x) × g′(x) + f ′(x) × g(x) .

4. The quotient rule.
Let v(x) = f(x)

g(x) . Then v(x) is also a differentiable function on the interval,
and

v′(x) =
g(x) × f ′(x) − f(x) × g′(x)

(g(x))2
.

Theorem 4 The chain rule.
Let f(x) and g(x) be differentiable functions (defined over appropriate intervals)
and let w(x) = f(g(x)). Then w(x) is a differentiable function and

w′(x) = f ′(g(x)) × g′(x) .
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Higher Derivatives

The second derivative of a differentiable function f(x) at a point x = c is the
derivative of the derivative function f ′(x) at the point. The second derivative is given
by

f ′′(c) = lim
h→0

(
f ′(c + h) − f ′(c)

h

)

if it exists. If the second derivative exists for all points x in an interval, then f ′′(x)
is the second derivative function over the interval. Other notation for the second
derivative at point c and for the second derivative function are

f ′′(c) = f (2)(c) =
d

dx
f ′(x)

∣∣∣∣
x=c

and f (2)(x) =
d2

dx2
f(x) .

Similarly the kth derivative is the derivative of the k − 1th derivative function

f (k)(c) = lim
h→0

(
f (k−1)(c + h) − f (k−1)(c)

h

)

if it exists.

Critical Points

For a function f(x) that is differentiable over an open interval (a, b), the derivative
function f ′(x) is the slope of the curve y = f(x) at each x-value in the interval. This
gives a method of finding where the minimum and maximum values of the function
occur. The function will achieve its minimum and maximum at points where the
derivative equals 0. When x = c is a solution of the equation

f ′(x) = 0 ,

c is called a critical point of the function f(x). The critical points may lead to local
maximum or minimum, global maximum or minimum, or they may be points of
inflection. A point of inflection is where the function changes from being concave to
convex, or vice versa.

Theorem 5 First derivative test: If f(x) is a continuous differentiable function over
an interval (a, b) having derivative function f ′(x) which is defined on the same
interval. Suppose c is a critical point of the function. By definition, f ′(c) = 0.

1. The function achieves a unique local maximum at x = c if, for all points x that
are sufficiently close to c

when x < c then f ′(x) > 0 and
when x > c then f ′(x) < 0.

2. Similarly the function achieves a unique local minimum at x = c if, for all
points x that are sufficiently close to c

when x < c then f ′(x) < 0 and
when x > c then f ′(x) > 0.
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3. The function has a point of inflection at critical point x = c if, for all points x
that are sufficiently close to c, either

when x < c then f ′(x) < 0 and
when x > c then f ′(x) < 0,

or
when x < c then f ′(x) > 0 and
when x > c then f ′(x) > 0.

At a point of inflection, the function either stops increasing, and then resumes
increasing, or it stops decreasing, and then resumes decreasing.

For example, the function f(x) = x3, and its derivative f ′(x) = 3×x2 are shown
in Figure A.6. We see that the derivative function f ′(x) = 3x2 is positive for x < 0,
so the function f(x) = x3 is increasing for x < 0. The derivative function is positive
for x > 0 so the function is also increasing for x > 0. However at x = 0, the
derivative function equals 0, so the original function is not increasing at x = 0. Thus
the function f(x) = x3 has a point of inflection at x = 0.

Theorem 6 Second derivative test: If f(x) is a continuous differentiable function
over an interval (a, b) having first derivative function f ′(x) and second derivative
function f (2)(x) both defined on the same interval. Suppose c is a critical point of
the function. By definition, f ′(c) = 0.

1. The function achieves a maximum at x = c if f (2)(c) < 0

2. The function achieves a minimum at x = c if f (2)(c) > 0

INTEGRATION

The second main use of calculus is finding the area under a curve using integration. It
turns out that integration is the inverse of differentiation. Suppose f(x) is a function
defined on an interval [a, b]. Let the function F (x) be an antiderivative of f(x). That
means the derivative function F ′(x) = f(x). Note that the antiderivative of f(x)
is not unique. The function F (x) + c will also be an antiderivative of f(x). The
antiderivative is also called the indefinite integral.

The Definite Integral: Finding the Area under a Curve

Suppose we have a nonnegative1 continuous function f(x) defined on a closed interval
[a, b]. f(x) ≥ 0 for all x ∈ [a, b]. Suppose we partition the the interval [a, b] using
the partition x0, x1, . . . , xn, where x0 = a and xn = b and xi < xi+1. Note that
the partition does not have to have equal length intervals. Let the minimum and
maximum value of f(x) in each interval be

li = sup
x∈[xi−1,xi]

f(x) and mi = inf
x∈[xi−1,xi]

f(x)

1The requirement that f(x) be nonnegative is not strictly necessary. However since we are using the
definite integral to find the area under probability density functions that are nonnegative, we will impose
the condition.
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Figure A.6 Graph of f(x) = x3 and its derivative. The derivative function is negative
where the original function is increasing, and it is positive where the original function is
increasing We see the original function has a point of inflection at x = 0.

where sup is the least upper bound, and inf is the greatest lower bound. Then the
area under the curve y = f(x) between x = a and x = b lies between the lower sum

Lx0,...,xn
=

n∑
i=1

li × (xi − xi−1)
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Figure A.7 Lower and upper sums over a partition and its refinement. The lower sum has
increased and the upper sum has decreased in the refinement. The area under the curve is
always between the lower and upper sums.

and the upper sum

Mx0,...,xn
=

n∑
i=1

mi × (xi − xi−1)

We can refine the partition by adding one more x value to it. Let x′

1, . . . , x
′

n+1 be a
refinement of the partition x1, . . . , xn. Then x′

0 = x0, x′

n+1 = xn, x′

i = xi for all
i < k, and x′

i+i = xi for all i > k. xk is the new value added to the partition. In the
lower and upper sum, all the bars except for the kth are unchanged. The kth bar has
been replaced by two bars in the refinement. Clearly,

Mx′

0
,...,x′

n+1
≤ Mx0,...,xn

and
Lx′

0
,...,x′

n+1
≥ Lx0,...,xn

.

The lower and upper sums for a partition and its refinement are shown in Figure A.7.
We see that refining a partition must make tighter bounds on the area under the curve.

Next we will show that for any continuous function defined on a closed interval
[a, b],we can find a partition x0, . . . , xn for some n that will make the difference
between the upper sum and the lower sum as close to zero as we wish. Suppose
ε > 0 is the number we want the difference to be less than. We draw lines δ = ε

[b−a]
apart parallel to the horizontal (x) axis. (Since the function is defined on the closed
interval, its maximum and minimum are both finite.) Thus a finite number of the
horizontal lines will intercept the curve y = f(x) over the interval [a, b]. Where
one of the lines intercepts the curve, draw a vertical line down to the horizontal axis.
The x values where these vertical lines hit the horizontal axis are the points for our
partition. For example, the function f(x) = 1 +

√
4 − x2 is defined on the interval

[0, 2]. The difference between the upper sum and the lower sum for the partition for
that ε is given by

Mx0,...,xn
− Lx0,...,xn

= δ × [(x1 − x0) + (x2 − x1) + . . . + (xn − xn−1)]

= δ × [b − a]

= ε.
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Figure A.8 The partition induced for the function f(x) = 1 +
√

4 − x2 where ε1 = 1 and
its refinement where ε2 = 1

2
.

We can make this difference as small as we want to by choosing ε > 0 small enough.
Let εk = 1

k for k = 1, . . . ,∞. This gives us a sequence of partitions such that
limk→∞ εk = 0. Hence

lim
k→∞

Mx0,...,xnk
− Lx0,...,xnk

= 0 .

The partitions for ε1 and ε2 are shown in Figure A.8. Note that δk = 1
2k .

That means that the area under the curve is the least upper bound for the lower
sum, and the greatest lower bound for the upper sum. We call it the definite integral
and denote it ∫ b

a

f(x)dx .

Note the variable x in the formula above is a dummy variable:
∫ b

a

f(x)dx =

∫ b

a

f(y)dy .

Basic Properties of Definite Integrals

Theorem 7 Let f(x) and g(x) be functions defined on the interval [a, b], and let c
be a constant. Then the following properties hold.

1. The definite integral of a constant times a function is the constant times the
definite integral of the function:

∫ b

a

cf(x)dx = c

∫ b

a

f(x)dx .

2. The definite integral of a sum of two functions is a sum of the definite integrals
of the two functions:

∫ b

a

(f(x) + g(x))dx =

∫ b

a

f(x)dx +

∫ b

a

g(x)dx .
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Fundamental Theorem of Calculus

The methods of finding extreme values by differentiation and finding area under a
curve by integration were known before the time of Newton and Liebniz. Newton and
Liebniz independently discovered the fundamental theorem of calculus that connects
differentiation and integration. Because each was unaware of the others work, they
are both credited with the discovery of the calculus.

Theorem 8 Fundamental theorem of calculus. Let f(x) be a continuous function
defined on a closed interval. Then:

1. The function has antiderivative in the interval.

2. If a and b are two numbers in the closed interval such that a < b, and F (x) is
any antiderivative function of f(x), then

∫ b

a

f(x)dx = F (b) − F (a) .

Proof:
For x ∈ (a, b), define the function

I(x) =

∫ x

a

f(x)dx .

This function shows the area under the curve y = f(x) between a and x. Note that
the area under the curve is additive over an extended region from a to x + h:

∫ x+h

a

f(x)dx =

∫ x

a

f(x)dx +

∫ x+h

x

f(x)dx .

By definition, the derivative of the function I(x) is

I ′(x) = lim
h→0

I(x + h) − I(x)

h
= lim

h→0

∫ x+h

x
f(x)dx

h
.

In the limit as h approaches 0,

lim
h→0

f(x′) = f(x)

for all values x′ ∈ [x, x + h). Thus

I ′(x) = lim
h→0

h × f(x)

h
= f(x) .

In other words, I(x) is an antiderivative of f(x). Suppose F (x) is any other
antiderivative of f(x). Then

F (x) = I(x) + c
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1.00.90.80.70.60.50.40.30.20.10.0

Figure A.9 The function f(x) = x−1/2.

for some constant c. Thus F (b)−F (a) = I(b)−I(a) =
∫ b

a
f(x)dx, and the theorem

is proved.

For example, suppose f(x) = e−2x for x ≥ 0. Then F (x) = − 1
2 × e−2x is an

antiderivative of f(x). The area under the curve between 1 and 4 is given by

∫ 4

1

f(x)dx = F (4) − F (1) = −1

2
× e−2×4 +

1

2
× e−2×1 .

Definite Integral of a Function f(x) Defined on an Open Interval

Let f(x) be a function defined on the open interval (a, b). In this case, the antideriva-
tive F (x) is not defined at a and b. We define

F (a) = lim
x→a

F (x) and F (b) = lim
x→b

F (x)

provided those limits exist. Then we define the definite integral with the same formula
as before ∫ b

a

f(x) = F (b) − F (a)

For example, let f(x) = x−1/2. This function is defined over the half-open
interval (0, 1]. It is not defined over the closed interval [0, 1] because it is not defined
at the endpoint x = 0. This curve is shown in Figure A.9. We see the curve has a
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vertical asymptote at x = 0. We will define

F (0) = lim
x→0

F (x)

= lim
x→0

2x1/2

= 0 .

Then ∫ 1

0

x−1/2 = 2x1/2
∣∣∣1
0

= 2 .

Theorem 9 Integration by parts. Let F (x) and G(x) be differentiable functions
defined on an interval [a, b]. Then

∫ b

a

F ′(x) × G(x)dx = F (x) × G(x)|ba −
∫ b

a

F (x) × G′(x)dx .

Proof: Integration by parts is the inverse of finding the derivative of the product
F (x) × G(x):

d

dx
[F (x) × G(x)] = F (x) × G′(x) + F (x) × G′(x) .

Integrating both sides, we see that

F (b) × G(b) − F (a) × G(a) =

∫ b

a

F (x) × G′(x)dx +

∫ b

a

F ′(x) × G(x)dx .

Theorem 10 Change of variable formula. Let x = g(y) be a differentiable function
on the interval [a, b]. Then

∫ b

a

f(g(y))g′(y)dy =

∫ g(b)

g(a)

f(y)dy

The change of variable formula is the inverse of the chain rule for differentiation.
The derivative of the function of a function F (g(y)) is

d

dx
[F (g(y)] = F ′(g(y)) × g′(y) .

Integrating both sides from y = a to y = b gives

F (g(b)) − F (g(a)) =

∫ b

a

F ′(g(y)) × g′(y)dy .

The left-hand-side equals
∫ g(b)

ga)
F ′(y)dy. Let f(x) = F ′(x), and the theorem is

proved.
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MULTIVARIATE CALCULUS

Partial Derivatives

In this section we consider the calculus of two or more variables. Suppose we have
a function of two variables f(x, y). The function is continuous at the point (a, b) if
and only if

lim
(x,y)→(a,b)

f(x, y) = f(a, b) .

The first partial derivatives at the point (a, b) are defined to be

∂f(x, y)

∂x

∣∣∣∣
(a,b)

= lim
h→0

f(a + h, b) − f(a, b)

h

and
∂f(x, y)

∂y

∣∣∣∣
(a,b)

= lim
h→0

f(a, b + h) − f(a, b)

h

provided these limits exist. In practice, the first partial derivative in the x-direction
is found by treating y as a constant and differentiating the function with respect to x,
and vice versa, to find the first partial derivative in the y-direction.

If the function f(x, y) has first partial derivatives for all points (x, y) in a contin-
uous two-dimensional region, then the first partial derivative function with respect to
x is the function that has value at point (x, y) equal to the partial derivative of f(x, y)
with respect to x at that point. It is denoted

fx(x, y) =
∂f(x, y)

∂x

∣∣∣∣
(x,y)

.

The first partial derivative function with respect to y is defined similarly. The first
derivative functions fx(x, y) and fy(x, y) give the instantaneous rate of change of
the function in the x-direction and y-direction, respectively.

The second partial derivatives at the point (a, b) are defined to be

∂2f(x, y)

∂x2

∣∣∣∣
(a,b)

= lim
h→0

fx(x + h, y) − fx(x, y)

h

and
∂2f(x, y)

∂y2

∣∣∣∣
(a,b)

= lim
h→0

fy(x, y + h) − fy(x, y)

h
.

The second cross partial derivatives at (a, b) are

∂2f(x, y)

∂x∂y

∣∣∣∣
(a,b)

= lim
h→0

fy(x + h, y) − fy(x, y)

h

and
∂2f(x, y)

∂y∂x

∣∣∣∣
(a,b)

= lim
h→0

fx(x, y + h) − fx(x, y)

h
.
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For all the functions that we consider, the cross partial derivatives are equal, so it
doesn’t matter which order we differentiate.

If the function f(x, y) has second partial derivatives (including cross partial deriva-
tives) for all points (x, y) in a continuous two-dimensional region, then the second
partial derivative function with respect to x is the function that has value at point
(x, y) equal to the second partial derivative of f(x, y) with respect to x at that point.
It is denoted

fxx(x, y) =
∂fx(x, y)

∂x

∣∣∣∣
(x,y)

.

The second partial derivative function with respect to y is defined similarly. The
second cross partial derivative functions are

fxy(x, y) =
∂fx(x, y)

∂y

∣∣∣∣
(x,y)

and

fyx(x, y) =
∂fy(x, y)

∂x

∣∣∣∣
(x,y)

.

The two cross partial derivative functions are equal.
Partial derivatives of functions having more than 2 variables are defined in a similar

manner.

Finding Minima and Maxima of a Multivariate Function

A univariate functions with a continuous derivative achieves minimum or maximum
at an interior point x only at points where the derivative function f ′(x) = 0. However,
not all such points were minimum or maximum. We had to check either the first
derivative test, or the second derivative test to see whether the critical point was
minimum, maximum, or point of inflection.

The situation is more complicated in two dimensions. Suppose a continuous
differentiable function f(x, y) is defined on a two dimensional rectangle. It is not
enough that both fx(x, y) = 0 and fy(x, y) = 0.

The directional derivative of the function f(x, y) in direction θ at a point measures
the rate of change of the function in the direction of the line through the point that
has angle θ with the positive x-axis. It is given by

Dθf(x, y) = fx(x, y) cos(θ) + fy(x, y) sin(θ) .

The function achieves a maximum or minimum value at points (x, y) where Dθf(x, y) =
0 for all θ.

Multiple Integrals

Let f(x, y) > 0 be a nonnegative function defined over a closed a rectangle a1 ≤ x ≤
b1 and a2 ≤ y ≤ b2. Let x0, . . . , xn partition the interval [a1, b1], and let y1, . . . , ym
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partition the interval a2, b2. Together these partition the rectangle into j = m × n
rectangles. The volume under the surface f(x, y) over the rectangle A is between
the upper sum

U =
mn∑
j=1

f(tj , uj)

and the lower sum

U =
mn∑
j=1

f(vj , wj) ,

where (tj , uj) is the point where the function is maximized in the jth rectangle, and
(vj , wj) is the point where the function is minimized in the jth rectangle. Refining
the partition always lowers the upper sum and raises the lower sum. We can always
find a partition that makes the upper sum arbitrarily close to the lower sum. Hence
the total volume under the surface denoted

∫ b1

a1

∫ b2

a2

f(x, y)dxdy

is the least upper bound of the lower sum and the greatest lower bound of the upper
sum.



B
Use of Statistical Tables

BINOMIAL DISTRIBUTION

Table B.1 contains values of the binomial (n, π) probability distribution for n =
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, and 20 and for π = .05, .10, . . . , .95. Given the
parameter π, the binomial probability is obtained by the formula

P (Y = y|π) =

(
n
π

)
nπy(1 − π)n−y . (B.1)

When π ≤ .5, use the π value along the top row to find the correct column of
probabilities. Go down to the correct n. The probabilities correspond to the y values
found in the left-hand column. For example, to find P (Y = 6) when Y has the
binomial (n = 10, π = .3) distribution, go down the table to n = 10 and find the
row y = 6 on the left side. Look across the top to find the column labelled .30. The
value in the table at the intersection of that row and column is P (Y = 6) = .0368 in
this example.

When π > .5 use the π value along the bottom row to find the correct column of
probabilities. Go down to the correct n. The probabilities correspond to the y values
found in the right hand column. For example to find P (Y = 3) when y has the
binomial (n = 8, π = .65) distribution, go down the table to n = 8 and find the row
y = 3 on the right side. Look across the bottom to find the column labelled .65. The

*

0Introduction to Bayesian Statistics. By William M. Bolstad
ISBN 0-471-27020-2 Copyright c©John Wiley & Sons, Inc.
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0

Figure B.1 Standard normal density.

value in the table at the intersection of that row and column is P (Y = 3) = .0808 in
this example.

STANDARD NORMAL DISTRIBUTION

This section contains two tables. Table B.2 contains the area under the standard
normal density. Table B.3 contains the ordinates (height) of the standard normal
density. The standard normal density has mean equal to 0 and variance equal to 1.
Its density is given by the formula

f(z) =
1√
2π

e−
1
2
z2

(B.2)

We see that the standard normal density is symmetric about 0. The graph of the
standard normal density is shown in Figure B.1.

Area Under Standard Normal Density

Table B.2 tabulates the area under the standard normal density function between 0
and z for nonnegative values of z from 0.0 to 3.99 in steps of .01. We read down the
z column until we come to the value that has the correct units and tenths digits of z.
This is the correct row. We look across the top row to find the hundredth digit of z.
This is the correct column. The tabulated value at the intersection of the correct row
and correct column is P (0 ≤ Z ≤ z) where Z has the normal (0, 1) distribution.
For example, to find P (0 ≤ Z ≤ 1.23) we go down the z column to 1.2 for the
correct row and across top to 3 for correct column. We find the tabulated value at the
intersection of this row and column. For this example P (0 ≤ Z ≤ 1.23) = .3907.
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Because the standard normal density is symmetric about 0,

P (−z ≤ Z ≤ 0) = P (0 ≤ Z ≤ z) .

Also, since it is a density function, the total area underneath it equals 1.0000, so the
total area to the right of 0 must equal .5000. We can proceed to find

P (Z > z) = .5000 − P (Z ≤ z) .

Finding Any Normal Probability

We can standardize any normal random variable to a standard normal random variable
having mean 0 and variance 1. For instance, if W is a normal random variable having
mean m and variance s2, we standardize by subtracting the mean and dividing by the
standard deviation.

Z =
W − m

s
.

This lets us find any normal probability by using the standard normal tables.

Example 25 Suppose W has the normal distribution with mean 120 and variance
225. (The standard deviation of W is 15.) Suppose we wanted to find the probability

P (W ≤ 129) .

We can subtract the mean from both sides of an inequality without changing the
inequality:

P (W − 120 ≤ 129 − 120) .

We can divide both sides of an inequality by the standard deviation (which is positive)
without changing the inequality:

P

(
W − 120

15
≤ 9

15

)
.

On the left-hand side we have the standard normal Z, and on the right-hand side we
have the number .60. Therefore

P (W ≤ 129) = P (Z ≤ .60) = .5000 + .2258 = .7258 .

Ordinates of the Standard Normal Density

Figure B.3 shows the ordinate of the standard normal table at z. We see the ordinate
is the height of the curve at z. Table B.3 contains the ordinates of the standard
normal density for nonnegative z values from 0.00 to 3.99 in steps of .01. Since the
standard normal density is symmetric about 0, f(−z) = f(z), we can find ordinates
of negative z values.
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z

Figure B.2 Shaded area under standard normal density. These values are shown in Table
B.2.

This table is used to find values of the likelihood when we have a discrete prior
distribution for µ. We go down the z column until we find the value that has the units
and tenths digits. This gives us the correct row. We go across the top until we find
the hundredth digit. This gives us the correct column. The value at the intersection
of this row and column is the ordinate of the standard normal density at the value z.
For instance, if we want to find the height of the standard normal density at z = 1.23
we go down z column to 1.2 to find the correct row, and across the top to 3 to find the
correct column. The ordinate of the standard normal at z = 1.23 is equal to .1872.
(Note: You can verify this is correct by plugging z = 1.23 into Equation B.2.)

Example 26 Suppose the distribution of Y given µ is normal (µ, σ2 = 1). Also
suppose there are 4 possible values of µ. They are 3,4,5,and 6. We observe y=5.6.
We calculate

zi =

(
5.6 − µi

1

)
.

The likelihood is found by looking up the ordinates of the normal distribution for the
zi values. We can put them in the following table.

µi zi Likelihood
3 2.60 .136
4 1.6 .1109
5 .6 .3332
6 -.4 .3683



Table B.1 Binomial probability table

n y π

.05 .10 .15 .20 .25 .30 .35 .40 .45 .50

2 0 .9025 .81 .7225 .64 .5625 .49 .4225 .36 .3025 .25 2
1 .0950 .18 .2550 .32 .3750 .42 .4550 .48 .4950 .50 1
2 .0025 .01 .0225 .04 .0625 .09 .1225 .16 .2025 .25 0

3 0 .8574 .729 .6141 .512 .4219 .343 .2746 .216 .1664 .125 3
1 .1354 .243 .3251 .384 .4219 .441 .4436 .432 .4084 .375 2
2 .0071 .027 .0574 .096 .1406 .189 .2389 .288 .3341 .375 1
3 .0001 .001 .0034 .008 .0156 .027 .0429 .064 .0911 .125 0

4 0 .8145 .6561 .5220 .4096 .3164 .2401 .1785 .1296 .0915 .0625 4
1 .1715 .2916 .3685 .4096 .4219 .4116 .3845 .3456 .2995 .2500 3
2 .0135 .0486 .0975 .1536 .2109 .2646 .3105 .3456 .3675 .3750 2
3 .0005 .0036 .0115 .0256 .0469 .0756 .1115 .1536 .2005 .2500 1
4 .0000 .0001 .0005 .0016 .0039 .0081 .0150 .0256 .0410 .0625 0

5 0 .7738 .5905 .4437 .3277 .2373 .1681 .1160 .0778 .0503 .0313 5
1 .2036 .3281 .3915 .4096 .3955 .3601 .3124 .2592 .2059 .1563 4
2 .0214 .0729 .1382 .2048 .2637 .3087 .3364 .3456 .3369 .3125 3
3 .0011 .0081 .0244 .0512 .0879 .1323 .1811 .2304 .2757 .3125 2
4 .0000 .0005 .0022 .0064 .0146 .0284 .0488 .0768 .1128 .1563 1
5 .0000 .0000 .0001 .0003 .0010 .0024 .0053 .0102 .0185 .0313 0

6 0 .7351 .5314 .3771 .2621 .1780 .1176 .0754 .0467 .0277 .0156 6
1 .2321 .3543 .3993 .3932 .3560 .3025 .2437 .1866 .1359 .0937 5
2 .0305 .0984 .1762 .2458 .2966 .3241 .3280 .3110 .2780 .2344 4
3 .0021 .0146 .0415 .0819 .1318 .1852 .2355 .2765 .3032 .3125 3
4 .0001 .0012 .0055 .0154 .0330 .0595 .0951 .1382 .1861 .2344 2
5 .0000 .0001 .0004 .0015 .0044 .0102 .0205 .0369 .0609 .0937 1
6 .0000 .0000 .0000 .0001 .0002 .0007 .0018 .0041 .0083 .0156 0

7 0 .6983 .4783 .3206 .2097 .1335 .0824 .0490 .0280 .0152 .0078 7
1 .2573 .3720 .3960 .3670 .3115 .2471 .1848 .1306 .0872 .0547 6
2 .0406 .1240 .2097 .2753 .3115 .3177 .2985 .2613 .2140 .1641 5
3 .0036 .0230 .0617 .1147 .1730 .2269 .2679 .2903 .2918 .2734 4
4 .0002 .0026 .0109 .0287 .0577 .0972 .1442 .1935 .2388 .2734 3
5 .0000 .0002 .0012 .0043 .0115 .0250 .0466 .0774 .1172 .1641 2
6 .0000 .0000 .0001 .0004 .0013 .0036 .0084 .0172 .0320 .0547 1
7 .0000 .0000 .0000 .0000 .0001 .0002 .0006 .0016 .0037 .0078 0

8 0 .6634 .4305 .2725 .1678 .1001 .0576 .0319 .0168 .0084 .0039 8
1 .2793 .3826 .3847 .3355 .2670 .1977 .1373 .0896 .0548 .0313 7
2 .0515 .1488 .2376 .2936 .3115 .2965 .2587 .2090 .1569 .1094 6
3 .0054 .0331 .0839 .1468 .2076 .2541 .2786 .2787 .2568 .2188 5
4 .0004 .0046 .0185 .0459 .0865 .1361 .1875 .2322 .2627 .2734 4
5 .0000 .0004 .0026 .0092 .0231 .0467 .0808 .1239 .1719 .2188 3
6 .0000 .0000 .0002 .0011 .0038 .0100 .0217 .0413 .0703 .1094 2
7 .0000 .0000 .0000 .0001 .0004 .0012 .0033 .0079 .0164 .0313 1
8 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0007 .0017 .0039 0

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50
π y



Table B.1 (Continued)

n y π

.05 .10 .15 .20 .25 .30 .35 .40 .45 .50

9 0 .6302 .3874 .2316 .1342 .0751 .0404 .0207 .0101 .0046 .0020 9
1 .2985 .3874 .3679 .3020 .2253 .1556 .1004 .0605 .0339 .0176 8
2 .0629 .1722 .2597 .3020 .3003 .2668 .2162 .1612 .1110 .0703 7
3 .0077 .0446 .1069 .1762 .2336 .2668 .2716 .2508 .2119 .1641 6
4 .0006 .0074 .0283 .0661 .1168 .1715 .2194 .2508 .2600 .2461 5
5 .0000 .0008 .0050 .0165 .0389 .0735 .1181 .1672 .2128 .2461 4
6 .0000 .0001 .0006 .0028 .0087 .0210 .0424 .0743 .1160 .1641 3
7 .0000 .0000 .0000 .0003 .0012 .0039 .0098 .0212 .0407 .0703 2
8 .0000 .0000 .0000 .0000 .0001 .0004 .0013 .0035 .0083 .0176 1
9 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0008 .0020 0

10 0 .5987 .3487 .1969 .1074 .0563 .0282 .0135 .0060 .0025 .0010 10
1 .3151 .3874 .3474 .2684 .1877 .1211 .0725 .0403 .0207 .0098 9
2 .0746 .1937 .2759 .3020 .2816 .2335 .1757 .1209 .0763 .0439 8
3 .0105 .0574 .1298 .2013 .2503 .2668 .2522 .2150 .1665 .1172 7
4 .0010 .0112 .0401 .0881 .1460 .2001 .2377 .2508 .2384 .2051 6
5 .0001 .0015 .0085 .0264 .0584 .1029 .1536 .2007 .2340 .2461 5
6 .0000 .0001 .0012 .0055 .0162 .0368 .0689 .1115 .1596 .2051 4
7 .0000 .0000 .0001 .0008 .0031 .0090 .0212 .0425 .0746 .1172 3
8 .0000 .0000 .0000 .0001 .0004 .0014 .0043 .0106 .0229 .0439 2
9 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0016 .0042 .0098 1
10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010 0

11 1 .3293 .3835 .3248 .2362 .1549 .0932 .0518 .0266 .0125 .0054 10
2 .0867 .2131 .2866 .2953 .2581 .1998 .1395 .0887 .0513 .0269 9
3 .0137 .0710 .1517 .2215 .2581 .2568 .2254 .1774 .1259 .0806 8
4 .0014 .0158 .0536 .1107 .1721 .2201 .2428 .2365 .2060 .1611 7
5 .0001 .0025 .0132 .0388 .0803 .1321 .1830 .2207 .2360 .2256 6
6 .0000 .0003 .0023 .0097 .0268 .0566 .0985 .1471 .1931 .2256 5
7 .0000 .0000 .0003 .0017 .0064 .0173 .0379 .0701 .1128 .1611 4
8 .0000 .0000 .0000 .0002 .0011 .0037 .0102 .0234 .0462 .0806 3
9 .0000 .0000 .0000 .0000 .0001 .0005 .0018 .0052 .0126 .0269 2
10 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0007 .0021 .0054 1
11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0005 0

12 0 .5404 .2824 .1422 .0687 .0317 .0138 .0057 .0022 .0008 .0002 12
1 .3413 .3766 .3012 .2062 .1267 .0712 .0368 .0174 .0075 .0029 11
2 .0988 .2301 .2924 .2835 .2323 .1678 .1088 .0639 .0339 .0161 10
3 .0173 .0852 .1720 .2362 .2581 .2397 .1954 .1419 .0923 .0537 9
4 .0021 .0213 .0683 .1329 .1936 .2311 .2367 .2128 .1700 .1208 8
5 .0002 .0038 .0193 .0532 .1032 .1585 .2039 .2270 .2225 .1934 7
6 .0000 .0005 .0040 .0155 .0401 .0792 .1281 .1766 .2124 .2256 6
7 .0000 .0000 .0006 .0033 .0115 .0291 .0591 .1009 .1489 .1934 5
8 .0000 .0000 .0001 .0005 .0024 .0078 .0199 .0420 .0762 .1208 4
9 .0000 .0000 .0000 .0001 .0004 .0015 .0048 .0125 .0277 .0537 3
10 .0000 .0000 .0000 .0000 .0000 .0002 .0008 .0025 .0068 .0161 2
11 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010 .0029 1
12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 0

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50
π y



Table B.1 (Continued)

n y π

.05 .10 .15 .20 .25 .30 .35 .40 .45 .50

15 0 .4633 .2059 .0874 .0352 .0134 .0047 .0016 .0005 .0001 .0000 15
1 .3658 .3432 .2312 .1319 .0668 .0305 .0126 .0047 .0016 .0005 14
2 .1348 .2669 .2856 .2309 .1559 .0916 .0476 .0219 .0090 .0032 13
3 .0307 .1285 .2184 .2501 .2252 .1700 .1110 .0634 .0318 .0139 12
4 .0049 .0428 .1156 .1876 .2252 .2186 .1792 .1268 .0780 .0417 11
5 .0006 .0105 .0449 .1032 .1651 .2061 .2123 .1859 .1404 .0916 10
6 .0000 .0019 .0132 .0430 .0917 .1472 .1906 .2066 .1914 .1527 9
7 .0000 .0003 .0030 .0138 .0393 .0811 .1319 .1771 .2013 .1964 8
8 .0000 .0000 .0005 .0035 .0131 .0348 .0710 .1181 .1647 .1964 7
9 .0000 .0000 .0001 .0007 .0034 .0116 .0298 .0612 .1048 .1527 6
10 .0000 .0000 .0000 .0001 .0007 .0030 .0096 .0245 .0515 .0916 5
11 .0000 .0000 .0000 .0000 .0001 .0006 .0024 .0074 .0191 .0417 4
12 .0000 .0000 .0000 .0000 .0000 .0001 .0004 .0016 .0052 .0139 3
13 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010 .0032 2
14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 1
15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 0

20 0 .3585 .1216 .0388 .0115 .0032 .0008 .0002 .0000 .0000 .0000 20
1 .3774 .2702 .1368 .0576 .0211 .0068 .0020 .0005 .0001 .0000 19
2 .1887 .2852 .2293 .1369 .0669 .0278 .0100 .0031 .0008 .0002 18
3 .0596 .1901 .2428 .2054 .1339 .0716 .0323 .0123 .0040 .0011 17
4 .0133 .0898 .1821 .2182 .1897 .1304 .0738 .0350 .0139 .0046 16
5 .0022 .0319 .1028 .1746 .2023 .1789 .1272 .0746 .0365 .0148 15
6 .0003 .0089 .0454 .1091 .1686 .1916 .1712 .1244 .0746 .0370 14
7 .0000 .0020 .0160 .0545 .1124 .1643 .1844 .1659 .1221 .0739 13
8 .0000 .0004 .0046 .0222 .0609 .1144 .1614 .1797 .1623 .1201 12
9 .0000 .0001 .0011 .0074 .0271 .0654 .1158 .1597 .1771 .1602 11
10 .0000 .0000 .0002 .0020 .0099 .0308 .0686 .1171 .1593 .1762 10
11 .0000 .0000 .0000 .0005 .0030 .0120 .0336 .0710 .1185 .1602 9
12 .0000 .0000 .0000 .0001 .0008 .0039 .0136 .0355 .0727 .1201 8
13 .0000 .0000 .0000 .0000 .0002 .0010 .0045 .0146 .0366 .0739 7
14 .0000 .0000 .0000 .0000 .0000 .0002 .0012 .0049 .0150 .0370 6
15 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0013 .0049 .0148 5
16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0013 .0046 4
17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0011 3
18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 2
19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 1
20 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 0

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50
π y



Table B.2 Area under standard normal density

z
.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359
0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753
0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141
0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517
0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879

0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224
0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549
0.7 .2580 .2611 .2642 .2673 .2703 .2734 .2764 .2794 .2823 .2852
0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133
0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389

1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621
1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830
1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015
1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177
1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319

1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441
1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545
1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633
1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767

2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817
2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857
2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890
2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916
2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936

2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952
2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964
2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974
2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981
2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986

3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990
3.1 .4990 .4991 .4991 .4991 .4992 .4992 .4992 .4992 .4993 .4993
3.2 .4993 .4993 .4994 .4994 .4994 .4994 .4994 .4995 .4995 .4995
3.3 .4995 .4995 .4995 .4996 .4996 .4996 .4996 .4996 .4996 .4997
3.4 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4998

3.5 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998
3.6 .4998 .4998 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999
3.8 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999
3.9 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999



Table B.3 Ordinates of standard normal density

z
.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .3989 .3989 .3989 .3988 .3986 .3984 .3982 .3980 .3977 .3973
0.1 .3970 .3965 .3961 .3956 .3951 .3945 .3939 .3932 .3925 .3918
0.2 .3910 .3902 .3894 .3885 .3876 .3867 .3857 .3847 .3836 .3825
0.3 .3814 .3802 .3790 .3778 .3765 .3752 .3739 .3725 .3712 .3697
0.4 .3683 .3668 .3653 .3637 .3621 .3605 .3589 .3572 .3555 .3538

0.5 .3521 .3503 .3485 .3467 .3448 .3429 .3410 .3391 .3372 .3352
0.6 .3332 .3312 .3292 .3271 .3251 .3230 .3209 .3187 .3166 .3144
0.7 .3123 .3101 .3079 .3056 .3034 .3011 .2989 .2966 .2943 .2920
0.8 .2897 .2874 .2850 .2827 .2803 .2780 .2756 .2732 .2709 .2685
0.9 .2661 .2637 .2613 .2589 .2565 .2541 .2516 .2492 .2468 .2444

1.0 .2420 .2396 .2371 .2347 .2323 .2299 .2275 .2251 .2227 .2203
1.1 .2179 .2155 .2131 .2107 .2083 .2059 .2036 .2012 .1989 .1965
1.2 .1942 .1919 .1895 .1872 .1849 .1826 .1804 .1781 .1758 .1736
1.3 .1714 .1691 .1669 .1647 .1626 .1604 .1582 .1561 .1539 .1518
1.4 .1497 .1476 .1456 .1435 .1415 .1394 .1374 .1354 .1334 .1315

1.5 .1295 .1276 .1257 .1238 .1219 .1200 .1182 .1163 .1145 .1127
1.6 .1109 .1092 .1074 .1057 .1040 .1023 .1006 .0989 .0973 .0957
1.7 .0940 .0925 .0909 .0893 .0878 .0863 .0848 .0833 .0818 .0804
1.8 .0790 .0775 .0761 .0748 .0734 .0721 .0707 .0694 .0681 .0669
1.9 .0656 .0644 .0632 .0620 .0608 .0596 .0584 .0573 .0562 .0551

2.0 .0540 .0529 .0519 .0508 .0498 .0488 .0478 .0468 .0459 .0449
2.1 .0440 .0431 .0422 .0413 .0404 .0396 .0387 .0379 .0371 .0363
2.2 .0355 .0347 .0339 .0332 .0325 .0317 .0310 .0303 .0297 .0290
2.3 .0283 .0277 .0270 .0264 .0258 .0252 .0246 .0241 .0235 .0229
2.4 .0224 .0219 .0213 .0208 .0203 .0198 .0194 .0189 .0184 .0180

2.5 .0175 .0171 .0167 .0163 .0158 .0154 .0151 .0147 .0143 .0139
2.6 .0136 .0132 .0129 .0126 .0122 .0119 .0116 .0113 .0110 .0107
2.7 .0104 .0101 .0099 .0096 .0093 .0091 .0088 .0086 .0084 .0081
2.8 .0079 .0077 .0075 .0073 .0071 .0069 .0067 .0065 .0063 .0061
2.9 .0060 .0058 .0056 .0055 .0053 .0051 .0050 .0048 .0047 .0046

3.0 .0044 .0043 .0042 .0040 .0039 .0038 .0037 .0036 .0035 .0034
3.1 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026 .0025 .0025
3.2 .0024 .0023 .0022 .0022 .0021 .0020 .0020 .0019 .0018 .0018
3.3 .0017 .0017 .0016 .0016 .0015 .0015 .0014 .0014 .0013 .0013
3.4 .0012 .0012 .0012 .0011 .0011 .0010 .0010 .0010 .0009 .0009

3.5 .0009 .0008 .0008 .0008 .0008 .0007 .0007 .0007 .0007 .0006
3.6 .0006 .0006 .0006 .0005 .0005 .0005 .0005 .0005 .0005 .0004
3.7 .0004 .0004 .0004 .0004 .0004 .0004 .0003 .0003 .0003 .0003
3.8 .0003 .0003 .0003 .0003 .0003 .0002 .0002 .0002 .0002 .0002
3.9 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0001 .0001



Table B.4 Critical values of the Student’s t distribution

degrees of upper tail area
freedom .20 .10 .05 .025 .01 .005 .001 .0005

1 1.376 3.078 6.314 12.71 31.82 63.66 318.3 636.6
2 1.061 1.886 2.920 4.303 6.965 9.925 22.33 31.60
3 .979 1.638 2.353 3.182 4.541 5.841 10.21 12.92
4 .941 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 .920 1.476 2.015 2.571 3.365 4.032 5.893 6.868

6 .906 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 .896 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 .889 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 .883 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 .879 1.372 1.812 2.228 2.764 3.169 4.144 4.587

11 .876 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 .873 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 .870 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 .868 1.345 1.761 2.145 2.624 2.977 3.787 4.140
15 .866 1.341 1.753 2.131 2.602 2.947 3.733 4.073

16 .865 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 .863 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 .862 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 .861 1.328 1.729 2.093 2.539 2.861 3.579 3.883
20 .860 1.325 1.725 2.086 2.528 2.845 3.552 3.850

21 .859 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 .858 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 .858 1.319 1.714 2.069 2.500 2.807 3.485 3.768
24 .857 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 .856 1.316 1.708 2.060 2.485 2.787 3.450 3.725

26 .856 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 .855 1.314 1.703 2.052 2.473 2.771 3.421 3.690
28 .855 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29 .854 1.311 1.699 2.045 2.462 2.756 3.396 3.659
30 .854 1.310 1.697 2.042 2.457 2.750 3.385 3.646

40 .851 1.303 1.684 2.021 2.423 2.704 3.307 3.551
60 .848 1.296 1.671 2.000 2.390 2.660 3.232 3.460
80 .846 1.292 1.664 1.990 2.374 2.639 3.195 3.416
100 .845 1.290 1.660 1.984 2.364 2.626 3.174 3.390
∞ .842 1.282 1.645 1.960 2.326 2.576 3.090 3.291
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z

Figure B.3 Ordinates of standard normal density function. These values are shown in
Table B.3.

STUDENT’S t DISTRIBUTION

Figure B.4 shows the Student’s t distribution for several different degrees of freedom,
along with the standard normal(0, 1) distribution. We see the Student’s t family of
distributions are similar to the standard normal in that they are symmetric bell shaped
curves, however they have more weight in the tails. The heaviness of the tails of the
Student’s t decreases as the degrees of freedom increase1.

The Student’s t distribution is used when we use the unbiased estimate of the stan-
dard deviation σ̂ instead of the true unknown standard deviation σ in the standardizing
formula

z =
y − µ

σy

and y is a normally distributed random variable. We know that z will have the
normal(0, 1) distribution. The similar formula

t =
y − µ

σ̂y

will have the Student’s t distribution with k degrees of freedom. The degrees of
freedom k will equal the sample size minus the number of parameters estimated in
the equation for σ̂. For instance, if we are using ȳ the sample mean, the estimated
standard deviation σ̂ȳ = σ̂

n where

σ̂ =

n∑
i=1

(yi − ȳ)2

1The normal(0, 1) distribution corresponds to the Student’s t distribution with ∞ degrees of freedom
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Figure B.4 Student’s t densities for selected degrees of freedom together with the standard
normal (0, 1) density which corresponds to Student’s t with ∞ degrees of freedom.

and we observe that to use the above formula we have to first estimate ȳ. Hence, in
the single sample case we will have k = n − 1 degrees of freedom.

Table B.4 contains the tail areas for the Student’s t distribution family. The degrees
of freedom are down the left column, and the tabulated tail areas are across the rows
for the specified tail probabilities.



C
Using the Included

Minitab Macros

Minitab macros for performing Bayesian analysis and for doing Monte Carlo sim-
ulations are included. The address may be downloaded from the Web page for this
text on the site <www.wiley.com>. The Minitab Macros are zipped up in a package
called Bolstad Minitab Macros.zip. Some Minitab worksheets are also included at
that site.

To use the Minitab macros, define a directory named BAYESMAC on your hard
disk. The best place is inside the Minitab directory, which on is often called MTBWIN
on PC’s running Microsoft Windows. For example, on my PC, BAYESMAC is inside
MTBWIN which is within program files which is on drive C. The correct path I need
to invoke to use these macros is C:/progra ∼ 1/MTBWIN/BAYESM ∼1/ (Note that
the the filenames are truncated at six characters.) You should also define a directory
BAYESMTW for the Minitab worksheets containing the data sets. The best place is
also inside the Minitab directory, so you can find it easily.

*
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Table C.1 Minitab commands for sampling Monte Carlo study

Minitab Commands Meaning

%<insert path>sscsample.mac c1 100; "data are in c1, N=100"

strata c2 3; "there are 3 strata stored in c2"

cluster c3 20; "there are 20 clusters stored in c3"

type 1; 1=simple, 2=stratified, 3=cluster

isize 20; "sample size n=20"

mcarlo 200; "Monte Carlo sample size 200"

output c6 c7 c8 c9; "c6 contains sample means, c7-c9

contain numbers in each strata"

CHAPTER 2: SCIENTIFIC DATA GATHERING

Sampling Methods

We use the sscsample.mac to perform a small-scale Monte Carlo study on the ef-
ficiency of simple, stratified, and cluster random sampling on the population data
contained in sscsample.mtw. In the "file" menu pull down "open worksheet" com-
mand. When the dialog box opens, find the directory BAYESMTW and type in
sscsample.mtw in the filename box and click on "open". In the "edit" menu pull down
"command line editor" and type the commands from Table C.1 into the command
line editor:

Experimental Design

We use the Minitab macro Xdesign.mac to perform a small-scale Monte Carlo study,
comparing completely randomized design and randomized block design in their effec-
tiveness for assigning experimental units into treatment groups. Type the commands
from Table C.2 into the command line editor.

CHAPTER 6: BAYESIAN INFERENCE FOR DISCRETE RANDOM
VARIABLES

Binomial Proportion with Discrete Prior

BinoDP.mac is used to find the posterior when we have binomial (n, π) observation,
and we have a discrete prior for π. For example, suppose π has the discrete distribution
with three possible values, .3, .4, and .5. Suppose the prior distribution is given in
Table C.3. and we want to find the posterior distribution after n = 6 trials and
observing y = 5 successes. In the "edit" menu pull down "command line editor" and
type the commands from Table C.4 into the command line editor.
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Table C.2 Minitab commands for experimental design Monte Carlo study

Minitab Commands Meaning

let k1=.8 "correlation between other and response

variables"

random 80 c1 c2; "generate 80 other and response variables

normal 0 1. in c1 and c2 respectively"

let c2=sqrt(1-k1**2)*c2+k1*c1 "give them correlation k1"

desc c1 c2 "summary statistics"

corr c1 c2

plot c2*c1 "shows relationship"

%<insert path>Xdesign.mac c1 c2; "other variable in c1, response in c2"

size 20; "treatment groups of 20 units"

treatments 4; "4 treatment groups"

mcarlo 500; "Monte Carlo sample size 500"

output c3 c4 c5. "c3 contains other means,

c4 contains response means,

c5 contains treatment groups

1-4 from completely randomized design

5-8 from randomized block design"

code (1:4) 1 (5:8) 2 c5 c6

desc c4; "summary statistics "

by c6.

Table C.3 Discrete prior distribution for π

π f(π)
.3 .2
.4 .3
.5 .5

CHAPTER 8: BAYESIAN INFERENCE FOR BINOMIAL PROPORTION

Beta(a, b) Prior for π

BinoBP.mac is used to find the posterior when we have binomial (n, π) observation,
and we have a beta (a, b) prior for π. The beta family of priors is conjugate for
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Table C.4 Minitab commands for Bayesian inference on π with a discrete prior

Minitab Commands Meaning

set c1 "puts π in c1"

.3 .4 .5

end

set c2 "puts g(π) in c2"

.2 .3 .4

end

%<insert path>BinoDP.mac 6; "n=6 trials"

prior c1 c2 "π in c1, prior g(π) in c2"

observation 5; "y=5 successes observed"

likelihood c3; "store likelihood in c3"

posterior c4. "store posterior g(π|y = 5) in c4"

Table C.5 Minitab commands for Bayesian inference on π with a beta prior

Minitab Commands Meaning

%<insert path>BinoBP.mac 12 ; "n=12 trials"

beta 3 3; "the beta prior"

prior c1 c2; "stores π and the prior g(π)"

observation 4 ; "y=4 was observed"

likelihood c3; "store likelihood in c3"

posterior c4; "store posterior g(π|y = 4) in c4"

binomial (n, π) observations, so the posterior will be another member of the family,
beta (a′, b′) where a′ = a + y and b′ = b + n − y. For example, suppose we have
n = 12 trials, and observe y = 4 successes, and we use a beta (3, 3) prior for π.
In the "edit" menu pull down "command line editor" and type the commands from
Table C.5 into the command line editor. We can find the posterior mean and standard
deviation from the output. We can determine an (equal tail area) credible interval for
π by looking at the values of y1 that correspond to the desired tail area values of invf.

General Continuous Prior for π

BinoGCP.mac is used to find the posterior when we have binomial (n, π) observation,
and we have a general continuous prior for π. Note, π must go from 0 to 1 in steps of
.001, and g(π) must be defined at each of the π values. For example, suppose we have
n = 12 trials, and observe y = 4 successes, and we use a general continuous prior
for π stored in c2. In the "edit" menu pull down "command line editor" and type the
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Table C.6 Minitab commands for Bayesian inference on π with a continuous prior

Minitab Commands Meaning

%<insert path>BinoGCP.mac 12 ; "n=12 trials"

prior c1 c2 "inputs π in c1, prior g(π) in c2"

observation 4; "y=4 successes observed"

likelihood c3; "store likelihood in c3"

posterior c4. "store posterior g(π|y = 4) in c4"

Table C.7 Minitab commands to integrate posterior density of π

Minitab Commands Meaning

%<insert path>tintegral.mac c1 c4; "integrates posterior density"

output k1 c6. "stores definite integral over range in k1"

"stores definite integral function in c6"

print c1 c6

commands from Table c.6 into the command line editor. The output of BinoGCP.mac
does not print out the posterior mean and standard deviation. Neither does it print
out the values that give the tail areas of the integrated density function that we need
to determine credible interval for π. Instead we use the macro tintegral.mac which
numerically integrates a function over its range to determine these things. We can
find the integral of the posterior density g(π|y) using this macro. In the "edit" menu
pull down "command line editor" and type the commands from Table C.7 into the
command line editor. To find a 95% credible interval (with equal tail areas) we find
the values in c1 that correspond to .025 and .975 in c6 respectively. We can also find
the posterior mean and variance by numerically evaluating

m′ =

∫ 1

0

πg(π|y)dπ

and

(s′)2 =

∫ 1

0

(π − m′)2g(π|y)dπ

using the macro tintegral.mac. In the "edit" menu pull down "command line editor"
and type the commands from Table C.8 into the command line editor.

CHAPTER 10: BAYESIAN INFERENCE FOR NORMAL MEAN

Discrete Prior for µ

NormDP.mac is used to find the posterior when we have a column of normal (µ, σ2)
observations and σ2 is known, and we have a discrete prior for µ. For example,
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Table C.8 Minitab commands to find posterior mean and variance

Minitab Commands Meaning

let c7=c1*c4 "π × g(π|y)

%<insert path>tintegral.mac c1 c7; "finds posterior mean"

output k1 c8.

let c9=(c1-k1)**2 * c4

%<insert path>tintegral.mac c1 c9; "finds posterior variance"

output k2 c10.

let k3=sqrt(k2) "finds posterior st. deviation"

print k1-k3

Table C.9 Discrete prior distribution for µ

µ f(π)
2 .2

2.5 .2
3 .4

3.5 .2
4 .1

suppose µ has the discrete distribution with 5 possible values, 2 2.5, 3, 3.5 and ,4.
Suppose the prior distribution is given in Table C.9. and we want to find the posterior
distribution after a random sample of n = 5 observations from a normal (µ, σ2 = 1)
that are 1.52, 0.02, 3.35, 3.49 1.82 . In the "edit" menu pull down "command line
editor" and type the commands from Table C.10 into the command line editor.

Normal(m, s2) Prior for µ

NormNP.mac is used when we have a column c5 containing a random sample of
n observations from a normal (µ, σ2) distribution (with σ2 known) and we use a
normal (m, s2) prior distribution. The normal family of priors is conjugate for
normal (µ, σ2) observations, so the posterior will be another member of the family,
normal[m′, (s′)2] where the new constants are given by

1

(s′)2
=

1

s2
+

n

σ2

and

m′ =
1
b2

1
(b′)2

× m +
n
σ2

1
(b′)2

× ȳ
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Table C.10 Minitab commands for Bayesian inference on µ with discrete prior

Minitab Commands Meaning

set c1 puts "µ in c1"

2:4/.5

end

set c2 "puts g(µ) in c2

.1 .2 .4 .2 .1

end

set c5 "puts data in c5

1.52, 0.02, 3.35, 3.49 1.82

end

%<insert path>NormDP.mac c5 1; "observed data in c5, known σ = 1"

prior c1 c2 "µ in c1, prior g(µ) in c2"

likelihood c3; "store likelihood in c3"

posterior c4. "store posterior g(µ|data) in c4"

Table C.11 Minitab commands for Bayesian inference on µ with normal prior

Minitab Commands Meaning

set c5 "puts data in c5

2.99, 5.56, 2.83, and 3.47

end

%<insert path>NormNP.mac c5 1; "observed data in c5, known σ = 1"

norm 3 2 "prior mean 3, prior std 2"

prior c1 c2 "store µ in c1, prior g(µ) in c2"

likelihood c3; "store likelihood in c3"

posterior c4. "store posterior g(µ|data) in c4"

For example, suppose we have a normal random sample of 4 observations from
normal (µ, σ2 = 1) which are 2.99, 5.56, 2.83, and 3.47. Suppose we use a normal
(3, 22) prior for µ. In the "edit" menu pull down "command line editor" and type
the commands from Table C.11 into the command line editor. We can determine
an (equal tail area) credible interval for µ either by looking at the values of y1
corresponding to the desired values of invf printed out by NormNP.mac. We can find
the posterior mean and variance from the output.
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Table C.12 Minitab commands for Bayesian inference on µ with continuous prior

Minitab Commands Meaning

set c5 "puts data in c5

2.99, 5.56, 2.83, and 3.47

end

%<insert path>NormGCP.mac c5 1; "observed data in c5, known σ = 1"

prior c1 c2 "µ in c1, prior g(µ) in c2"

likelihood c3; "store likelihood in c3"

posterior c4. "store posterior g(µ|data) in c4"

Table C.13 Minitab commands to integrate posterior density of µ

Minitab Commands Meaning

%<insert path>tintegral.mac c1 c4; "integrates posterior density"

output k1 c6. "stores definite integral over range in k1"

"stores definite integral function in c6"

print c1 c6

General Continuous Prior for µ

NormGCP.mac is used when we have a column c5 containing a random sample of n
observations from a normal (µ, σ2) distribution (with σ2 known) and we have column
c1 containing values of µ, and a column c2 containing values from a continuous prior
g(µ).

For example, suppose we have a normal random sample of 4 observations from
normal (µ, σ2 = 1) which are 2.99, 5.56, 2.83, and 3.47. In the "edit" menu pull
down "command line editor" and type the following commands from Table C.12
into the command line editor. The output of NormGCP.mac does not print out the
posterior mean and standard deviation. Neither does it print out the values that give
the tail areas of the integrated density function that we need to determine credible
interval for µ. Instead we use the macro tintegral.mac which numerically integrates
a function over its range to determine these things. We can find the integral of
the posterior density g(µ|data) using this macro. In the "edit" menu pull down
"command line editor" and type the commands from Table C.13 into the command
line editor. To find a 95% credible interval (with equal tail areas) we find the values
in c1 that correspond to .025 and .975 in c6 respectively. We can find the posterior
mean and variance by numerically evaluating

m′ =

∫
µg(µ|data)dµ
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Table C.14 Minitab commands to find posterior mean and variance of µ

Minitab Commands Meaning

let c7=c1*c4 "µ × g(µ|data)

%<insert path>tintegral.mac c1 c7; "finds posterior mean"

output k1 c8.

let c8=(c1-k1)**2 * c4

%<insert path>tintegral.mac c1 c8; "finds posterior variance"

output k2 c9.

let k3=sqrt(k2) "finds posterior st. deviation"

print k1-k3

and

(s′)2 =

∫
(µ − m′)2g(µ|data)dµ

using the macro tintegral.mac. In the "edit" menu pull down "command line editor"
and type the commands from Table C.14 into the command line editor.
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Using the Included

R Functions

OBTAINING AND USING R AND THE R FUNCTIONS

R functions for performing Bayesian analysis and for doing Monte Carlo simulations
are included. The address may be downloaded from the Web page for this text on the
site <www.wiley.com>. The R functions are zipped up in a package called Bolstad
R Functions.zip.

The latest version of R may always be found at http://lib.stat.cmu.edu/R/CRAN/.
Compiled versions of R for Linux, Mac OS (System 8.6 to 9.1 and Mac OS X), Mac
OS X (Darwin/X11) and Windows (95 and later), and the source code (for those who
wish to compile R themselves) may also be found at this address.

To install R for Windows, double click on the file rw1070.exe and follow the
installer functions. In the following discussion it is assumed that you have copied
the file Bolstad.R.Functions.zip to a location on your computer. You can find it
in this way:

1. Start R from the Start menu or by double clicking on the icon on your desktop.

2. Pull down the ’Packages’ menu and select the item ’Install package from local
zip file...’

*
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3. Use the dialog box to locate Bolstad.R.Functions.zip, select it and click on
’Open’.

R will now recognize the package Bolstad.R.Functions as a package it can
load. To use the functions in the package Bolstad.R.Functions, either type
library(bolstad.R.Functions) at the command prompt or select the item
’Load package...’ from the ’Packages’ menu. To see the list of functions contained
within the package, type library(help=Bolstad.R.Functions). This
should bring up the following list:

Function Name Description

binobp binomial sampling with a beta prior
binodp binomial sampling with a discrete prior
binogcp binomial sampling with a general continuous prior
normdp Bayesian inference on a normal mean with a discrete prior
normgcp Bayesian inference on a normal mean with a general continuous prior
normnp Bayesian inference on a normal mean with a normal prior
sintegral numerical integration using Simpson’s Rule
sscsample simple, stratified and cluster sampling
sscsample.data A stratified and clustered data set
xdesign carry out simulations using the default parameters

Help on each of the R functions is available once you have loaded the bolstad
package. There are a number of ways to access help files under R. The traditional way
is to use the help or ? function. For example, to see the help file on the binodp
function, type help(binodp) or ?binodp. HTML-based help is also available.
To use HTML help, select ’R language(html)’ from the ’Help’ menu. Click on the
’Packages’ link, and then the link for ’bolstad’. This will bring up an index page
where you may select the help file for the function you’re interested in.

Each help file has a standard layout, which is as follows:

Title: a brief title that gives some idea of what the function is supposed to do or
show

Description: a fuller description of the what the function is supposed to do or show

Usage: the formal calling syntax of the function

Arguments: a description of each of the arguments of the function

Values: a description of the values (if any) returned by the function

See also: a reference to related functions

Examples: some examples of how the function may be used. These examples may
be copied and pasted into R
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The R language has two special features that may make it confusing to users
of other programming and statistical languages: default or optional arguments, and
variable ordering of arguments. An R function may have arguments for which
the author has specified a default value. Let’s take the function binobp as an
example. The syntax of binobp is binobp(x, n, a = 1, b = 1, ret
= FALSE). The function takes five arguments x, n, a, b, and ret. However,
the author has specified default values for a, b, and ret, namely a = 1, b = 1
and ret = FALSE. This means that the user only has to supply the arguments x
and n. Therefore the arguments a, b and ret are said to be optional or default.
In this example, by default, a beta(a = 1, b = 1) prior is used and the prior,
likelihood, and posterior distributions (along with some associated information) are
not returned (ret = FALSE.) Hence the simplest example for binobp is given
as binobp(6,8). If the user wanted to change the prior used, say to beta(5,6),
then they would type binobp(6,8,5,6). There is a slight catch here, which
leads into the next feature. Assume that the user wanted to use a beta(1,1) prior, but
wanted to return the output. One might be tempted to type binobp(6,8,FALSE).
This is incorrect. R will think that the value FALSE is the value being assigned
to the parameter a, and convert it from a logical value, FALSE, to the numerical
equivalent, 0, which will of course give an error because the parameters of the beta
distribution must be greater than zero. The correct way to make such a call is to
use named arguments, such as binobp(6,8,ret=FALSE). This specifically tells
R which argument is to be assigned the value FALSE. This feature also makes the
calling syntax more flexible because it means that the order of the arguments does not
need to be adhered to. For example, binobp(n=8, x=6, ret=FALSE, a=1,
b=3) would be a perfectly legitimate function call.

CHAPTER 2: SCIENTIFIC DATA GATHERING

In this chapter we use the function sscsample to perform a small-scale Monte
Carlo study on the efficiency of simple, stratified, and cluster random sampling on
the population data contained in sscsample.data. Make sure the bolstad
package is loaded by typing

library(bolstad)

first. Type the following commands into the R console:

sscsample(20,200)

This calls the sscsample function and asks for 200 samples of size 20 to be
drawn from the dataset sscsample.data. To return the means and the samples
themselves, type

res<-sscsample(20,200,ret=T)

This will store all 200 samples and their means in an R list structure called res. The
means of the sample may be accessed by typing
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res\$means

The samples themselves are stored in the columns of a 20 × 200 matrix called
res$samples. To access the ith sample, where i = 1, . . . , 200, type

res\$samples[,i]

For example, to access the 50th sample, type

res\$samples[,50]

Experimental Design

We use the function xdesign to perform a small-scale Monte Carlo study comparing
completely randomized design and randomized block design in their effectiveness for
assigning experimental units into treatment groups. Suppose we want to carry out
our study with four treatment groups, each of size 20, and with a correlation of 0.8
between the response and the blocking variable. Type the following commands into
the command line editor:

xdesign()

Suppose we want to carry out our study with five treatment groups, each of size
25, and with a correlation of -0.6 between the response and the blocking variable.
We also want to store the results of the simulation in a variable called res. Type the
following commands into the command line:

res<-xdesign(corr=-0.6,size=25,n.treatments=5)

res is a list containing three member vectors of length 2×n.treatments×n.rep.
Each block of n.rep elements contains the simulated means for each Monte Carlo
replicate with in a specific treatment group. The first n.treatments blocks corre-
spond to the completely randomized design, and the second n.treatments blocks
correspond to randomized block design

• block.means: a vector of the means of the blocking variable

• treat.means: a vector of the means of the response variable

• ind: a vector indicating which means belong to which treatment group

An example of using these results might be

boxplot(block.means˜ind,data=res)
boxplot(treat.means˜ind,data=res)



USING THE INCLUDED R FUNCTIONS 321

CHAPTER 6: BAYESIAN INFERENCE FOR DISCRETE RANDOM
VARIABLES

Binomial Proportion with Discrete Prior

binodp is used to find the posterior when we have a binomial (n, θ) observation, and
we have a discrete prior for θ. For example, suppose θ has the discrete distribution
with three possible values, .3, .4, and .5. Suppose the prior distribution is

θ f(θ)
.3 .2
.4 .3
.5 .5

and we want to find the posterior distribution after n = 6 trials and observing y = 5
successes. Type the following commands into the command line editor:

theta<-c(0.3,0.4,0.5)
theta.prior<-c(0.2,0.3,0.5)
binodp(5,6,theta=theta,theta.prior=theta.prior)

CHAPTER 8: BAYESIAN INFERENCE FOR BINOMIAL PROPORTION

Beta(a, b) Prior for π

binobp is used to find the posterior when we have a binomial (n, θ) observation,
and we have a beta (a, b) prior for θ. The beta family of priors is conjugate for
binomial (n, θ) observations, so the posterior will be another member of the family,
beta (a′, b′) where a′ = a + y and b′ = b + n − y. For example, suppose we have
n = 12 trials, and observe y = 4 successes, and use a beta (3, 3) prior for θ. Type
the following command:

binobp(4,12,3,3)

into the R console. This should give the following output:

> binobp(4,12,3,3)
Posterior Mean : 0.3888889
Posterior Variance : 0.0125081
Posterior Std. Deviation : 0.1118397

Prob. Quantile
------ ---------
0.005 0.1370832
0.01 0.1552348
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0.025 0.184437
0.05 0.2119082
0.5 0.3846872
0.95 0.5802946
0.975 0.6167163
0.99 0.6577095
0.995 0.6845936

We can find the posterior mean and standard deviation from the output. We
can determine an (equal tail area) credible interval for θ by taking the appropriate
quantiles that correspond to the desired tail area values of the interval. For example,
for 95% credible interval we take the quantiles with probability 0.025 and 0.975,
respectively. These are 0.184 and 0.617.

General Continuous Prior for π

binogcp is used to find the posterior when we have a binomial (n, θ) observation,
and we have a general continuous prior for θ. Note, θ must go from 0 to 1 in steps of
at least .01, and g(θ) must be defined at each of the θ values. For example, suppose
we have n = 12 trials and observe y = 4 successes. In this example our continuous
prior for θ is a N(µ = 0.5, σ = 0.25). Type the following commands into the R
console:

binogcp(4,12,density="normal",params=c(0.5,0.25))

This example is perhaps not quite general as it uses some of the built in functionality
of binogcp. In this second example we use a “user-defined” general continuous
prior. Let the probability density function be a triangular distribution defined by

g(θ) =

{
4θ , 0 ≤ θ ≤ 0.5
4 − 4θ 0.5 < θ ≤ 1

.
Type the following commands into the R console:

theta<-seq(0,1,by=0.001)
theta.prior<-rep(0,length(theta))
theta.prior[theta<=0.5]<-4*theta[theta<=0.5]
theta.prior[theta>0.5]<-4-4*theta[theta>0.5]
results<-binogcp(4,12,"user",theta=theta,

theta.prior=theta.prior,ret=TRUE)

The output of binogcp does not print out the posterior mean and standard
deviation. Neither does it print out the values that give the tail areas of the integrated
density function that we need to determine credible interval for θ. Instead, we use
the function sintegral, which numerically integrates a function over its range to
determine these things. We can find the integral of the posterior density g(θ|y) using
this macro. Type the following command into the R console:
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cdf<-sintegral(theta,results\$posterior,
n.pts=length(theta),ret=TRUE)

plot(cdf,type="l",xlab=expression(theta[0])
,ylab=expression(Pr(theta<=theta[0])))

These commands created a new variable cdf, which is a list containing values x and
y, where cdf$y is equal to Pr (Y ≤ x), i.e. the cumulative density function (cdf.)
To find a 95% credible interval (with equal tail areas) we find the values of cdf$x
that correspond to .025 and .975 in cdf$y respectively.

d<-abs(cdf\$y-0.025)
lb<-cdf\$x[max((1:length(cdf\$y))[d==min(d)])]

d<-abs(cdf\$y-0.975)
ub<-cdf\$x[min((1:length(cdf\$y))[d==min(d)])]

cat(paste("Approximate 95% credible interval : ["
,round(lb,4)," ",round(ub,4),"]\n",sep=""))

We can also find the posterior mean and variance by numerically evaluating

m′ =

∫ 1

0

θg(θ|y)dθ

and

(s′)2 =

∫ 1

0

(θ − m′)2g(θ|y)dθ

using the function sintegral.Type the following commands into the R console:

dens<-theta*results\$posterior post.mean<-sintegral(theta,dens)

dens<-(theta-post.mean)ˆ2*results\$posterior
post.var<-sintegral(theta,dens)

post.sd<-sqrt(post.var)

Of course we can use these values to calculate an approximate 95% credible interval
using standard theory:

lb<-post.mean-qnorm(0.975)*post.sd
ub<-post.mean+qnorm(0.975)*post.sd

cat(paste("Approximate 95% credible interval : ["
,round(lb,4)," ",round(ub,4),"]\n",sep=""))
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CHAPTER 10: BAYESIAN INFERENCE FOR NORMAL MEAN

Discrete Prior for µ

normdp is used to find the posterior when we have a vector of normal (µ, σ2)
observations and σ2 is known, and we have a discrete prior for µ. For example,
suppose µ has the discrete distribution with five possible values: 2, 2.5, 3, 3.5, and
4. Suppose the prior distribution is

µ f(θ)
2 .1

2.5 .2
3 .4

3.5 .2
4 .1

and we want to find the posterior distribution after a random sample of n = 5
observations from a normal (µ, σ2 = 1) that are 1.52, 0.02, 3.35, 3.49, and 1.82.
Type the following commands into the R console:

mu<-seq(2,4,by=0.5)
mu.prior<-c(0.1,0.2,0.4,0.2,0.1)
y<-c(1.52,0.02,3.35,3.49,1.82)
normdp(y,1,uniform=F,n.mu=5,mu,mu.prior)

Normal(m, s2) Prior for µ

normnp is used when we have a vector containing a random sample of n observations
from a normal (µ, σ2) distribution (with σ2 known) and we use a normal (m, s2) prior
distribution. The normal family of priors is conjugate for normal (µ, σ2) observations,
so the posterior will be another member of the family, normal[m′, (s′)2] where the
new constants are given by

1

(s′)2
=

1

s2
+

n

σ2

and

m′ =
1
b2

1
(b′)2

× m +
n
σ2

1
(b′)2

× ȳ .

For example, suppose we have a normal random sample of four observations from
normal (µ, σ2 = 1) that are 2.99, 5.56, 2.83, and 3.47. Suppose we use a normal
(3, 22) prior for µ. Type the following commands into the R console:

y<-c(2.99,5.56,2.83,3.47)
normnp(y,1,3,2)



USING THE INCLUDED R FUNCTIONS 325

This gives the following output:

Posterior mean : 3.6705882
Posterior std. deviation : 0.4850713

Prob. Quantile
------ ---------
0.005 2.4211275
0.01 2.5421438
0.025 2.7198661
0.05 2.872717
0.5 3.6705882
0.95 4.4684594
0.975 4.6213104
0.99 4.7990327
0.995 4.920049

We can find the posterior mean and standard deviation from the output. We can
determine an (equal tail area) credible interval for µ by taking the appropriate quantiles
that correspond to the desired tail area values of the interval. For example, for 99%
credible interval we take the quantiles with probability 0.005 and 0.995, respectively.
These are 2.42 and and 4.92.

General Continuous Prior for µ

normgcp is used when we have a vector containing a random sample of n ob-
servations from a normal (µ, σ2) distribution (with σ2 known) and we have vector
containing values of µ, and vector containing values from a continuous prior g(µ).

For example, suppose we have a random sample of four observations from a
normal (µ, σ2 = 1) distribution. The values are 2.99, 5.56, 2.83, and 3.47. Suppose
we have a triangular prior defined over -3 to 3:

g(µ) =

{
1
3 + µ

9 ,−3 ≤ µ ≤ 00
1
3 − µ

9 0 < µ ≤ 3
.

Type the following commands into the R console:

y<-c(2.99,5.56,2.83,3.47)
mu<-seq(-3,3,by=0.1)
mu.prior<-rep(0,length(mu))
mu.prior[mu<=0]<-1/3+mu[mu<=0]/9
mu.prior[mu>0]<-1/3-mu[mu>0]/9
results<-normgcp(y,1,density="user",mu=mu,

mu.prior=mu.prior,ret=T)

The output of normgcp does not print out the posterior mean and standard
deviation. Neither does it print out the values that give the tail areas of the integrated
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density function that we need to determine credible interval for µ. Instead we use
the macro sintegral which numerically integrates a function over its range to
determine these things. We can find the integral of the posterior density g(µ|data)
using this macro. Type the following commands into the R console:

cdf<-sintegral(mu,results\$posterior
,n.pts=length(mu),ret=TRUE)

plot(cdf,type="l",xlab=expression(mu[0])
,ylab=expression(Pr(mu<=mu[0])))

These commands created a new variable cdf, which is a list containing values x and
y, where cdf$y is equal to Pr (Y ≤ x), i.e. the cumulative density function (cdf.)
To find a 95% credible interval (with equal tail areas), we find the values of cdf$x
that correspond to .025 and .975 in cdf$y, respectively.

d<-abs(cdf$y-0.025)
lb<-cdf$x[max((1:length(cdf$y))[d==min(d)])]

d<-abs(cdf$y-0.975)
ub<-cdf$x[min((1:length(cdf$y))[d==min(d)])]

cat(paste("Approximate 95% credible interval : ["
,round(lb,4)," ",round(ub,4),"]\n",sep=""))

We can also find the posterior mean and variance by numerically evaluating

m′ =

∫
µg(µ|data)dµ

and

(s′)2 =

∫
(µ − m′)2g(µ|data)dµ

using the function sintegral. Type the following commands into the R console:

dens<-mu*results$posterior
post.mean<-sintegral(mu,dens)

dens<-(mu-post.mean)ˆ2*results$posterior
post.var<-sintegral(mu,dens)

post.sd<-sqrt(post.var)
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Of course, we can use these values to calculate an approximate 95% credible interval
using standard theory:

lb<-post.mean-qnorm(0.975)*post.sd
ub<-post.mean+qnorm(0.975)*post.sd

cat(paste("Approximate 95% credible interval : ["
,round(lb,4)," ",round(ub,4),"]\n",sep=""))
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Answers to

Selected Exercises

Chapter 3: Displaying and Summarizing Data

3.1 (a) Stem-and-leaf plot for sulphur dioxide (SO2) data
leaf unit 1

0 3 3
0 5 7 99
1 1334
1 6789
2 33
2 56789
3
3 5
4 34
4 6

(b) Median Q2 = X[13] = 18 ,

Lower quartile Q1 = X[ 26
4

] = X6+X7

2 = 10 , and

Upper quartile Q3 = X[ 78
4

] = X19+X20

2 = 27.5

*
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(c) Boxplot of SO2 data

50403020100

SO2

3.3 (a) Stem-and-leaf plot for distance measurements data

leaf unit .01
299.4 0
299.5 0
299.6 0
299.7 00
299.8 000
299.9 000000
300.0 0000000
300.1 00000000
300.2 0000000
300.3 00
300.4 00000
300.5 000
300.6 00
300.7 00

(b) Median=300.1 Q1 = 299.9 Q3 = 300.35

(c) Boxplot of distance measurement data

300.5300.0299.5
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(d) Histogram of distance measurement data

300.8300.4300.2300.0299.8299.6299.2

1.5

1.0

0.5

0.0

C4

D
en

si
ty

(e) Cumulative frequency polygon of distance measurement data

300.8300.4300.2300.0299.8299.6299.2

50

40

30

20

10

0

3.5 (a) Histogram of liquid cash reserve

1000060004000200010005000

0.0007

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

0.0000

D
en

si
ty

(b) Cumulative frequency polygon of liquid cash reserve

1000060004000200010000

50

40

30

20

10

0

(c) Grouped mean = 1600
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3.7 (a) Plot of weight versus length (slug data)

1009080706050403020100

14

12

10

8

6

4

2

0

length

w
ei

gh
t

(b) Plot of log(weight) versus log(length)

2.01.91.81.71.61.51.41.31.21.11.0

1

0

-1

-2

log len

lo
g 

w
t

(c) The point (1.5,−1.5) does not seem to fit the pattern. This corresponds
to observation 90. Dr. Harold Henderson at AgResearch New Zealand
has told me that there are two possible explanations for this point. Either
the digits of length were transposed at recording or the decimal place for
weight was misplaced.

Chapter 4: Logic, Probability, and Uncertainty

4.1 (a) P (Ã) = .6

(b) P (A ∩ B) = .2

(c) P (A ∪ B) = .7

4.3 (a) P (Ã∩B) = .24, P (B) = .4, therefore P (A∩B) = .16. P (A∩B) =
P (A) × P (B), therefore they are independent.

(b) P (A ∪ B) = .4 + .4 − .16 = .64

4.5 (a) Ω = {1, 2, 3, 4, 5, 6}
(b) A = {2, 4, 6}, P (A) = 3

6

(c) B = {3, 6}, P (B) = 2
6

(d) A ∩ B = {6}, P (A ∩ B) = 1
6

(e) P (A ∩ B) = P (A) × P (B), therefore they are independent.
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4.7 (a)

A =




(1, 1) (1, 3) (1, 5)
(2, 2) (2, 4) (2, 6)
(3, 1) (3, 3) (3, 5)
(4, 2) (4, 4) (4, 6)
(5, 1) (5, 3) (5, 5)
(6, 2) (6, 4) (6, 6)




P (A) = 18
36

(b)

B =

{
(1, 2)(1, 5)(2, 1)(2, 4)(3, 3)(3, 6)
(4, 2)(4, 5)(5, 1)(5, 4)(6, 3)(6, 6)

}

P (B) = 12
36

(c) A ∩ B = {(1, 5)(2, 4)(3, 3)(4, 2)(5, 1)(6, 6)}
P (A ∩ B) = 6

36

(d) P (A ∩ B) = P (A) × P (B), yes they are independent.

4.9 Let D be "the person has the disease" and let T be "The test result was positive."

P (D|T ) =
P (D ∩ T )

P (T )
= .0875

Chapter 5: Discrete Random Variables

5.1 (a) P (1 < Y ≤ 3) = .4

(b) E(Y ) = 1.6

(c) V ar(Y ) = 1.44

(d) E(W ) = 6.2

(e) V ar(W ) = 5.76

5.3 (a) The filled-in table:

yi f(yi) yi × f(yi) y2
i × f(yi)

0 .0102 .0000 .0000
1 .0768 .0768 .0768
2 .2304 .4608 .9216
3 .3456 1.0368 3.1104
4 .2592 1.0368 4.1472
5 .0778 .3890 1.9450
Sum 1.0000 3.0000 10.2000
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i. E(Y ) = 3

ii. V ar(Y ) = 10.2 − 32 = 1.2

(b) Using formulas

i. E(Y ) = 5 × .6 = 3

ii. V ar(Y ) = 5 × .6 × .4 = 1.2

5.5 The filled-in table:

X Y f(x)
1 2 3 4 5

1 .02 .04 .06 .08 .05 .25
2 .08 .02 .10 .02 .03 .25
3 .05 .05 .03 .02 .10 .25
4 .10 .04 .05 .03 .03 .25
f(y) .25 .15 .24 .15 .21

(a) The marginal distribution of X is found by summing across rows.

(b) The marginal distribution of Y is found by summing down columns.

(c) No they are not. The entries in the joint probability table aren’t all equal
to the products of the marginal probabilities.

(d) P (X = 3|Y = 1) = .05
.25 = .20

Chapter 6: Bayesian Inference for Discrete Random Variables

6.1 (a) Bayesian universe: 


(0, 0) (0, 1)
(1, 0) (1, 1)
(2, 0) (2, 1)
(3, 0) (3, 1)
(4, 0) (4, 1)
(5, 0) (5, 1)
(6, 0) (6, 1)
(7, 0) (7, 1)
(8, 0) (8, 1)
(9, 0) (9, 1)






ANSWERS TO SELECTED EXERCISES 335

(b) The filled-in table:

X prior Y = 0 Y = 1

0 1
9

1
9 × 9

9
1
9 × 0

9

1 1
9

1
9 × 8

9
1
9 × 1

9

2 1
9

1
9 × 7

9
1
9 × 2

9

3 1
9

1
9 × 6

9
1
9 × 3

9

4 1
9

1
9 × 5

9
1
9 × 4

9

5 1
9

1
9 × 4

9
1
9 × 5

9

6 1
9

1
9 × 3

9
1
9 × 6

9

7 1
9

1
9 × 2

9
1
9 × 7

9

8 1
9

1
9 × 1

9
1
9 × 8

9

9 1
9

1
9 × 0

9
1
9 × 9

9

which simplifies to

X prior Y = 0 Y = 1

0 1
9

9
81

0
81

1 1
9

8
81

1
81

2 1
9

7
81

2
81

3 1
9

6
81

3
81

4 1
9

5
81

4
81

5 1
9

4
81

5
81

6 1
9

3
81

6
81

7 1
9

2
81

7
81

8 1
9

1
81

8
81

9 1
9

0
81

9
81

45
81

45
81

(c) The marginal distribution was found by summing down the columns.

(d) The reduced Bayesian universe is




(0, 1)
(1, 1)
(2, 1)
(3, 1)
(4, 1)
(5, 1)
(6, 1)
(7, 1)
(8, 1)
(9, 1)




.
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(e) The posterior probability distribution is found by dividing the joint prob-
abilities on the reduced Bayesian universe, by the sum of the joint prob-
abilities over the reduced Bayesian universe.

(f) The simplified table is

X prior likelihood prior × likelihood posterior
0 1

9
0
9

0
81

0
45

1 1
9

1
9

1
81

1
45

2 1
9

2
9

2
81

2
45

3 1
9

3
9

3
81

3
45

4 1
9

4
9

4
81

4
45

5 1
9

5
9

5
81

5
45

6 1
9

6
9

6
81

6
45

7 1
9

7
9

7
81

7
45

8 1
9

8
9

8
81

8
45

9 1
9

9
9

9
81

9
45

Sum 45
81 1

6.3 Looking at the two draws together, the simplified table is

X prior likelihood prior × likelihood posterior
0 1

9
0
9 × 1 0

81
0

120

1 1
9

1
9 × 8

8
8

648
8

120

2 1
9

2
9 × 7

8
14
648

8
120

3 1
9

3
9 × 6

8
18
648

8
120

4 1
9

4
9 × 5

8
20
648

8
120

5 1
9

5
9 × 4

8
20
648

8
120

6 1
9

6
9 × 3

8
18
648

8
120

7 1
9

7
9 × 2

8
14
648

8
120

8 1
9

8
9 × 1

8
8

648
8

120

9 1
9

9
9 × 0

8
0

648
8

120

Sum 120
648 1

6.5

P (”Blackjack”) = P (A) × P (F |A) + P (F ) × P (A|F )

(They are disjoint ways of getting "Blackjack.")

P (”Blackjack”) =
16

204
× 64

203
+

64

204
× 16

203
= 0.0494543
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Chapter 7: Continuous Random Variables

7.1 (a) E(X) = 3
8 = .375

(b) V ar(X) = 15
82×9 = 0.0260417

7.3 The uniform distribution is also the beta (1, 1) distribution.

(a) E(X) = 1
2 = .5

(b) V ar(X) = 1
22×3 = .08333

(c) P (X ≤ .25) =
∫ .25

0
1 dx = .25

(d) P (.33 < X < .75) =
∫ .75

.33
1 dx = .42

7.5 (a) P (0 ≤ Z < .65) = .2422

(b) P (Z ≥ .54) = .2946

(c) P (−.35 ≤ Z ≤ 1.34) = .5467

7.7 (a) P (Y ≤ 130) = .8944

(b) P (Y ≥ 135) = .0304

(c) P (114 ≤ Y ≤ 127) = .5826

7.9 (a) E(Y ) = 10
10+12 = .4545

(b) V ar(Y ) = 10×12
(22)2×(23) = .0107797

(c) P (Y > .5) = .3308

Chapter 8: Bayesian Inference for Binomial Proportion

8.1 (a) binomial (n = 150, π) distribution

(b) beta (30, 122)

8.3 (a) a and b are the simultaneous solutions of

a

a + b
= .5

and
a × b

(a + b)2 × (a + b + 1)
= .152

Solution is a = 5.05 and b = 5.05

(b) The equivalent sample size of her prior is 11.11

(c) beta (26.05, 52.05)

8.5 (a) binomial (n = 116, π)

(b) beta (18, 103)



338 ANSWERS TO SELECTED EXERCISES

(c)

E(π|y) =
18

18 + 103

and

V ar(π|y) =
18 × 103

(121)2 × (122)

(d) normal(.149, .03222)

(e) (.086,.212)

8.7 (a) binomial (n = 174, π)

(b) beta (11, 168)

(c)

E(π|y) =
11

11 + 168
= .0614

and

V ar(π|y) =
11 × 168

(179)2 × (180)
= .0003204

(d) normal(.061, .01792)

(e) (.026,.097)

Chapter 9: Comparing Bayesian and Frequentist Inferences for
Proportion

9.1 (a) binomial (n = 30, π)

(b) π̂f = 8
30 = .267

(c) beta (9, 23)

(d) π̂B = 9
32 = .281

9.3 (a) π̂f = 11
116 = .095

(b) beta (12, 115)

(c) E(π|y) = .094 and V ar(π|y) = .0006684
The Bayesian estimator π̂B = .094.

(d) (.044,.145)

(e) The null value π = .10 lies in the credible interval, so it remains a credible
value at the 5% level

9.5 (a) π̂f = 24
176 = .136

(b) beta (25, 162)
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(c) E(π|y) = .134 and V ar(π|y) = .0006160
The Bayesian estimator π̂B = .134.

(d)

P (π ≥ .15) = .255

This is greater than level of significance .05, so we can’t reject the null
hypothesis H0 : π ≥ .15.

Chapter 10: Bayesian Inference for Normal Mean

10.1 (a) posterior distribution
value posterior probability
991 .0000
992 .0000
993 .0000
994 .0000
995 .0000
996 .0010
997 .0674
998 .4980
999 .3987

1000 .0346
1001 .0003
1002 .0000
1003 .0000
1004 .0000
1005 .0000
1006 .0000
1007 .0000
1008 .0000
1009 .0000
1010 .0000

(b) P (µ < 1000) = .965.

10.3 (a) The posterior precision equals

1

(s′)2
=

1

102
+

10

32
= 1.1211

The posterior variance equals (s′)2 = 1
1.1211 = .89197. The posterior

standard deviation equals s′ =
√

.89197 = .9444. The posterior mean
equals

m′ =
1

102

1.1211
× 30 +

10
32

1.1211
× 36.93 = 36.87

The posterior distribution of µ is normal(36.87, .94442).
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(b) Test
H0 : µ ≤ 35 versus H1 : µ > 35

Note that the alternative hypothesis is what we are trying to determine.
The null hypothesis is that mean yield is unchanged from that of the
standard process.

(c)

P (µ ≤ .35) = P

(
µ − 36.87

.944
≤ 35 − 36.87

.944

)

= P (Z ≤ −2.012) = .022

This is less than the level of significance α = .05%, so we reject the null
hypothesis and conclude the yield of the revised process is greater than
.35.

10.5 (a) The posterior precision equals

1

(s′)2
=

1

2002
+

4

402
= .002525

The posterior variance equals (s′)2 = 1
002525 = 396.0 The posterior

standard deviation equals s′ =
√

396.0 = 19.9. The posterior mean
equals

m′ =
1

2002

.002525
× 1000 +

4
402

.002525
× 970 = 970.3

The posterior distribution of µ is normal(970.3, .19.92).

(b) The 95 % credible interval for µ is is (931.3, 1009.3)

(c) The posterior distribution of θ is normal(1392, 16.6)

(d) The 95 % credible interval for θ is (1360,1425)

Chapter 11: Comparing Bayesian and Frequentist Inferences for Mean

11.1 (a) posterior precision

1

(s′)2
=

1

102
+

10

22
= 2.51

The posterior variance (s′)2 = 1
2.51 = .3984 and the posterior standard

deviation s′ =
√

.3984 = .63119. The posterior mean

m′ =
1

102

2.51
× 75 +

10
22

2.51
× 79.410 = 79.39

The posterior distribution is normal(79.39, .631192)
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(b) The 95 % Bayesian credible interval is (78.16,80.63)

(c) Calculate the posterior probability of the null hypothesis.

P (µ ≥ 80) = .168

This is greater than the level of significance, so we cannot reject the null
hypothesis.

11.3 (a) posterior precision

1

(s′)2
=

1

802
+

25

802
= .0040625

The posterior variance (s′)2 = 1
.0040625 = 246.154 and the posterior

standard deviation s′ =
√

246.154 = 15.69. The posterior mean

m′ =
1

802

.0040625
× 325 +

25
802

.0040625
× 401.96 = 399 .

The posterior distribution is normal(399, 15.692).

(b) The 95 % Bayesian credible interval is (368,429).

(c) We observe that the null value (350) lies outside the credible interval, so
we reject the null hypothesis H0 : µ = 350 at the 5% level of significance.
We can conclude that µ �= 350.

(d) We calculate the posterior probability of the null hypothesis.

P (µ ≤ 350) = .0009

This is less than the level of significance, so we reject the null hypothesis
and conclude that µ > 350.

Chapter 12: Bayesian Inference for Difference between Means

12.1 (a) The posterior distribution of µA is normal(119.4, 1.8882) , the posterior
distribution of µB is normal(122.7, 1.8882), and they are independent.

(b) The posterior distribution of µd = µA − µB is normal(−3.271, 2.6712).

(c) The 95% credible interval for µA − µB is (−8.506, 1.965).

(d) We note that the null value 0 lies inside the credible interval. Hence we
cannot reject the null hypothesis.

12.3 (a) The posterior distribution of µ1 is normal(14.96, .37782), the posterior
distribution of µ2 is normal(15.55, .37782), and they are independent.

(b) The posterior distribution of µd = µ1 − µ1 is normal(−.5847, .53432).

(c) The 95% credible interval for µ1 − µ1 is (−1.632, .462).
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(d) We note that the null value 0 lies inside the credible interval. Hence we
cannot reject the null hypothesis.

12.5 (a) The posterior distribution of µ1 is normal(10.283, .8162), the posterior
distribution of µ2 is normal(9.186, .7562), and they are independent.

(b) The posterior distribution of µd = µ1 − µ2 is normal(1.097, 1.1132).

(c) The 95% credible interval for µ1 − µ2 is (−1.08, 3.28).

(d) We calculate the posterior probability of the null hypothesis

P (µ1 − µ2 ≤ 0) = .162

This is greater than the level of significance, so we cannot reject the null
hypothesis.

12.7 (a) The posterior distribution of µ1 is normal(1.51999, .0000094442).

(b) The posterior distribution of µ2 is normal(1.52001, .0000094442).

(c) The posterior distribution of µd = µ1−µ2 is normal(−.00002, .0000132).

(d) A 95% credible interval for µd is (−.000046, .000006).

(e) We observe that the null value 0 lies inside the credible interval so we
cannot reject the null hypothesis.

12.9 (a) The posterior distribution of π1 is beta (172, 144).

(b) The posterior distribution of π2 is beta (138, 83).

(c) The approximate posterior distribution of π1−π2 is normal(−.080, .04292)

(d) The 99 % Bayesian credible interval for π1 − π2 is (−.190, .031).

(e) We observe that the null value 0 lies inside the credible interval, so we
cannot reject the null hypothesis that the proportions of New Zealand
women who are in paid employment are equal for the two age groups.

12.11 (a) The posterior distribution of π1 is beta (70, 246).

(b) The posterior distribution of π2 is beta (115, 106).

(c) The approximate posterior distribution of π1−π2 is normal(−.299, .04082).

(d) We calculate the posterior probability of the null hypothesis:

P (π1 − π2 ≥ 0) = P (Z ≥ 7.31) = .0000

We reject the null hypothesis and conclude that the proportion of New
Zealand women in the younger group who have been married before age
22 is less than the proportion of New Zealand women in the older group
who have been married before age 22.

12.13 (a) The posterior distribution of π1 is beta (137, 179).

(b) The posterior distribution of π2 is beta (136, 85).
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(c) The approximate posterior distribution of π1−π2 is normal(−.182, .04292).

(d) The 99 % Bayesian credible interval for π1 − π2 is (−.292, −.071).

(e) We calculate the posterior probability of the null hypothesis:

P (π1 − π2 ≥ 0) = P (Z ≥ 4.238) = .0000

We reject the null hypothesis and conclude that the proportion of New
Zealand women in the younger group who have given birth before age
25 is less than the proportion of New Zealand women in the older group
who have given birth before age 25.

12.15 (a) The posterior distribution of µd after the first experiment is
normal (−2.970, .6802). We will use that as the prior for the second
experiment. The posterior distribution of µd given both data from both
experiments is normal(−3.69, .332).

(b) The 95 % credible interval is (−4.34, −3.04). We note that this is
considerably shorter than when we analyzed the experiments separately.

(c) We observe that the null value 0 lies outside the credible interval, so we
reject the null hypothesis. The 13C measurements are different depending
on which chamber the fluid goes to. This means that the 13C test could
be used to determine to which chamber the fluid went.

Chapter 13: Bayesian Inference for Simple Linear Regression

13.1 (b) The least squares slope

B =
145.610 − 107 × 1.30727

11584.1 − 1072
= 0.0426514

The least squares y-intercept equals

A0 = 1.30727 − .0426514 × 107 = −3.25643

(c) The scatterplot of oxygen uptake on heart rate with least squares line
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(d) The estimated variance about the least squares line is found by taking the
sum of squares of residuals and dividing by n−2 and equals σ̂2 = .13032
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(e) The likelihood of β is proportional to a normal(B, σ2

SSx
) where B is the

least squares slope and SSx = n × (x2 − x̄2) = 1486 and σ2 = .132.
The prior for β is normal(0, 12). The posterior precision will be

1

(s′)2
=

1

12
+

SSx

.132
= 87930 ,

the posterior variance will be (s′)2 = 1
87930 = .000011373 and the

posterior mean is

m′ =
1
12

87930
× 0 +

SSx

.132

87930
× .0426514 = .0426509

The posterior distribution of β is normal(.0426, .003372)

(f) A 95 % Bayesian credible interval for β is (.036, .049).

(g) We observe that the null value 0 lies outside the credible interval, so we
reject the null hypothesis.

13.3 (b) The least squares slope

B =
5479.83 − 105 × 52.5667

11316.7 − 1052
= −0.136000

The least squares y-intercept equals

A0 = 52.5667 −−0.136000 × 105 = 66.8467

(c) The scatterplot of distance on speed with least squares line
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(d) The estimated variance about the least squares line is found by taking
the sum of squares of residuals and dividing by n − 2 and equals σ̂2 =
.5712562.

(e) The likelihood of β is proportional to a normal(B, σ2

SSx
) where B is the

least squares slope and SSx = n × (x2 − x̄2) = 1750 and σ2 = .572.
The prior for β is normal(0, 12). The posterior precision will be

1

(s′)2
=

1

12
+

SSx

.572
= 5387.27
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the posterior variance (s′)2 = 1
5387.27 = .000185623 and the posterior

mean is

m′ =
1
12

5387.27
× 0 +

SSx

.572

5387.27
× (−0.136000) = −.135975

The posterior distribution of β is normal(−.136, .01362).

(f) A 95 % Bayesian credible interval for β is (−.163, −0.109).

(g) We calculate the posterior probability of the null hypothesis.

P (β ≥ 0) = P (Z ≥ 9.98) = .0000

This is less than the level of significance, so we reject the null hypothesis
and conclude that β < 0.

13.5 (b) The least squares slope

B =
8159.3 − 79.6 × 101.2

6406.4 − 79.62
= 1.47751 .

The least squares y-intercept equals

A0 = 101.2 − 1.47751 × 79.6 = −16.4095 .

(c) The scatterplot of score on cans with least squares line
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(d) The estimated variance about the least squares line is found by taking the
sum of squares of residuals and dividing by n−2 and equals σ̂2 = 7.6672.

(e) The likelihood of β is proportional to a normal(B, σ2

SSx
) where B is the

least squares slope and SSx = n× (x2 − x̄2) = 702.400 and σ2 = 7.72.
The prior for β is normal(0, 102). The posterior precision will be

1

(s′)2
=

1

102
+

SSx

7.72
= 11.8569

the posterior variance (s′)2 = 1
11.8569 = .0843394 and the posterior

mean is

m′ =
1

102

11.8569
× 0 +

SSx

7.72

11.8569
× 1.47751 = 1.47626
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The posterior distribution of β is normal(1.48, .292)

(f) A 95 % Bayesian credible interval for β is (.91, 2.05)

(g) We calculate the posterior probability of the null hypothesis:

P (β ≤ 0) = P (Z ≤ −5.08) = .0000 .

This is less than the level of significance, so we reject the null hypothesis
and conclude β > 0.

13.7 (a) The scatterplot of number of ryegrass plants on the weevil infestation rate
where the ryegrass was infected with endophyte. Doesn’t look linear. Has
dip at infestation rate of 10.
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(c) The least squares slope

B =
19.9517 − 8.75 × 2.23694

131.250 − 8.752
= .00691966 .

The least squares y-intercept equals

A0 = 2.23694 − .00691966 × 8.75 = 2.17640 .
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(d) σ̂2 = .8501112

(e) The likelihood of β is proportional to a normal(B, σ2

SSx
) where B is

the least squares slope and SSx = n × (x2 − x̄2) = 1093.75 and
σ2 = .8501112. The prior for β is normal(0, 12). The posterior precision
will be

1

(s′)2
=

1

12
+

SSx

.8501112
= 1514.45
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the posterior variance (s′)2 = 1
1514.45 = .000660307 and the posterior

mean is

m′ =
1
12

1514.45
× 0 +

SSx

.3114692

1514.45
× .00691966 = .00691509 .

The posterior distribution of β is normal(.0069, .02572)

13.9 (a) To find the posterior distribution of β1 − β2, we take the difference
between the posterior means, and add the posterior variances since
they are independent. The posterior distribution of β1 − β2 is nor-
mal(1.012, .0322).

(b) The 95 % credible interval for β1 − β2 is (.948,1.075).

(c) We calculate the posterior probability of the null hypothesis:

P (β1 − β2 ≤ 0) = P (Z ≤ −31) = .0000 .

This is less than the level of significance, so we reject the null hypothesis
and conclude β1−β2 > 0. This means that infection by endophyte offers
ryegrass some protection against weevils.

Chapter 14: Robust Bayesian Methods

14.1 (a) The posterior g0(π|y = 10) is binomial(7 + 10, 13 + 190).

(b) The posterior g1(π|y = 10) is binomial(1 + 10, 1 + 190).

(c) The posterior probability P (I = 0|y = 10) = .163.

(d) The marginal posterior g(π|y = 10) = .163 × g0(π|y = 10) + .837 ×
g1(π|y = 10). This is a mixture of the two beta posteriors where the
proportions are the posterior probabilities of I .

14.3 (a) The posterior g0(µ|y1, . . . , y6) is normal(1.10270, .000377964).

(b) The posterior g1(µ|y1, . . . , y6) is normal(1.10314, .000407909).

(c) The posterior probability P (I = 0|y1, . . . , y6) = .123.

(d) The marginal posterior g(µ|y1, . . . , y6) = .123×g0(π|y = 10)+ .877×
g1(π|y1, . . . , y6). This is a mixture of the two normal posteriors where
the proportions are the posterior probabilities of I .
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Bayes’ theorem, 66, 72
Bayes’ theorem using table

binomial observation with discrete prior, 104
discrete observation with discrete prior, 98
normal observation with discrete prior, 170

Bayes’ theorem
analyzing the observations all together, 100
analyzing the observations in sequence, 100
binomial observation

beta prior, 131
continuous prior, 130
discrete prior, 102
mixture prior, 266
uniform prior, 130

discrete random variables, 95
events, 63, 65, 68
linear regression sample, 244
mixture prior, 263
normal observations

continuous prior, 175
discrete prior, 169
flat prior, 176
mixture prior, 268
normal prior, 177,

Bayes factor, 70
Bayesian approach to statistics, 6, 10
Bayesian credible interval, 140

for π, 141
for µ, 181, 196
for µ1 − µ2

unequal variances, 216
equal variances, 210

for π1 − π2, 218
for the regression slope β, 247
used for Bayesian two-sided hypothesis test, 162

Bayesian estimator for µ

posterior mean, 194
Bayesian hypothesis test

one-sided test for µ, 200
one-sided test for µ1 − µ2

equal variances, 212
unequal variances, 217

one-sided test for π, 159
one-sided test for slope β, 248
two-sided test for µ, 204
two-sided test for µ1 − µ2

independent samples, 213, 215
two-sided test for π, 162
two-sided test for slope β, 248

Bayesian universe, 66, 95, 106
parameter space dimension, 69, 72, 95, 106
reduced, 67, 96, 106
sample space dimension, 69, 72, 95, 106

beta distribution, 117
density, 118
mean, 118
normal approximation, 121
shape, 117
variance, 119

bias
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response, 16
sampling, 14

binomial distribution, 81, 91, 129, 295
characteristics of, 82
mean, 82
probability function, 82
table, 299–301
variance, 83

boxplot, 30, 48
stacked, 37

central limit theorem, 119, 169
conditional probability, 71
conditional random variable

continuous
conditional density, 123

confidence interval
for µ, 196
for regression slope β, 247

conjugate family of priors
binomial observation, 132, 142

continuous random variable, 111
probability density function, 113, 124
probability is area under density, 114, 124

correlation
bivariate data set, 46, 49

covariance
bivariate data set, 46

cumulative frequency polygon, 35, 48
deductive logic, 56
degrees of freedom, 43

unknown variance, 183
simple linear regression, 247
two samples unknown equal variances, 214
two samples unknown unequal variances

Satterthwaite’s adjustment, 216
derivative, 281

higher, 283
partial, 291

designed experiment, 18, 22
completely randomized design, 18, 22, 24–25
randomized block design, 19, 22, 24–25

differentiation, 281
discrete random variable, 75–76, 90

expected value, 78
probability distribution, 75, 78, 91
variance, 79

dotplot, 30
stacked, 37

equivalent sample size
beta prior, 134
normal prior, 179

estimator
frequentist, 149, 193
mean squared error, 150
minimum variance unbiased, 150, 194
sampling distribution, 149

unbiased, 150, 194
Event, 58
event

complement, 58, 71
events

independent, 60–61
intersection, 58, 71
mutually exclusive (disjoint), 58, 61, 71
partitioning universe, 64
union, 58, 71

expected value
continuous random variable, 115
discrete random variable, 78, 91

experimental units, 17–18, 20, 24
finite population correction factor, 84
five number summary, 31
frequency table, 33
frequentist approach to statistics, 5, 10
frequentist confidence interval, 154
frequentist confidence intervals

relationship to frequentist hypothesis tests, 161
frequentist hypothesis test

level of significance, 157
null distribution, 157
one-sided test for µ, 199
one-sided test for π, 157
p-value, 158
rejection region, 158
two-sided test for µ, 202
two-sided test for π, 160

frequentist
interpretation of probability and parameters,

147
function, 275

antiderivative, 284
continuous, 279

maximum and minimum, 280
differentiable, 281

critical points, 283
graph, 276
limit at a point, 277

fundamental theorem of calculus, 288
histogram, 34–35, 48
hypergeometric distribution, 83

mean, 84
probability function, 84
variance, 84

integration, 284
definite integral, 284, 287, 289
multiple integral, 292

interquartile range
data set, 42, 49
posterior distribution, 139

joint likelihood
linear regression sample, 244

joint random variables
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conditional probability, 88
conditional probability distribution, 89
continuous, 122
continuous and discrete, 123
continuous

joint density, 122
marginal density, 122

discrete, 84
joint probability distribution, 84
marginal probability distribution, 85

independent, 86
joint probability distribution, 91
marginal probability distribution, 91

likelihood
binomial, 102

proportional, 105
discrete parameter, 97–98
events partitioning universe, 66
multiplying by constant, 67, 105
normal

using density function, 171
random sample, 173
sample mean ȳ, 173
using ordinates table, 170

regression
intercept αx̄, 245
slope β, 245

sample mean from normal distribution, 179
single normal observation, 170

logic
deductive, 70
inductive, 71

lurking variable, 2, 10, 19–20, 25
marginalization, 184, 249
marginalizing out the mixture parameter, 265
mean squared error, 195
mean

continuous random variable, 115
data set, 40, 49
difference between random variables, 88, 92
discrete random variable, 78
grouped data, 40
of a linear function, 80, 91
sum of random variables, 85, 91
trimmed, 42, 49

measures of location, 39
measures of spread, 42
median

data set, 41, 47, 49
mixture prior, 261
Monte Carlo study, 7, 11, 23–24
nonsampling errors, 16
normal distribution, 119

area under standard normal density, 296, 302
density, 119
mean, 119

ordinates of standard normal density, 297, 303
shape, 119
standard normal probabilities, 120
variance, 119

nuisance parameter, 7, 184, 249
observational study, 17, 22
Ockham’s razor, 4, 156
odds ratio, 69
order statistics, 30, 32, 47
Outcome, 58
outlier, 40
parameter, 5–6, 14, 21, 69
parameter space, 69
plausible reasoning, 56, 71
point estimation, 149
population, 5, 14, 21
posterior distribution, 6

discrete parameter, 97–98
normal with discrete prior, 170
regression slope β, 246

posterior mean, 138
posterior mean square

of an estimator, 140
posterior mean

as an estimate for π, 139
posterior median, 138

as an estimate for π, 139
posterior mode, 137
posterior probability distribution

binomial with discrete prior, 103
posterior probability

of an unobservable event, 66
posterior standard deviation, 139
posterior variance, 138
pre-posterior analysis, 8, 11
precision

normal
ȳ, 179
observation, 178
posterior, 178
prior, 178

regression
likelihood, 246
posterior, 246
prior, 246

predictive distribution
normal

next observation, 184
regression model

next observation, 248
prior distribution, 6

choosing beta prior for π

matching location and scale, 133, 142
vague prior knowledge, 133

choosing normal prior for µ, 179
constructing continuous prior for µ, 180
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constructing continuous prior for π, 135, 142
discrete parameter, 96
multiplying by constant, 67, 105
uniform prior for π, 142

prior probability
for an unobservable event, 66

probability, 58
probability distribution

conditional, 89
continuous random variable

probability density function, 113
probability

addition rule, 60
axioms, 59, 71
conditional, 62

independent events, 63
degree of belief, 69
joint, 60
law of total probability, 64, 72
long run relative frequency, 68
marginal, 61
multiplication rule, 63, 72, 90

quartiles
data set, 30, 48
from cumulative frequency polygon, 35
posterior distribution, 139

random experiment, 58, 71
random sampling

cluster, 16, 22
simple, 15, 22
stratified, 15, 22

randomization, 5, 10
randomized response methods, 16, 22
range

data set, 42, 49
regression

Bayes’ theorem, 244
least squares, 236

normal equations, 236
simple linear regression assumptions, 241

robust Bayesian methods, 261
sample, 5, 14, 21
sample space, 69, 71
Sample space

of a random experiment, 58
sampling distribution, 7, 10, 23–24, 148
sampling frame, 15
scatterplot, 44, 49, 235
scatterplot matrix, 45
scatterplot

matrix, 49
scientific method, 3, 10

role of statistics, 4, 10
standard deviation

data set, 44, 49
statistic, 14, 21
statistical inference, 1, 14, 71
statistics, 5
stem-and-leaf diagram, 32, 48

back-to-back, 37
Student’s t, 182
Student’s t distribution, 305

critical values, 304
uniform distribution, 116
universe, 58

of a joint experiment, 84
reduced, 62, 65, 88

variance
continuous random variable, 116
data set, 43, 49
difference between ind. RV’s, 88, 92
discrete random variable, 79, 91
grouped data, 43
of a linear function, 80, 91
sum of ind. RV’s, 87, 91

Venn diagram, 58, 60




