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Chapter 1

Introduction

1.1 Scope of course

The term ‘computer intensive methods’ means different things to different people. It is also
a dynamic subject: what requires intensive computing today may be solvable with a pocket
calculator tomorrow. Not so long ago, the calculation of normal probabilities to reasonable
accuracy would have required considerable CPU time. An initial classification of computer
intensive methods as applied to statistics is the following:

1. Computers for graphical data exploration.
2. Computers for data modelling.

3. Computers for inference.

There is obviously some overlap in these three, but in this course I intend to focus mostly on the
third of the above. That is, we shall aim at understanding computer techniques which require
innovative algorithms to apply standard inferences. However, especially for Bayesian inference,
and its associated numerical technique, MCMC, 2 and 3 have become so closely linked that
it makes sense to consider the two together. Hence Chapter 3 will really consider modern
approaches to Bayesian statistical modelling and their associated computational techniques.
On the other hand, some techniques used for computationally intensive maximum likelihood
calculations such as the bootstrap (Chapter 4) are intrinsically non-parametric, and as such
the numerical techniques can be treated totally in isolation of any modelling considerations. I'll
exclude material dealing explicitly with modern regression approaches, such as kernel regression,
lowess, etc..

I see two roles of this type of course. The first is to gain some understanding and knowledge
of the techniques and tools which are available (so long as you’ve got the computing power).
The second is that many of the techniques (if not all of them) are themselves clever applications
or interpretations of the interplay between probability and statistics. So, understanding the
principles behind the different algorithms can often lead to a better understanding of inference,
probability and statistics generally. In short, the techniques are not just a means to an end.
They have their own intrinsic value as statistical exercises.

This is not a course on computing itself. We won’t get into the details of programming itself.
Furthermore, this is not a course which will deal with specialised statistical packages often used
in statistical computing. All the examples will be handled using simple S-plus functions - far
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from the most efficient way of implementing the various techniques. It is important to recognise
that high-dimensional complex problems do require more efficient programming (commonly in
C or Fortran). However the emphasis of this course is to illustrate the various methods and
their application on relatively simple examples. A basic familiarity with S-plus will be assumed.

1.2 Computers as inference machines

It is something of cliché to point out that computers have revolutionized all aspects of statistics.
In the context of inference there have really been two substantial impacts: the first has been
the freedom to make inferences without the catalogue of arbitrary (and often blatantly inappro-
priate) assumptions which standard techniques necessitate in order to obtain analytic solutions
— Normality, linearity, independence etc. The second is the ability to apply standard type
models to situations of greater data complexity — missing data, censored data, latent variable
structures.

1.3 References

I’ve stolen quite heavily from the following books for this course:

e Stochastic simulation, B. Ripley.

o An introduction to the bootstrap, B. Efron and R. Tibshirani.

o Tools for statistical inference, M. Tanner.

o Markov chain Monte Carlo in Practice, W. Gilks S. Richardson and D. Spiegelhalter.
By sticking closely to specific texts it should be easy to follow up any techniques that you want
to look at in greater depth. Within this course I'll be concentrating very much on developing the

techniques themselves rather than elaborating the mathematical and statistical niceties. You're
recommended to do this for yourselves if interested.

1.4 Acknowledgement

These notes are adapted from the excellent course notes produced by Stuart Coles for a previous
version of this course.

Gareth Roberts, 2000
Only minor modifications have been made in this version of the notes.

Sgren Jarner, 2001



Chapter 2

Simulation

2.1 Introduction

In this chapter we look at different techniques for simulating from distributions and stochastic
processes. Unlike all subsequent chapters we won’t look much at applications here, but suffice
it to say the applications of simulation are as varied as the subject of statistics itself. In any
situation where we have a statistical model, simulating from that model generates realizations
which can be analyzed as a means of understanding the properties of that model. In subsequent
chapters we will see also how simulation can be used as a basic ingredient for a variety of
approaches to inference.

2.2 Issues in simulation

Whatever the application, the role of simulation is to generate data which have (to all intents
and purposes) the statistical properties of some specified model. This generates two questions:

1. How to do it; and
2. How to do it efficiently.

To some extent, just doing it is the priority, since many applications are sufficiently fast for even
inefficient routines to be acceptably quick. On the other hand, efficient design of simulation can
add insight into the statistical model itself, in addition to CPU savings. We’ll illustrate the idea
simply with a well-known example.

2.3 Buffon’s needle

We’ll start with a simulation experiment which is intrinsically nothing to do with computers.
Perhaps the most famous simulation experiment is Buffon’s needle, designed to calculate (not
very efficiently) an estimate of w. There’s nothing very sophisticated about this experiment, but
for me I really like the ‘mystique’ of being able to trick nature into giving us an estimate of 7.
There are also a number of ways the experiment can be improved on to give better estimates
which will highlight the general principle of designing simulated experiments to achieve optimal
accuracy in the sense of minimizing statistical variability.

7
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Buffon’s original experiment is as follows. Imagine a grid of horizontal parallel lines of spacing
d, on which we randomly drop a needle of length [, with [ < d. We repeat this experiment n
times, and count R, the number of times the needle intersects a line. Denoting p = [/d and
¢ =1/m, an estimate of ¢ is

o P

bo = %
where p = R/n.
Thus, 7o = 1/¢o = 2p/p estimates .

The rationale behind this is that if we let 2 be the distance from the centre of the needle to the
lower grid line, and # be the angle with the horizontal, then under the assumption of random
needle throwing, we’d have = ~ U[0,d] and 6 ~ U[0, w]. Thus

p = Pr(needle intersects grid)

1 ™

= - / Pr(needle intersects |0 = ¢)d¢

0

1 /7 2

- ;/0 (5 x ésinqﬁ)dgb
21

= —_— = 2
— = 209

A natural question is how to optimise the relative sizes of [ and d. To address this we need to
consider the variability of the estimator ¢g. Now, R ~ Bin(n, p), so Var(p) = p(1 — p)/n. Thus
Var(do) = 2p¢(1 — 2p¢) /4p*n = ¢*(1/2p¢ — 1)/n which is minimized (subject to p < 1) when
p = 1. That is, we should set | = d to optimize efficiency.

Then, ¢o = g, with Var(¢g) = (¢/2 — ¢2)/n. It follows that Varg ~ n*Var(dy) ~ 5.63/n.

Figure 2.1 gives 2 realisations of Buffon’s experiment, based on 5000 simulations each. The
S-Plus code to produce these is

buf<-function(n)
{
ttt <- NULL
ttt[1] <- 0
x <- runif(n)
th <- runif(n, 0, pi)
st <- sin(th)
for(i in 1:n) {
if(st[i] > x[i])
tttli + 1] <- ttt[i] + 1
else ttt[i + 1] <- ttt[i]
}
ttt
if(ttt[n + 1] > 0)
plot ((0:n) [ttt > 0], 2*(0:n) [ttt > 0]/ttt[ttt > 0], type = "1",
xlab = "number of simulations", ylab =
"proportion of hits")
else print("no successes")
abline(pi, 0)
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Figure 2.1: Two sequences of realisations of Buffon’s experiment
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Thus I've used the computer to simulate the physical simulations.

There are a catalogue of modifications which you can use which might (or might not) improve
the efficiency of this experiment. These include:

1. Using a grid of rectangles or squares (which is best?) and basing estimate on the number
of intersections with either or both horizontal or vertical lines.

2. Using a cross instead of a needle.

3. Using a needle of length longer than the grid separation.

So, just to re-iterate, the point is that simulation can be used to answer interesting problems,
but that careful design may be needed to achieve even moderate efficiency.

2.4 Raw ingredients

The raw material for any simulation exercise is random digits: transformation or other types of
manipulation can then be applied to build simulations of more complex distributions or systems.
So, how can random digits be generated?

It should be recognised that any algorithmic attempt to mimic randomness is just that: a mimic.
By definition, if the sequence generated is deterministic then it isn’t random. Thus, the trick
is to use algorithms which generate sequences of numbers which would pass all the tests of
randomness (from the required distribution or process) despite their deterministic derivation.
The most common technique is to use a congruential generator. This generates a sequence of
integers via the algorithm

Xi = aX,'_l (mod M) (21)

for suitable choices of @ and M. Dividing this sequence by M gives a sequence U; which are
regarded as realisations from the Uniform U0, 1] distribution. Ripley gives details of the number
theoretic arguments which support this method, and gives illustrations of the problems which
can arise by using inappropriate choices of a and M. We won’t worry about this issue here,
as any decent statistics package should have had its random number generator checked pretty
thoroughly. The point worth remembering though is that computer generated random numbers
aren’t random at all, but that (hopefully) they look random enough for that not to matter.

In subsequent sections then, we’ll take as axiomatic the fact that we can generate a sequence of
numbers Uy, Us,...,U, which may be regarded as n independent realisations from the U|[0, 1]
distribution.

2.5 Simulating from specified distributions

In this section we look at ways of simulating data from a specified univariate distribution F', on
the basis of a simulated sample Uy, Us, ..., U, from the distribution U[0, 1].

2.5.1 Inversion

This is the simplest of all procedures, and is nothing more than a straightforward application of
the probability integral transform: if X ~ F, then F(X) ~ UJ0, 1], so by inversion if U ~ U[0, 1],



2.5. SIMULATING FROM SPECIFIED DISTRIBUTIONS 11

o ., 3
— % o
+
© 1%
o + ™
%
© F
° 1§
+ N
o % S
AR
o
+
f By
+ o |
sV
da%
+
o i o
S T TSR B S
T T T T T T T T T T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
X X

Figure 2.2: Left: The distribution function F' = & for a standard normal distribution. The vertical
crosses are 100 replicates of U and the horizontal crosses are the corresponding transformed values,
X = FY(U). Right: A histogram of the 100 replicates of X with the pdf for a standard normal
distribution superimposed.

then F~1(U) ~ F. Thus, defining z; = F~!(u;), generates a sequence of independent realisations
from F'. Figure 2.2 illustrates how this works.

This procedure is easily implemented in Splus with the following code:

dsim_function(n, inv.df)
{
u <- runif(n)
inv.df (u)
}

where inv.df is the user-supplied inverse distribution function F~!. For example, to simulate
from the exponential distribution we have F(z) = 1 — exp(—Az), so F~'(u) = —A"1log(1 — u).
Thus defining

inv.df_function(x,lam=1) -(log(l-x))/lam



12 CHAPTER 2. SIMULATION

we can simulate from the exponential distribution (unit exponential as default). Figure 2.3
shows a histogram of 1000 standard exponential variates simulated with this routine.

o/ |IIII--—_
0 2 4

X

200 300

frequency

100

Figure 2.3: Histogram of 1000 simulated unit exponential variates

This procedure works equally well for discrete distributions, provided we interpret the inverse

distribution function as
F~Y(u) = min{z|F(z) > u} (2.2)

The procedure then simply amounts to searching through a table of the distribution function.
For example, the distribution function of the Poisson(2) distribution is

.1353353
.4060058
.6766764
.8571235
.9473470
.9834364
.9954662
.9989033
.9997626
.9999535
.9999917

QOWO N WNF-O
[eNeNeoNeoNoNoNoNeoNoNoNe)

e

so, we generate a sequence of standard uniforms ui,us, ..., u, and for each u; obtain a Poisson
(2) variate z where F(z — 1) < u; < F(z). So, for example, if u; = 0.7352 then z; = 3.
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The limitation on the efficiency of this procedure is due to the necessity of searching through
the table, and there are various schemes to optimize this aspect.

Returning to the continuous case, it may seem that the inversion method is sufficiently universal
to be the only method required. In fact, there are many situations in which the inversion
method is either (or both) complicated to program or excessively inefficient to run. The inversion
method is only really useful if the inverse distribution function is easy to program and compute.
This is not the case, for example, with the Normal distribution function for which the inverse
distribution function, ® !, is not available analytically and slow to evaluate numerically. To
deal with such cases, we turn to a variety of alternative schemes.

2.5.2 Rejection sampling

The idea in rejection sampling is to simulate from one distribution which is easy to simulate
from, but then to only accept that simulated value with some probability P. By choosing P
correctly, we can ensure that the sequence of accepted simulated values are from the desired
distribution. The technique is illustrated in Figure 2.4.

© w
— —
o | o |
— i
= =
o o
S | S |
o o
= S
00 02 04 06 08 10 00 02 04 06 08 10
X X

Figure 2.4: Simulation by rejection sampling

Suppose we wish to simulate a sample from the Beta(2,2) distribution. Inversion in this case
would require non-linear solution of the inverse distribution function. Instead we bound the
density function f(z) by a rectangle, and simulate points (z;,y;) uniformly over the rectangle.
We then reject those points which do not lie under f(z). The z—coordinates of the remaining
points will be a sample from f(z). These are shown in Figure 2.5.

The efficiency of this method depends on how many points are rejected, which depends in turn
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Figure 2.5: Histogram of simulated Betas
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on how well f(z) resembles the bounding rectangle. To improve the efficiency of the procedure,
and to allow for situations where f(z) may be unbounded, the technique can be modified to
permit the bounding function to take any form Kg(z), where g(xz) is the density of a distribution
from which it is easy to simulate. Then the algorithm takes the form:

Algorithm 2.1

1. Simulate z* from g(z).
2. Simulate y* from U(0, Kg(z*)).
3. Accept z* if y* < f(z*).
4. Continue.
The reason this works is as follows: let X denote a random variable from any distribution g(x),

such that f(z) < Kg(z) Vx for some value K. Let h(x) be the probability that x is accepted:
h(z) = f(z)/Kg(z). Then

Pr(X <z and X accepted) = /f h(y)g(y)dy (2.3)
and ©
Pr(X accepted) = /_oo h(y)g(y)dy (2.4)
t h d
Pr(X < z|X accepted) = fz"’oohézizgidz
_ L)y
Zoo fy)dy

so that the accepted values do indeed have pdf f. Furthermore, Pr(X accepted) = [gh = 1/K.

Note, in particular, that the normalizing in the denominator means that f need only be known
up to proportionality in order for this technique to work (though this is obvious geometrically).
The efficiency of the procedure depends on the quality of the agreement between f and the
bounding envelope Kg since if a large value of K is necessary, then the acceptance probability
is low, so that large numbers of simulations are needed to achieve a required sample size.

As an example, consider the distribution with density
f(z) xz?e™®; 0<z<1 (2.5)

a truncated gamma distribution. Then, since f(z) < e~ everywhere, we can set g(z) = exp(—x)
and so simulate from an exponential distribution, rejecting according to the above algorithm.
Figure 2.6 shows both f(z) and g(z). Clearly in this case the envelope is very poor so the
routine is highly inefficient (though statistically correct).

Applying this to generate a sample of 100 data using the following code

rej.sim_function(n)

{
r <- NULL
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Figure 2.6: Scaled density and envelope
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for(i in 1:n) {
t <- -1
while(t < 0) {
x <- rexp(1, 1)
y <- runif(1, 0, exp( - x))

if(x > 1)
t<- -y
else t <- x"2 * exp( - x) -y
}
r[i] <- x
}
r

gave the histogram in Figure 2.7.
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0.5
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r

0.0

Figure 2.7: Histogram of simulated data

2.5.3 Ratio of uniforms

An adaptation of the rejection algorithm which works well for many distributions is the ratio of
uniforms method. Here a pair of independent uniforms are simulated and the ratio accepted as
a simulant from the required distribution according to a rejection scheme.

The basis of the technique is the following argument. Suppose h is a non-negative function
such that [h < co and we let Cp, = {(u,v) : 0 < u < /h(v/u)}. Then if (U,V) is uniformly
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distributed over Cj, then X = V/U has pdf h/ [ h.

So, to simulate from a density proportional to h, we simulate uniformly over the region C}, and
take ratios of coordinates. In practice, C;, may be complicated in form, so the only practical
solution is to bound it with a rectangle (if possible), simulate within the rectangle (by a pair of
uniforms), and apply rejection: hence, ratio of uniforms.

The reason this works is as follows. Let Aj be the area of Cj. Then on changing variables
(u,v)—(u,z), where z = v/u,

Ah:/ o dudv ://Omu dudzx :/%h(x)dx (2.6)

Because of the uniformity of (U, V') over C, (U,V) has pdf 1/Aj, so that on transformation,
(U, X)) has pdf u/Ay, and integrating out U gives the marginal pdf of X as:

Vh(z)
A,;I/O " du = ()20} = h(x)//h(x)d:v 2.7)

Thus V/U has pdf proportional to h. Again, a key property of this method is that A is only
required to be specified up to proportionality.

As discussed above, this is only useful if we can generate uniformly over C},, which is most likely
to be achieved by simulating uniformly within a rectangle [0,a] X [b_,b;] which contains Cj,
(provided such a rectangle exists). If it does, we have the following algorithm.

Algorithm 2.2

1. Simulate independent U ~ U[0,a], V ~ U[b_, by ].
2. If (U, V) € Cp, accept X = V/U, otherwise repeat.

3. Continue.

As an example, consider the Cauchy distribution with density

1

(2.8)

Then Cp, = {(u,v) :

0 <u < Vh(w/u)} = {(u,v) : 0 < u,u? +v? < 1}, a semicircle. Hence we
can take [0,a] x [b_,bi] = 1

[0,1] x [—1,1] and get the algorithm

Algorithm 2.3

1. Simulate independent U ~ U[0,1], V ~ U[-1,1].
2. If u> +v% < 1 accept © = v/u, otherwise repeat.

3. Continue.

This can be implemented with the Splus code
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ru.sim_function(n)

{
r <- NULL
for(i in 1:n) {
t <-1
while(t > 0) {
u <- runif(1, 0, 1)
v <- runif(1, -1, 1)
t<-—u2+v2-1
}
r[i] <- v/u
}
r
}

and a histogram of 1000 simulated values is given in Figure 2.8 (note the unusual scale (!)
because the heaviness of the Cauchy tail causes one or two simulated values to be extreme
relative to the rest of the data).

200 300 400 500

relative frequency

100

-1500 -1000 -500 0

Figure 2.8: Histogram of simulated Cauchys

A number of modifications have been proposed to improve on the efficiency of this procedure,
which amount to rescaling and locating distributions before applying the method.

Another method for improving the efficiency is by a process known as ‘squeezing’ or ‘pre—testing’.
This applies to both the rejection and ratio of uniform methods. The point is that, in the ratio
of uniforms method for example, the slowest part of the algorithm can be the check of whether
(u,v) € Cp, or not. However, there may be simpler regions C; and Cs such that C; C Cj, C Cy,
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so that if (u,v) is found to lie inside C; or outside C then we immediately know whether it lies
inside C}, or not.

2.6 Monte Carlo integration

In one form or another, the reason for simulation can often be formulated as an integral. This
is obviously the case for expectations: E(X) = [ zf(z)dz, so if we have a sample z1,z9,...,z,
from the distribution of X, then we can approximate the theoretical mean by the sample mean
to obtain the approximation:

n
E(X)mn ') (2.9)
i=1
But this argument can be generalized. Suppose we wish to calculate

6= / é(z) f (x)dz (2.10)

which is of course E(¢(X)), where expectation is with respect to the distribution f. Then if
T1,T2,...,Ty iS a sample from this distribution,

O0=n""Y" ¢(z:) (2.11)
=1

is an unbiased estimate of §. Again, this is simply a sample mean estimating a theoretical mean.
This approach is remarkably easy to use, even in high dimensions. The cost for this simplicity
is that the variance is high.

As an example of this, suppose we wish to calculate P(X < 1,Y < 1) where (X,Y") are bivariate
Standard Normal with correlation 0.5. This can be written as

/IA(w, y) f(z,y)dzdy (2.12)

where f is the bivariate normal density, and I4 is the indicator function on A = {(z,y) : z <
1,y < 1}. Thus, provided we can simulate from the bivariate normal, we can estimate this
probability as

n
Y Ta(wi, i) (2.13)
=1

which is simply the proportion of simulated points falling in A. There are various approaches
to simulating bivariate Normals; conceptually easiest is to simulate each pair (z,y) by first
simulating z, and then simulating from the conditional distribution of Y'| X which is also normal,
but with modified mean and variance (essentially derived from standard regression). Splus code
to achieve this is

bvsim_function(n, me, sd, ro)
{
x <- rnorm(n, me[1], sd[1])
y <- rnorm(n, me[2] + (ro * sd[2])/sd[1]
* (x - me[1]), sd[2] * sqrt(l - ro * ro))
cbind(x, y)
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Hence, to obtain an estimate of the required probability on the basis of, say, 1000 simulations,
we simply need

y_bvsim(iOOO,C(0,0) ,c(1,1),0.5)
and then
sum(y[,1]1<1&y[,2]1<1)/1000

I got 0.763 doing this. A scatterplot of the simulated values is given in Figure 2.9.

Figure 2.9: Simulated bivariate normals

2.6.1 Variance reduction

A number of techniques are available for improving the precision of Monte—Carlo integration.
We’ll look at one of these in detail, and describe the idea behind another two.

Importance sampling

We want to calculate

6= / é(z) f (z)dz (2.14)
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which can be re—written

0= /zl)(x)g(ﬂv)dav (2.15)

where 9(z) = ¢(z)f(x)/g(z). Hence, if we obtain a sample z1,z9,...,z, from the distribution
of g, then we can estimate the integral by the unbiased estimator

n

0, =n"1 > () (2.16)
i=1
for which the variance is
Var(6,) = n ! / ((z) — 0Y2g(x)dz (2.17)

This variance can be very low, much lower than the variance of é, if g can be chosen so as to make
1) nearly constant. Essentially what is happening is that the simulations are being concentrated
in the areas where there is greatest variation in the integrand, so that the informativeness of
each simulated value is greatest.

This example taken from Ripley illustrates the idea. Suppose we want to estimate the probability
P(X > 2), where X follows a Cauchy distribution with density function

1

f(z) = 0+ 29 (2.18)

so we require the integral
/ Ti(2)f (z)dz (2.19)

where A = {z : z > 2}. We could simulate from the Cauchy directly and apply (2.11), but the
variance of this estimator is substantial. (As with the bivariate Normal example, the estimator is
the empirical proportion of exceedances; exceedances are rare, so the variance is large compared
to its mean).

Alternatively, we observe that for large z, f(z) is similar in behaviour to the density g(z) = 2/z?
on z > 2. By inversion, we can simulate from g by letting z; = 2/u; where u; ~ U[0,1]. Thus,
our estimator becomes:

. — (2.20)

2
1 ]
2m(1 + 22)

n
Oy =mn
i=1

where z; = 2/u;. Implementing this with the Splus function

i.s

function(n)

{
x <- 2/runif(n)
psi <- x72/(2 * pi * (1 + x°2))
mean (psi)

}

gave the estimate 6 = .1478. The exact value is .5 — 7~ tan2 = .1476. In Figure 2.10 the
convergence of this sample mean to the true value is demonstrated as a function of n.

For comparison, in Figure 2.11, we show how this compares with a sequence of estimators based
on the sample mean when simulating directly from a Cauchy distribution. Clearly, the reduction
in variability is substantial.
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Control and antithetic variates

In general, the idea of control variates is to modify an estimator according to a correlated variable
whose mean is known. Thus, if we wish to estimate § = E(Z) where Z = ¢(X), we use the
estimator .
A~ 1
6= ~ > {Z - Wi} + E(W) (2.21)
i=1

which, of course, is unbiased for 6, but since

Var(d) = - (Var(Z) — 2Cov(W, Z) + Var(W)), (2.22)

n

the variance can be low if Cov(W, Z) is sufficiently large. In fact, if W is chosen to be a linear
regression so that
Z =W +...8Wp (2.23)

the variance of the estimator becomes approximately n 2RSS where RSS is the residual sum
of squares of the regression fit.

This is easily applied in the context of Monte-Carlo integration. Again developing Ripley’s
Cauchy example, we require an estimate of

1 2
6= - / f(z)dz (2.24)
2 Jo
where f(z) = m We can estimate this as
A1 1 &
=5 —-2x— > fl@a), (2.25)
=

where the z; ~ U|0, 2].

To estimate the integral using a control variate we seek a function (or functions) with known
mean which varies with f(z) over [0,2]. A Taylor series expansion of f(z) suggests control
variates of 22 and z*, whose means, with respect to the U[0,2] distribution, are easily evaluated
over [0,2] as 8/6 and 32/10. Now, in principle, any function of the form Biz? + fyz* suffices as
a control variate. To minimize variance however, we need to choose the 8’s so as to optimize
agreement between f(z) and B1z% + Boz*. This is achieved through simple regression. I chose
to simulate 10 observations uniformly over [0, 2], leading to the regression equation

W (zx) = .288 — .143x% + .024z* (2.26)

and hence,
A~ 1 1<
0=5-2|- > {fxi) — W(zi)} +.288 — 143 x 8/6 + .024 x 32/10 (2.27)
i=1
With n = 1000 I got an estimate of § = .1474.

Antithetic variates are almost the converse of control variates: we obtain a variate Z* which has
the same distribution as Z, but is negatively correlated with Z. Then,

6= %(Z + Z%) (2.28)
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is unbiased for €, with variance:
A 1
Var(0) = EVa,r(Z){l + Corr(Z,Z")] (2.29)

which constitutes a reduction in variance provided the correlation is indeed negative. For simple
problems, antithetic variates are easily achieved by inversion, since if Z = F~1(U) then Z* =
F~1(1-U) has the same distribution as Z and can be shown to be negatively correlated with Z
for all choices of F'. Applying this to the estimation of § = 5 — f02 f(x)dz in the Cauchy example
leads to the estimator

n

1 1 1
B E;{W(Hug) + (14 (2 —u,-)Q)} (2:30)

=1

N —

where u; ~ U|0, 2].

2.7 Stochastic processes

It is impossible to give general guidance on the simulation of stochastic processes, since the
techniques required are often very specific. In most cases it is possible to exploit some charac-
terization of a process as an aid to simulating it. The simplest example of this is the Poisson
process, for which it is easiest to exploit the exponentiality of inter—arrival times as the basis for
simulation. A similar procedure works for renewal processes.

Time series can often be simulated in the obvious recursive way. Spatial process often have
a (spatial) Poisson process implicit in their characterization, which then leads naturally to a
simulation technique.

Often iterative methods are needed to approximately simulate from stochastic processes. In
particular for complex spatial processes, MCMC algorithms (see Chapter 3) need to be devised
to simulate the processes.

Approximations to continuous time processes such as diffusion processes are more difficult again.
Here it is not even possible to simulate exactly a representative sample path of the process. Here
it is necessary to work with a fine discretization of the process.



Chapter 3

Markov Chain Monte Carlo

3.1 Bayesian statistics and conditional conjugacy

More than any other technique, Markov Chain Monte Carlo (MCMC) has been responsible for
a current resurgence in Bayesian statistics, since its application allows a vast range of Bayesian
models, previously thought to be completely intractible, to be estimated with ease. We will look
at a number of applications later. Although MCMC is intrinsically just a device for simulating
from a multivariate distribution, its application in statistics using the Gibbs sampler is greatly
aided by the statistical concept known as conditional conjugacy.

Recall the notion of conjugacy used (normally) in Bayesian problems where there is a single
unknown parameter 6, say. The concept is best illustrated using an example. Suppose that our
data X, Xo,... are independent observations from an exponential distribution with parameter
6. Thus the likelihood is .

L) = 0" 0 iz % (3.1)

Suppose our prior for 6 is Gamma(2,1). Then the posterior distribution for 6 given x is
Gamma(2 + n,1 + Y *; z;). Thus the posterior distribution of 6 remains in the two param-
eter gamma family whatever data is observed. The gamma family is called a conjugate family
for this problem. The major advantage of the conjugate family is that it allows the effect of
the data on our posterior beliefs to be summarised in terms of two parameters, which in turn
describe a simple well known and easy to handle distribution.

It is usually possible to find useful conjugate priors in many problems with a single unknown
parameter. However, even though in theory this is also possible in higher dimensional situations,
in practice the conjugate families end up being highly complex and difficult to summarise easily.

On the other hand, many multi-parameter Bayesian problems exhibit conditional conjugacy.
Again consider an example to illustrate the concept.

Example 3.1 Suppose X;|p,02 ~ N(u,0?) independently 1 < i < n. Suppose also we have
prior distributions for p and o?: ,
p(w) ~ N(po, 07) (3.2)

p(oc™?) ~ Gamma (ay, o) (3:3)

where u and o are considered to be a priori independent and wo, 03, ag and By are considered to
be known hyperparameters. Writing T = 0 2,19 = oy~ we can write the posterior distribution

of (u,7):
7(p, T|x) o likelihood X prior (3.4)

27
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n
x lH e_%(w"_u)zl e~ 2 (u=po)® raotg—1o—For, (3.5)
i=1

Note that although the form of the prior distribution is highly tractable, the posterior distribution
18 a complex two-dimensional distribution. This is typical of Bayesian analyses of problems with
multidimensional parameter sets.

However, we can describe the posterior distribution in terms of its conditional distributions:

n
i) | [ 50 Hoom (3:6)
i=1
Yx; 1
~N <7' Ti + PoTo ’ ) (3.7)
nT + 79 nT + Ty
and \
n (e
7(7|p, x) ~ Gamma (ao + %,ﬁo + #) . (3.8)

This phenomenon, where the conditionals have nice simple forms, is called conditional conjugacy,
and is common, even in extremely complex high-dimensional problems. This will motivate the
introduction of the Gibbs sampler in the next section.

In multi-dimensional Bayesian problems it is rarely possible to analytically compute summary
statistics such as posterior means and variances, or even posterior probabilities. Therefore it is
necessary to estimate the quantities of interest using a Monte Carlo approach. However simu-
lating from an arbitrary high dimensional distribution is usually diffucult and often impossible
to do directly. Markov chain Monte Carlo (MCMC) simulates instead a Markov chain, who’s
stationary or limiting distribution is the posterior distribution of interest.

The concept of conditional conjugacy is crucial in the construction of one of the basic forms of
MCMC: the Gibbs sampler.

3.2 The Gibbs sampler

We wish to obtain a sample from the multivariate distribution P(61,...,6;). The Gibbs sampler
successively and repeatedly simulates from the conditional distributions of each component given
the other components. Under conditional conjugacy, this simulation step is usually straightfor-
ward.

Algorithm 3.1

0. Initialize with 0 = (0%0), . ,0&0)).
1.1 Simulate 0§1) from the conditional 91|(9§0), e ,6&0)).

1.2 Simulate Gél) from the conditional 92|(9§1),0§0), ... ,9‘(10)).

1.d Simulate 0((11) from the conditional 0d|(9§1), . ,02121).
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2. Iterate this procedure.

Under mild regularity conditions, convergence of the Markov chain to the stationary distribution

(k)

P(61,...,04) is guaranteed, so after a burn—in period, the observations (67 /, ..., Ofik)), ... (9%"), ...

can be regarded as realizations from this distribution.

As stressed, this procedure is valid in any situation where the requirement is a sample from a
multivariate distribution. Applications tend to have been concentrated in Bayesian statistics
because the technique gives a sample based approach to posterior inference in situations where
most other techniques are either difficult or impossible. Bayes’ theorem has the form

P(6)P(z|0)

PO = 750y plsl6)as (3.9)

and it is often impossible to solve the normalizing integrals. With the Gibbs sampler, as long as
we can simulate from each of the conditional distributions, then we can obtain a sample directly
from the posterior distribution without having to worry about any integrals.

3.3 Example: a poisson count change point problem

To illustrate the use of Gibbs sampling in Bayesian statistics, we’ll look at an example taken
from Carlin et al., concerning the change point in a Poisson process. In particular, they cite as
example a series relating to the number of British coal mining disasters per year, over the period
1851 — 1962. A plot of these data is given in Figure 3.1, and the time series itself is stored in
coal.dat.

From this plot it does seem to be the case that there has been a reduction in the rate of disasters
over the period. We’ll follow the model of Carlin et al. which has the form:

Y; ~ Poisson(#); i=1,...k; (3.10)
Y; ~ Poisson(\); i=k+1,...n. (3.11)

Thus, the model is for a Poisson number of disasters per year, with a mean rate of 8 up to the
kth year, and a rate of A\ thereafter.

The Bayesian specification of the model is completed with a hierarchical framework: 6 ~
Gamma(ai,bi), A ~ Gamma(asg,bs), k discrete uniform over {1,...,112}, each independent
of one another, and then b; ~ Gamma(ci,d;) and by ~ Gamma(cg, da).

It is not too difficult to check that this choice of specification leads to the following conditionals:

k
0|Y, X\, b1, b2, k ~ Gamma <a1 + ZYi,k + b1> (3.12)

=1

n

AY,0,b1, b2,k ~ Gamma [ a2 + > Yi,n—k+ b (3.13)

i=k+1
b11Y,0, A\, by, k ~ Gamma(a; + ¢1,0 + dy) (3.14)
b|Y,0, A, b1,k ~ Gamma(ag + c2, A + d2) (3.15)

and L(Y; E,0, )

p(k|Y,0,X,b1,b2) = (¥ k,0,) (3.16)

B E?:l L(Y’ja 07 A)
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Figure 3.1: Time series of counts of coal mine disasters
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where
L(Y:k,0,)) = exp {k(A — 0)} (0/N) Zizt ¥ (3.17)

This is implemented in Splus with the following code:

gibbs2_function(n, dat, init, const)

{

1 <- NULL

th <- init[1]

la <- init[2]

bl <- init[3]

b2 <- init[4]

k <- init[5]

al <- const[1]

a2 <- const[2]

cl <- const[3]

c2 <- const[4]

dl <- comnst[5]

d2 <- const[6]

nn <- length(dat)

th.o <- NULL

la.o <- NULL

k.o <- NULL

for(i in 1:n) {
th <- rgamma(l, al + cumsum(dat) [k])/(k + bl)
la <- rgamma(l, a2 + sum(dat) - cumsum(dat) [k])/(nn - k + b2)
bl <- rgamma(l, al + c1)/(th + di1)
b2 <- rgamma(l, a2 + c2)/(la + d2)
for(j in 1:nmn) {

1[j] <- exp((la - th) * j) * (th/la)"(cumsum(dat) [j])

}
k <- sample(l:nn, size = 1, prob = 1)
th.o <- c(th.o, th)
la.o <- c(la.o, la)
k.o <- c(k.o, k)

}

cbind(th.o, la.o, k.0)

}

The sequence of output for 1100 iterations of 8, A and k with the prior specification a; = a2 = 0.5,
c1 =co =0, dy =ds =1 is shown in Figure 3.2.

Convergence of the algorithm seems rapid (after compensation for poor choice of starting values).
So, I've deleted the first 100 values, and based the subsequent analysis on the remaining 1000
points. A frequency plot of the posterior distribution of & is given in Figure 3.3.

On the basis of this estimate, it is almost certain that a changepoint has occurred, with the
posterior mode estimate being k = 41, corresponding to a changepont at the year 1891.

Kernel density estimates of the posterior distributions of 8 and A are given in Figure 3.4.

It is clear from Figure 3.4 that X\ is (almost certainly) less than . An important feature of
the Gibbs sampler approach is that with almost no extra effort, this feature can be examined
directly. That is, by looking at the sequence of realisations of (6 — A);, we obtain a sample from
the posterior marginal distribution of P(§ — X). No complicated transformation theory is needed
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because we are working directly on the sample. A kernel density estimate of P(§ — \) produced
this way is shown in Figure 3.5.

0.8 1.0

Posterior Density
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lambda-theta

Figure 3.5: Kernel density estimate of  — A

3.4 Data augmentation

Data augmentation is a technique which can be thought of as a special case of the Gibbs sampler.
It can be applied equally well to the following two situations.

1. One of the main problems that afflicts statistical computing is that in the real world,
some of our data could be missing. In theory the distribution of the observed data can
be obtained by integrating out the missing data. However this is frequently difficult if not
impossible to do.

2. The likelihood if the data is not tractable for one reason or another (for instance there
is no simple conjugate prior) but that conditional on a collection of unobserved data, the
likelihood becomes easy to handle.

These two situations are best illustrated using simple examples.

1. Suppose Yy, Yq,...,Y,, is a time series of observations defined by Yy = 0 and for each
1<2<n
Yi|Yo,Y1,... Y1 ~Y,_; + Beta(0,6) , (3.18)
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for & > 0. Then given the full dataset Yy, Y1,...,Y,, the likelihood of 8 is easy to write
down (as a product of beta terms for the successive increments). However suppose that
Y;« is missing, then the likelihood is now not available in closed form.

2. Suppose that Yi,...Y,, are IID data from the mizture density

1 —22/2 | (z-0)2/2
e +e . 3.19
2V 27 ( ) ( )
This mixture density can be thought of as the density of the random variable obtained by
the following procedure. Toss a fair coin. Given a head sample from a N (0, 1) distribution.
Given a tail, sample from a N(6,1) distribution. Now the likelihood of # can be written
explicitly:

n
1 2 )2

Z_l_[1§ (e Yi/2 4 ¢=(¥i=0) /2> ) (3.20)
However this is a difficult function to maximize (for classical inference) or compute a
posterior distribution from. However, suppose I were to know about the sequence of
heads and tails, that is the information about which observations came from N (0, 1) (and
therefore irrelevant to inference about #) and which came from N(@,1). Then the inference
problem is straightforward (both in a classical and a Bayesian framework).

In both of these problems, the type of inference (whether classical or Bayesian) is not relevant.
So it turns out that the numerical techniques we use to exploit the fact that more data makes the
inference easier are highly related. We’ll deal with the EM algorithm (for maximum likelihood
inference) later.

Now introduce some general notation. Let y,5s denote the observed data and ym,;s the missing
data. Let 6 be the unknown parameters with prior p(f). Then the situation that the above
examples demonstrate is where f(yops, Ymis|@) is available. As a result of this, the conditional
distribution of 8 and Y;,;s is proportional to

7T(eay’rnis) = f(yobsaymis|0)p(9)- (3.21)

Data augmentation proceeds by carrying out Gibbs sampling to successively sample from 6 and
Ymis to produce a sample from this joint distribution. The marginal distribution of 8 is therefore
the posterior distribution of interest.

How does this work in the two examples above?

1. Given a uniform prior for 6 on (0, 1), and given complete data Y, Y7,...,Y,, the posterior
for 6 is explicit and can be sampled by inversion. The distribution of Yj«|everything else,
can be seen to have a density proportional to

0—
((gir = yir D) (wir 1+ 1= yi) War = girr1 = Dl —ir)) (3.22)
on the region (ys—1, ¥ —1+1)N(yi*+1—1,yix+1)- This sampling can be carried out (among
other ways) by rejection sampling.

2. Here Y,,;5 is a sequence of n heads or tails. Suppose that the prior for 6 is N(0,1). Then
its posterior given that Y,;s allocates Y; to the N(6,1) component for all i € A is

Dica Yi 1 )
N (=2t , 3.23
(1+|A\ 1+ |A] ( )

where |A| denotes the number of elements in A. On the other hand if C; is the result of
the coin toss for the ith observation, then it can be seen that

e_(yi_0)2/2

e_(yi—9)2/2 + 6_93/2 )

P(C; =T|6, everything else) = (3.24)
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3.5 A worked example in genetics

We look at a genetic linkage example. This example is well-worn, but is useful because it
illustrates very simply all the ideas necessary for this (and subsequent) algorithms. The example
concerns genetic linkage of 197 animals, in which the animals are distributed into 4 categories:

Y = (ylay25y3ay4) = (125518520734) (325)
with cell probabilities
1 61 1 0
S+ 2,5(1-6),-(1—0),- 2

Though it is just possible to sample the posterior distribution of € directly by (say) rejection
sampling), data augmentation brings about a substantial simplification. Specifically, we augment
the observed data Y by dividing the first cell into two, with respective cell probabilities % and
%, giving an augmented data set X = (1, z2, T3, T4, Z5), where 1 + 29 = y1, and x3 = yo, 24 =
Y3, L5 = Y4. Now using a flat prior for 8, we have

PO]Y) o (24 0)¥1(1 — g)v2T¥sgus (3.27)
whereas
P(9|X) o °2T75(1 — g)ratoa (3.28)
In this case, and writing X = (y, Z) for ‘missing’ data Z = X5 we have
0|Z,Y ~Beta(Z + X5+ 1, X3 + X4 + 1) (3.29)
and 0
Z|0,Y ~ Bin(125, —— .
0, ~ Bin(125, -) (3.30)

This is easily coded in Splus as

gibbsl_function(n, xa)

{
z <- 20
th <- 0.5
z.0 <— z
th.o <- th
for(j in 1:n) {
th <- rbeta(l, z + xa[4] + 1, xa[2] + xa[3] + 1)
p <- th/(th + 2)
z <- rbinom(1, xal1], p)
z.0 <- c(z.0, z)
th.o <- c(th.o, th)
}
cbind(th.o, z.0)
}

Note that the initial values z=20 and th=0.5 are chosen arbitrarily. Applying this algorithm
with n=100 iterations gave the output in Figure 3.6.

It seems as though convergence of the algorithm is immediate, though there is perhaps some
evidence that the chain for 8 behaves slightly differently at the start. Consequently, I've elected
to disregard the first 20 realisations (this is the burn—in). The remaining sample is regarded
as a sample from the required joint distribution P(0, Z|Y). In particular, histograms of the
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separate § and Z components (Figure 3.7) are estimates of the posterior distributions P(0|Y)
and P(Z]Y). Similarly, a plot of the (6, Z) pairs (Figure 3.8) gives an impression of the joint
posterior P(0, Z|Y).

Interpretation of these results does need care, since the sequence of realisations are not (by
definition) independent. There are two alternative strategies:

1. Run a single chain for sufficiently long, so that dependence between successive realisations
does not diminish the precision of the sample information; and

2. Run several chains, and average across them.

I’'m going to stick with the first of these approaches, though it should also be recognised that
approaches to assessing convergence of such chains are often based on comparisons of within—
chain and across—chain variability.

3.6 Prediction

Another example of the application of the Gibbs sampler is for prediction. The predictive
distribution of a future observation y given past observations z is defined as

plwla) = [ plylo)p(O]z)do. (3.31)

so that the likelihood, p(y|@) is averaged across the uncertainty in € contained in the posterior

distribution p(6|z). Hence, given a sampled sequence of realizations #(1),... 6 from this
posterior, we can estimate

plyla) = -3 plyl6) (332)
=1

For the coal mining example, we can use this estimator to estimate the predictive distribution
of the number of disasters in a future year (for which the Poisson rate is A). A graph of the
predictive distribution is given in Figure 3.9, together with an estimate simply based on the
posterior mean of A. In this case, the lack of variation in the posterior distribution for A\ has
meant that the two distributions are almost identical, but in general the predictive distribution
is likely to have much greater variation on account of the uncertainty in .

3.7 The Metropolis—Hastings algorithm

The Gibbs sampler is the best publicised MCMC algorithm, but there are many others. The most
general algorithm in this context is the Metropolis—Hastings algorithm. To simplify notation
this time, suppose that we wish to simulate from a (multivariate) distribution 7(z). We now
let g(x,y) be any arbitrary transistion probability (that is g(x,y) is the probability density
of moving to y from z), but from which simulation is straightforward. Then the Metropolis—
Hastings algorithm is:

Algorithm 3.2

1. Given the current position X, = z, generate a ‘candidate value’, y* from q(z,y).
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2. Calculate

min{ ZBULL 1} if n(z)q(z,y) > 0

“%w:{l if 7(z)q(z,y) =0

with y = y*.

43

3. With probability a(x,y*) accept the candidate value and set X, 11 = y*; otherwise reject

and set Xp41 = .

4. Repeat.

It’s not difficult to show that 7(x) is a stationary distribution of this chain. Under mild condi-

tions, the chain will converge to this equilibrium distribution.

The Metropolis—Hastings algorithm has the major advantage over the Gibbs sampler that it is
not necessary to know all the conditional distributions — we only need to simulate from g which
we can choose arbitrarily. Moreover, and this can be of crucial importance, we only need to
know 7 up to proportionality, since any constants of proportionality cancel in the numerator and
denominator of the calculation of a. The price for the simplicity is that if ¢ is poorly chosen,
then the number of rejections can be high, so that the efficiency of the procedure can be very

low.

We can illustrate the procedure with the genetic linkage example for which we had
7(0) o (24 )Y (1 — §)v2Tysgys

Taking, for simplicity, ¢(z,y) = 1 on [0, 1], Splus code is

m.hast_function(n, xa)

{
pi.q <- function(th, xa){
(2 + th)"xa[1] * (1 - th)~(xa[2] + xal[3]) * th"xal4]}
th <- 0.2
th.o <- th
for(j in 1:n) {
y <= runif(1)
al <- min(pi.q(y, xa)/pi.q(th, xa), 1)
u <- runif(1)
if(u < al)
th <-y
th.o <- c(th.o, th)
}
th.o
}

As with the Gibbs sampler, it’s necessary to monitor output to ensure convergence.

(3.33)

Figure

3.10 shows simulated values of 6 for 1100 iterations. Convergence seems ok after the first few
iterations, so again I'll just delete the first 100 observations. Note that the chain is highly

dependent as a consequence of the high rejection rate because of the choice of q.

The corresponding posterior density estimate of 8 is given in Figure 3.11.
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Figure 3.10: Series of § in Metropolis—Hastings algorithm
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Figure 3.11: Posterior density of § based on Metropolis—Hastings algorithm

45



46 CHAPTER 3. MARKOV CHAIN MONTE CARLO

3.8 Hybrid chains

It is possible, and often necessary, to create hybrid chains whereby Monte Carlo chains are
imbeded within Monte Carlo chains of a different type. A particularly useful application of this is
when using the Gibbs sampler, if it is not possible to obtain the conditional distributions required
in exact form. A natural approach is to use a one—dimensional Metropolis—Hastings step to
simulate the one-dimensional conditionals. This is straightforward since, up to proportionality,
the conditionals are obtained as the joint posterior evaluated with the conditional ordinates
fixed.

3.9 Uses of MCMC in classical statistics and beyond...

MCMC has certainly had a fundamental effect on statistics in the last 10 years, influencing not
only the way quantities for inference are computed, but also the type of models the statistician
tries to fit. This is because the flexibility of the technique expands immeasurably the classes of
statistical models for which computation is considered possible. This effect is most pronounced in
Bayesian statistics. However MCMC also has many important applications in classical statistics.

We’ll briefly mention three examples.

1. Firstly note that given a flat prior, the likelihood and the posterior density are equal.
Therefore it is feasible to estimate the maximum of the likelihood as the mode of a density
estimate of the posterior distribution. This involves the additional problem of obtaining
an estimate of the density from a sample of points from that density. This is usually done
in terms of a kenel density estimate. For example, given a sample z;,1 < ¢ < n we could
estimate the density as

Ly (@ - a)/(20%) (3:34
-y ————exp{(z —x; o .
n < (2ro?)1/? P !

2

The ‘smootheness’ parameter o° needs to be chosen. As a general rule, the larger n, the
2

smaller we would normally like to choose o~.

2. A rather different application is to the (common) situation where the density of the data
given the unknown parameter is known only up to a normalisation constant. The following
idea is due to Charlie Geyer.

_ Jfo(x)

ol) = g7 (3.35)

where fp(z) is an unnormalised density and (@) is its normalisation constant

c(6) = [ folw)ds.

The problem here is that the normalisation constant, ¢(f), can easily be a function of 0
and moreover will affect the maximisation problem for the likelihood. In this case, it is
necessary to estimate c. Now suppose 6 is a ‘first guess’ of the MLE. We can write

6le) _ fala) c(60)
[of2) ~ fao(a) <(6) °

and we can estimate c(0)/c(6y) for an arbitrary € from a sample (z1,...z,) from fg, using

the estimator . folz)
o\ T3

; 3.37

2 @) (3.37)

(3.36)
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From this simulation therefore, we can estimate [(0|z)/l(0y|z) from (3.36), and improve
our estimate of the MLE. This procedure is usually iterated a number of times until the
estimated terms stabilize.

3. Simulated annealing is a stochastic algorithm for maximising functions. It is very closely
related to MCMC. The only difference is that the target density changes as the algorithm
proceeds. First notice that if we want to maximise a non-negative function h(y),y € A, the
maximising value also maximises h(y)'/7 for arbitrary T > 0 known as the temperature.
However for large T', assuming that A'/T is an integrable function, the distribution with
density proportional to h(y)}/T concentrates most of its probability mass in the vicinity
of the mode of the function. The idea behind simulated annealing is, at each iteration
n, to carry out MCMC on a density proportional to kYT, where T}, is a sequence of
temperatures that converges to zero. The algorithm converges to the maximum value of
h under suitable regularity conditions. It is important that 7, does not converge to zero
too rapidly, since it turns out that this could then lead to the algorithm getting stuck in
a minor mode of the function h.

3.10 The dangers of MCMC

A real danger of MCMC is that it compute pretty much any model you can throw at it - whether
or not the model is statistically sensible. Algorithms can produce very reasonable results, even
when the number of parameters in the model far exceeds the size of the dataset.

In high dimensional situations, the assessment of convergence of MCMC is extremely problem-
atic. Therefore it is rarely possible to be absolutely certain that our algorithm has converged
sufficiently well. Moreover, even if we could start the algorithm from the target density, the
dependent values in the subsequent chain can lead to extremely poor estimates of quantities of
interest.

3.11 Appendix: Markov chains

A Markov chain {X,,,n > 0} is a random process with the following ‘memoryless’ property:

P[Xn €A | Xn—l = xn—laXn—Z =Tpn—-2y--- 7XO = ZE()]
P[Xn €A | Xn1 = .'L'n_l].

For simplicity and illustration of the basic ideas, assume here that the state space for X is
countable. Let Pj; = P[X,, = j | X,—1 = i], and let P denote the matrix with elements {P;;}.
Then (P");; = P[X, = j | Xo = i]. A Markov chain is

irreducible if, for all ¢ and j, there exists some n such that P} > 0;

aperiodic if the greatest common divider of {n; P> 0} =1;

recurrent if P[Markov chain returns to ¢ | it started at i) =1 for all ¢; and

positive recurrent if it is irreducible aperiodic and recurrent, and {m;} is a collection of proba-

bilities such that
lim P/} = 7, (3.38)

n—oo Y
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and
Zﬂ'i])ij =Ty - (3.39)
i

For MCMGC, the invariant probability distribution 7 is given a priori — this is the distribution from
which we wish to sample. Therefore it remains to demonstrate irreducibility and aperiodicty.
They can usually be easily checked in individual situations, although there do occur examples
where the use of MCMC is thwarted by reducibility.

For an excellent review of the properties of Markov chains, see Grimmett and Stirzaker (Oxford
University Press, 1992).



Chapter 4

The Bootstrap

4.1 Bootstrap variance

The bootstrap is a computer—based technique of assessing the variance, or some other property,
of a statistical estimator. In its simplest setting, the idea is as follows. Suppose we have a
sample X = 21, %9, ..., %, from an unknown distribution F and we have an estimator §(x) of
some population parameter 6.

If we could obtain many other samples, we could evaluate the estimator on each of these samples
as well, and use the sample variance of the estimators to estimate the true variance of the
estimator.

In actual fact, we only have the one sample to work with, so the idea of bootstrapping is to
simulate not from the population, but from the single sample which we have available. For
example, if our sample consisted of the values 3,5 the possible bootstrap samples are (3,3),
(3,5), (5,5) with probabilities 1/4, 1/2, 1/4 respectively. (Note that the bootstrap samples are
made with replacement). In this way the bootstrap samples mimic the ideal of resampling from
the whole population. In theory, the true population variance of the estimator can be calculated
with respect to the bootstrap distribution. In practice this is rarely possible, so it is usual to
simulate samples from the bootstrap distribution and estimate the true bootstrap variance by
the sample bootstrap variance.

Slightly more formally, the basic idea of bootstrapping is to replace the unknown distribution
function F with a sample-based estimate, usually F', the empirical distribution function defined
with ordered sample values z(;) < z(9) < ... 2, as

F(z) = —; zi) <& < T(i41) (4.1)

An example of the empirical distribution function for 20 values simulated from a standard normal
is shown in Figure 4.1 together with the true standard normal distribution function. The point
is that the empirical distribution function converges to the true distribution function, so that
statistics based on the EDF will converge to those based on F itself.

Thus, for example, an estimate of Var(0(x)), the variance of the estimator 6 with respect to F

A~

is given by the bootstrap variance , Varz(6(x)), the corresponding variance but with respect to
the bootstrap distribution.

Usually this is impossible to evaluate analytically, so an estimate is formed by simulating directly
from F'. This gives rise to what is usually regarded as the bootstrap algorithm:
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Figure 4.1: Comparison of true and empirical distribution functions
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Algorithm 4.1

1. Evaluate the empirical distribution function F.

2. Simulate B samples x*1,x*% ... x*B each of size n from F.

3. Estimate the population bootstrap variance as the sample variance

N 1 & N(<*b *\2
where
1 S b
0* = EI;@(x ) (4.3)

So, there are two aspects to the procedure: replacement of the distribution function by its
empirical counterpart; and simulation from the empirical distribution to estimate statistic char-
acteristics.

This is all extremely easy to implement in Splus using the following simple function:

bootstrapl_function(x, nboot, theta, ...)
{
z <- list()
data <- matrix(sample(x, size = length(x) * nboot, replace = T), nrow
= nboot)
bd <- apply(data, 1, theta, ...)
est <- theta(x, ...)

z$est <- est

z$distn <- bd

z$bias <- mean(bd) - est
z$se <- sqrt(var(bd))

VA

}

where theta is the function we wish to bootstrap. This returns a list giving the estimate, the
bootstrap sample, the bootstrap estimate of bias (see below) and the bootstrap estimate of
standard error.

Example 4.1 MINITAB gives a data set representing the observed daily activity time, in hours,
of a group of salamanders. These data are stored in the vector sal.dat.

A histogram of the data is shown in Figure 4.2.

Suppose then that we are interested in the median activity time of the population, assuming that

the observed sample is a random sample from this population. The sample median is 6 =08
hours. We now bootstrap to assess the accuracy of this estimate, using the Splus command

bootstrapl(sal.dat,200,median)
which gives 200 realisations from the bootstrap distribution of the sample median. A histogram

of the bootstrap realisations of the sample median is given in Figure 4.3. The standard deviation
of these simulations is 0.255, which is therefore our bootstrap standard error for 6.
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Figure 4.2: Histogram of salamander data
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Figure 4.3: Histogram of bootstrap sample medians
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Example 4.2 The above method applies almost as easily to slightly more complicated data sets.
We consider here a set of data (given by Efron) relating two score tests, LSAT and GPA, at a
sample of 15 American law schools. Of interest is the correlation between these measurements.

The data are given as

LSAT GPA
576 3.39
635 3.30
5568 2.81
578 3.03
666 3.44
580 3.07
555 3.00
661 3.43
651 3.36
605 3.13

3.
2.
2.
2.
2.

and are plotted in Figure 4.4. They are stored in Splus as the matrix law.dat. Estimating
the population correlation by the sample correlation gives 8 = 0.776, but how accurate is this
estimate? We can assess this using the bootstrap algorithm. In this case we wish to sample
from the rows of the data matrix; this requires care in the use of the above Splus function, since
there it was anticipated that x would be a vector. We get round this problem by setting x to be
the vector 1:n, in this case, 1:15. Then the data matrix is passed to the function theta, which
in this case evaluates the correlation coefficient, as an additional argument. Thus, we need

bootstrapl(1:15,nboot,thetal,law.dat)
where

thetal_function(x,xdata){
cor(xdatal[x,1] ,xdatalx,2])
}

A histogram of 200 bootstrap simulations of @ is given in Figure 4.5 and the sample standard
error of these values is found to be 0.135. Note in particular the skewness of the bootstrap
distribution.

4.2 Other bootstrap estimates

We have focused so far on the bootstrap estimate of variance, or standard error. However, since
we have shown in the previous examples how the entire bootstrap sample is generated, it is clear

how other properties of the sampling distribution of 6 can be examined.
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Figure 4.4: Scatterplot of law school data
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The bias of an estimator 0 of 6 is defined as

bias = E(0) — 6 (4.4)
We define the bootstrap estimate of bias to be

bias = EF(é) -0 (4.5)

That is, the difference between the expected value of the bootstrap distribution, and the esti-

~

mated value. Of course, we must again estimate £ (6) from the bootstrap sample as
1 B
7 f(w¥b
_%@zEZﬂx) (4.6)
b=1

For the salamander data we have % Ele 9(x*b) = 0.800 and so the bootstrap estimate of bias
is 0. For the law school data, the mean of the bootstrap simulations is 0.786, giving a bootstrap
estimate of bias of 0.786 — 0.776 = 0.010, a small enough value not to give cause for concern.

This is not the most efficient way to estimate bias: a more efficient procedure related to the idea
of control variates in simulation is described by Efron and Tibshirani (Chapter 23).

4.3 Structured data

The bootstrap procedure is easily extended to models of more detailed structure. Here we look
at a few examples to illustrate the general principle.

4.3.1 Comparing two populations

Example 4.3 Figure 4.6 gives histograms of historical and current measurements of Ph levels
at each of 149 lakes in Wisconsin. The data are stored respectively in phl.dat and ph2.dat.

Historical data from 25 of the lakes are missing, so paired sample comparisons are not possible.
We will compare the difference in medians of the historical and current populations based on
é, the difference in sample medians, which turns out to be 0.422. Each bootstrap simulation
consists of simulating from the empirical distribution function of the two separate samples,
obtaining the median of each and differencing. Repeating this B times gives the full bootstrap
distribution.

The following Splus function bootstrap2 gives the necessary modification to the original func-
tion to achieve this procedure.

bootstrap2_function(x, y, nboot, theta, ...)
{
z <- list()
data.x <- matrix(sample(x, size = length(x) * nboot, replace = T), nrow
= nboot)
data.y <- matrix(sample(y, size = length(y) * nboot, replace = T), nrow
= nboot)

data <- cbind(data.x, data.y)
bd <- apply(data, 1, theta, ...)
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Figure 4.6: Histograms of historical and current Ph levels in Wisconsin lakes
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est <- theta(c(x, y), ...)
z$est <- est

z$distn <- bd

z$bias <- mean(bd) - est
z$se <- sqrt(var(bd))

4

}

This is simply applied with the data from the two series in x and y respectively, and with n as
the length of x. Thus, in this case, we apply the function with

theta2_function(z, n)

{
}

median(z[(n + 1):length(z)]) - median(z[1:n])

Applying this with nboot = 200 gives the histogram of bootstrap values in Figure 4.7.
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Figure 4.7: Histogram of simulated median differences
The mean of the simulated values is 0.440, suggesting low bias, and the standard error is 0.112.
4.3.2 Time series

Example 4.4 The time series, z, in Figure 4.8 is taken from Diggle (1990, Time Series: a
biostatistical introduction) and relates to a time series of lutenizing hormone measurements after
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relocation by subtraction of sample mean. The data are stored in hormone.dat.

The objective is to model this time series and use bootstrapping to assess the accuracy of the
fitted model. The challenge is to find a way of bootstrapping from the sample series to create
new series which have the same stochastic structure as the original series. We will illustrate the
procedure using a simple AR(1) model, though this isn’t necessarily the best model for these
data. The residuals from an AR(1) fit are shown in Figure 4.9; the evident skewness suggests

1.0

hormone level
0.0

-0.5

-1.0

0 10 20 30 40
time

Figure 4.8: Time series of lutenizing hormone level

that estimates of variance based on the usual Gaussian error model are likely to be invalid.
Thus, bootstrapping provides an alternative data—based estimate of parameter precision. One
approach is given by the following algorithm:

Algorithm 4.2

1. Fit the AR(1) model to the data: z; = Bzi_1 + €

2. Obtain the residuals e; from the fitted model.

3. Obtain the empirical distribution function F of the residuals.
4. Simulate B bootstrap replications of the series by:

(a) Set y; = 2.

(b) Evaluate recursively y; = By;_1 + €f, where € is a realization from F.
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Figure 4.9: Histogram of residuals of AR(1) fit
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5. Re—fit the AR(1) model to each bootstrapped time series to obtain B bootstrap realisations
of B.

6. Summarize the required characteristics of the bootstrap distribution.

In this way, the bootstrap realizations of the time series are forced to have the correct model
structure. Within Splus, this is all easily achieved using the bootstrapl function called as

bootstrapl(1:47,200,theta3,resid,beta,z1)

where beta and z1 are the estimated AR coefficient and the first value of the time series respec-
tively, and theta3 is defined as

theta3_function(x, resid, beta, z1)
{
y <- NULL
y[1] <- =z1
for(i in 1:length(resid)) {
y[i + 1] <- beta * y[i] + resid[x[i]]
}
ar.fit <- ar(y, aic=F, ord = 1)
plot(y, type = "1")
ar.fit$ar

}

For this example, Figure 4.10 shows 9 bootstrap realisations of the series.

Figure 4.11 gives the histogram of 200 bootstrap realizations of j3, the AR(1) coefficient. The
mean and standard deviation of the bootstrap distribution are 0.504 and 0.133 respectively,
suggesting that 8 is a somewhat biased estimator of 5 (bootstrap bias = .504 — .58 = —.076)
and a bootstrap standard error of 0.133.

This is not the only method which has been proposed for bootstrapping a time series. Another
method based on blocking data and bootstrapping the blocks has also been proposed in the
literature.

4.3.3 Non—parametric regression

Here we consider a well-studied data set of Silverman (1985), giving measurements of accel-
eration against time for a simulated motorcycle accident. The data are shown in Figure 4.12.
Clearly the relationship is non-linear, and has structure that will not easily be modelled para-
metrically. Splus provides a number of different routines for non—parametric regression — here
we will use just one: loess. The details don’t matter too much, but in outline the fit is a locally
weighted least—squares regression. The smoothing is determined by an argument span, which
determines the proportion of data to be included in the moving window which selects the points
to be regressed on. With span = 1/3, the loess fit to the motorcycle data is included in Figure
4.12.

Because of the non—parametric structure of the model, classical approaches to assessment of pa-
rameter precision are not available. The challenge again in bootstrapping is to create bootstrap
realisations of the data which have similar stochastic structure to the original series. This is
achieved simply by bootstrapping the pairs (z,y) in the original plot and fitting loess curves
to each simulated bootstrap series. In Splus we simply use
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Figure 4.11: Histogram of bootstrap distribution of AR(1) coefficient
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Figure 4.12: Scatterplot of motorcycle data
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bootstrapl(1:133,20,thetad,mc.dat)
where mc.data contains the data, and

thetad4_function(x, xdata)

{
mc.lo <- loess(xdatalx, 2] ~ xdatal[x, 1], span = 1/3)
y <- predict.loess(mc.lo, 1:60)
lines(1:60, y)

}

Applying this to the motorcycle data gave the loess curves in Figure 4.13. In this way we can

accel

Figure 4.13: Bootstrap realisations of loess fits to motorcycle data

assess both pointwise and globally the variability in the original loess fit.

4.4 Regression

A more formal regression-type model has the structure

yi = f(zs;6) + € (4.7)

where f is a specified function acting on the covariates, z;, with parameters 8, and ¢; is a
realisation from a specified error structure. With this model framework there are two alternative
ways to bootstrap the model:
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1. Bootstrap from the pairs (z;,y;), re—fit the model to each realisation, form the bootstrap
distribution of 3 (this is the approach we used in the non—parametric regression example).

Or;

2. Fit the regression model, form the empirical distribution function of the residuals, generate
bootstrap replications of the data by substitution into (4.7), re—fit the model to each
realisation to obtain bootstrap distribution of £.

To illustrate these techniques on a simple data set, we’ll use the data shown in Figure 4.14, for
which we assume a simple model

Yi = Bo+ Przi + € (4.8)

without making any distributional assumptions about the ¢;. A least squares fit to these data
gives By = —1160.5 and B; = 57.51.

hardness
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density

Figure 4.14: Hardness versus density of Australian timbers

To apply the first approach, we use the bootstrapl function with thetab defined as:

thetab_function(x, xdata)

{
1s <- lsfit(xdatal[x, 1], xdatalx, 2])
abline(1ls)
1s$coef

}

A graph of 10 bootstrap realisations of the regression line is given in Figure 4.15.
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Figure 4.15: Bootstrap regression lines
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The bootstrap distribution of the two regression parameters is given in Figure 4.16. The means
and standard deviations of these empirical distributions are (—1157.5,57.3) and (115.7,2.91)

respectively.
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Figure 4.16: Bootstrap distributions of regression parameters

To apply the second method, we call the bootstrapl function as
bootstrapl(resids,10,theta6,xdata=wood.dat)
where resids contains the residuals from the original fit, with theta6 defined as

theta6_function(x, xdata)

{
y <- x + xdatal, 2]
1ls <- 1lsfit(xdatal, 11, y)
abline(1ls)
1s$coef
}

Plots corresponding to Figures 4.15 and 4.16 are given in Figures 4.17 and 4.18. In this case the
respective means and standard deviations are (—1158.8,57.5) and (96.1,2.04).

The point about this is that there is less variability using the second approach, but the price
for this is that the accuracy of the bootstrap distributions is more dependent on the accuracy of
the linear fit. Thus if there is uncertainty about the adequacy of the specified model structure,
then bootstrapping the pairs is more robust than bootstrapping the residuals.
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Figure 4.17: Bootstrap regression lines using second approach
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4.5 Bootstrap confidence intervals and tests

Since the technique of bootstrapping gives a bootstrap sample of the parameter(s) of interest,
it is obvious how to use this sample to produce either confidence intervals of the parameter
(using quantiles of the sample output), or hypothesis tests. It should be noted however, that to
achieve reasonable accuracy, it may be necessary to produce a bootstrap sample of substantially
greater size than was necessary in just producing bootstrap estimates of variability. There are
a number of modifications which can be made to improve bootstrap confidence intervals, which
either correct for bias or speed up the procedure. Efron and Tibshirani sketch the details for
this, and also supply Splus code to enact the procedures.

4.6 The jackknife

We mention briefly that bootstrapping isn’t the only scheme for estimating the statistical prop-
erties of estimators by resampling. A slightly older idea is that of jackknifing. The idea is
similar to bootstrapping, but instead of resampling from the original sample, we apply the es-
timator systematically to all samples obtained from the original sample with just one sample
value deleted.

Thus, for example, if our original sample were 1, o, ..., T, then the jackknife samples would be
(2. xpn), (1,23, -, Tpn),- .. (X1,%9,...,2,—1). The corresponding jackknife estimate values
are 0(1y,0(3), ... 0(,). We then define the jackknife estimates of bias and variance respectively by
bz'Aasjack == (n — 1)(&() — é) (4.9)
and
~ n — ]. ~ N 2

Varjack = ( " ) Z(H(Z) - 9()) (4.10)

where )
0=~ 0 (4.11)

The multipliers (n — 1) and (n — 1)/n in these expressions might seem surprising, but are
necessary because the operation of jackknifing (unlike bootstraping) generates samples which
are more homogeneous than samples from the original population would be. Thus it is necessary
to multiply by these inflation factors to compensate for this. The actual values are chosen to give
accurate jackknife estimates in simple examples (such as the sample mean) for which analytical
results are available.

A simple Splus function for jackknifing, which has much the same structure as the corresponding
bootstrapl function, is given as follows:

jackknife_function(x, theta, ...) {
z <- list()
n_length(x)
jd <- NULL
for(i in 1:n) jd[i] <- theta(x[ - il, ...)
est_theta(x,...)
z$est_est
z$dist <- jd
z$bias <- (mean(jd) - est)*(n-1)
z$se_sqrt (var(jd)*(n-1)"2/n)
z



Chapter 5

The EM algorithm

5.1 Introduction

The EM algorithm is a technique highly related to the data augmentation algorithm in MCMC.
However the EM algorithm (in its basic form at least) is a deterministic algorithm, and whereas
the data augmentation algorithm simulated alternatively from the missing data and the pa-
rameters according to the appropriate conditional distributions, the EM algorithm replaces the
simulation steps by an expectation and a maximisation step. The algorithm is applied to the
likelihood function and converges to a local maximum of the likelihood of the observed data.
Therefore where the likelihood is unimodal it converges to the MLE. Thus it is usually used as
an algorithm to estimate the MLE of a statistical problem with missing data. However, it can
also be applied in a Bayesian context. For instance by assuming a ‘flat’ prior on the unknown
parameters, the EM algorithm can be used to try and approximate the mode of the posterior
distribution.

Typically though, the EM algorithm is used to maximize a likelihood when, with respect to the
likelihood specification, some of the data give incomplete information. This might be the case,
for example, in a regression model where some of the data is censored. If the data were all
complete, maximum likelihood would be a straightforward application of least squares, but the
censoring complicates this. The EM algorithm solves this problem iteratively by first using a
current estimate of the regression model to estimate the values of the censored data; then re—
estimating the regression line on the basis of the original and augmented data. This procedure is
then iterated until convergence. The two steps are respectively called the E—step (estimation)
and the M—step (maximization).

5.2 The algorithm

We suppose that our aim is to find the maximum likelihood estimator of L(|Y’), where Y
represents our observed data. Suppose that this is hard to do directly but that it is possible
to augment the observed data Y with additional data Z, such that the augmented likelihood
L(0)Y, Z) is easier to maximize. In essence, we then estimate Z from a current estimate of  and
then maximize L(0|Y, Z) with respect to 0. Then iterate to convergence. More formally, given
a current estimate 8* of 8, we define the function

Q6,6 = [ 108(L(61Y, 2)) P(2/6',Y )2 (5.1)
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that is
Q(O,Gi) = E(log(L(0Y, Z)) (5.2)

where expectation is with respect to the distribution of Z given the current estimate of 6 and
Y, ie., P(Z|6",Y). The EM algorithm is defined formally as:

Algorithm 5.1

1. The E-Step: Calculation of Q;

2. The M—-Step: Mazimization of QQ with respect to 0.

Implicit within the Q-step is the estimation of the augmented data with respect to the current
model estimate and complete data Y. This estimation simply involves taking expectations with
respect to the current model (conditional on the observed data). In comparison with the data
augmentation algorithm, both of the sampling steps are replaced by deterministic steps (an
expectation and a maximization).

The EM always increases the likelihood L(0|Y). To show this we first note the following in-
equality that holds for all densities f and g by Jensen’s inequality (see for example Grimmett
and Stirzaker, Probability and Random Processes).

fX)
E, [log M] <0. (5.3)

A consequence of this, letting f be P(Z|0"*!,Y) and g be P(Z|6",Y) is

i+1 .
/1 ( Zg; ?) P20, Y)dZ <0 . (5.4)

Since the second step of the EM algorithm maximizes Q (6, 6°) as a function of its first argument,
Q(6™,0") > Q(6",0"), so that

/1 ( sz;9|;))> P(Z|6",Y)dZ >0 . (5.5)

Now subtracting (5.4) from (5.5), we get

Y z 01—|—1 VA ei’Y ;
/1 ( Z|9z|+1 Y)) ((Y| ZIHZ'))) P(Z|0',Y)dZ > 0 . (5.6)

But the two terms multiplied together are just P(Y'|0°t!) and 1/P(Y|0?) respectively and these
do not depend on Z, so we get

log P(Y|0"™) > log P(Y'|6) (5.7)

so that the likelihood is always increased.
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5.3 A genetic example

We return to the genetic example of Chapter 2. Recall the data set contains information con-
cerning the genetic linkage of 197 animals, in which the animals are distributed into 4 categories:

Y = (ylay2ay35y4) = (1257 18720734) (58)
with cell probabilities
1 61 1 0
— 4+ —,—(1— —(1 — — .

Though it is by no means impossible to maximize this multinomial likelihood directly, we illus-
trate how the EM agorithm brings about a substantial simplification, by using the same augmen-
tation method that was used in the data augmentation case. Specifically, we augment the ob-
served data Y by dividing the first cell into two, with respective cell probabilities % and %, giving
an augmented data set X = (1,2, 23,24, %5), where z1+x9 = y1, and 23 = yo, T4 = Y3, T5 = Ya.
Now we have

L(O]Y) o (2 + 0)¥ (1 — g)v2tvsgus (5.10)

whereas
L(0]X) ox §%2175(1 — g)*stas (5.11)

Thus we obtain,

Q6,0 = E((zo+ z5)log(8) + (z3 + z4)log(1 — )|6°,Y)
= [E(x]6",Y) + x5]log(8) + (z3 + z4) log(1 — 0)

where 25|07, Y ~ Bin(125, 72). Thus
; 1256"
Q6,6 = 912 + 34| log(0) + 38log(1 — 0) (5.12)

This is easily maximized to give:

E(X2|0Za Y) + 5

o't = :
E(X2|91,Y) + 23+ 24 + 5

(5.13)

where E(X;3|6',Y) = %%i.

Thus, the alternation between estimation and maximization is clearly seen. This can all be
easily carried out with a pocket calculator. Starting with ' = 0.5 we obtain the sequence in
Table 5.1. Hence the maximum likelihood estimate (posterior mode) is 6 = 0.6268.

92’

0.5
0.6082
0.6243
0.6265
0.6268
0.6268

SO W N =

Table 5.1: Sequence of EM iterates
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150 170 190 220
8064* 1764 408 408
8064* 2772 408 408
8064* 3444 1344 504
8064* 3542 1344 504
8064* 3780 1440 504
8064* 4860  1680* 528*
8064* 5196  1680* 528*
8064* 5448* 1680* 528*
8064* 5448* 1680* 528*
8064* 5448* 1680* 528*

Table 5.2: Censored regression data

5.4 Censored regression example

Here we consider a regression problem involving censored data. Consider the data in Table 5.2.
These data represent failure times (hours) of motorettes at four different temperatures (Celsius).
The asterisks denote a censored observation, so that for example, 8064* means the item lasted
at least 8064 hours.

Physical considerations suggest the following model relating the logarithm (base 10) of lifetime
(t;) and v; = 1000/(temperature + 273.2):

t; = Bo + Brv; + € (5.14)

where ¢; ~ N(0,02) On this scale a plot of ¢; against v; is given in Figure 5.1 in which censored
data are plotted as open circles. The raw data are contained in motor.dat, and the transformed
data are in motor2.dat. In each case there is an additional column representing an indicator
variable, which takes the value 1 if the observation has been censored and 0 otherwise.

Now, in this situation, if the data were uncensored we would have a simple regression problem.
Because of the censoring we use the EM algorithm to first estimate where the censored values
actually are (the E-step) and then fit the model to the augmented data set (the M—step). Re—
ordering the data so that the first m values are uncensored, and denoting by Z; the augmented
data values, we have the augmented log-likelihood (or log—posterior with a flat prior):

m n

log(L(0|V, Z)) = —nlogo — Y (t; — Bo — rvi)*[20” — Y (Zi — Bo — Pivi)*/20%  (5.15)

=1 i=m+1

The E-step requires us to find expectations of P(Z;|5, 01,0, c;) where ¢; denotes the censored
time. Unconditionally on the censoring, the distribution of each Z; is normal, so the conditioning
is a normal probability, conditioned on Z; > ¢;. Thus,

1 & 1 "
Q= —nlogo — ﬁZ(ti — Bo — Bivi)® — 292 > [B(Z|Bo, 1,0, Zi > ci)
i=1 i=mt1

— 2(Bo + B1v:i)E(Zi|Bo, B, 0, Zi > ¢i) + (Bo + Bivi)?].

Furthermore, it is fairly straightforward to show that

E(Z;|Bo, B1,0,Z; > ¢;) = pi +oH (%) (5.16)



5.4. CENSORED REGRESSION EXAMPLE

3.6 3.8

3.4

3.2

log (failure time)

3.0

2.8

[ Je)

21 2.2

Figure 5.1: Censored regression data
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and

C; — ;
E(Z%\Bo, B1,0, Zi > ¢i) :M%+02+U(Ci+ui)H( MZ) (5.17)

where p; = o + Brvi and H(z) = ¢(z)/{1 — ®(=z)}.

It follows that maximizing ) amounts to solving the usual normal equations for 8y and (1, but
that maximization with respect to ¢ requires solution of the equation:

Yo (ti — [io — Brv;)? n
g

i1l E(Z2Bo, B1,0, Zi > ¢;) — 2(Bo + B1vi) E(Zi| o, Br, 0, Zi > ¢i) + (Bo + Brvi)?]
0—4

Sty = o S 1+ (%) (%)
Oi4+1 = = J + (5'18)

n n

where /Lé- = ﬁ(i) + ﬁ{vj.

This might seem complicated, but all that is going on is:

1. Fitting of regression line by least squares;

2. Maximum likelihood estimate of error variance (allowing for uncertainty in censored ob-
servations);

3. Updating of estimates of censored data on basis of fitted model;

4. Tteration of these steps.
This is easily implemented in Splus with the following code:

em.reg_function(x, n)
{
a <- Im(x[, 2] ~ x[, 11)
b <- coef(a)
sig <- sqrt(deviance(a)/38)
cat(b, sig, fill = T)
for(i in 1:n) {
mu <- b[1] + b[2] * x[, 1]
ez <- mu + sig * em.h((x[, 2] - mu)/sig)
ez[1:17] <- x[1:17, 2]
a <- 1m(ez ~ x[, 11)
b <- coef(a)
ss <- sum((ez[1:17] - mu[1:17])"2)/40
ss <- ss + (sig"2 * sum(((x[18:40, 2] - mu[18:40])/sig)
* em.h((x[18:40, 2] - mu[18:40])/sig) + 1))/40
sig <- sqrt(ss)
cat(b, sig, fill = T)
abline(a, col = i)
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and the function

em.h_function(x)

{
dnorm(x)/(1 - pnorm(x))
}

This produced the output:

-4.9305 3.7470 0.1572
-5.2601 3.9262 0.1998
-5.5112 4.0558 0.2173
-5.6784 4.1398 0.2288
-5.7854 4.1933 0.2371
-5.8552 4.2284 0.2431
-5.9023 4.2521 0.2474
-5.9350 4.2686 0.2506
-5.95681 4.2803 0.2529
-5.9747 4.2887 0.2545
-5.9867 4.2947 0.2558

and the sequence of linear fits as shown in Figure 5.2. Note that the initial fit was made as if
the data were not censored, so the difference between the first and final fits gives an indication
of the necessity of taking the censoring into account.

3.8

3.6

3.4

log (failure time)
3.2

3.0

2.8

Figure 5.2: EM iterates to regression fit of censored data
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5.5 Convergence

Every iteration of an EM algorithm results in a value of § with higher likelihood. Furthermore,
it can be shown that if these iterates converge, then they converge to a stationary point of the
likelihood function, though this is not necessarily a global maximum. Furthermore, the rate
of convergence can be very slow, suggesting that alternative procedures, or techniques which
accelerate the convergence, may often be appropriate.

5.6 Standard errors

As usual, calculation of standard errors requires calculation of the inverse Hessian matrix:

4 logp(B)Y)] ™"
_ oY) 5.19
[ d6;d9; (5.19)

evaluated at the mode 6*. In missing data problems this may be difficult to evaluate directly. It
is possible however to exploit the structure of the EM algorithm in simplifying this calculation.
This uses what is known as the ‘missing information principle’:

Observed information = Complete information — Missing Information

Explicitly, this takes the form:

_logp(OY) _ [ #Q0.9)] [ dH(0,9) (5.20)
deidﬂj N daidej $—=0 doidej =0 .
where
H(0,4) = [ 1og(p(Z16,Y)p(214.Y)dZ (5.21)

Without the missing data, the first term on the right hand—side of (5.20) would be the Hes-
sian; the second term compensates for the missing information. The proof of (5.20) is almost
immediate from the representation

logp(0)Y) = logp(0|Y, Z) — logp(Z]Y,0) + C (5.22)

which is essentially a statement of Bayes’ theorem. Application of the missing information
principle is simplified by using the result:

_H,9) _ . [dlogp(ﬂlY, Z)]

d6,d6; df (5.23)

a result which mirrors the corresponding result in the classical (full data) theory. We can
illustrate this with the genetic linkage example. In that case

d92 0*2 (1 _ 9*)2
29.83 38

0.6268% T (1 0.6268)2
= 435.3

B ldQQ(O, ¢)] E(X5|0%,Y) + x5 L B3t
0*
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This is the information had the augmented data been genuine data. Now, we also have:

dlogp(0]Y,Z) _zo+z5 33+ 34

do T 1-0 (5:24)
so that
dlogp(0]Y, Z) Var(X»|60%)
Var T] - ez
6 2 1
= 1% <2+9*> (2+0*> 62
= 22.71/0.6268% = 57.8
Thus 9
1 Y
_dongQ(eH — 435.3 — B7.8 = 377.5 (5.25)

and the standard error of 6* is \/(1/377.5) = 0.05.

5.7 Monte—Carlo EM algorithm

In some situations, direct evaluation of the Q function, or equivalently, estimation of the aug-
mented data as expected values given the current model estimate and complete data, is difficult.
In such situations we can employ a Monte—Carlo step to approximate Q. Thus, the E-Step of
the EM algorithm is replaced with

1. Simulate 21,2, ..., 2z, from P(Z|Y,§)

2. Let Qi+1 = % Yje1log L(6|z;,Y)

Thus, the exact expectation required for () is replaced by a Monte—Carlo estimate of the integral.

The choice of m here will affect the accuracy of the final result. One approach therefore is
to initiate the algorithm with a small value of m, but then to increase m later to minimize
variability due to the error in the Monte—Carlo integration.

We can apply this again to the genetic linkage example. There we had
Q(6,6") = [E(X2|6°,Y) + z5)log(8) + (3 + z4) log(1 — 6) (5.26)

where z3|0°,Y ~ Bin(125, @%)' So, we simply generate z1, 29, ..., 2z, from Bin(125, gﬁ—?), and

take the mean of these realisations, z, as the approximation to the expectation in (5.26). Then
the M—Step continues as before with
gitt — Tt (5.27)
Z+x3+ T4+ 25

This is implemented in Splus with the following code:

em.mc_function(x, m, th.init)
{
th <- th.init
for(i in 1:length(m)) {
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p <- th/(2 + th)

z <- rbinom(m[i], 125, p)

me <- mean(z)

th <- (me + x[4])/(me + x[2] + x[3] + x[4])
cat(i, round(th, 5), fill = T)

where x is the data, m is a vector of the values of m we choose for each step in the iteration, and
th.init is an initial value for 6. Choosing m = 10 for the first 8 iterations, and m = 1000 for
the next 8, and with an initial value of 8 = (0.5 we obtained:

.61224
.62227
.62745
.62488
.62927
.62076
.62854
.62672
.62734
.627
.62747
.62706
.62685
.62799
.62736
.62703

O©CO~NODdWN -
[eNeoNeoNoNeoNoNoNoNe]

[
w
[eNeoNeoNoNeNo N

Note that monitoring convergence is more difficult in this case due to the inherent variation in
the Monte—Carlo integrals.



