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Abstract

The estimation of data transformation is very useful to yield response variables
satisfying closely a normal theory linear model. Generalized linear models enable
the fitting of models to a wide range of data types. These models are based on
exponential dispersion models. We propose a new class of transformed generalized
linear models to extend the Box and Cox models and the generalized linear models.
We use the generalized linear model framework to fit these models and discuss
maximum likelihood estimation and inference. We give a simple formula to estimate
the parameter that index the transformation of the response variable for a subclass
of models. We also give a simple formula to estimate the rth moment of the original
dependent variable. We explore the possibility of using these models to time series
data to extend the generalized autoregressive moving average models discussed by
Benjamin et al. (2003). The usefulness of these models is illustrated in a simulation
study and in applications to three real data sets.

Key words: Dispersion parameter, Exponential family, Family of transformations,
Generalized linear model, Generalized ARMA model, Likelihood ratio, Profile
likelihood.

1 Introduction

The use of transformations in regression analysis is very common and
may be helpful when the original model does not satisfy the usual assump-
tions. The power transformation family proposed by Box and Cox (1964) is
often used for transforming to a normal linear model. The Box and Cox models
add useful tools for applied statistics, pertaining to the separable aspects of
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variance homogeneity, model additivity and normal distribution. This article
considers the problem of extending the Box-Cox models to a non-Gaussian
framework with heteroskedasticity and a possible non-linear function of re-
gression parameters. We include some well-known models such as the Box
and Cox (1964) and the generalized linear models, first introduced by Nelder
and Wedderburn (1972), as special cases. We work with a general parametric
family of transformations from the response variable Y to

Y (λ) = Λ(Y, λ), (1)

where λ is a scalar parameter defining a particular transformation. We further
assume that for each λ, Y (λ) is a monotonic function of Y . Usually, we consider
the Box and Cox (1964) power transformation, Y (λ) = (Y λ − 1)/λ when λ 6=
0 or Y (λ) = log(Y ) when λ = 0, and assume that there is a λ value for
the response variable such that Y (λ) follows a linear regression model µ =
Xβ with normal error and constant variance. In practice this will rarely be
true. It is frequently assumed in connection with the power transformation
that Y is positive; if Y could be negative many values of λ would be clearly
inadmissible. Manly (1976) proposed the exponential transformation to be
used with negative Y ′s of the form: Y (λ) = (eλY − 1)/λ when λ 6= 0 or
Y (λ) = Y when λ = 0. This transformation seems to be effective at turning
skew unimodal distributions into nearly symmetric normal-like distributions.
Alternative transformations to the power transformation are reviewed by Sakia
(1992).

The Box-Cox type of power transformations have generated a great deal
of interest, both in theoretical work and in practical applications. Inference
procedures for the regression coefficients and transformation parameter under
this model setting have been studied extensively. Clearly not all data could be
power-transformed to normal. While Draper and Cox (1969) have shown that
the estimation of λ is fairly robust to non-normality as long as the variable has
a reasonably symmetric distribution, this may not be the case when skewness
is encoutered. They studied this problem and conclude in one example that if
the raw data follow an exponential distribution, values of λ close to its esti-
mate will, in fact, yield transformed distributions which are, in fact, Weibull
but they look very like symmetric distributions. Then, power transformations
can be useful even in situations where they cannot produce normality exactly.
Bickel and Doksum (1981) studied the joint estimation of (λ, β) and proved
that the asymptotic marginal (unconditional) variance of the maximum like-
lihood estimate (MLE) of β could be inflated by a very large factor over the
conditional variance for fixed λ. Although there does not appear to be any
definite result, most researchers agree that while there is an effect on not
knowing the true value of λ, its cost may not be large enough to discredit
the conventional application based on conditioning. Lawrence (1987) gave an
expression for the estimated variance of the MLE of λ.

Guerrero and Johnson (1982) suggested a power transformation applied
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to the odds ratio to generalize the logistic model. For continuous proportions
their transformation is defined by using log{Y/(1−Y )} in place of Y in the Box
and Cox transformation. Another transformation proposed by Aranda-Ordaz
(1981) for continuous proportions is defined by

Y (λ) =
2 {Y λ − (1 − Y )λ}

λ {Y λ + (1 − Y )λ}
,

which reduces to the logistic transformation when λ = 0 and to the linear
transformation when λ = 1.

Generalized linear models (GLMs) are based on distributions that are
exponential dispersion models, discussed in great detail in Jorgensen (1997).
GLMs extend the normal theory linear model, include a general algorithm
for computing MLEs and enable the fitting of different types of models to a
wide range of data types. Although the power transformation has been widely
used, one thing is clear: that seldom does this transformation fulfill the basic
assumptions of linearity, normality and homoscedasticity simultaneously. This
transformation has found more practical utility in the empirical determination
of functional relationships in a variety of fields, especially in econometrics. In
view of this, we work with a general family of monotonic transformations
(1) (which is data based) and combine the idea of transforming the response
variable with the framework of the GLM.

Transformed generalized linear models (TGLMs) assume that there exists

some value of λ such that the transformed random variables Y
(λ)
1 , ..., Y (λ)

n

can be treated as independently distributed following the basic assumptions
of the GLMs. The exactness of these assumptions may not be important in
the applications. We therefore consider the possibility of a heteroscedastic
variance, a more general family for the distribution of the response variable
and a nonlinear function for the regression parameters. The optimal value of
λ may lead to a more nearly GLM fitted to the transformed data. The strong
assumptions within the Box-Cox models that the power transformation yields
a more nearly linear model, stabilizing the error variance with a normally
distributed error, are then relaxed.

In Section 2 we define the TGLMs and give a summary of key results.
The maximum likelihood estimation is discussed in Section 3 and some spe-
cial models are considered in Section 4. In Section 5 we discuss the model
inference. In Section 6 we consider the problem of extending our approach to
deal with non-Gaussian time series models by proposing an extension of the
generalized autoregressive moving average (GARMA) models defined by Ben-
jamin et al. (2003). In Section 7, we present simulation studies to illustrate
the methodology of fitting the TGLMs. In Section 8, we analyze three real
data sets. The article ends with some concluding remarks in Section 9.

2 Model Definition

Let y = (y1, . . . , yn)T be the vector of observations and by using (1) we

obtain the transformed observations y(λ) = (y
(λ)
1 , . . . , y(λ)

n )T . Assume the trans-
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formed random variables Y
(λ)
1 , . . . , Y (λ)

n in Y (λ) be independent and each Y
(λ)
i

following a continuous exponential dispersion model with probability density
function (with respect to Lebesgue measure) of the form

π(y
(λ)
i ; θi, φ) = exp

[
1

φ

{
y

(λ)
i θi − b(θi)

}
+ c(y

(λ)
i , φ)

]
, (2)

where b(x) and c(x, φ) are known appropriate functions. Some of the most
useful statistical distributions are within form (2). The parameter φ is called
the dispersion parameter and is the same for all observations, although pos-
sibly unknown. The idea of an exponential dispersion model goes back to
Tweedie (1947), who noticed many of the important mathematical properties
and special cases of exponential dispersion models. A systematic study of the
properties of the exponential dispersion models was presented by Jorgensen
(1997).

We do not consider members of (2) which are discrete distributions such
as Poisson, binomial, negative binomial and compound Poisson distributions,
but we can work with continuous proportions. The mean and variance of Y

(λ)
i

are, respectively, E(Y
(λ)
i ) = µi = db(θi)/dθi and V ar(Y

(λ)
i ) = φVi, where V =

V (µ) = dµ/dθ is the variance function. The parameter θ =
∫
V −1dµ = q(µ)

is a known one-to-one function of µ. The exponential dispersion model (2)
is uniquely characterized by its variance function V , which plays a key role
in the study of its mathematical properties and in estimation. For gamma
models, the dispersion parameter φ is the reciprocal of the index; for nor-
mal and inverse Gaussian models, φ is the variance and V ar(Y

(λ)
i )/E(Y

(λ)
i )3,

respectively. These are the most important continuous models in (2).
Our aim is to make a parametric transformation Y (λ) of a response vari-

able Y so that Y (λ) satisfies the usual assumptions of the GLMs. Our gen-
eralized form (1) is used to determine the specific form within a particular
class of transformation functions which is optimal by reference to a maximum
likelihood criterion. We define the TGLM by the families of transformations
(1) and distributions (2) and the systematic component

g(µ) = η = Xβ, (3)

where g(·) is a known one-to-one continuously twice-differentiable function,
X is a specified n× p model matrix of full rank p < n and β = (β1, . . . , βp)

T

is a set of unknown linear parameters to be estimated. The link function is
assumed to be monotonic and differentiable. The parameters of the TGLMs
are then the vector β and the scalars φ and λ. We have p + 2 parameters
to be estimated. The TGLM formalizes the notion that a certain form of the
GLM would be appropriate for some transformation of the response, where
the transformation necessary to achieve the GLM form is not known before
the data are collected. The aim of the transformation (1) is to ensure that
the usual assumptions (2) and (3) for the GLMs hold for the transformed
variable Y (λ). To fit the transformed gamma and inverse Gaussian models to
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some types of data, it is sometimes necessary to consider λ within some limit
values to guarantee that y(λ) is positive.

We may thus summarize the TGLMs in the form of three components
of structural importance: a general family of transformations, a more general
form for the distribution of the transformed response and a possible nonlinear
link function for the regression parameters. TGLMs are then an extension of
the GLMs and have some important special cases: the Box and Cox models for
which the transformation (1) is the Box and Cox power family, the distribution
in (2) is normal and the systematic component is µ = η = Xβ; the classical
GLMs for which the transformation function is independent of λ given by
Λ(Y, λ) = Y ; and the power generalized linear models (PGLMs) defined here
when (1) is the Box-Cox transformation or the simple power transformation
Y (λ) = Y λ in addition to the equations (2) and (3).

The function c(x, φ) plays a fundamental role in the process of fitting the
TGLMs. It does not have simple closed-form expressions for several exponen-
tial dispersion models; see, the generalized hyperbolic secant (GHS) model
and the continuous exponential dispersion models with power variance func-
tions discussed by Jorgensen (1997). However, when (2) is a two-parameter
full exponential model with canonical parameters 1/φ and θ/φ, c(x, φ) has the
following decomposition

c(x, φ) =
1

φ
a(x) + d(φ) + d1(x). (4)

Equation (4) holds for normal, gamma and inverse Gaussian models but does
not hold in general for exponential dispersion models.

3 Model Fitting

We observe the model matrix X and the raw data y and assume that the
transformed response Y (λ) for some unknown transformation parameter λ in
(1) satisfies the usual assumptions (2) and (3) for the GLMs. The model pa-
rameters are then (λ, β, φ). The main objective in the analysis of the TGLMs
is to make likelihood inference on the model parameters. The maximum like-
lihood method is used since it is conceptually easy although the profile log-
likelihood for λ could be difficult to compute in some cases.

Let J(λ, y) be the Jacobian of the transformation from Y to Y (λ). The
log-likelihood for the model parameters can be expressed in terms of the vector
of transformed observations y(λ) = (y

(λ)
1 , . . . , y(λ)

n )T by

l(β, φ, λ) =
1

φ

n∑

i=1

{
y

(λ)
i θi − b(θi)

}
+

n∑

i=1

[
c(y

(λ)
i , φ) + log {J(λ, yi)}

]
, (5)

where

J(λ, yi) =

∣∣∣∣∣
dΛ(yi, λ)

dyi

∣∣∣∣∣ .

For maximizing the log-likelihood (5), we assume first that λ is fixed and
then obtain the likelihood equations for estimating β and φ. The vector β can
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be estimated without knowledge of φ. Let β̂(λ), η̂(λ) = X β̂(λ), µ̂(λ) = g−1(η̂(λ))
and φ̂(λ) be the MLEs of β, η, µ and φ, respectively, for given λ. The estimate
β̂(λ) can be obtained easily from the fitting of the GLM (2)-(3) to y(λ) by
iteratively reweighted least squares. The iteration is

β̂(λ) = (XT Ŵ (λ)X)−1XT Ŵ (λ)ẑ(λ), (6)

where W = diag{w1, . . . , wn} is a diagonal matrix with wi = V −1
i (dµi/dηi)

2

and z(λ) = (z
(λ)
1 , . . . , z(λ)

n )T is the working vector with components

z
(λ)
i = η

(λ)
i + (y

(λ)
i − µ

(λ)
i )

(
dηi

dµi

)(λ)

.

An initial approximation β̂(λ)(1) is used to evaluate z(λ) and W (λ) from
which equation (6) can be used to obtain the next estimate β̂(λ)(2). This new
value can update z(λ) and W (λ), and so the iterations continue until conver-
gence is observed.

Estimation of the dispersion parameter φ is a more difficult problem than
the estimation of β and the complexity depends on the functional form of
c(x, φ). In principle, φ could also be estimated by maximum likelihood al-
though there may be practical difficulties associated with this for some mem-
bers of (2). The MLE φ̂(λ) of φ for fixed λ is

φ̂2
n∑

i=1

dc(y
(λ)
i , φ)

dφ

∣∣∣∣∣∣
φ=φ̂

=
n∑

i=1

{
y

(λ)
i θ̂

(λ)
i − b(θ̂

(λ)
i )

}
, (7)

where θ̂(λ) = q(g−1(Xβ̂(λ))).
Given the variance function V (x) we can easily obtain q(x) =

∫
V (x)−1dx

and b(x) =
∫
q−1(x)dx, and then the deviance D(λ), conditioning on λ, of the

TGLM defined as twice the difference of the maximum log-likelihood corre-
sponding to the saturated model and the maximum of the log-likelihood of
the model under investigation. This statistic for given λ depends only on the
data and not on any unknown parameters and can be written in the form

D(λ) = 2
n∑

i=1

D
(λ)
i (y

(λ)
i , µ̂i

(λ)), (8)

where

D
(λ)
i (y

(λ)
i , µ̂i

(λ)) = e(y
(λ)
i ) −

{
y

(λ)
i q(µ̂

(λ)
i ) − b(q(µ̂

(λ)
i ))

}
, (9)

with e(x) = x q(x)−b(q(x)), is the deviance component for the ith observation.
Examples of deviance functions for some exponential dispersion models are
given by Jorgensen (1997).

The MLE φ̂(λ) is a function of the deviance (8) of the model. Using (7)
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we obtain

φ̂(λ)2
n∑

i=1

dc(y
(λ)
i , φ)

dφ

∣∣∣∣∣∣
φ=φ̂

=
n∑

i=1

e(y
(λ)
i ) −

D(λ)

2
. (10)

Equation (10) is in general nonlinear except for the normal and inverse
Gaussian models and requires the use of a nonlinear numerical algorithm for
estimating φ. Substituting the MLEs β̂(λ) and φ̂(λ) in (5) yields the profile
log-likelihood for λ

lP (λ) =
1

φ̂(λ)

n∑

i=1

{
y

(λ)
i θ̂i

(λ)
− b(θ̂

(λ)
i )

}
+

n∑

i=1

[
c(y

(λ)
i , φ̂(λ)) + log {J(λ, yi)}

]
. (11)

The resulting expression lP (λ) in terms of the deviance of the TGLM is

lP (λ) =
1

φ̂(λ)

{
n∑

i=1

e(y
(λ)
i ) −

D(λ)

2

}
+

n∑

i=1

[
c(y

(λ)
i , φ̂(λ)) + log {J(λ, yi)}

]
. (12)

To operationalize equations (10) and (12) for any TGLM we need the
functions e(x) and c(x, φ), the deviance D(λ) and the Jacobian. The plot of
the profile log-likelihood lP (λ) in (12) against λ for a trial series of values
determines numerically the value of the MLE λ̂. Once the MLE λ̂ is obtained
from the plot, it can be substituted in the algorithm (6) and in the equation

(10) to produce the unconditional estimates β̂ = β̂
ˆ(λ) and φ̂ = φ̂

ˆ(λ). The
process of estimating β, φ and λ can be carried out by standard statistical
software such as MATLAB, S-PLUS, R and SAS.

For some exponential dispersion models, the MLE of the dispersion pa-
rameter in (10) could be very complicated and we can use a method of mo-
ments estimator to obtain a consistent estimate of φ directly from the MLE
β̂(λ). We have the Pearson estimate of φ

φ̃(λ) =
1

n− p

n∑

i=1

(y
(λ)
i − µ̂i

(λ))2

V (µ̂i
(λ))

.

This estimate could be inserted into (12) to produce a modified profile
log-likelihood for λ which is maximized in the usual way. Another simple
alternative estimate for φ which could be used in (12) is the deviance based
estimate obtained from φ̃(λ) = D(λ)/(n− p) on the grounds that the expected
value of D(λ)/φ is approximately n − p. For transformed gamma models, the
MLE of φ should be preferred.

For two-parameter full exponential family distributions, the decomposi-
tion of the function c(x, φ) in (4) and (10) yields the equation for φ̂(λ)

n φ̂(λ)(2)d′(φ̂(λ)) =
n∑

i=1

t(y
(λ)
i ) −

D(λ)

2
, (13)
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where t(x) = x q(x) − b(q(x)) + a(x). Now using (7) in (11), gives

lP (λ) = n v(φ̂(λ)) +
n∑

i=1

[
d1(y

(λ)
i ) + log {J(λ, yi)}

]
, (14)

where v(x) = xd′(x) + d(x). It is very easy to work with the equations (13)
and (14). In Table 1 we give the functions d(x), t(x), v(x) and d1(x) for some
TGLMs which enable us to compute φ̂(λ) in (13) and the profile log-likelihood
(14). For transformed normal models, (14) is identical to the equation (8)
given by Box and Cox (1964) and can be viewed as a generalization of this
equation for some other continuous models.

Table 1: Some Special Transformed Models

Model d(x) t(x) v(x) d1(x)

Normal −
1

2
log (x) 0 −

1

2
{1+ log (x)} −

1

2
log (2π)

Gamma −
log(x)

x
− log Γ(

1

x
) −1

1

x
Ψ(

1

x
)−

1

x
− log Γ(

1

x
) − log (x)

I.G. −
1

2
log (x) 0 −

1

2
{1+ log (x)} −

1

2
log (2πx3)

We now estimate the mean of the untransformed dependent variable Yi

by using a method analogous to the small-θ method given in Draper and Cox
(1969). When λ 6= 0 we can write

Y = (1 + λµ)1/λ {1 + θ(Y λ − µ)}1/λ,

where θ = λ
1+λµ

. From the binomial expansion we obtain

{1 + θ(Y λ − µ)}1/λ = 1 +
∞∑

i=1

θi

i!

i−1∏

j=0

(
1

λ
− j)(Y λ − µ)i.

We also have

E(Y ) = (1 + λµ)1/λ

{
1 +

∞∑

i=2

ai µi

i! (1 + λµ)i

}
, (15)

where ai =
∏i−1

j=0(1− jλ) and µi is the ith central moment of Y (λ). The central
moments of the exponential dispersion model are easily obtained from the
recurrence relation of their cumulants. We have µ2 = φV , µ3 = φ2V V (1),
µ4 = φ2(φV (2) +3)V (2) +φ3V V (1)2, µ5 = φ4{V 3V (3) +4V 2V (1)V (2) +V V (1)3 +
(10φ)−1V 2V (1)}, and so on, where V (r) = drV/dµr. Equation (15) generalizes
the expansion given by Pankratz and Dudley (1987) for the non-biasing factor
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obtained when λ−1 is a positive integer and the transformed data is normal
(V = 1). If we consider only the first term in (15) we obtain a generalization
of the expressions given in Taylor (1986) and Guerrero (1993)

E(Y ) = (1 + λµ)1/λ

{
1 +

(1 − λ)φV

2 (1 + λµ)2

}
,

which are valid only for transformed normal data. The correction factor in
braces is larger than one if λ < 1 and less than one if λ > 1.

Further, we can obtain the rth ordinary moment of Y by expanding the
binomial {1 + θ(Y λ − µ)}r/λ in the same way. We have

E(Y r) = (1 + λµ)r/λ



1 +

∞∑

i=2

b
(r)
i µi

i! (1 + λµ)i



 , (16)

where b
(r)
i =

∏i−1
j=0(r− jλ). Clearly, b

(1)
i = ai. Combining (16) and (15) we can

obtain all cumulants of Y up to any order of (1 + λµ)−v for v ≥ 2. In special,
the variance of Y to order (1 + λµ)−4 is given by

V ar(Y ) = (1 + λµ)2/λ

[
µ2

(1 + λµ)2
+

(1 − λ)µ3

(1 + λµ)3

+
(1 − λ){(7 − 11λ)µ4 − 3(1 − λ)µ2

2}

12 (1 + λµ)4

]
.

An obvious estimate of E(Y r) follows by using the MLEs of the parame-
ters λ, µ and φ. The adequacy of this expression in terms of λ and φ should
be investigated in Monte Carlo simulations. When λ = 0 we can obtain from
E(Y r) = erµE{er (Y (0)−µ)}

E(Y r) = e rµ

{
1 +

∞∑

i=2

riµi

i!

}
.

For well fitted models, the quantities µ̂i for i > 2 will usually be small.
The variance of Y follows as

V ar(Y ) = e2µ




∞∑

i=2

{
(2i − 2)µi

i!
+
µ2

i

i!2

}
− 2

∞∑

i6=j=2

µi µj

i! j!


 .

For a general transformation (1) let Y = F (Y (λ), λ) be its inverse. By
expanding F in Taylor series we obtain

E(Y ) = F (µ, λ) +
∞∑

i=2

F (i)(µ, λ)µi

i!
,

where F (i)(µ, λ) is the ith derivative of F (µ, λ) with respect to µ. Analogously,
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the rth moment of Y follows from

E(Y r) = F (µ, λ)r +
∞∑

i=2

G(i)(µ, λ)µi

i!
,

where G(i)(µ, λ) is the ith derivative of G(µ, λ) = F (µ, λ)r with respect to µ.

4 Special Models

For transformed normal and inverse Gaussian models, (13) yields

φ̂(λ) =
D(λ)

n
, (17)

and the profile log-likelihood for λ from (14) reduces to

lP (λ) = −
n

2
log(φ̂(λ)) −

n

2
{1 + log(2π)} +

n∑

i=1

log




J(λ, yi)√
V (y

(λ)
i )



 . (18)

To maximize the profile log-likelihood (18), we only need to find a λ value
that minimizes the ratio below

λ̂ = arg min
λ

{
D(λ)Ṽ (y(λ))

}1/2

J̃(λ, y)
, (19)

where Ṽ (y(λ)) and J̃(λ, y) are the geometric means of V (y
(λ)
i ) and J(λ, yi)

for i = 1, · · · , n, respectively. For PGLMs with the Box-Cox traansformation,
J̃(λ, y) = ỹλ−1, where ỹ is the geometric mean of the original data and, in
particular, for the Box-Cox models (V = 1), the equation (19) yields a known
result given by Yang and Abeysinghe (2002).

For transformed gamma models, (13) reduces to a result given by Cordeiro
and McCullagh (1991)

log
(
φ̂(λ)−1

)
− Ψ

(
φ̂(λ)−1

)
=
D(λ)

2n
. (20)

An approximate solution for φ̂(λ) in (20) for small φ is

φ̂(λ) ≈
2D(λ)

n



1 +

(
1 +

2D(λ)

3n

)1/2




.

The sum of the first two terms in (18) is substituted by nh(φ̂), where

h(φ) =
1

φ

{
Ψ
(
φ−1

)
− 1 − φ log Γ

(
φ−1

)}
.
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When φ is sufficiently small, we can obtain to order O(φ3)

h(φ) = −
1

2
−
φ

6
−

1

2
log(2π) −

1

2
log(φ),

which gives

lP (λ) = −
n

2

{
log(φ̂) +

φ̂

3

}
−
n

2
{1 + log(2π)} +

n∑

i=1

log




J(λ, yi)√
V (y

(λ)
i )



 . (21)

Clearly, (21) converges to the form (18) when φ → 0. In fact, the profile
log-likelihood for λ for all TGLMs have the same form (18) for very small
dispersion parameter values. This fact follows since, when φ tends to zero, the
exponential dispersion model (2) can be written in the limit as

π(y
(λ)
i ; θi, φ) ≈

{
2πφV (y

(λ)
i )

}−1/2
exp




−D

(λ)
i (y

(λ)
i , µi)

2φ



 ,

where D
(λ)
i (y

(λ)
i , µi) is the ith true deviance component that comes from (9).

For this asymptotic case, φ̂(λ) is just obtained from (17). This expression can
be justified to some extent as a saddlepoint approximation for (2) provided
that φ and all higher-order cumulants are sufficiently small and is exact only
for the normal and inverse Gaussian models. It is clear that the equation (19)
for the MLE of λ holds for any TGLM with very small dispersion parameter.

5 Model Inference

We essentially make inference about β and φ conditioning on λ = λ̂.
Then, the estimated λ̂ is viewed as known, and confidence intervals for the
parameters β, η, µ and φ, hypothesis tests, analysis of the deviance, residuals
and diagnostics can be carried out routinely in the usual context of GLMs
from the fitted values β̂, η̂, µ̂ and φ̂. The approximate covariance matrix
of β̂ is given by φ (XT ŴX)−1. The approximate variance of φ̂ is V ar(φ̂) =
n−1 φ4 {ψ′(φ−1) − φ}

−1
for gamma models and V ar(φ̂) = 2φ2/n for normal

and inverse Gaussian models, where ψ′ is the trigamma function.
It is frequently of interest to test whether the parameter of the trans-

formation family (1) conforms to a hypothesized value. We can easily obtain
from (12) a likelihood ratio (LR) statistic w = 2 {lP (λ̂)− lP (λ(0))} for testing
λ = λ(0) which has the asymptotic χ2

1 distribution and construct a large sample
confidence interval for λ by inverting the LR test. Approximate confidence lim-
its for λ can then be readily found from {λ | lP (λ) > lP (λ̂)− 1

2
χ2

1(α)} and the
accuracy of this approximation follows from the fact that Pr {w ≥ χ2

1(α)} =
α + O(n−1/2). We can also work with sign(λ̂ − λ(0))w1/2 to make inference
about λ, which is asymptotically standard normal with absolute error typically
of order n−1/2.

The scaled deviance in TGLMs is defined conditioning on λ̂ as twice the
difference between the log-likelihood achieved under the model and the max-
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imum attainable value, namely S(λ̂) = φ−1D(λ̂), and depends on a known or
consistently estimated dispersion parameter φ, and in either case we can take
S(λ̂) as distributed as χ2

n−p approximately. However, the chi-square approxi-
mation may not be effective because the dimension of the saturated model is
n and the usual asymptotic argument does not apply. If we are testing two
nested TGLMs, the χ2 distribution may be a good approximation for the dif-
ference of scaled deviances. Indeed, suppose that XA (n×pA) and XB (n×pB)
represent two different choices of X, and that they are nested XA < XB say,
meaning that all columns ofXA are contained in the linear span of the columns
of XB. After fitting the two models conditioning on λ̂, the scaled deviances

are S
(λ̂)
A and S

(λ̂)
B . The LR statistic w(λ̂) = S

(λ̂)
A − S

(λ̂)
B to test XA against XB

has an asymptotic χ2 distribution with pB − pA degrees of freedom with an
error of order n−1. Consider now a set J = A, · · · , I of arbitrary TGLMs, the
model J with log-likelihood l̂J obtained by maximizing (5) with respect to all
pJ + 2 parameters, namely pJ parameters in the systematic component and
the scalar parameters φ and λ. Evaluation and selection among the models A,
..., I may be based on Akaike information criterion (AIC) defined for the Jth
TGLM by AICJ = 2 (pJ + 2 − l̂J).

6 TGARMA Models

In this section, we work with the family of transformations (1) and incor-
porate the idea of transforming the response variable to follow the framework
of the GARMA model introduced by Benjamin et al. (2003). For time series
data {yt, t = 1, . . . , n} conditional rather than marginal distributions are mod-
eled. We assume that the conditional distribution of the transformed response
{Y

(λ)
t , t = 1, . . . , n} given the past history of the process belongs to the con-

tinuous exponential dispersion model (2). The conditional density function

of the transformed response Y
(λ)
t is defined given the set Ht = {xt, . . . , x1,

y
(λ)
t−1, . . . , y

(λ)
1 , µt−1, . . . , µ1} that represents past values of the transformed se-

ries and their means and past and possibly present values (when known) of
the covariates, meaning all that is known except for λ to the observer at time
t, where xt is a specified 1 ×m (m < n) vector of explanatory variable. The

conditional mean µt and variance φVt of Y
(λ)
t are expressed as in Section 2,

but we take the systematic component with an extra part τt, as proposed by
Benjamin et al. (2003), that includes additively autoregressive moving average
(ARMA) terms by conditioning on the first r transformed observations, where
r = max{p, q}. We have

g(µt) = ηt = xtβ +
p∑

j=1

ϕj

{
g(y

(λ)
t−j) − xt−jβ

}
+

q∑

j=1

ψj

{
g(y

(λ)
t−j) − ηt−j

}
, (22)

for t = r + 1, . . . , n, where β = (β1, . . . , βm)T . Equations (1), (2) and (22)
define the TGARMA (p, q, λ) model. The aim of the transformation (1) is to
ensure that the usual assumptions for GARMA models hold for the trans-
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formed series Y
(λ)
t . GARMA model is a special case of the TGARMA model

when (1) is Λ(Yt) = Yt independent of λ. The power GARMA model, termed
here PGARMA model, is another special case when Λ(Yt) is the Box-Cox
transformation or the simple power family.

We can write the systematic component (22) of the TGARMA model for

the observations y
(λ)
r+1, . . . , y

(λ)
n conditioning on the first r transformed observa-

tions, in matrix notation, by η = Mγ, where M = [X A B] is the local model
matrix of order (n− r)× (m+ p+ q), X is the matrix formed by the rows xt

for t = r + 1, . . . , n, γ = (βT , ϕT , ψT )T , ϕ = (ϕ1, . . . , ϕp)
T , ψ = (ψ1, . . . , ψq)

T

and the matrices A and B of orders (n− r)× p and (n− r)× q are functions
of the model parameters given by

A =




g(y(λ)
r ) − xrβ · · · g(y

(λ)
r+1−p) − xr+1−pβ

g(y
(λ)
r+1) − xr+1β · · · g(y

(λ)
r+2−p) − xr+2−pβ

...
. . .

...

g(y
(λ)
n−1) − xn−1β · · · g(y

(λ)
n−p) − xn−pβ




(n−r)×p

and

B =




g(y(λ)
r ) − ηr · · · g(y

(λ)
r+1−q) − ηr+1−q

g(y
(λ)
r+1) − ηr+1 · · · g(y

(λ)
r+2−q) − ηr+2−q

...
. . .

...

g(y
(λ)
n−1) − ηn−1 · · · g(y

(λ)
n−q) − ηn−q




(n−r)×q

.

The m + p + q + 2 parameters of the TGARMA model to be estimated
are then the vector γ and the scalars φ and λ. The main objective in the
analysis of the TGARMA models is to make partial likelihood inference on
the model parameters. The model fitting procedure described herein is valid
only for continuous time series and exclude count time, binary and categorical
time series. The log-likelihood for the parameter vector γ and scalars φ and
λ expressed in terms of the transformed series y(λ) = (y

(λ)
r+1, . . . , y

(λ)
n )T and

conditioned on the first r transformed observations, has the same form of the
equation (5), except that the sum is over y

(λ)
r+1, · · · , y

(λ)
n . As a matter of fact

we are working with a log-partial likelihood in the sense of Cox (1975), which
continues to be very important in a great many areas of applications such as
time series. For maximizing the log-likelihood (5), we proceed as in Section 3
by assuming first that the transformation parameter λ is fixed and obtain the
likelihood equations for estimating γ and φ. Let γ̂(λ), η̂(λ) = M̂ (λ)γ̂(λ) and φ̂(λ)

be the MLEs of γ, η and φ, respectively, for given λ. The MLE γ̂(λ) does not
depend on the dispersion parameter φ and can be obtained from the fitting
of the model defined by (2) and (22) to y(λ) by iteratively reweighted least
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squares

γ̂(λ) =
(
M̂ (λ)T Ŵ (λ)M̂ (λ)

)−1
M̂ (λ)T Ŵ (λ)ẑ(λ),

where the weight matrix and the working variate are W = diag {wr+1, . . . , wn}

and z(λ) = (z
(λ)
r+1, . . . , z

(λ)
n )T . For t = r + 1, . . . , n, the current estimates η̂

(λ)
t

and the adjusted means of the transformed series are easily obtained from (22)

and µ̂
(λ)
t = g−1(η̂

(λ)
t ).

The MLEs of the parameters φ and λ follow the general formulae (10)
and (12) given in Section 3. All equations presented in Sections 3 and 4 hold

here except that the sum is over y
(λ)
r+1, · · · , y

(λ)
n and n and p should be replaced

by n− r and m+ p+ q, respectively.
We can make inference about φ and the parameters in γ conditioning

on the transformed parameter λ = λ̂ as in the preceding discussion in Sec-
tion 5. Confidence intervals for the parameters γ, ηt, µt and φ, analysis of
the deviance, LR tests, residuals and diagnostics for the TGARMA models
follow the usual context of GARMA models conditioning on λ̂. The test of the
transformation parameter is performed in the same way of the TGLMs.

We can estimate the mean of the untransformed depend variable Yt by
using a Taylor series expansion of Yt = F (Y

(λ)
t , λ), where F (.) is the inverse

transformation Λ−1(.) of (1) indicated at the end of Section 3. Conditioning
on the set Ht we obtain

Ê(Yt) ≈ F (µ̂t, λ̂) +
φ̂ V̂t

2
F (2)(µ̂t, λ̂).

Additional terms can be easily included in this equation since the central
moments of Y

(λ)
t are just given in terms of the derivatives of the variance

function. For the Box-Cox power transformation F (2)(µt, λ) = (1 − λ)(1 +
λµt)

(1−2λ)/λ.

7 Simulation results

We now present simulation results comparing the performance of the algo-
rithms discussed in Sections 3 and 4 to estimate the parameters of the TGLMs.
We simulated power gamma and inverse Gaussian models with canonical link
functions by using the Box-Cox transformation with three specific values for
λ = 0, 0.5 and 2, and a two-parameter linear component η = β0 + β1 x, where
x is the explanatory variable and β0 and β1 are parameters to be estimated.
The dispersion parameter was fixed at φ = 1/10 and 1/20. Our aim is to
illustrate the use of the profile log-likelihood to estimate the transformation
parameter λ. The number of observations was set at n = 30, 60 and 90 and the
number of replications at 10, 000. The values of the covariate x were obtained
as random draws from the uniform distribution on the interval (0, 1) and were
held constant throughout the simulations with equal sample sizes. The sam-
ple means of the MLEs with their respective standard errors in parentheses
obtained out of 10, 000 simulations from the fitted power gamma and inverse
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Gaussian models are given in Tables 2 and 3, respectively.

For each combination of the true parameters given in Tables 2 and 3, the
transformed dependent variable y(λ) was generated following gamma and in-
verse Gaussian distributions and, in each simulation, we fitted both power
gamma and inverse Gaussian models to y(λ) and computed the MLEs of
β0, β1, φ and λ. Then, we repeated this process 10, 000 times. The convergence
was not achieved for all the simulated samples and then we eliminated those
samples for which the iterative fitting algorithm (6) failed to converge. The
figures in Tables 2 and 3 convey important information. First, the simulations
show that the MLEs of the TGLMs can be computed through the algorithms
described in Sections 3 and 4 with minimal effort. Second, the sample means
of the MLEs are usually much closer to the corresponding true values when
the sample size n increases according to the first-order asymptotic theory.

Table 2: Sample means and standard errors of the MLEs for the

power gamma model with true parametersβ0 = 0.3, β1 = 0.7

Gamma λ = 0 λ = 0.5 λ = 2.0

n φ = 1/10 φ = 1/20 φ = 1/10 φ = 1/20 φ = 1/10 φ = 1/20

λ̂ 0.0911

(0.2865)

0.1129

(0.3232)

0.5537

(0.4025)

0.5592

(0.4139)

2.0392

(0.4647)

2.0645

(0.7130)

30
φ̂ 0.1130

(0.0551)

0.0596

(0.0309)

0.1026

(0.0473)

0.0524

(0.0256)

0.0963

(0.0339)

0.0503

(0.0226)
β̂0 0.2807

(0.1523)

0.2742

(0.1635)

0.3096

(0.1565)

0.3064

(0.1534)

0.3102

(0.1163)

0.3175

(0.1593)
β̂1 0.6735

(0.1161)

0.6699

(0.0888)

0.6753

(0.1210)

0.6759

(0.0992)

0.6885

(0.1432)

0.6824

(0.1291)
λ̂ 0.0729

(0.2389)

0.0865

(0.2822)

0.5493

(0.3604)

0.5556

(0.3927)

2.0464

(0.6723)

2.0431

(0.6798)

60
φ̂ 0.1120

(0.0435)

0.0579

(0.0249)

0.1055

(0.04076)

0.0534

(0.0217)

0.1029

(0.0393)

0.0514

(0.0201)
β̂0 0.2814

(0.1276)

0.2788

(0.1423)

0.3045

(0.1370)

0.3044

(0.1467)

0.3199

(0.1514)

0.3187

(0.1496)
β̂1 0.6793

(0.0958)

0.6786

(0.0696)

0.6785

(0.0936)

0.6787

(0.0781)

0.6826

(0.1281)

0.6854

(0.1085)
λ̂ 0.0552

(0.1988)

0.0609

(0.2339)

0.5466

(0.3352)

0.5495

(0.3611)

2.0347

(0.6469)

2.0117

(0.6710)

90
φ̂ 0.1095

(0.0366)

0.0559

(0.0214)

0.1059

(0.0364)

0.0537

(0.0201)

0.1028

(0.0361)

0.0512

(0.0192)
β0 0.2846

(0.1050)

0.2838

(0.1166)

0.3023

(0.1276)

0.3024

(0.1335)

0.3195

(0.1489)

0.3248

(0.1514)
β1 0.6852

(0.0759)

0.6869

(0.0563)

0.6819

(0.0791)

0.6819

(0.0647)

0.6866

(0.1149)

0.6904

(0.0996)
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Table 3: Sample means and standard errors of the MLEs for the

power inverse Gaussian (I.G.) model with true parametersβ0 = 1, β1 = 5

I.G. λ = 0 λ = 0.5 λ = 2.0

n φ = 1/10 φ = 1/20 φ = 1/10 φ = 1/20 φ = 1/10 φ = 1/20

λ̂ 0.0779

(0.4467)

0.0744

(0.4530)

0.5412

(0.4628)

0.5212

(0.2861)

2.0400

(0.7460)

1.9923

(0.7436)

30
φ̂ 0.1011

(0.0302)

0.0505

(0.0150)

0.1002

(0.0288)

0.0502

(0.0137)

0.0993

(0.0280)

0.0491

(0.0138)
β̂0 1.0516

(0.6554)

1.0289

(0.5814)

1.1054

(0.6599)

1.0323

(0.3629)

1.1286

(0.6634)

1.1271

(0.57644)

β̂1
4.8434

(1.1470)

4.8724

(0.9709)

4.8691

(1.3160)

4.9473

(0.7476)

4.9754

(1.4766)

5.0785

(1.2173)
λ̂ 0.0776

(0.4415)

0.0564

(0.4379)

0.5568

(0.4516)

0.5247

(0.2834)

1.9959

(0.7293)

1.9968

(0.7250)

60
φ̂ 0.1014

(0.0225)

0.0503

(0.0114)

0.1003

(0.0210)

0.0499

(0.0098)

0.0996

(0.0203)

0.0493

(0.0102)
β̂0 1.0346

(0.6355)

1.0378

(0.5295)

1.0514

(0.5337)

1.0166

(0.3336)

1.1256

(0.5959)

1.1200

(0.5738)
β̂1 4.8501

(0.9375)

4.8957

(0.7958)

4.8948

(0.9252)

4.9547

(0.6084)

5.0645

(1.2459)

5.0556

(1.1028)
λ̂ 0.0735

(0.4245)

0.0403

(0.4274)

0.5264

(0.2825)

0.5224

(0.2834)

2.0463

(0.7237)

1.9953

(0.7177)

90
φ̂ 0.1014

(0.0194)

0.0501

(0.0097)

0.0999

(0.0161)

0.0501

(0.0082)

0.0989

(0.0190)

0.0494

(0.0085)
β̂0 1.0189

(0.5512)

1.0447

(0.5067)

1.0152

(0.3784)

1.0169

(0.3265)

1.09743

(0.5891)

1.1171

(0.5638)
β̂1 4.8704

(0.8097)

4.9328

(0.7271)

4.9688

(0.7133)

4.9589

(0.5705)

5.0167

(1.1383)

5.0537

(1.0431)

Third, the parameter λ is well estimated in all cases and the MLEs of the
other parameters of both power models are in reasonable accordance with
their corresponding true parameters for most of the cases reported. Clearly,
large sample sizes are really necessary for the MLEs to become very accurate
in terms of bias and mean square errors. Bias corrections based on the second-
order asymptotic theory can then be derived in future research to obtain
improved MLEs in TGLMs with samples of small to moderate size. We have
also considered other choices of values for the covariate x but they had little
impact on the final results.

The simulated data and all the calculations were performed by using a
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structural programming language written in Matlab. We obtain an estimated
regression tn = â n2 + b̂ log(n)/n (in seconds) for the computing time (tn) of
each simulation with the gamma model in terms of the sample size (n), where
â = 1 × 10−3 and b̂ = 15. This expression yields an average computing time
for one simulation of order O(n2). Since each cell of Table 2 was computed
from 10, 000 simulations, the average computing time for each cell of this table
is about 10n2 seconds. The same analysis was done for the inverse Gaussian
model in Table 3 showing that â = 1.8 × 10−3 and b̂ = 20. The computing
time for each cell of Table 3 is in average 18n2 seconds.

8 Applications to real data

We now apply the overall procedure of estimation described in Sections 3
and 4 to estimate the parameters of the TGLMs fitted to three real data sets.
In the first data set the response variable (y) denotes the percentile of the
number of illiterate people older than 15 years who were declared caucasian
out of the adult population and the explanatory variable (x) is the logarithm
of the family income. The data were obtained from the Brazilian Institute of
Geography and Statistics-IBGE (2002) by sampling in the 27 brazilian states.
In the second data set collected by the U.S. Navy and presented in Example
7.4 of Myers (1990), the response variable (y) is the quantity of man-hours
per month devoted to surgical services at n = 15 Naval hospitals. Here the
explanatory variable (x) is the inverse of the number of surgical cases The third
data set presented in Pinheiro (2007) gives the weights (y) and the lengths (x)
from the head to the tail of 184 rose shrimps (Farfantepenaeus brasiliensis)
sampled in the coast of the state of Rio Grande do Norte, Northeast of Brazil.

We consider power gamma models with reciprocal link function g(µ) =
µ−1 and power inverse Gaussian models with reciprocal of the square link func-
tion g(µ) = µ−2 using the Box-Cox transformation. For both power canonical
models we take g(µ) = η = β0 + β1 x, where µ = E{y(λ)} and x is the ex-
planatory variable. For the three data sets, we fitted the two power models
to y(λ) by fixing the transformation parameter at λ = 1 and by choosing the
optimal value of λ that maximizes the profile log-likelihood (14). We give in
Tables 4, 5 and 6 the MLEs of the linear parameters and the dispersion param-
eter (with their corresponding variances conditioning on λ fixed or estimated
in parentheses) from the fitting of the models above. When the transforma-
tion parameter λ is estimated we also give in these tables approximate 95%
confidence intervals for this parameter. Based on these asymptotic confidence
intervals, we note that the GLM is only accepted for the case of the power
gamma model fitted to the data set 1. These intervals show appreciable ranges
of compatible values for λ, including zero, corresponding to the log transfor-
mation, for the power gamma model fitted to the data set 1 and for the power
inverse Gaussian model fitted to the data sets 1 and 2.
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Table 4: Data set 1 − (n = 27), y = illiteracy rate, x = log(family income)

Parameter Gamma Inverse Gaussian

λ 1 0.2720

(-0.493; 1.250)

1 −0.0660

(-0.686; 0.582)
β0 −0.1312

(2.9990e-4)

−0.2348

(1.8657e-3)

−1.0175e-2

(2.0938e-6)

−0.2022

(1.2863e-3)
β1 2.9240e-2

(9.3073e-6)

7.3207e-2

(5.5076e-5)

2.0323e − 3

(6.9717e-8)

5.5007e-2

(3.7839e-5)
φ 3.1261e-2

(1.1560e-6)

6.6049e-3

(1.1044e-8)

2.0234e-3

(3.0326e-7)

1.0361e-3

(7.9517e-8)

Table 5: Data set 2 − (n = 15), y = Men-hour, x = (surgical)−1

Parameter Gamma Inverse Gaussian

λ 1 0.4070

(0.125; 0.595)

1 0.1260

(−0.561; 0.260)
β0 3.3529e-7

(9.5172e-11)

6.7525e-3

(3.6651e-8)

−2.1990e-8

(4.7474e-17)

2.3843e-3

(4.0794e-9)
β1 0.1317

(1.1376e-4)

3.7176

(0.0155)

5.1684e-5

(1.4191e-10)

1.1181

(1.3232e-3)
φ 3.3401e-2

(2.6143e-6)

1.5086e-3

(2.4506e-10)

4.1652e-5

(2.3131e-10)

2.2905e-5

(6.9949e-11)

Table 6: Data set 3 − (n = 184), y = weight shrimp, x = (length shrimp)−2

Parameter Gamma Inverse Gaussian

λ
1 0.2580

(0.083; 0.430)

1 −0.2230

(−0.364;−0.083)

β0
−4.0119e-2

(2.6335e-6)

3.7569e-2

(1.1511e-5)

−1.1373e-2

(1.7409e-7)

−2.1765e-4

(2.7627e-5)

β1
1187.2069

(331.2460)

2390.5943

(1176.7644)

201.7313

(50.3210)

2690.9494

(2724.4848)

φ
7.1893e-3

(2.0232e-9)

2.0877e-3

(4.9673e-11)

5.3119e-3

(3.0670e-7)

7.0552e-4

(5.4104e-9)

In order to compare the fitted models we use the mean square error (MSE)
and the mean absolute percentile error (MAPE) given by

MSE =
100%

n σ̂2

y(̂λ)

n∑

i=1

(y
(λ̂)
i − µ̂i)

2

and
MAPE =

100%

n

n∑

i=1

∣∣∣∣∣∣
y

(λ̂)
i − µ̂i

y
(λ̂)
i

∣∣∣∣∣∣
,
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respectively, where σ̂2
y(λ) is the sample variance of y(λ). In Table 7 we give

these statistics for the two power canonical models fitted to the three data
sets. In this table the row labeled l̂ gives the maximized log-likelihood for the
corresponding λ value (fixed or estimated) and the row denoted by w gives
the value of the LR statistic for testing λ = 1. The values of w in Table 7
show that the PGLMs should be chosen in five of the six fitted models and
for these cases there is a considerable reduction in the values of the statistics
MSE and MAPE.

Table 7: A comparison of the fitted models

Data Model Gamma Inverse Gaussian

λ 1 0.272 1 −0.0660

MSE(%) 25.2380 20.3860 47.5060 21.9504

1 MAPE(%) 14.3412 6.4130 16.6307 3.9665

l̂ −77.8956 −77.0918 −83.9105 −80.0304

w 1.6076 7.7602

λ 1 0.4070 1 0.1260

MSE(%) 10.6890 1.6230 50.8540 1.2870

2 MAPE(%) 16.2125 3.3961 34.6076 1.5402

l̂ −123.836 −113.5073 −137.5813 −114.2916

w 20.6574 46.5794

λ 1 0.2580 1 −0.223

MSE(%) 4.7802 2.9769 19.508 5.1389

3 MAPE(%) 6.7269 3.4955 380.0793 2.5561

l̂ −267.4472 −262.8362 −442.7164 −331.0713

w 9.2220 223.2902

We now illustrate graphically some fitted PGLMs. The Figures 1, 2 and
3 refer to the power inverse Gaussian model fitted to the first data set (rate of
illiteracy versus income family). Figure 1 shows the profile log-likelihood curve
plotted against the transformation parameter λ. Its maximum of −80.0304
occurs near λ = −0.0660 and there is an appreciable range of compatible
values for λ including zero, corresponding to the logarithmic transformation.
Figure 2 shows that the power inverse Gaussian model is well fitted. Figure 3
shows that the estimated means of the original observations, predicted using
only the first term in (15) are very well retransformed.
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Figure 1: The profile log-likelihood curve for λ for the power

inverse Gaussian model fitted to the data set 1
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Figure 2: Plot of y(λ̂) versus µ̂ for the power

inverse Gaussian model fitted to the data set 1
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Figure 3: Untransformed values y and estimated means Ê(Y ) versus

income for the power I.G. model fitted to the data set 1

Figures 4, 5 and 6 show the power inverse Gaussian model fitted to the second
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data set (quantity of man-hours versus number of surgical cases). The profile
log-likelihood in Figure 4 is bimodal and the global maximizing value of l̂ =
−114.2916 occurs near λ̂ = 0.1260. In Figure 5 we plotted the transformed
observations y(λ̂) against the fitted means µ̂. This graphic is approximately
linear and clearly gives an indicative that the power inverse Gaussian model
provides a reasonably good fit to the data set 2. Figure 6 plots the original
data y and the estimated expected values Ê(y) versus the number of surgical
cases confirming that the power inverse Gaussian model gives also a good
prediction in the original scale. Figures 7, 8 and 9 refer to the power gamma
model fitted to the third data set (weights and lengths of the shrimps). Figure
7 shows the profile log-likelihood plotted versus λ yielding the optimal value
λ̂ = 0.2580 for the transformation parameter. An approximate 95% confidence
interval for λ is (0.0830, 0.4300). Figure 8 shows good agreement between the
transformed response and the fitted mean. In Figure 9, the original values
y and the predicted means Ê(Y ) are plotted against the lengths (x) of the
shrimps showing that the power gamma model produces accurate forecasts of
the original observations.
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Figure 4: The profile log-likelihood curve for λ for the power

inverse Gaussian model fitted to the data set 2
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Figure 5: Plot of y(λ̂) versus µ̂ for the power

inverse Gaussian model fitted to the data set 2
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Figure 6: Plots of y and Ê(Y ) versus surgical cases for

the power inverse Gaussian model fitted to the data set 2
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Figure 7: Profile log-likelihood for λ for the power gamma

model fitted to the data set 3
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Figure 8: Plot of y(λ̂) versus µ̂ for the power

gamma model fitted to the data set 3
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Figure 9: Plots of the untransformed values y and estimated means Ê(Y )

versus length for the power gamma model fitted to the data set 3

Finally, these applications showed that the TGLMs could be practical,
effective and worthwhile technique for analyzing real data sets.

9 Conclusion

We define the TGLMs as an extension of the Box and Cox models and
classical GLMs in order to unify these apparently diverse statistical techniques.
The choice of the components for a TGLM is a very important task in the
development and build of an adequate model. TGLMs are quite effective in
the modelling of a mean regression response to continuous data. Many of the
ideas in the GLMs carry over with little change to the whole class of TGLMs.
We show that the MLEs of all parameters in this new class of models can be
obtained easily. We can make inference in the TGLMs conditioning on the
MLE of the transformation parameter following the inference procedures in
the GLMs. We can also estimate the moments of the untransformed dependent
variable by using simple formulae which generalize some previous results in
the literature. We also present the idea of using the TGLMs for modelling
time series data. We provide some examples of real data modelled by TGLMs.
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