
Available online at www.sciencedirect.com

s 71 (2008) 223–236
www.elsevier.com/locate/jmarsys
Journal of Marine System
Spatial fisheries ecology: Recent progress and future prospects

L. Ciannelli a,⁎, P. Fauchald b, K.S. Chan c, V.N. Agostini d, G.E. Dingsør a

a Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, PO Box 1066, University of Oslo, Oslo N-0316, Norway
b Norwegian Institute of Nature and Research, Division of Arctic Ecology, 9296 Tromsø, Norway
c Department of Statistics and Actuarial Sciences, University of Iowa, Iowa City, IA 52242, USA

d Pew Institute for Ocean Science, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami FL 33149, USA

Received 30 June 2006; accepted 23 February 2007
Available online 20 February 2008
Abstract

We review recent progresses made in the study of fish distribution and survival over space— i.e., fisheries spatial ecology. This
is achieved by first surveying the most common statistical approaches and relative challenges associated with the analysis of
fisheries spatial data, loosely grouped in geostatistical and regression approaches. Then we review a selected number of case-
studies implementing the discussed techniques. We conclude by proposing new areas of statistical and ecological research to
further our understanding of how fish distribute and survive in space. This review serves a dual purpose by emphasizing the
scientific importance of studying spatial interactions to better understand the temporal dynamics of fish abundance, and by
promoting the development of new analytical and ecological approaches for the analysis of spatial data. Through our survey we
cover different statistical techniques, marine ecosystems and life stages. This analytical, geographic and ontogenetic variety is also
purposely selected to highlight the importance of comparative and multidisciplinary studies across diverging ecological disciplines,
ecosystems and life stages. Besides having a general ecological relevance this review also bears a more applied significance, owing
to the increasing need for protecting renewable marine resources along with their primary habitat.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A central challenge in fisheries ecology is to under-
stand why species abundance changes over time
(Sissenwine, 1984; Cushing, 1990). Consequently, the
majority of fisheries research focuses on temporal
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variability of fish populations. Within this context,
demographic (i.e., population abundance) and environ-
mental variables are averaged over large geographic
areas, and their degree of correlation is then examined
(e.g., Ciannelli et al., 2004a; MacKenzie and Köster,
2004). This time series approach continues to shed light
on how density-independent (i.e., environmental) and
density-dependent (i.e., demographic) variables interact
to affect the dynamics of species abundance (e.g.,
Bjørnstad and Grenfell, 2001). However, species can
experience different environmental conditions and survi-
val rates throughout their distribution range (Kareiva,

mailto:lciannel@coas.oregonstate.edu
http://dx.doi.org/10.1016/j.jmarsys.2007.02.031


224 L. Ciannelli et al. / Journal of Marine Systems 71 (2008) 223–236
1990; Tilman et al., 1997; Ciannelli et al., 2007a), and
these conditions usually influence the observed abun-
dances. Moreover, it is well-established that species–
environment interactions are complex, as they vary over
different observational scales (Fauchald et al., 2000), and
can be nonlinear (Stenseth et al., 2002; Dingsør et al.,
2007) and nonadditive (Ciannelli et al., 2004a). Hence,
spatial averages may misrepresent the underlying
mechanisms that regulate fish survival and may veil the
true underlying relationships that regulate abundance. It
follows that a better understanding of how species
distribute and survive over space (or more succinctly:
spatial fisheries ecology) will ultimately lead to a better
understanding of how species abundance changes over
time.

Spatial fisheries ecology, besides having direct
applied relevance to resource management, also bears
a broad ecological significance. There is in fact an
increasing emphasis on protecting marine ecosystems in
their entirety (Botsford et al., 1997). This poses a
scientific need to spatially characterize marine ecosys-
tems (Dayton et al., 2000; Ciannelli et al., 2004b) and
calls for a better understanding of what actually
constitutes habitat quality (Sale et al., 2005; Dahlgren
et al., 2006; Agostini et al., 2008-this volume).

The need to sustainably manage ocean resources has
resulted in collections of long-term data on fish spatial
distribution in numerous marine ecosystems. In some
instances these data are available for different life stages
of the same species, as managers are interested in
monitoring the progression of a cohort abundance to
forecast the year class strength (i.e., recruitment). The
availability of spatial data in fisheries science may well
exceed that of other marine and terrestrial ecological
disciplines, opening up a tremendous potential for new
stimulating studies on spatial ecology and resource
management. However, fish distribution data are typi-
cally characterized by a number of undesirable statistical
features which makes their analysis challenging. Further-
more, in marine ecology, as in other systems, different
observational scales are likely to highlight different
aspects of species–environment interactions (Ricklefs,
1990; Fauchald et al., 2000; Bailey et al., 2005). These
complexities speak to the need of implementing and
developing statistical techniques better suited to analyze
fish distribution. Here, we discuss the progresses made in
the analysis of fish spatial data, and highlight the
associated statistical challenges. Our emphasis is on
ecological interactions (i.e., the patterns and the mechan-
isms affecting fish abundance and survival over space).

The paper is divided in three parts. The first
(Section 2), more statistically oriented, is a survey of
most common approaches and relative challenges
associated with the analyses of fisheries spatial data.
The second part (Section 3) is a case-study implement-
ing these techniques. We conclude (Section 4) by
proposing new areas of ecological and statistical
research to further our understanding of fish spatial
ecology. Although we do not claim new discoveries, it is
our hope that this review will have dual benefit. First,
emphasizing the scientific importance of studying
spatial interactions to better understand the temporal
dynamics of fish abundance. Second, promoting the
development of new analytical and ecological
approaches for the analysis of spatial data. Through
our survey we cover different statistical techniques,
marine ecosystems and life stages. This analytical,
geographic and ontogenetic variety is also purposely
selected, to highlight the importance of comparative and
multidisciplinary studies across diverging ecological
disciplines, ecosystems and life stages.

2. Fish distribution: modeling approaches and
analytical challenges

2.1. Modeling approaches

The statistical approaches mostly used to analyze
fish spatial abundance data can be loosely grouped in
two categories, according to whether the emphasis is on
the relationship among neighboring observations or on
the relationships among the observations and the co-
located environmental variables. The first group is
based on techniques initially developed for geological
and mining resources (Matérn, 1986; Isaaks and
Srivastava, 1989) also known as geostatistical analysis,
while the second group is an extension of common
regression techniques applied to spatial data (e.g.,
Guisan et al., 2002). Separately, the two techniques
capture important ecological processes of fish distribu-
tion, namely, the neighboring effect of other fish (e.g.,
schooling) and of environmental forcing (e.g., water
temperature). It is also important to note that both
analytical techniques attempt to model the local species
abundance (yi) based on a similar underlying statistical
model of the type:

yi ¼ μi þ ei ð1Þ
where μ is a mean effect (i.e., the known and
explainable portion of the model) and e is the error
(the unknown portion of the model). The geostatistical
approach places greater emphasis on the error structure,
while the regression approach emphasizes the mean
effect.
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2.1.1. Geostatistics
We first briefly survey some main concepts for

characterizing the spatial dependence among a set of
observations. The variogram provides a spatial parti-
tioning of the sample variance (Rossi et al., 1992).
Given a variable x measured at several locations
identified by the subscript i, the sample or empirical
variogram γ(h) at a specific lag-distance h, is estimated
as the semivariance among all pair of points N separated
by the distance h:

γ hð Þ ¼ 1
2N hð Þ

XN hð Þ

i¼1

xi−xiþhð Þ2 ð2Þ

The quantities xi and xi + h are the abundance
estimates at the two sides of the distance vector (h).
The empirical variogram can be standardized by
dividing each estimate by the overall sample variance
(s2). An increasing semivariance estimate over increas-
ing distances is indicative of a spatial correlation among
samples. As shown in Fig. 1, both the age-0 Atlantic cod
catches in the Barents Sea and the adult Pacific cod
(Gadus macrocephalus) catches in the Bering Sea are
Fig. 1. Plots of spatial distributions (left column), and omnidirectional (center
0 Atlantic cod (Gadus morhua, top row) in 2005 and for Bering Sea adult (
radius of the circles in the distribution plots is proportional to the logarithmic s
as a function of distance (km) indicates spatial autocorrelation. Also shown
range (see text for more explanations). The tolerance angle for the direction
included in the analysis. Both data sets show sign of anisotropy, being the s
highly correlated over space, and their respective
variograms are of increasing shape.

The semivariance cannot be estimated at distances
below those of the sampling scale, and even at the
smallest sampling distance estimates are likely to be
higher than zero due to measurements errors. As a
consequence, the variograms always start at a positive
value along the Y-axis, defined as the nugget (τ2). For
increasing distances among sampling stations, observa-
tions tend to be less correlated, and the semivariance
will accordingly increase until the distance reaches a
point where observations are uncorrelated, defined as
the sill (σ2). The distance at the sill is defined as the
range (ϕ) and thus represents the smallest spatial scale
at which data points are uncorrelated. The difference
between the nugget and the sill, over the range, is
indicative of the total sample variance (s2) explained by
spatial correlation structure of the data. Both the age-0
Atlantic cod and the Pacific adult cod have a comparable
and relatively large nugget, sill and range.

Statistical models can be fit to the empirical
variograms to obtain the theoretical variogram. Differ-
ent models can be used to fit an empirical variogram.
column) and directional variograms (right column) for Barents Sea age-
age-2+) Pacific cod (Gadus macroephalus, bottom row) in 1990. The
tandardized species abundance. The increasing shape of the variograms
in the variograms are the approximate locations of the nugget, sill and
al variogram estimates was 22.5°. Only distances with N50 pairs were
hape of the variograms different for the different angles examined.
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The most common shapes include the exponential,
spherical, Gaussian, linear or more generally the Matérn
class of isotropic covariograms (see Matérn, 1986;
Handcock and Stein, 1993; Handcock and Wallis,
1994). The choice of theoretical variogram to be applied
depends on how close a fit can be obtained between the
shape of the intervening model and the residual spatial
variation.

The degree of correlation between two sets of
abundance estimates separated by the distance h can
also be estimated by their spatial covariance (C(h)):

C hð Þ ¼ 1
N hð Þ

XN hð Þ

i¼1

xi−
Pxð Þ xiþh−

Pxð Þ ð3Þ

where x̄ is the mean of the data. The spatial covariance
can be expressed in the standardized form, as a
correlogram (ρ(h)), by dividing it for the overall data
variance (s2):

ρ hð Þ ¼ 1
N hð Þ

PN hð Þ

i¼1
xi−

Pxð Þ xiþh−
Pxð Þ

s2
ð4Þ

Correlograms are particularly useful in detecting
scales of patchiness (Legendre and Fortin, 1989).
Generally, for a spatial patchy pattern the autocorrela-
tion at the shortest distance class is positive and then
decreases for increasing distance. When the distance
corresponds to the distance between patch and non-
patch, the autocorrelation becomes negative. Thus, the
first X-intercept of the autocorrelation function indicates
the characteristic scale of a spatial structure. When the
distance corresponds to the inter-patch distance, the
autocorrelation becomes positive again. Thus, for a
regular multi-patch field, the correlogram will oscillate
between negative and positive values. This point will be
further illustrated in a later application of variograms
and correlograms to a patchy data system.

Variograms and correlograms can be omnidirec-
tional, if the lag separating two sets of points is only a
scalar or directional if the lag is defined by both a scalar
and a direction. Directional variograms are used to
inspect differences (or lack thereof) of spatial correlation
over different directions — a condition known as ani-
sotropy (isotropy). Anisotropy is clearly evident in both
the age-0 Atlantic and the adult Pacific cod, as their
respective variogram estimates differ according to the
direction considered (Fig. 1). In the latter case,
variograms in the 0° and 45° directions (with origin at
the positive x-axis and increasing angles counterclock-
wise) are characterized by a sharper increase of
semivariance over distance, indicating a steeper gradient
of cod catches in these directions. A strong anisotropy
may indicate the existence of a trend in the spatial data
(i.e., nonstationarity), a condition characterized by the
mean changing as a function of location and by the
variance changing as a function of both distance among
samples and location. A trend is apparent in the adult
cod catches in the Bering Sea, as the bulk of the biomass
is spread in the southeast–northwest direction (about
135°, Fig. 1). Trends in the data may reflect environ-
mental forcing, due for example, to thermal or bathym-
etric gradients.

Variogram estimates can be used to model spatial
data as a function of their correlation structure and of
other co-located predictor variables. For example, fish
abundance Yi(i=1,…N), can be modeled as a function of
habitat quality at that location xi , and by other fish in
surrounding locations xj=1,…,i−1,…N, j≠ i.

Yi ¼ μi þ S xið Þ þ ɛi ð5Þ

where μi is a mean effect, xi the observation location, S(xi)
is the spatial dependence term represented as a stationary
Gaussian process with expected value E[S(x)]=0 and cov
[S(xi), S(xj)]=σ

2 ρ(xi−xj) (σ2=variance; ρ=correlation
coefficient) and ɛ are mutually independent Gaussian
randomvariableswithmean=0, and variance=τ2 (Diggle
et al., 1998). In biological terms, μi the effect of habitat,
is modeled as a function of co-located variables (e.g.,
μi=β0+β1⁎C1+β1⁎C1

2, where Ci is a covariate measured
at location xi). Note that the effect of co-located covariate
is often assumed to be linear in the coefficients, even
though these may have a nonlinear effect.

Geostatistical analyses have been often applied to
fisheries and marine ecology data. Most of these appli-
cations focus on stock abundance and variance estimates
(e.g., Fletcher and Sumner, 1999; Rivoirard et al., 2000;
Petitgas, 2001; Wieland and Rivoirard, 2001; Bez,
2002). Ecological applications of geostatistical analyses
have been very useful for a number of purposes, includ-
ing: (a) spatial characterization of fish distribution in
relation to biomass (Petitgas, 1998) or season and geo-
graphic areas (Mello and Rose, 2005), (b) patterns of
spatial correlation over progressively increasing scales
(Fauchald et al., 2000), (c) nested spatial structures
(Maravelias et al., 1996; Fauchald et al., 2000), (d)
spatial distribution of fish in relation to physical habitat
(Sánchez and Gil, 2000; Agostini et al., 2008-this
volume). Furthermore, geostatistical estimates of spatial
dependence can be readily extended to two co-located
sets of data, for example to study the correlation
structure between two different species (e.g., predator
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and prey aggregation and distribution, Fauchald and
Erikstad, 2002).

2.1.2. Regression
The second category of statistical models of spatial

data that we will consider here are an extension of the
common regression analyses. We focus exclusively on
regression techniques which do not assume linearity. In
particular, we describe the use of multiple penalized
regression splines, known as Generalized Additive
Model (GAM, Hastie and Tibshirani, 1990; Wood,
2004a, 2006). Given a response variable y and a set of m
forcing variables x (covariates), the relationship between
the two is established by:

yi ¼ αþ
Xm
j¼1

gj xji
� �þ ei ð6Þ

The gj are smooth nonparametric functions, typically
natural cubic splines (Green and Silverman, 1994). The
extension of GAM to two-dimensional data (e.g.,
latitude and longitude) is accomplished with thin-plate
regression splines (Wood, 2003). In recent applications
of GAM, the number of degrees of freedom for each
smooth function can be simultaneously estimated by
minimizing the model generalized cross-validation
(GCV), a measure of the leave-one-out mean predictive
square error (Green and Silverman, 1994). To guarantee
that the model is identifiable, each function estimate is
constrained to average to 0 over the entire data set,

i.e.
Pn
i¼1

gj xji
� � ¼ 0, where n is the sample size. Thus, to

scale the model prediction back to the level of the
response variable, an intercept term (α, typically equal
to the mean of y) is added to the sum of all the smooth
terms. The error terms ei are generally assumed to be
independent and identically distributed with zero mean
and common variance, but in very recent applications it
is possible to generalize the model to allow for
(spatially) correlated errors (Wood, 2004b).

There are numerous applications of GAM to marine
ecology and fisheries spatial data (for a general review
see: Guisan et al., 2002). These include, but are not
limited to, distribution study of eggs (Fox et al., 2000;
Wood and Augustin, 2002; Ciannelli et al., 2007b), tuna
(Zagaglia et al., 2004), seatrout (Kupschus, 2003), crabs
(Jensen et al., 2005), squids (Denis et al., 2002), flatfish
(Swartzman et al., 1992; Simpson and Walsh, 2004),
herring (Maravelias et al., 2000), and fish stomach
contents (Stefansson and Palsson, 1997; Trenkel et al.,
2005). Probably the main motive behind the prolifera-
tion of GAM applications is their versatility in modeling
different functional responses between the species and
the co-located environmental variables.

2.2. Analytical challenges

Spatial marine fisheries data are characterized by a
number of undesirable statistical features which chal-
lenge their analysis through the currently available
statistical techniques. These features are: (1) patchiness,
(2) scale dependency (3) excess of zero or low counts
(zero-inflated counts) and (4) spatial correlation. In
addition, the many variables that locally affect fish
abundance can interact among each other to affect the
outcome — a feature known as nonadditivity. In this
section we will discuss each of these features, the
challenges they present, and the opportunities that both
GAM and geostatistical tools offer in addressing them.

The spatial distribution of marine organisms is highly
patchy over a range of spatial and temporal scales
(Murphy et al., 1988; Fauchald et al., 2000; Fauchald
and Erikstad, 2002). This spatial complexity is a result
of the interplay between ecological and behavioural
interactions and the physical environment of the sea
(Wiens, 1989; Ricklefs, 1990; Mann and Lazier, 1991;
Levin, 2000). Moreover, the various abiotic and biotic
processes operate on different spatial and temporal
scales (Levin, 1992). While large-scale physical proper-
ties of the ocean might limit the potential habitat of an
organism, the local distribution may be determined by
ecological interactions, such as competition and preda-
tion, occurring at smaller scales. Such scale-dependent
spatial processes are often hierarchically interlinked so
that large-scale processes sets the conditions for
processes at smaller scales (Wu and Loucks, 1995).
For example, large-scale heterogeneity in primary
production may determine the distribution of prey. The
resulting spatial pattern of the prey may form the
primary focus for an aggregative response of a predator.
At smaller scales the prey may try to escape predation
through predator avoidance. Often, these hierarchically
linked spatial processes generate nested patch mosaic
hierarchies where small-scale patches are nested within
patches at larger scales (Kotliar and Wiens, 1990;
Fauchald et al., 2000).

A hierarchical patch mosaic structure challenges the
way of doing analyses of spatial relationships and
structure because the spatial pattern at a particular scale
is masked by the pattern at other scales. Assume a likely
scenario where two organisms (species A and B) have a
positive spatial association on a large-scale and a
negative spatial association on a small scale. The
large-scale positive association might for example be
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due to similar habitat preferences or it might be a result
of a predator–prey interaction where the predator
aggregates in large-scale areas of high prey densities.
The small-scale negative association might for example
be due to intense local competition or it might be due to
predator avoidance or simply local consumption of prey.
In Fig. 2A we have simulated such a simple set of two-
scale interactions. On a large-scale, species A and B are
aggregated in the same patch while on a small scale,
species B avoid species A. Plotting the density of
species A against species B using a small measurement
scale (the scale that matches the small-scale interaction)
gives a highly zero-inflated plot with no clear relation-
ship (Fig. 2B). Clearly, in this plot, the small-scale
negative interaction is masked by the large-scale
interaction and vice versa. When the measurement
scale is increased, the small-scale interaction is averaged
out and the positive large-scale interaction is revealed
(Fig. 2C). Accordingly, to identify the large-scale
interaction one has to remove the noise from smaller
scales by aggregating the data. However, in order to
identify the small-scale interaction one has to remove
Fig. 2. A) Simulation of a spatial interaction between two species where both
avoid species A at a small spatial scale. B), C) and D) are plots of the number
as indicated. The area of the circles is proportional to sample size. B) and C) ar
size) respectively. D) is a plot on a small measurement scale for the data wi
the masking effect of the large-scale process by
identifying and controlling for it in the analyses. Thus,
the plot of the total sample on a small spatial scale is
confounded by the interactions on both scales and
accordingly shows no clear relationship (Fig. 2B).
However, plotting the data inside the large-scale
structure (Fig. 2D) reveal the small-scale negative
relationship. This simple system is hierarchically
interlinked in the sense that the large-scale interaction
sets the conditions for the small-scale interaction to
occur. Obviously, the small-scale interaction occurs with
higher intensity under high density. Thus, the spatial
pattern of species B is hardly affected by the distribution
of species A outside the large-scale patch while the
opposite is true within the large-scale patch.

Zero inflation and spatial correlation are a direct
consequence of the patchy nature of marine spatial data
and result in highly right-skewed histograms (Fig. 3)
and variograms with increasing shape, respectively
(Fig. 1). The biological origin of both zero inflations
and spatial correlation are several, including the natural
tendency that fish have to school (Fréon and Misund,
species are aggregated in the same large-scale area but where species B
of species Aversus the number of species B within quadrates with sizes
e plots of the total area for small and large measurement scale (quadrate
thin the large-scale patch.



Fig. 3. Histograms of the 2005 age-0 Atlantic cod (left) and of the 1990 adult Pacific cod (right) samples. Both histograms illustrate the excess of zero
samples.
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1999), a similar responses to an environmental variable
which is also spatially correlated (e.g., water tempera-
ture), or an aggregative response toward conspicuous
topographic or hydrographic features (e.g., seamounts,
canyons, fronts and eddies, e.g., Genin, 2004).

Zero inflation limits the use of GAM and geostatistical
approaches. The high number of zeroes generally requires
the use of non-exponential-family response distribution,
e.g. mixture of zero and a Poisson distribution (Fig. 3).
Some researchers havemodified geostatistical approaches
to deal with highly skewed data (Cressie and Hawkins,
1980; specific applications for fisheries in Maravelias
et al., 1996; Mello and Rose, 2005). Cunningham and
Lindenmayer (2005) reviewed current analytical
approaches to model zero-inflated counts in ecological
data. One simple solution is to eliminate the zero from the
data and to only focus the analysis on the presence
observations. While this approach may correct the
skewness problem, it may also yield biologically
unrealistic results, because part of the data is discarded.
A second approach, the two-step approach or conditional
modeling, is to first model the presence/absence using a
binomial distribution, and then to model the species
abundance conditional on the presence, using a truncated
Poisson or negative binomial distribution (Welsh et al.,
1996). Stefansson and Palsson (1997) and Fox et al.
(2000), among others, used the two-step approach to
model distribution of fish stomach content and fish eggs,
respectively. While the two-step approach retains the
information carried by the zero-counts and produces
unbiased predictions, it makes inference rather compli-
cated as there are two sets of environmental effects to
consider, those from the presence/absence and those from
the abundance model — often with contradictory results
(Barry and Welsh, 2002). Finally, the two-step approach
still heavily relies on the assumption that the observations
are independent (i.e., not spatially correlated). Thus, the
effective modeling of zero-inflated data is still a
challenging issue in ecological statistics.

In order to effectively capture spatial relationships,
the influence of spatial correlation needs to also be
identified. Statistical models that do not consider
autocorrelation may result in rejections of a true null
hypothesis (i.e., Type I error) more often than the
nominal tolerance level (Legendre et al., 2002). In fact,
in highly spatially correlated data the same information
is used several times, causing an unjustified increase of
the sample size, and a bias in the variance estimate
(Legendre, 1993). Also, regression analyses without
accounting for the inherent spatial correlation may result
in an excessive nonlinearity of co-located covariate
effects, c.f. Wang (1998). This issue is particularly
relevant to GAM techniques, where the shape of the
underlying model function is a posteriori determined
from the data. Bootstrap routines may help drawing
robust inferences in the presence of spatial correlation
(Stige et al., 2006), but may not necessarily solve the
issue of excessive nonlinearity. In this particular case, it
may be advisable to a priori impose an upper limit on the
degrees of freedom of the smooth covariate functions.

Geostatistical models overcome these problems by
explicitly accounting for the correlation effect in the
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spatial distribution of the examined data. This is typically
done by including a spatial dependence term (Eq. (5)).
However, the emphasis of geostatistical approaches on
the correlation structure of the data may mask some
underlying species–environment relationships that are
responsible for causing the autocorrelation in first place.
For example, fish may aggregate in space because of a
similar response to an environmental variable which is
also spatially correlated (e.g., bathymetry).

In contrast to geostatistcal techniques, GAM empha-
size the mean portion of the model, therefore attempting
to explain the spatial pattern of the data solely based on
the effect of the examined co-located variables. How-
ever, the theoretical basis of GAM approaches reveals
other inherent limitations, such as the additivity
condition. Given two covariates (x1 and x2), their effect
on the variable y is additive if the conditional mean
response given x1 and x2 equals:

E yijx1; x2ð Þ ¼ f x1; x2ð Þ ¼ f1 x1ð Þ þ f2 x2ð Þ ð7Þ

In words, the additivity condition implies that the effect
of any particular covariate on the response variable is
independent of the level of other covariates in the
model. There are many instances in which such
condition is not met in fisheries spatial data. For
example, predation is assumed to be a size-selective
process (Sogard, 1997), so that prey of different sizes
distributed over different regions may have different
vulnerability to the same predation pressure. Similarly, it
is well-established that the physiological responses of
fish to temperature change through the ontogeny (Post
and Lee, 1996), so that fish of different sizes (ages)
distributed in different regions may differently respond
to a similar thermal regime. Lack of additivity (i.e.,
nonadditivity) is also common between two-dimen-
sional (e.g., space) and unidimensional covariates. An
extreme case of nonadditivity over space may take the
form of a threshold response, resulting in drastic re-
arrangement of fish distribution following subtle
changes of forcing variables. Threshold responses are
common in species distribution data (Turner, 2005), and
in marine ecology may occur over contrasting climate
periods (Perry et al., 2005). Similar re-arrangement of
species distribution may also occur in relation to
demographic variables (e.g., the average abundance of
the studied species) and are known as density-dependent
habitat selection (Swain and Wade, 1993; Swain, 1999;
Simpson and Walsh, 2004).

The additivity condition can be in part circumvented
by allowing the GAM model formulation (Eq. (6)) to
change over different temporal or environmental
regimes. This is readily accomplished by introducing a
threshold variable which indicates the environmental
regime. Specifically,

yi ¼
Xk
j¼1

gj xji
� �þ ei þ α1 þ s1 ui; λið Þ if Ei V r

α2 þ s2 ui; λið Þ if Ei N r

�

ð8Þ
The variable in E is a threshold covariate (or a set of

covariates) that partitions the effect of position (speci-
fied by latitude φ and longitude λ) over a ‘low’ or a
‘high’ environmental or temporal regime. Similar
thresholds can also be applied to other covariates (x)
included in the regression. The threshold level (r) of the
covariate E, separating the two regimes, can be chosen
by minimizing the model Generalized Cross Validation
(GCV) — a measure of the model predictive squared
error (Green and Silverman, 1994). In the examples
provided below we refer to this nonadditive model
formulation as TGAM, where T stands for ‘threshold’.
3. Progresses in the analysis of fish spatial data

3.1. Ecological scales of investigations: The hierarchical
approach

The hierarchical and patchy nature of fish spatial data
highlights the importance of carefully disentangling the
various spatial structures that operate over different
spatial scales. A large-scale spatial structure will be
detected by the analyses and will necessarily mask any
spatial pattern at finer scales. Large-scale trends can be
removed by regression analysis, stratification according
to large-scale environmental features or by nested spatial
analyses. This last procedure was followed in the study of
Fauchald et al. (2000), where the spatial interaction
between capelin (Mallotus villosus) and seabirds preying
on capelin (murres, Uria spp.) was scrutinized using
auto- and cross-correlation analyses (Fig. 4). First, the
data were analysed on a low resolution to detect large-
scale spatial patterns. Then, large-scale patches of capelin
were defined by successively removing the observations
with the lowest densities until the first order autocorrela-
tion (correlation at the first distance class) for the
remaining data points was less than 0.1. By applying
this procedure, the remaining dataset represents the high
density areas with a small (b0.1) large-scale internal
autocorrelation. Nested spatial pattern within these large-
scale capelin structures were then analysed by auto- and
cross-correlation functions with data aggregated at a
higher resolution. The same steps were performed until



Fig. 4. Nested spatial analyses of acoustic data of capelin from the
Barents Sea. Data are from Fauchald et al. (2000). Data were log(X+1)-
transformed and standardized to mean equal to zero and standard
deviation equal to one within each defined patch. For definition of
patches see text. A) Large-scale variogram and correlogram for data
aggregated within circles with a radius of 25 km. B) Medium-scale
variogram and correlogram for observations within the large-scale
patches. Data were aggregated within circles with a radius of 5 km. C)
Small-scale variogram and correlogram for observations within the
medium-scale patches. Data were aggregated within circles with a
radius of 0.5 km.

231L. Ciannelli et al. / Journal of Marine Systems 71 (2008) 223–236
the highest resolution (i.e., small scale) was reached. The
so-described procedure gave the opportunity to investi-
gate spatial pattern and interactions at three nested
hierarchical levels. The correlogram and variogram
estimates in Fig. 4A indicate that capelin at the largest
scale were aggregated within patches with a diameter of
hundreds of kilometers. Within these large-scale patches
capelin were aggregated at a scale of about 50 km
(Fig. 4B) and within these medium-scale patches capelin
were aggregated at a scale of only a few kilometers
(Fig. 4C). At the two largest scales in the patch hierarchy,
murres and capelin had similar and overlapping spatial
structures, while at the smallest scale the two species had
similar but non-overlapping spatial structures, indicating
that murres were able to follow the spatial distribution of
capelin on large-scales but that capelin successfully
avoided predation on a small scale. Similar scale-
dependent patterns between predator and prey have also
been observed for other species (e.g., Rose and Legget
1990). The characteristic schools of capelin occur at even
smaller scales, suggesting the existence of at least one
more level in the hierarchy. Temporal and spatial scales
are tightly interlinked (Haury et al., 1978). By including
time in the spatial analyses, Fauchald et al. (2000)
showed that the large-scale capelin patches changed
position within weeks while medium-scale patches lasted
for several days.

3.2. Spatial correlation: The geostatistical approach

In order to carefully disentangle the multiple pro-
cesses that drive fish distribution, it is essential to use
tools that effectively capture spatial correlation structures
as well as the effects of co-located variables. Not
accounting for one or the other may point to erroneous
relationships. The study reported in this volume by
Agostini et al. (2008-this volume) illustrates the potential
pitfalls of not capturing multiple processes. The authors
use a geostatistical approach to examine the processes
driving Pacific hake (Merluccius productus) distribution
in the west coast of USA and Canada. Previous studies
indicated that hake distribution may be affected by water
temperature, with hake expanding further north during
warm years. However, recent study points to the
importance of poleward undercurrent as a factor affecting
hake habitat quality (Agostini et al., 2006). Here we show
comparisons among models with and without spatial
dependence. The results show that the shape of the
relationship between hake distribution and poleward
current flow, one of the co-located variables included in
the analysis, would be different if an autocorrelation
component had not been included (Fig. 5).

3.3. Changes of distribution patterns: The threshold
GAM approach

We present the main results of a recent analysis
(Ciannelli et al., 2007b) implementing GAM and

http://dx.doi.org/10.1016/j.jmarsys.2007.01.010


Fig. 6. Average distribution of walleye pollock (Theragra chalco-
gramma) eggs as estimated from a TGAM formulation before (top
panel) and after (lower panel) 1989— the estimated year of change in
egg distribution (Ciannelli et al., 2007b).
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TGAM techniques to model the distribution of walleye
pollock egg data in Gulf of Alaska (GOA). Historically,
the GOA pollock used to spawn during a two-week
period at the end of March and the beginning of April in
the Shelikof Strait, between Kodiak Island and the
Alaska Peninsula (Kendall et al., 1996). Through the last
decade however, spawning biomass in the Shelikof
Strait has greatly dwindled (Dorn et al., 2004) while in
other areas along the Alaska Peninsula (Dorn et al.,
2004) and in coastal areas (Anderson and Piatt, 1999)
pollock biomass has actually increased. Pollock eggs
were also collected during these years of change in adult
spawning distribution. Ciannelli et al. (2007b) analyzed
the egg collections to assess whether similar changes in
distribution occurred also at the egg stage.

Both a GAM (Eq. (6)) and a TGAM formulation (Eq.
(8)) were applied to the analysis of the pollock egg data.
The latter formulation, with year of sampling as a
threshold, allowed to model patterns of egg distribution
that changed over time. In addition to position, bottom
depth and time of the year (expressed as Julian days)
were included in the model as covariates. While the
results of the egg abundance through a GAM model
corroborated the existence of a high spawning activity in
Shelikof Strait, the analysis also highlighted the
Fig. 5. Shape of the functional relationship between hake abundance
and poleward current in the Northeast Pacific with (upper panel) and
without the autocorrelation (AC) term (lower panel) (Agostini et al.,
2008-this volume).
presence of other secondary centers of egg distribution
on various locations along the shelf and slope regions
(Fig. 6). The results from the TGAM formulation
indicated that the relative importance of the non-
Shelikof spawning locations has increased over time,
with a shift in distribution estimated to occur in 1989
(Fig. 6). Based on the GCV score, the TGAM
formulation was superior to a GAM formulation,
indicating that the change in adult spawning distribution
was also followed by a change in egg distribution.

4. Conclusions

The processes underlying the spatial distribution of
fish populations can be ecologically complex, as they
operate on a variety of scales, change through species
ontogeny and over different environmental regimes and
are often nonlinear and nonadditive. Thus, the study of
fish spatial data is punctuated by a number of ecological
and analytical challenges, some of which are hitherto
unsolved. In the remaining part of the paper we
concentrate on these unsolved challenges, and propose
new ecological and statistical areas of investigation to
overcome them.

Predator–prey interactions can generate spatial and
temporal variability of species abundance and survival.
Indeed a prerequisite of a successful capture and
consumption event is that the predator and the prey
spatially overlap. In marine ecology, the study of spatial
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overlap between predator and prey has primarily
focused on contact scales (e.g., Rose and Legget,
1990; Fauchald et al., 2000; O'Driscoll et al., 2000).
An example, based on simulated data, is here shown in
Fig. 2. On field data, Rose and Legget (1990), studying
Atlantic cod and capelin spatial association in northeast
Canada, illustrated how on large spatial scales the
predator and the prey are predictably and positively
associated while on smaller scales the correlation
disappears or becomes negative. The authors also
underscore the importance of environmental variability
as an important factor affecting predator–prey overlap
and contact scales — an emphasis echoed in the recent
work by Neuenfeldt and Beyer (2006) on cod distribu-
tion in the Baltic Sea and by Ciannelli and Bailey (2005)
on cod–capelin interactions in the Bering Sea. However,
studies that explicitly focus on the spatio-temporal
variability of predator–prey overlap still remain rare.
This is a significant knowledge gap in fisheries spatial
ecology, given that predation is one of the primary
mechanisms that locally affect fish abundance, particu-
larly during juvenile stages and in forage species.

Fish–environment interactions can also generate
spatial and temporal variability of species abundance
and survival. Physical processes can directly influence
organisms for example by impacting their physiology or
by facilitating spatial processes such as migration and
offering competitive advantages that may improve their
survival. Physical processes can also indirectly influ-
ence organisms by forcing their distribution to specific
locations characterized by certain abundances of prey,
competitors or predators which ultimately directly
impact their survival. Most studies focusing on the
relationship between fish abundance and environmental
forcing usually involve the aggregation of impacts
across large spatial scales and range of ontogenetic
stages. For example, climate metrics are often used to
explain either fish abundance or distribution variability
(e.g., Perry et al., 2005). This approach has been
instrumental in detecting patterns of fish spatial
dynamics over contrasting environmental regimes.
However, changes in distribution can often be the result
of smaller scale variability, like those associated with the
physical and biological feature of the species habitat,
that are not clearly identifiable through these large-scale
climate indices. Some authors use small-scale spatial
data to address physical mechanisms that may explain
fish distribution patterns (e.g., Sánchez and Gil, 2000;
Agostini et al., 2006). For example, Agostini et al.
(2008-this volume) use acoustic data on distribution of
hake and physical parameters to examine processes that
force the distribution patterns of Pacific hake in the
California Current System. They use a geostatistical
approach and predict hake habitat distribution based on
poleward flow and bottom depth. This approach allows
them to account for both the spatial correlation between
observations as well as environmental forcing.

Fish distribution and survival change over the species
ontogeny — a fact that underscores the importance of
monitoring a year class through its various life stages.
This is particularly applicable to pre-recruitment stages
(i.e., egg, larval and juvenile stages) where mechanisms
of survival are well known to vary through ontogeny
(Bailey, 2000; Munch et al., 2005). Spatial pattern of
species distribution over different ontogenetic stages,
are also indicative of the degree of genetic association
and structure among putative subpopulations of the
entire distribution range. In this context, the distribution
of spawning individuals or egg stages deserves
particular attention. Moreover, for marine commercial
species, the spawning site is often the location where
harvest and the assessment surveys mostly occur,
placing a critical management implication on the
understanding of phenology and geography of fish
spawning habits. Shrinkages in fish distribution can also
be an early warning that the population is loosing its
genetic or social structure, and that it may be bound to a
rapid decline. For example, the collapse of the northwest
Atlantic cod (Newfoundland and Labrador Seas) was
preceded by shrinkage of their spatial distribution
(Atkinson et al., 1997; Warren, 1997). The California
sardine population has also been described to signifi-
cantly shrink its distribution range during low abun-
dance periods (Lluch-Belda et al., 1989; McFarlane
et al., 2002).

The investigations of these interesting ecological
questions call for the development of new statistical
methodologies. In our opinion priority should be given to
combine geostatistical and regression techniques in a
blend capable of accounting for both the underlying
spatial structure of the samples and the nonlinear and
nonadditive nature of habitat–species interactions. Recent
mixed-effect approach (Wood, 2004b) to fitting a GAM
with correlated errors provides an exciting new develop-
ment. However, in our limited experience, such an
approach may sometimes have problems with fitting
unbalanced data with complex regression structure.
Further work is needed regarding the development of
(i) computationally-efficient approaches to fitting non-
linear and nonadditive models with correlated errors and
zero-inflated counts, and (ii) their associated theoretical
investigations (i.e., inference). The extension of the
TGAMto incorporate spatially correlated errors is another
interesting problem. Again it is important to develop
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computationally-efficient algorithms for fitting the
TGAM, and to study methods for drawing inference
from a TGAM. Another challenging problem is to
formulate a model-based approach that includes different
processes occurring simultaneously on different spatial
scales. Such processes are frequently hierarchically
interlinked and for the time being these complex patterns
seriously limit our ability to pinpoint important ecological
interactions.

The study of fisheries spatial ecology also bears more
general implications such as the identification of habitat
quality and the establishment of marine protected areas.
Spatial ecology studies in fisheries science have
primarily evolved around the link between species
abundance and environmental variability (e.g., Guisan
et al., 2002, and references therein). Such focus is
necessary to unravel the processes that regulate species
distribution, but it may be misleading when extended to
the identification of species habitat quality (e.g.,
Dahlgren et al., 2006). Conceivably, the location where
a species is present with its highest abundance may not
necessarily be the location where the species experience
the highest survival. Furthermore, the spatial patterns of
species survival may change in relation to the back-
ground regime of the physical and biological environ-
ment (Ciannelli et al., 2007a). There is paucity of studies
focusing on spatial patterns of key ecological processes
affecting species demographic rates (e.g., survival).
Consequently, we lack the basic knowledge to answer
simple questions relevant for the management of marine
resources, such as: How does population survival change
over space? Where and when do species become more
vulnerable to predation or to food limitation? Are spatial
patterns of survival stationary? And if not, in relation to
which processes do they change? The answers to these
questions are essential to manage marine renewable
resources in a spatial framework and would project our
understanding of species habitat quality beyond the
concept of species abundance.
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