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1 Preliminaries and introduction

An exegesis is a marginal note or footnote expanding on the text, particularly in ecclesi-
astical contexts such as in canon law. Some non-ecclesiastical exegeses are quite famous,
such as the one that says “I have found a truly remarkable proof of this assertion but
there is not sufficient space to write it down here”. Others deserve to be, such as the
pencil annotation | once discovered in a very old book on the English monarchy in my
college library. Beside the paragraph describing how Charles 1l departed this world and
was buried it continued the final sentence with *...and whose epitaph might have been
‘Here lies a profligate, licentious, perfidious, lascivious old scoundrel!””



There is an element of whimsy in the title, of course, with an oblique suggestion that
perhaps people take linear models a little too seriously these days. On the other hand,
as Brian Ripley and I say in our joint book, linear models form the core of modern ap-
plied statistical practice, so they are indeed rather important. In this talk | would like
to present a view of linear models that is in many ways the folklore of the subject, cer-
tainly for some of the more experienced (probably meaning simply ‘older’) practitioners
but unfortunately is not presented often enough or clearly enough in the current crop of
textbooks or, more particularly, in the current slew of wordy software manuals.

In so doing | hope to make some side comments—exegeses—that | hope provoke peo-
ple into a minor, largely personal re-examination of linear models and, more importantly
for us here at this conference, of the software used to support the praxis of linear mod-
els. If they prove controversial this perhaps will serve to get your minds into gear and
yourselves engaged in fruitful, or perhaps heated dialogue, as befits one of these rare
gatherings where so many of us who know each other only at the ends of an email link
finally get to see one another face to face - and slug it out.

2 A view of regression models

Let Y be a quantitative response variable, x;, z,, ..., x, potential quantitative explanatory
variables and 7 a standard normal variate. A model that says almost nothing useful about
the situation, but which nevertheless cannot seriously be challenged is that

where f(-) is some unknown, hopefully tame function.

Using a standard normal to inject error into the dependency is not without serious loss of
generality since any continuous distribution can be obtained by transformation from it,
that is

E=F"'{2(2)}

is a random variable with distribution function F(-), assuming continuity.

Assuming a steady-as-she-goes context, we might try to replace (1) by a local approxima-
tion we recognize will only apply in the neighbourhood of some point x, in design space.
There are many ways we might do this, but surely the first and most obvious one, at least
in this slowly varying universe we are assuming, is a first order Taylor series:
p
Y ~ f(mo, 0) + Z f(z)(il?(), 0) (!L‘Z — l‘io) + f(p_H)(iL'o, O)Z

=1

or, in more conventional notation
p
Y & By + Y Bilwi — x0) + 07 (2)
=1
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It does seem to be the case that most multiple regression models are really only intended
to be local linear approximations to something more complex, and hence will have a
rather closely proscribed domain of validity.

There is a tendency to simplify (2) even further and bundle all constant parts with respect
to covariates into the intercept term and write it as

p

=1
which may well be formally the same model, but | argue that this is not a practice to be
recommended. for several reasons. The first of these is that if the covariates x; are all, say,
positive but in any case reasonably far from 0, the constant term is the value of the mean
at a point x = 0 likely to be far outside the domain in which the model is intended to
apply, and hence likely to mislead naive clients as we shall shortly see in an example.

There may also be good numerical reasons for anchoring the x—variables at an origin
somewhere near the centre of the section of design space covered by observations, but |
do not wish to push this point too far.

2.1 Extending the model

Following the same simple Taylor series heuristic, if we wished to improve the linear
approximation, and hopefully extend the practical domain of validity, we might next
consider two terms in the Taylor series expansion. This gives an approximating model of
the form ) -
Y = Bo+ X Bi(xi —wi0) + X 2 Bij(xi — 2i0) (25 — 250)+
=1 i=1j=1t (3)
p
{O’ + Z ’}/Z(IZ - !L‘Zo)} Z + 522
i=1

Of course there is no guarantee that the heuristic remains particularly cogent and at some
point practical considerations and experience with the context have to take over, but it
is worth considering what it is this simple idea is telling us to look for in extending the
linear model, namely

e curvature in the main effects (quadratic terms in one variable),

e linear x linear interactions (cross product terms in two variables),
e variance heterogeneity (termsin (z; — x;)Z) and

e skewness (the term in Z2),

which are all very commonly encountered problems in real life linear modelling, often
ignored but sometimes modelled in a more structured and context dependent way.



2.2 Additive models

The so-called additive models of (Hastie and Tibshirani, 1990) extend the first order model
in a different way, namely to a form

YV = 5o+zp:9i($i) +oZ

i=1

where ¢;(x) may be a term consuming several degrees-of-freedom, or even a smoothing
spline or locally weighted regression function that has to be estimated by non-standard
methods, but typically (though not always) it involves only one covariate.

My first reaction when | saw this was that it makes the strong assumption of no inter-
actions between variables, but relatively weak assumptions about the form of the main
effects. | can remember expressing this objection to Trevor Hastie at a conference in 1993.
This was clearly not the first time this question had been raised since he was well and
truly ready for me and had many reasons why such a model was useful in practice. The
reasons included that such a modelling strategy isolated the effect of each variable and al-
lowed the user to examine them separately to see which were important and which were
not.

Privately | remained not completely convinced, | must say. As a consultant | am very
familiar with the kind of user who simply cannot think in a way that admits interactions
but who just wants to know “which of my variables are important, which are not and
what are the important ones doing”. (This is very closely akin to the experimental design
philosophy that varies one variable, only, at a time—the sort of thing that factorial design
principles should have put out of business for good but, sadly, has not, yet.) But GAMs
were receiving such accolades at the time | did rather feel like the little boy trying to
suggest that the king had no clothes.

More recently, however, | was at an experimental design lecture in Oxford where the
lecturer expressed precisely the same reservation about additive models as | had done
some years before, which made me feel rather more confident about the king’s state of
dress. (The speaker, by the way, was Sir David Cox.)

To put the contrary case, there are indeed practical situations where the possibility of im-
portant interactions can safely be downgraded a priori and additive models can prove a
very useful investigative or diagnostic device. Indeed | use them often this way myself
and encourage my students to do the same. But | do seriously suggest that the ques-
tion of interactions must in some way—however informally or by appeal to context—be
investigated and laid to rest first, since rather simple interactive models can sometimes
be approximated fairly well by complicated main-effect models, but these models do not
hold up well in prediction and can be misleading if used for interpretation.



3 Some simple examples

3.1 The Janka hardness data

This is a favourite data set of mine with an Australian flavour to it, indeed an Australian
timber flavour, which was the (now politically rather unfashionable) business my late
father worked in all his life, and me off and on for most of my adolescence.

The dependent variable is the Janka hardness of timber samples, a structurally important
guantity known to be closely related to density, which is the only recorded determining
variable. The data comes from an old but still fascinating textbook, ((Williams, 1959)),
by E J Williams, who worked in the CSIRO Division of Forest Products before joining
Melbourne University. The full data set is given in Table 1 on page 23.

Williams simply used the data as an example where a quadratic regression was necessary
rather than simple linear regression. It was before the days when plots were commonly
shown in textbooks but fortunately complete data sets were. Had Williams done the plot
I think he would have noticed some interesting features that these days would attract
much greater attention.

A plot of the data is shown in Figure 1. Some of the general features | have suggested we
should anticipate happening with approximating linear models are almost apparent even
from this rather simple plot. The curvature in the main effect is more-or-less clear (which
is all that Williams was concerned with), but so is the variance heterogeneity, in this case
an increase in variance as the density increases.

The quadratic regression can easily be shown to be an adequate degree of polynomial
regression but a plot of residuals versus fitted values makes the variance heterogeneity
and skewness starkly apparent, as shown in Figure 2

There is a plausible argument that much hangs on the value leading to the largest resid-
ual, but even omitting this point the variance heterogeneity can be detected by standard
devices. Moreover some standard checks for outlying residuals fail to rule it out of court
even as it stands.

Box and Cox transformations are interesting with this data set, as it turns out you need
something like a square root transformation to make the quadratic regression linear, but
something close to a log transformation to make the variance stable and remove the skew-
ness credibly.

With this cue John Nelder once suggested to me using a generalized linear model with a
square root link to make the linear predictor linear in density rather than quadratic, and
a variance function proportional to the square of the mean:

=By + Bir)?, Var[Y] oc p?
which implies that the original observations have a gamma distribution. This model
works remarkably well, giving deviance residuals uniform beyond suspicion and a fairly
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Figure 1. The Janka hardness of timber data. Source: Williams (1959)
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Figure 2: Residuals versus fitted values after a quadratic regression of Hardness on Den-
sity in the Janka data.



simple expression for hardness in terms of density. Two features should be acknowl-
edged, though

e The predictions from the gamma model are virtually identical to those obtained
by Williams using an ordinary quadratic regression. Where the more sophisticated
model does offer some advantages, though, is in assessing the errors of prediction.
The less dense timbers have a much tighter error bound with the gamma model than
with the normal, and the heavier timbers a wider one, as seems to be appropriate.

e The real loss of degrees of freedom for estimation is probably slightly larger than it
appears, considering the amount of data data snooping that went into the modelling
proposal, but that could be checked by some of the standard means, such as cross-
validation, bootstrap validation or using a confirmatory sample if available.

One final important point will be made with this simple example. Look at the differences
between fitting the polynomial models, here taken up to degree 3 for illustration, in a zero
centred and a median centred form.

> jank.1 <- Im(Hardness ~ Density + Density"2, Janka)

> round(summary(jank.1l)$coefficients, 2)
Value Std. Error t value Pr(>|t])

(Intercept) -118.01 334.97 -0.35 0.73

Density 9.43 14.94 0.63 0.53
I(Density"2) 0.51 0.16 3.25 0.00
> jank.la <- update(jank.1, . © . + Density"3)

> round(summary(jank.1la)$coefficients, 2)
Value Std. Error t value Pr(>|t|)

(Intercept) -641.44 1235.65 -0.52 0.61
Density  46.86 86.30 0.54 0.59
I(Density™2)  -0.33 191 -0.17 0.86
[(Density”3) 0.01 0.01 0.44 0.66

Figure 3: Fitting quadratic and cubic models for the Janka data in zero centred form



Notice how the coefficients change wildly in going from the second to the third degree
curve. This is sharply in contrast to the case where density is measured from its median
value.

Although this is not even an approximately orthogonal model specification, the change
in coefficients is small, with sensible signs intact.

> Janka$density <- Janka$Density - median(Janka$Density)

> jank.2 <- Im(Hardness ~ density + density"2, Janka)
> round(summary(jank.2)$coefficients, 2)
Value Std. Error t value Pr(>|t|)

(Intercept) 1165.82 36.85 31.63 0
density  51.99 2.63  19.74 0
I(density’2)  0.51 0.16  3.25 0

> jank.2a <- update(jank.2, . © . + density"3)
> round(summary(jank.2a)$coefficients, 2)
Value Std. Error t value Pr(>|t])

(Intercept) 1174.02 41.70  28.15 0.00
density  50.41 447 1127 0.00

I(density™2)  0.42 026  1.58 0.13

I(density’3)  0.01 001  0.44 0.66

Figure 4: Fitting quadratic and cubic models for the Janka data in median centred form

More importantly in some respects, with the zero centred form the intercept and linear
terms are not significant! For some users this is a powerful reason to remove them and re-
cover the degrees of freedom for error. Stepwise regression programs also find it difficult
to avoid removing such variables from the model out of sequence, which is just one of the
reasons that they can be so dangerous.

The proponents of removing the intercept and slope terms from the zero centred form ar-
gue that regressions through the origin are often quite sensible models and ‘zero density’
timbers in this context could be expected to have ‘zero hardness’, although just why the
curve should also be flat at the origin is somewhat more problematical.

I would argue very strongly, though, that these removals are not justified in this case,
(and with the median centred form the question does not even arise). This is only ever
intended to be a local model with limited scope for extrapolation, so arguing what the
behaviour of the curve should be for densities near zero is evidently to argue about what
happens at a point well beyond the intended scope of the model.

More fundamentally, though, one could argue that if there is a natural group of transfor-
mations under which the problem is invariant, the model building process should also be
invariant under the same group of transformations. In the present case it is reasonable to



require that the model building process be invariant with respect to changes of location
and scale in the density. This immediately requires that as long as there is a term in the
polynomial model of degree &, no term of degree less than & should be considered for
exclusion.

Under these conditions we say that the intercept and linear terms are marginal to the
guadratic term, a concept guaranteed to generate controversy like no other in this area.

Marginality is also at the crux of another thorny issue in linear models, namely that of
Type 11l sums of squares, to which I shall return below.

3.2 An additive model that seems to work

To show my even-handedness on the issue, | present below a textbook example where
additive models do seem to offer a useful perspective on the data, but | have concealed
my attempts to resolve the question of interactions beforehand, which to my satisfaction
led me to assume that in this case they could safely be ignored.

The data comes from (Draper and Smith, 1981), but for convenience is reproduced here
in Table 4 on page 24. The response is the annual average wheat yield for the state of
lowa from 1930 through 1962 and the potential covariates are the state average rainfalls
and temperatures, each for 4 months of the growing season and the year itself as a sur-
rogate for incremental varietal improvements. The only variables that seem to have any
potential explanatory capacity are Rain0 (pre-season precipitation), Rain2 (mid-season
precipitation), Temp4 (temperature at harvest time) and Year . Fitting a smoothing spline
term in each of these four variables gives an interesting and speculatively interpretable
picture, as shown in 5. The apparent halt to varietal improvements during and immedi-
ately after the second world war is about the only thing pretty convincingly established,
and credible, but not something easy to pick up any other way that | know of.

4 Variance heterogeneity

It is manifestly not the case, of course, that all linear models are only approximate and
local in scope. The egregious exceptions that come to mind are the linear models that
arise from designed experiments such as variety trials in agriculture or clinical trials in
medicine. We do seem to have a peculiar attitude towards variance heterogeneity that
shows itself most clearly in what we provide for about the simplest such case, namely the
two sample ¢—test.

The S-PLUS function, t.test , following a long and venerable tradition, allows users
to test equality of means either (a) assuming equality of underlying variances or (b) not
making such an assumption (which will always be false in practice, of course). Option
(b), (which thankfully is not the default in S-PLUS, though it is very often the default
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Figure 5. Additive model components for the lowa wheat yield data.

elsewhere) gives naive users a cosy feeling of protection that perhaps their test makes
sense even if the variances happen to come out wildly different.

What’s the matter with that?

For one thing, not so naive users wonder why such a fuss is made of equal variance in the
two sample ¢—test but elsewhere it is a non-problem, it seems. In the three sample case
the only software provided is the one-way analysis of variance where equality of variance
Is, it seems, silently dismissed as a non-issue.

The main problem 1 see with it, though, and | see it often, is that it leads users away
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from the important considerations of the problem. Variance heterogeneity is an important
problem in all linear models and it can be the vital issue. If two samples show large
and established differences of variance, this is usually much more important than any
difference of means. If one treatment gives a higher yield than another, this is often not of
much interest if it also has a much higher error variance causing it to be unreliable.

In a sense, the onus is on the user to investigate variance heterogeneity along with in-
vestigating mean differences. This is often done by diagnostic methods such as we did
in the Janka data. Providing things like the modified ¢t—test that ‘can be used even if the
assumption of equal variances is not met’ is only encouraging naive users to miss the
whole point. To be candid I am not sure if this problem can really be fixed by changing
the software—in the long run users are (often) adults and must be trusted not to do silly
things—»but as an educator and a user | feel obliged to voice my concern at what | see
happening.

5 The SAS factor

Many more S-PLUS users than | had expected would be the case are in fact refugees from
the SAS regime. Even some of the authors of the voluminous SAS documentation are now
well-known names in the S-PLUS world and some, though very few it seems, continue to
play a fairly prominent role in both camps.

I have involuntarily used SPSS many years ago but | have never seriously used SAS. To
prepare this talk | thought I would have to look closely at the SAS documentation, at least,
to see how other software systems treat linear models these days, and since SAS seems
to be to statistical computing what Microsoft is to personal computing, it had to be the
logical next place to look. The only documentation | had available ((SAS Institute Inc.,
1990)) dated from 1990, but I think for my purposes that would be current enough.

It must be said that although it is often very waffly and occasionally rather patronising
the documentation for SAS is at least comprehensive and very often statistically astute (if
I might be permitted a similarly patronising rejoinder!) My first and strongest impression,
though, is that SAS attempts to provide all functionality for all occasions—programming
is such a delicate and exacting job there must be no scope for ordinary users to do it for
themselves.

The goal of providing all necessary statistical and data analysis functionality in the one
awkward and foolishly consistent framework is uncannily like Microsoft and, (one hopes
and prays), ultimately futile, but in the meantime what happens is that the program de-
fines the subject rather than the subject dictating what the program should do. SAS, it
seems, has become the gold standard, the output of SAS programs the ultimate point of
reference for correct and appropriate statistical calculations and the SAS terminology is
rapidly taking over as standard terminology. This is very Microsoft-like indeed and very
worrying for anyone who cares about the profession.

11



Nowhere, it seems to me, is this SAS coup d’état more evident than in the way Analysis of
Variance concepts are handled.

There is no essential distinction between linear models we happen to call Regression and
those we call Analysis of Variance models, but with the latter the feature that makes them
somewhat special is that the natural parametrisation leads to design matrices not of full
column rank. This in turn gives rise to the important notion of estimability of linear func-
tions of the parameters.

In a sense this notion is easy. The means of the observations themselves are the only
well-defined functions of the parameters; any function is estimable if and only if it can be
written as a linear function of the observation means, that is the coefficient vector must
be in the row space of the design matrix.

Many programs overcome this minor obstacle by omitting parameters in such a way that
those remaining are all estimable. S-PLUS does this when it uses the contr.treatment
contrast matrices, but for other contrast matrices the original redundant parameters are
replaced by a smaller set of more complicated linear functions of them which are, usually,
estimable.

The clear and unequivocal message is, though, that a linear function of the parameters
is either estimable or it is not; there are no shades of grey, no half way houses and no
subtle distinctions. With this in mind, the title of Chapter 9 of the SAS/STAT manual is
worrying: The Four Types of Estimable Functions. Closer inspection reveals that this notion
is really a kind of transferred epithet, and there are really four types of hypotheses being
considered, another equally curious distinction being made without a difference.

One sentence bears quoting: “The four types of hypotheses available in GLM may not
always be sufficient for a statistician to perform all desired hypothesis tests, but they
should suffice for the vast majority of analyses.” In other words, the distinctions being
made are limitations on the program rather than differences of principle in the subject,
but then, it seems, the program really is defining the subject.

5.1 ‘Type III’ sums of squares

I was profoundly disappointed when | saw that S-PLUS 4.5 now provides “Type 11" sums
of squares as a routine option for the summary method for aov objects. | note that it is not
yet available for multistratum models, although this has all the hallmarks of an oversight
(that is, a bug) rather than common sense seeing the light of day. When the decision was
being taken of whether to include this feature, “because the FDA requires it” a few of my
colleagues and | were consulted and our reply was unhesitatingly a clear and unequivocal
“No”, but it seems the FDA and SAS speak louder and we were clearly outvoted.

So what is the problem with Type Il sums of squares that is worth making such a fuss
about?
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It’s difficult to resist the same sort of words we use to explain the phenomenon to second
year students. In fact | will not resist.

In a two-factor experiment the factors A and B are said to have an interaction if the change
in the response mean resulting from a change in levels for factor A, say, depends on which
level of factor B is applied.

If any change in level for factor A always produces the same change in the response mean
regardless of the level of factor B, the same must be true for factor B as well, and the two
factors are said not to have an interaction, or to act additively.

If factors act additively their main effects are well defined and testing whether their main
effects are zero or not is a sensible and useful thing to do.

If there is an interaction between factors A and B, it is difficult to see why the main
effects for either factor can be of any interest, since to know what the effect of changing
an A—level on the response will be depends on which B—level is in force.

More pointedly, when there is an interaction in force, a routine test of the main effects
can be shown to be testing an hypothesis that depends on the design of the experiment
rather than on the parameters alone. To overcome this manifestly arbitrary aspect of the
testing procedure, Type Il sums of squares arise from testing an hypothesis—equally
arbitrary—connected with the parameters that does not vary with the design.

To hark back to a previous idea, testing main effects in the presence of an interaction
is a violation of the marginality principle. This is not a totally rigid principle, but in all
common practical situations the sensible thing is to respect it. Just as there are situations
where it does make sense to fit a regression line through the origin, though, or to constrain
a fitted quadratic curve to be flat at some specified point, there are some very special
occasions where some clearly defined estimable function of the parameters that would
gualify as a definition of main effect to be tested, even when there is an interaction in
place, but like the regression through the origin case, such instances are extremely rare
and special.

Just as providing a switch in the two-sample t—test to cover unequal variances encour-
ages users to think that the annoying problem of variance inhomogeneity is nailed down
and can be ignored, providing a deceptive “Type Il11” sum of squares option in he Analysis
of Variance summary encourages users to think that the annoying problem of interactions
can be ignored and the main effect question—the one that everyone understands, even
though in the presence of interaction it makes little sense—can be safely settled without
worrying about pesky interactions, at least to the FDA's satisfaction, and what more could
anyone ever want?

There is even a class of user now days who sees the significance stars (which fortunately
S-PLUS does not yet provide, for who knows how long?) rather like the gold stars my
grandson sometimes gets on his homework. Three solid gold stars on the main effects
will do very nicely, thank you, and if there are a few little stars here and there on the
interactions, so much the better!
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5.2 Anexample: The rat genotype data

The non-problem that Type Il sums of squares tries to solve only arises because it is so
simple to do silly things with orthogonal designs. In that case main effect sums of squares
are uniquely defined and order independent. Where there is any failure of orthogonality,
though, it becomes clear that in testing hypotheses, as with everything else in statistics, it
Is your responsibility to know clearly what you mean and that the software is faithfully
enacting your intentions.

Henri Scheffé in his classic text on The Analysis of Variance (Scheffé, 1959), gives an ex-
ample of a 4x4 double classification with unequal cell frequencies, though not wildly so,
that will do to illustrate some of these points. For convenience the data set is reproduced
here in Table 2 on page 23.

Litters of rats are separated from their natural mother and given to another female to raise.
The two factors are the mother’s genotype and the litter’s genotype and the response is
the average weight gain per member of the litter. (There is an acknowledged component
of variance ignored in this, but as Scheffé says, it is likely to be very small.) The natural
models and the relations between them form a lattice that immediately makes clear what
any sum of squares means. This is shown in Figure 6.

Any path from the top of the lattice to the bottom gives sums of squares for testing each
model within the one immediately above it. Thus testing for Litters ignoring Mothers and
for Litters eliminating Mothers are both “main effect” sums of squares for Litters, but cor-
respond to different tests of hypotheses, one assuming Mother’s genotype does not have
an effect, the other allowing for the possibility that it may. For an orthogonal experi-
ment, confusingly in a way, these sums of squares are numerically identical, even if the
hypotheses they test are, conceptually at least, different.

The difference here is only small, as we can easily check in Figure 7. Interactions appear
ignorable, so main effect tests start to make sense, and it becomes clear that the mother’s
genotype exerts a sizeable influence on average weight gain and litter’s genotype does
not. This has to be checked graphically, of course, and when that step is taken it becomes
clear that there is at least one large outlier and much hangs on whether that observation
IS correct or not.

When | use this example with my students, though, the first thing | ask them to do is to
fit the full model and use dropl to suggest the next step. Brilliantly, dropl fingers the
interaction term, and the interaction term only:

> dropl(gen.l)
Single term deletions

Model:
Wt © Litter * Mother
Df Sum of Sq RSS F Value Pr(F)

14



Litter * Mt her

(additivity) (Litter x Mbther)

Litter + Mt her

( Mbt her el Litt% (Litter el. Mbther)
(Litter ig. M:thex (Mother ig. Litter)

Figure 6: Lattice of models for the rat genotype foster feeding data

<none> 2440.816
Litter:Mother 9 824.0725 3264.889 1.688108 0.120053

To my delight | see that marginality constraints between factor terms are by default hon-
oured and students are not led down the logically slippery ‘Type Il sums of squares’
path. We discuss why it is that no main effects are shown, and it makes a useful tutorial
point.

The irony is, of course, that Type Il sums of squares were available all along if only people
understood what they really were and how to get them. If the call to dropl contains any
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> names(genotype)

[1] "Litter" "Mother" "Wt"

> gen.l <- aov(Wt ~ Litter*Mother, genotype)
> anova(gen.l)

Analysis of Variance Table

Response: Wt

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

Litter 3 60.2 20.05 0.3697 0.77522
Mother 3 775.1 258.36 4.7632 0.00574
Litter:Mother 9 824.1 91.56 1.6881 0.12005
Residuals 45 2440.8 54.24

> gen.2 <- aov(Wt = Mother*Litter, genotype)
> summary(gen.2)
Df Sum of Sq Mean Sq F Value Pr(F)

Mother 3 771.6 257.20 4.7419 0.00587
Litter 3 63.6 21.21 0.3911 0.76000
Mother:Litter 9 824.1 91.56 1.6881 0.12005
Residuals 45 2440.8 54.24

>

Figure 7: Two paths through the lattice for the genotype data example

formula as the second argument, the sections of the model matrix corresponding to all
non-intercept terms are omitted seriatim from the model, giving some sort of test for a
main effect:

> dropl(gen.l1, ")
Single term deletions

Model:
Wt © Litter * Mother
Df Sum of Sq RSS F Value Pr(F)
<none> 2440.816
Litter 3  27.6559 2468.472 0.169959 0.9161176
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Mother 3 671.7376 3112.554 4.128153 0.0114165
Litter:Mother 9 824.0725 3264.889 1.688108 0.1200530

> dropl(gen.2, .".)
Single term deletions

Model:
Wt © Mother * Litter
Df Sum of Sq RSS F Value Pr(F)
<none> 2440.816
Mother 3 671.7376 3112.554 4.128153 0.0114165
Litter 3 27.6559 2468.472 0.169959 0.9161176
Mother:Litter 9 824.0725 3264.889 1.688108 0.1200530

They are indeed order independent, so what are they?

Provided you have used a contrast matrix with zero-sum columns they will be unique,
and they are none other than the notorious ‘Type Il sums of squares’. If you use, say,
contr.treatment contrasts, though, so that the columns do not have sum zero, you
get nonsense. This sensitivity to something that should in this context be arbitrary ought
to be enough to alert anyone to the fact that something silly is being done.

From the looks of things, MathSoft has put a lot of work into re-programming the com-
putation via the tedious SAS formula for doing so. Even then it is not complete, as it does
not work for multistratum experiments.

Well don’t look at me like that—you didn’t really expect me to tell them how to do it the
easy way, did you?

6 Enhancements

For all the solemn wringing of hands and knitting of brows going on above it must still be
said that S-PLUS offers the best environment and suite of tools for actually doing linear
modelling on the sorts of consulting jobs that arise in practice. The area covered by just
the four fitting functions Im, aov, gim and nls is handled in SAS by an unbelievable
array of PROG each with some special features and other special limitations. Even the
notion of “General linear model” in SAS simply means a linear model that is allowed to
have both factors and quantitative explanatory variables. Just how general can you get?

Nevertheless there are some features of the linear modelling software in S-PLUS that |
would like to see enhanced and even simplified. | offer them here as suggestions for
future work.

e A mechanism for declaring marginality between non-factor terms, such as between
powers of a single variable, or linear terms and their products is urgently needed.
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This would then guide functions like dropl , step and our own function stepAlC
in deciding which terms are legitimate candidates for removal at any particular
stage. This would greatly enhance the value of these otherwise quite risky tools.

e The %in% s redundant and serves no very useful purpose. It could very easily be
made a synonym for the : operator as itis in R, in fact, but no one (other than Ross
Ihaka, who did it and me, who wormed it out of him) has realised it as yet!) and
silently dropped in some future release.

e For teaching purposes it would be useful to have a switch that required users to
include the intercept term in formulae if it is needed. This would definitely help
more students than it would hinder. In other words it should be possible to override
the automatic intercept term.

e The: operator isthe primary one in terms of which the other combination operators
could be defined. For example

— a*b*c should be understood to mean (1+a):(1+b):(1+c) expanded alge-
braically and nonzero constant multipliers removed.

— a/b should be understood to mean a:(1+b) ora + a:b ,again with suitable
simplifications.

— (a+b+c)"2 should be able to generate a general degree 2 regression model.
As it stands, powers of terms are replaced by linear terms, which is sensible if
the term is a factor, but unhelpful if the term is a quantitative predictor.

7 Mixed effects, multistratum models and variance compo-
nents

There is little reason to believe that the current explosion of interest in what are called
‘random effects models’ or ‘mixed effects models’ is a passing phase. The proof of that is
that it is not a new subject at all, but in one form or another has been around for a very
long time, but with the different traditions in which it has independently arisen having
little knowledge of what is going on over the fence.

A mixed effects linear model is one where some of the coefficients are regarded as them-
selves random variables, and interest focuses on the properties of the distribution giving
rise to them, in particular its variance, known for some reason as a variance component.

In some traditions there is interest in ‘estimating’ the unobserved instances of the ran-
dom variables themselves, but rather than call them estimates the fashion is to give them
a different name such as BLUPs, posterior modes, and several others. | favour a different
name from ‘estimate’ as well, but my preference is to call them ‘residuals’ since they do
have exactly the same status as ordinary residuals from a simple fixed effects regression
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model, which are possibly the simplest special case. Summing the squares of these resid-
uals and dividing by (a) the number of them or (b) the degrees of freedom to estimate the
variance component is the choice that has become known as (a) maximum likelihood or
(B) REML, although it is often presented in much more guarded and qualified terms.

There are two way of looking at a mixed effects model, at least. In one way the focus is on
the unobserved random variables and the fixed regression coefficients, and we set about
estimating both.

In the second way the random effects model are taken as a kind of paradigm which might
be applicable, but the real difference with simple mixed effects models is that the observa-
tions are now acknowledged to be dependent, but with a very highly structured variance
matrix, the parameters of which are often of interest in themselves.

Consider the example of a feeding experiment again. We have a number % of chicken
coops each taking m chickens giving us n = km bird weight gains at the end of the
experiment. Each coop can only take one diet, so all information comparing diets comes
from comparisons of coop total weight gains, but the birds within the coop might well be
of different genotypes, say, so information on some fixed effects is available within coops.

Given that there is competition between birds for the food on offer, and only a total
amount of food, there is every reason to anticipate that correlation between individual
animal weights, the so-called intra-class correlation will be negative and so the variance
component estimate on the boundary, but really uninformative. In this case the usual
paradigm of an additive component for “coops” is not appropriate, and the variance
component question rather silly, but the usual multistratum analysis is quite sensible and
valid.

The feature of random effects linear models that makes them easy to handle within the
framework of linear models is the fact that, even though the variance matrix is not scalar,
the eigenvectors are nevertheless known. This means it is possible to find orthonormal
spanning sets for the stable subspaces as columns of matrices, say 7, Zs, ..., Z; such that
Z =[Zy Z,y - -+ Z}] is an orthogonal matrix and the components of Z!'Y" are independent
and have equal variance. More completely, ZY" has a diagonal variance matrix with &
distinct diagonal entries that we might well call the canonical variance components.

The sets of linear functions themselves are called the strata of the experiment, but in reality
are none other than the known stable subspaces of the variance matrix.

The simple case occurs when it is possible to re-parameterize the regression coefficient
vector so that each Z!'Y has a mean depending on a different subset of the coefficient pa-
rameters. In this case the likelihood completely factorizes and each set of linear functions,
ZT'Y, has all information on the coefficient parameters on which its distribution depends.
There is still a problem if the canonical variance components are functions of fewer than
k underlying parameters, but this is fairly uncommon in practice.

In the more difficult case it is not possible to partition the coefficient parameters in this
way, and information on some linear functions of the coefficients has to come from two or
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more strata. Finding best linear unbiased estimates of the coefficient vector under these
circumstances used to be a problem known as the recovery of interblock information. The
maximum likelihood estimates are, of course, weighted estimates of the estimates from
the separate strata, and whether you use maximum likelihood or REML estimation for
the canonical variances at that point starts to make a difference.

The S-PLUS function aov with the Error special function within the formula to declare the
strata provides a stratum-by-stratum analysis, no more. If the design is orthogonal this
is usually all that is needed. The function Ime at present provides a method of handling
some simple cases of the more general problem (certainly covering the bulk of practical
cases, particularly with the next planned release) but certainly not all. A general develop-
ment effort in this area, and more importantly almost, its extension to generalized linear
models and non-linear models is urgently needed, as much for commercial reasons as for
anything else.

7.1 An example: the petroleum data of Nilon H Prater

This is a now famous example that if N H Prater were still around would no doubt amuse
him greatly. The data set comes from a magazine article (Prater, 1956). Prater collected in-
formation on the gasoline yield from crude oils at various stages, known as “end points”
of the refining process. Each crude oil also has three measurements made on it, namely
the specific gravity and two different vapour pressures.

By sorting the data it becomes clear that although there are 32 observations there are really
only 10 different crudes involved. There is no hint of this in Prater’s article, though it is
now taken as well established, just as if he had, in fact. For convenience the data set is
given here in Table 3 on page23.

A plot of the data shows that within each crude the regression of yield on end point is
aggressively linear, (with perhaps one small exception) and almost unbelievably parallel,
although there are large and presumably important differences between the intercepts.

Fitting separate regressions for the 10 samples consumes 20 regression parameters and
1 variance, and for just 32 observations this is rather too many.

A mixed effects model with random intercepts and slopes has only 2 fixed effects pa-
rameters, but 4 variance parameters; (3 variances and one covariance). The degree of
parametrisation is close to acceptable, though using the BLUPs of the random terms gives
something of the flexibility of the 21 parameter model above. In essence the model still
adapts to some variation in parameters between crudes, but some of the more extreme
cases have estimates noticeably contracted towards the centre.

Consider now models with fixed slope but variable intercepts.

> fm <- aov(Y ~ EP + No, petrol)
> gm <- aov(Y = EP + Error(No), petrol)
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Figure 8: The refinery data of Nilon H Prater. Yield versus end point of the refining
process for 10 crude oil samples.

> hm <- Ime(Y © EP, random = "1, cluster = "No, data = petrol)

> coef(fm)

(Intercept) EP Nol No2 No3 No4
-33.708 0.15873 -4.1374 -0.20999 -1.762 -0.98419
No5 No6 No7 No8 No9

-0.83673 -1.369 -1.2734 -1.3524 -1.6188
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> coef(gml[2]])
EP
-0.014912

> coef(gm[[3]])
EP
0.15873

> coef(hm)

(Intercept) EP
A -19.974 0.15757
B -28.200 0.15757
C -24.756 0.15757
D -31.205 0.15757
E -30.822 0.15757
F -31.903 0.15757
G -37.255 0.15757

-39.129 0.15757
-42.234 0.15757
-47.585 0.15757

H
|
J
The first fit above has a model with 10 intercepts and one slope gives an estimate of
B = 0.15873.

The second model recognizes that (normalized) crude totals and within crude contrasts
will have different variances. The estimate 3 from within crude contrasts (for technical
reasons stratum 3 rather than stratum 2) is the same as that for the previous case, though
its estimate of error may be slightly different. In addition there is an estimate of the
regression coefficient from within block totals (stratum 2) but with a nonsensical value
since the amount of information available from that stratum is practically negligible.

Finally the random effects model gives a very similar value, 5 = 0.15757 since it combines
the information from within and between crudes.

| contend that a recognition that what’s really going on in linear mixed effects models is
a variance matrix with known stable subspaces is the key observation that turns it into
a problem where some of the standard methods of univariate fixed effects linear models
are possibly applicable.

A Data sets used
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24.7
484

Density
Hardness

24.8
427

27.3
413

28.4
517

28.4
549

29.0
648

30.3
587

32.7
704

35.6
979

38.5
914

38.8
1070

39.3
1020

39.4
1210

Density
Hardness

39.9
989

40.3
1160

40.6
1010

40.7
1100

40.7
1130

42.9
1270

45.8
1180

46.9
1400

48.2
1760

51.5
1710

51.5
2010

53.4
1880

Density
Hardness

Table 1: The Janka hardness data of Australian hardwoods.

56.0
1980

56.5
1820

57.3
2020

57.6
1980

59.2
2310

59.8
1940

66.0
3260

67.4
2700

68.8
2890

69.1
2740

69.1
3140

Mother: A

A B I

A

Mother: B
B | J

A

Mother: |
B |

J A

Mother: J
B I

J

61.5
68.2
64.0
65.0
59.7

60.3 37.0
51.7 36.3
49.3 68.0
48.0

59.0
57.4
54.0
47.0

55.0
42.0
60.2

50.8 56.3 59.5
64.7 69.8 52.8
61.7 67.0 56.0
64.0
62.0

525
61.8
49.5
52.7

56.5 39.7
59.0 46.0
472 613
53.0 55.3

55.7

45.2| 420
57.0| 54.0
614 | 61.0
48.2
39.6

51.3 50.0
40.5 4338
545

44.8
51.5
53.0
42.0
54.0

Table 2: The rat genotype data. Litters of rats from one of four genotypes, A, B, | or J, were
fostered by mothers of one of the same four genotypes. The response is the litter mean

growth rate.

No| SG VP V10 | (EP, Y) (EP, Y) (EP, Y) (EP, Y)
A | 508 86 190 | (205 12.2) (275, 22.3) (345, 34.7) (407, 45.7)
B |40.8 35 210 | (218, 80) (273, 13.1) (347, 26.6)

C | 400 6.1 217 | (212, 7.4) (272, 182) (340, 30.4)

D |384 61 220|(235 6.9) (300, 15.2) (365 26.0) (410, 33.6)
E | 403 48 231 |(307, 14.4) (367, 26.8) (395 34.9)

F [322 52 236 |(267, 10.0) (360, 24.8) (402, 31.7)

G | 413 18 267 | (235 28) (275, 6.4) (358, 16.1) (416, 27.8)
H [381 12 274 |(285 50) (365 17.6) (444, 32.1)

| | 322 24 284 | (351, 14.0) (424, 23.2)

J | 318 02 316 | (365 85) (379, 14.7) (428, 18.0)

Table 3: The petrol refining data of Nilon H Prater. Ten crude oils with petroleum yield
measured at different end points of the refining process.
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Year Rain0 Templ Rainl Temp2 Rain2 Temp3 Rain3 Temp4 Yield

1930 17.75 60.2 5.83 69.0 1.49 77.9 2.42 74.4 34.0
1931 14.76 57.5 3.83 75.0 2.72 77.2 3.30 72.6 32.9
1932 27.99 62.3 5.17 72.0 3.12 75.8 7.10 72.2 43.0
1933  16.76 60.5 1.64 77.8 3.45 76.4 3.01 70.5 40.0
1934  11.36 69.5 3.49 77.2 3.85 79.7 2.84 73.4 23.0
1935 2271 55.0 7.00 65.9 3.35 79.4 2.42 73.6 38.4
1936 17.91 66.2 2.85 70.1 0.51 83.4 3.48 79.2 20.0
1937 2331 61.8 3.80 69.0 2.63 75.9 3.99 77.8 44.6
1938  18.53 59.5 4.67 69.2 4.24 76.5 3.82 75.7 46.3
1939  18.56 66.4 5.32 71.4 3.15 76.2 4.72 70.7 52.2
1940 12.45 58.4 3.56 71.3 4.57 76.7 6.44 70.7 52.3
1941  16.05 66.0 6.20 70.0 2.24 75.1 1.94 75.1 51.0
1942  27.10 59.3 5.93 69.7 4.89 74.3 3.17 72.2 59.9
1943  19.05 57.5 6.16 71.6 4.56 75.4 5.07 74.0 54.7
1944 20.79 64.6 5.88 71.7 3.73 72.6 5.88 71.8 52.0
1945 21.88 55.1 4.70 64.1 2.96 72.1 3.43 72.5 43.5
1946 20.02 56.5 6.41 69.8 2.45 73.8 3.56 68.9 56.7
1947 23.17 55.6  10.39 66.3 1.72 72.8 1.49 80.6 30.5
1948  19.15 59.2 3.42 68.6 4.14 75.0 2.54 73.9 60.5
1949  18.28 63.5 5.51 72.4 3.47 76.2 2.34 73.0 46.1
1950 18.45 59.8 5.70 68.4 4.65 69.7 2.39 67.7 48.2
1951  22.00 62.2 6.11 65.2 4.45 72.1 6.21 70.5 43.1
1952  19.05 59.6 5.40 74.2 3.84 4.7 4.78 70.0 62.2
1953  15.67 60.0 5.31 73.2 3.28 74.6 2.33 73.2 52.9
1954  15.92 55.6 6.36 72.9 1.79 77.4 7.10 72.1 53.9
1955 16.75 63.6 3.07 67.2 3.29 79.8 1.79 77.2 48.4
1956 12.34 62.4 2.56 4.7 451 2.7 4.42 73.0 52.8
1957  15.82 59.0 4.84 68.9 3.54 77.9 3.76 72.9 62.1
1958 15.24 62.5 3.80 66.4 7.55 70.5 2.55 73.0 66.0
1959 21.72 62.8 411 71.5 2.29 72.3 4.92 76.3 64.2
1960 25.08 59.7 4.43 67.4 2.76 72.6 5.36 73.2 63.2
1961  17.79 57.4 3.36 69.4 5.51 72.6 3.04 724 75.4
1962  26.61 66.6 3.12 69.1 6.27 71.6 431 72.5 76.0

Table 4. The lowa wheat yield data. The yield (in bushels/acre) for the state of lowa,
with average monthly temperatures and rainfalls as covariates. The year is a surrogate
for variety improvements.
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