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Abstract

This paper provides an overview of the modelling process using generalized linear models (GLMs), generalized additive
models (GAMs) and generalized linear mixed models (GLMMSs), especially as they are applied within fisheries research. We
describe the essential aspect of model interpretation and construction so as to achieve its correct application. We start with the
simplest models and show the progression from GLMs to either GAMs or GLMMs. Although this is not a comprehensive review,
we emphasise topics relevant to fisheries science such as transformation options, link functions, adding model flexibility through
splines, and using random and fixed effects. We finish by discussing the various aspects of these models and their variants, and
provide a view on their relative benefits to fisheries research.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction stochastic behaviour. This is a model that says almost

nothing about the process other than that it has the
The goal of a good model is to represent the process form:

it attempts to describe in as wide a range of the stim-

ulus variables as possible without over-specification. Y = f(x2)

To fix ideas, lety be a quantitative response variable

and assume for the moment that (xg, Xz, ..., Xp)

is a set of (initially) quantitative stimulus variables

driving the distribution ofy. Supposez is a standard

normal random variable which captures a degree of

wheref is a function yet to be determined. We are going
to regard the random variald@s just another variable,
centred on zero. Suppose we have a particular paint,
where we would like the model to perform well (and
in some local region about it). Assuming the system
is reasonably continuous and slowly varying, a natural
"+ Corresponding author. Tel.: +61 7 3826 7251 way _of proceeding is t.o use afirst order Taylor approx-
fax: +61 7 3826 7304. imation about the pointg, 0) as a local approxima-
E-mail addressbill.venables@csiro.au (W.N. Venables). tion. Re-writing the derivatives at the central point as
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coefficients in a familiar notation, this gives:

14

y=PBo+ Y Bjlxj—xj)+oz

Jj=1
which is a familiar linear regression model. If we want
the model to capture the behaviour in a larger region
about the central point, then it is natural to consider
extending the Taylor series to second order, giving an
expansion of the form:

p
y=1Bo+ > Bilxj —xjp)

j=1

Pk
+ Y ) Birlxj — xjo)(xk — xx0)

k=1 j=1

P
+ U+Zyj(Xj—Xj0) 7+ (82%)
j=1

That is, we might go to a second-order polynomial
model with powers and lineas linear interactions. The
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mean-variance relationships. GLMs are also useful for
obviously non-normal data, such as binary data. The
log-likelihood surface must be reasonably quadratic in
a region about its maximum point for most parametric
inferential methods, such as (model based) standard er-
rors, confidence intervals and likelihood ratio tests, to
be reliable.

One can allow for curvature in the regression sur-
face, as above, by including polynomial terms. There
are other, often better ways, of gaining flexibility in
the regression surface such as using regression splines.
We discuss this issue of flexibility in Sectidrfirst be-
cause it is important in itself and secondly because it
provides a natural introduction to generalized additive
models (GAMS).

Increasing the complexity of a regression model by
including additional terms will increase the accuracy
of the regression for the training data (the data used to
estimate the values for the parameters of the model),
but will also tend to decrease the accuracy of the model
when itis used for prediction. This is because the extra
complexity in the fitted model may actually be repro-
ducing randomnessThis increased complexity can

last two bracketed terms suggest, respectively, that wealso affect the reliability of interpretations of the fit-

might also expect that variance heterogeneity and non-

normality (mainly skewness and kurtosis) could start
to play an increasingly important role as we require our

ted model. The choice of the degree of complexity,
then, has to balance accuracy in the training data with
predictive accuracy or interpretative reliability. GAMs

model to apply in wider ranges. These are features of represent an extension to GLMs that partially auto-

real modelling situations.
An important, if simple, message to take from this

mates this choice. Local smoothers, including smooth-
ing splines, may be included in the regression function

mathematical view is that most regression models are but estimation is not by maximum likelihood. Rather,

strongly empirical and should only be expected to ap-
ply in a limited region about some central point in the
design (ox-variable) space. This should explain why,
evenwhen aregression line should logically go through
the origin, it may be a better policy not to constrain it
to do so if the origin is well outside the region in design

a penalty term, which reflects the degree of smooth-
ness in the regression, is added to the log-likelihood
and this sum of terms is maximized. The relative
weight given to log-likelihood and penalty is usually

determined by cross-validation. We discuss GAMs in
Sectionb.

space where observations are available. In the fisheries Generalized linear mixed models (GLMMSs), repre-

effort-standardization context then, we may be willing
to relax some logical constraints or boundary condi-
tions on the coefficients that we are estimating if the
data we have are far from the boundary and, if by doing

sent a further and more fundamental extension of the
initial regression model. In the general terms outlined
above, they are best thought of as models where there
are several independent places where a stochastic ele-

so, we improve the performance of the standardization ment enters the model:

where it really matters, namely near the data itself.
Generalized linear models (GLMs) attempt to ac-
commodate variance heterogeneity and asymmetric
non-normal behaviour by offering a range of distri-
butional types that cover at least the more common

1 ‘Randomness is not the mere absence of pattern. Randomness

' can often show quite a definite pattern. The trouble is, nexttime it's a

completely different pattern’ (A.T. James, personal communication,
1975).
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y= f(X, z1,22,...) Note that we are using the genexifor any known
function of the predictor variables, including the con-
where z1 ~ N(O, of), z2 ~ N(O, 022), ..., indepen- stant function 1 that occurs in the intercept term. If the

dently. The unknown variances are often the quanti- stimulus variables are also stochastic, interest focuses
ties of interest and are usually known as taeiance on the conditional distribution of the response given
componentsGLMMs often arise where the parame- the stimulus variables.

ters occur in natural groups. Instead of allowing each ~ The linear model is perhaps the simplest and most
parameter in the group to count as a separate paramedirect approach to modelling this situation. The model
ter, it may be natural to model them as being a sample is as follows:

from some distribution, typically normal. In this case,

a group of parameters is replaced by a single variance
component and the number of parameters is reduced.”
The price is we do not get, strictly speaking, an esti-
mate of the individual parameters but rather predictors
of them. In this respect they have a logical status more
like residuals than parameter estimates.

There is a link between GLMMs and GAMSs. The
penalty imposed on the log-likelihood to ensure that
GAMs remain economical with their use of parameters
is analogous to the constraintimposed on the predictors
in GLMMs, requiring them to behave like a sample p
from a specified distribution family. This often causes y ~ N(y.0%). wheren =) "x;8;

P
= ijﬂj +e=n+e wheres~ N(0, 52
j=1

thatis, the mean of the response depends linearly on the
unknown coefficient®;. The error term is then added

to this linear function. The fixed part of this equation,
represented here hy, is called thelinear predictor.

For our later purposes a slightly better way to write
this model is:

the predictors to be less volatile and less ‘spread out’ j=1
than would be separate parameter estimates, an effect
known as ‘shrinkage’. This emphasises that, in general, the error component

One of the most important benefits of using mixed is not simply ‘added on’ to the linear predictor, but is
models is their capacity to ‘borrow strength’ from one generated by the distribution of the response, in this
part of the data to another, thus often providing a more case normal. Generalization will allow more distribu-
realistic analysis of large fragmentary data sets, which tions for the response and more general connections
are the norm in fisheries research. between the linear predictor and the mean of the re-

sponse distribution.
We have the handy feature that the variablis ef-
2. Ordinary linear models fective in influencing the distribution of if, and only
if, Bj # 0 because of the linearity in the unknown pa-

‘Linear models form the core of classical statistics rameters. This important feature is preserved in all the
and are still the basis of much of statistical practice’ generalisations of linear models we consider in this ar-
(Venables and Ripley, 2002This assertion is partic-  ticle.
ularly true in quantitative fisheries research. Consider ~ The above simplistic model is unrealistic for many
the following general set-up: applications and the results may be misleading. Early

attempts to accommodate stochastic behaviour in a

e There is a stochastic response variable of interest, response variable that is badly represented by a
sayy. normal, homoscedastic, additive error term was to
e There are a number of candidate stimulus variables transform the response. This was so that the nor-

(or functions thereof), sayy, X2, . . ., Xp (Which may mal model was at least approximately true in the

be quantitative or qualitative). transformed scale. Although this can lead to prob-
e How the distribution o depends on the fixed levels  lems in making inferences in the original scale, these

of the stimulus variables at which it is observed is can usually be overcome. We can represent this as
described. follows:
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p
t(3) ~ N(1.0®). wheren=>x;
=1

wheret(-) is a suitably chosen one-to-one transforma-
tion.

A different approach is to use generalized linear
models, where some of the restrictive features of the
simple linear model are relaxed. As we shall see, both
approaches have their uses in practice.

3. Generalized linear models

The class of models known as generalized linear
models, or GLMs, was formally introduced Bielder
and Wedderburn (197 ut the ideais much older. The
techniques for fitting such models, for example, were
essentially complete iRisher (1954)The components
of a GLM are as follows.

The problem is again to model the distribution of
a stochastic response variabjein terms of stimu-
lus variables, X, . . ., X5, Or known mathematical
functions of them.

The distribution ofy depends on the stimulus
variables through a singlénear predictor: n =
Zlexjﬁj, where, in general, thg’s are known
functions of the stimulus variables, not necessarily
simply the variables themselves.

The mean ofy is related top by a known function
called thdink function:

E]=p=10m), n=1e

Note that the link function transforms the mean into
the linear predictor and not the other way round.
Hence it acts in the same direction as a transforma-
tion of the response itself, from which the idea arose.
The variance oy is a function of the mean: Vay] =
¢v(t)/A whereg is a possibly unknown, positive
scale parameteAis a knowrprior weight andv(u)

is aknown function of: called thevariance function
The distribution ofy has a density of known form,
namely

friw, @)

_ EXD[%{W(M) ) + (y, %)]
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This distributional form can be shown to include the
normal, gamma, Poisson and binomial distributions, as
well as several others such as the beta, inverse Gaussian
and negative binomial (if the extra variance parameter
is known, see SectioB.7). Note that the relationship
between the canonical parametgrand the mearny,
will depend on the particular distribution, and the rela-
tionship betweep andn is defined by the link function.

The theory of generalized linear models is con-
cerned with a unified theory of estimation and test-
ing. The standard referenceNscCullagh and Nelder
(1989) but there are many others (e.g. Chapter 7
of Venables and Ripley (200R)GLMs have been
used extensively in fisheries science. Their most com-
mon application is standardization of abundance in-
dices based on commercial catch and effort data (e.g.
Kimura, 1981; Punt et al., 2001; Maunder and Punt,
2004 or survey data (e.@gtefansson, 1996 However,
applications have also included estimating selectivity
of fishing gear Klyers and Hoenig, 1997 esti-
mating bycatch catch rates (e.@rtiz et al., 2000;
Ortiz and Arocha, 2004 estimating biological param-
eters such as growth (e.Bromley, 2000, and many
others.

The choices for link functions, transformations (for
error structure or zero data values) and model selec-
tion/complexity vary considerably in fisheries science,
often for the same data types and problem. These issues
are therefore discussed in further detail below.

3.1. The link function

The link function establishes the connection be-
tween the linear predictor, and the mean of the
distribution, u. There is a so-called ‘natural link’ for
each distribution. The sense in which a link function
is ‘natural’ is somewhat technical and such links are
not necessarily very ‘natural’ in practice. Some sample
information is lost if links other than the ‘natural link’
are used, but this is usually slight.

Itisimportantto note that although the link function
is in some senses similar to a transformation function,
it only establishes a mathematical connection between
parameters. A transformation function when applied to
observations may be intended to simplify the connec-
tion between the mean and the response variables. It
may also achieve other goals such as to stabilize the
variance. See Sectid2 Some special cases are:
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(a) For the normal distribution, the natural link is the

(b)

(©)

(d)

identity link, n = «, the variance function is con-
stant,v(1) = 1, and the scale parameter is the
variance,¢ = o2, which leads to ordinary linear
models. These are sometimes artificially classified
into regression, analysis of variance (ANOVA) or
analysis of covariance (ANCOVA) models, based
on old computational practices.

323

ear predictor. Therefore, the theory becomes only
approximate in this case, though adequate for most
applications. The exponential distribution is a spe-
cial case of the gamma distribution.

3.2. Connection with transformation models

The classical method of dealing with non-identity

In the case of binomial data, where the response is connections between mean and linear predictor or

conventionally taken as the relative frequengy,
= 5/g; (wheresis the number of successes amnd
the number of trials), the mean is a probability and
hence must lie between 0 and 1. The linear predic-

non-constant connections between mean and variance
has been to transform the response, i.e. the data are
transformed using some functid(y) prior to being

analysed, so that some compromise between these two

tor, on the other hand, is unbounded. Hence, the potentially conflicting requirements is met (eQuinn,

link function must map the real line into the closed
interval [0, 1]. The natural link is the so-called
logistic or logit link: n =log(uw/(1— w)), u =
e"/(1+ "), but others are in common usage such
as the probit linkn = ® (i), u = ®(n), where

@ is the standard normal distribution function. The
variance function has the form{u) = u(1 — w)
and the scale parameter is knowi 1. The prior
weight is the number of trials on which the ob-
servation is based; = a,. The difference between
probit and logit links only becomes important if the
probabilities being estimated are either very small
or very close to unity, which typically require very
large-sample sizes for effective inference to be pos-
sible. The two links generally give very close to
equivalent results for intermediate probabilities.
The natural link for the Poisson distribution is the
loglink: n = log(u), u = €, the variance function
isv(un) = u and, as in the case of the binomial dis-

1985; Richards and Schnute, 199Biistorically, the
feature of having a consistent scale of variation has been
(rightly) considered more important than achieving a
simple connection between mean and linear predictor.
Achieving a consistent scale of variation has therefore
been given a degree of primacy when selecting a trans-
formation.

The usual way of selecting a suitable transformation
has been based on the assumption that, within the im-
portant region of variation of the random variable, the
effect of a transformation can be captured adequately
by a simple local linear approximation at the mean, i.e.
if y has a distribution with meam and variance2(u),
we want to find a transformatiom(y) that makes the
variance approximately constant. The linear approxi-
mation at the mean suggests that:

1(y) ~ () + (v — ' (w)

Hence E[t(y)] =~ t(n) and

Varf(y)] ~

tribution, the scale parameter is 1. Poisson models (¢())?02(11) = const. This rough argument leads to

with log links are often calledbg-linear models

and are used for frequency data. Often frequency

data that does not strictly have a Poisson distribu-
tion can be analysed as if it had using ‘surrogate
Poisson models’ (see Chapter 7\@&nables and
Ripley, 2003.

The gamma distribution has a natural link 1/u.

The variance function is(u) = 12 and the scale
parameterg, is generally unknown. The natural
link is sometimes used in practice for the gamma
distribution, but other links such as the log-link
are more common. Note that natural link for the
gamma distribution does not map the range of the
mean into the unbounded natural range of the lin-

the variance stabilising transformation given by:

* du
(x) o / 0@
which suggests the square-root transformation for
Poisson-like data, the arcsine-square root transforma-
tion for binomial-like data, and the log-transformation
for data with approximately constant coefficient of vari-
ation:o () o u.

Fishery data, for example catch rates, often have
the property that the standard deviation increases with
the mean approximately proportionally (efunt et
al., 2000, that is the coefficient of variation is approxi-
mately constant. This may result from the fact that most
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factors that influence the model, including the random  Another way of handling data with a multiplicative

term, do so multiplicatively. Thus the natural model has connection between mean and linear predictor and con-

the form: stant coefficient of variation is to use a distribution from
the generalized linear family that has these properties,

P 2 such as the gamma distribution with a log link. Alter-
y=exp| ) x;pj+e|. wheree~N(, 0% natively, one could use a quasi-likelihood model (see
=1 Section3.5) with log link and variance function(u) =

w?. This approach has the advantage of working in the
original scale and thus, in principle, avoids the problem
of back transformation. This is an approach worth con-
sidering if inference in the original scale is paramount,
but it is not entirely equivalent to the transformation
approach.

Firth (1988) shows that even from an efficiency
point of view the gamma model may have some minor
advantages even if the lognormal model is the more
appropriateWiens (1999)rovides a simple example
where the lognormal and gamma models lead to rad-
ically different outcomes, suggesting that the choice
between these two models can be quite important. In
our experience, the transformation approach is often

» more realistic for catch rate data, particularly since the
y=exp ijﬂj +¢ Wwheree ~ N(0,0?) gamma distribution has a much thinner upper tail than
) the lognormal. Very fat upper tails are often a feature
of catch rate distributions. Another way of looking at
corresponding to a non-linear regression with ho- this is to note that the error term also acts multiplica-
moscedasticity in the original scale. Although the esti- tively on the response for the transformation model.
mation of the mean parameters may be reasonable, the=or the gamma model, the fixed factors do so, but
inferences based on this model depend on whether thethe error term, which is not simply added to the lin-
variance is actually constant. ear predictor in this case, does not. In the transformed

Often, as in the case of catch rate data, interest fo- scale, diagnostics are certainly simpler and easier to

cuses on estimates of the mean in the original scale. appreciate.
Simply transforming back to the original scale pro-
duce; estimates of the njed.ian_rather thar_l the mean,3 3. Estimation and inference in GLMs
and since the lognormal distribution is massively right-

skewed these are potentially highly negatively biased  Egtimates of the regression coefficients for normal

?gtimates of the mean. A simple correction is to add |jnear models are obtained by least squares, and tests
o</2 to the linear predictor before back-transforming, ¢ significance are generally conducted by compar-
but this is also somewhat biased. Producing unbiaseding the minimum sums of squares under different hy-

estimates_ of the mean of_the_lognormal distribution potheses using-tests. Under the normal assumptions,
has received much attention in other contexts. One {hege tests, or more generally inference methods, are
of the earliest solutions to this problem is given in eyact’ in the technical sense that no approximations
Finney (1941)which produces the minimum variance  5re needed in their implementation. Generalized linear

unbiased estimate using an argument similar to the qqels offer a very natural extension of this situation
Blackwell-Rao theorem. Whether this degree of ac- i, tnat:

curacy is needed in fishery applications is debatable,
however, considering the usual roughness of the mod- e The computations involved in finding the maxi-
els used in the first place. mum likelihood (ML) estimates of the regression

A log transformation in this case exactly stabilises the
variance and produces an identity link between mean
and linear predictor in the transformed scale. Note
that non-positive observations cannot occur in such
a model, so if this is a feature of the data it must
be captured by some additional feature of the model,
or avoided by the unsatisfactory practice of adding a
‘small constant’ to all data before transforming (see
Ortiz et al., 2000 It is incorrect to add an arbitrary
value such as one to avoid the logarithm of zero. Fur-
ther discussion of this issue can be foundviaunder
and Punt (2004 By contrast, a normal model with log-
link would involve a model of the form:
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parameters are very like those for the normal case, o n [ A; . .
but must be applied iteratively to give successive ap- 109 L(¢) = Zizl [;{yﬂ(ui) = y(O(:))
proximations that converge to the ML estimates.

e Theinference procedures use an analysis of deviance 47 <yi, ﬂ)} 1)
technique, essentially the likelihood ratio statistic, Aj

which essentially parallels ttietests of normalthe-  Notice that maximising this function with respect to the
ory linear models, and to which these procedures g parameters does not involve the second term (which
reduce in that case. is constant with respect to th&s). The ¢ parameter
) ) _ _only occurs as a constant multiplier in the first term
Generalized linear models therefore provide a uni- 5,4 hence the point at which the maximum occurs does
form method of estimation and inference that is exact ¢ depend omp. This is why the ML estimate of the
for the normal case with the identity link. Estimation B parameters may be found without knowledge of the
is still exact maximum likelihood (ML) for the pa- scale parameter. (This important fact partly explains
rameters in other cases, but the inference methods ar&yhy the deviance is defined in the way that it is, as we
generally approximate, because the distribution theory yiscuss in SectioB.4.)
behind analysis of deviance tests is based on the large- Eq.(1)is the profile likelihood for the scale param-
sample approximate distribution of the likelihood ratio eter¢. In principle, the ML estimate of the scale pa-
statistic. Various alternative test procedures exist (€.9. ;ameter may then be found by maximising this quantity
the score test, Wald's test and the likelihood ratio test) \ith respect tap, although other estimators are often
which all coincide in the normal-identity case and are, used, as we shall see.
in this sense, exact only in that case. The large-sample estimate of the variance matrix of
Chapter 7 ofVenables and Ripley (2003hows the 8 parameters is then:
that the ML estimate o = (81, f, - .., B,)" can be o
found using the same computations as weighted re- Var[B] = ¢(X' WX)~
gression applied iteratively. Given an initial estimate
Mo, Of the linear predictors (which may be essentially
a link-transformed version of the observations, with
some prudent modifications), initial estimates forthe _ _ Bi — Bio

regression coefficients and variance weight function “ /§>(XTVAVX)71
can be calculated. The weighted regression computa- f

tion uses a constructeebrking vector as the response  as approximately standard normal under the null hy-
and iterative weights given by the following formulae: pothesis are called Wald's tests. In fact, most of the
large-sample inference procedures in generalized lin-
ear models can be deduced by using the analogy with
Yi — 0i Aj <M)2 weighted linear regression. In this very practical sense,

Tests on individualg coefficients using the standard
test statistic:

2oi = moi + dpeoi/dng;”’ woi = v(wo;) \ dno; generalized linear models offer a unified and very nat-
ural extension of linear least squares that is both com-

If Xisthen x pdesign matrix antlp then x ndiagonal putational and inferential.

matrix of weights, then the next approximation to the

p and linear predictor vectors are: 3.4. The deviance, its definition and its uses

ﬁl = (XTWOX)_leWozo, N = Xﬁl Many authors claim that the quantity called the de-

viance in generalized linear models 422 times the
from which iteration can usually proceed to conver- maximum log-likelihood’. This is not strictly correct,
gence. and for some GLMs it is actually false and misleading.
This iterative scheme attempts to find the maximum  To give a precise definition of the deviance for
of the log-likelihood function, which, gives, may be GLMs we need first to give a definition ofsaturated
computed at any step as: model This is a model with as many mean parameters
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as there are observations. In this case we may take theof deviance residualsan important diagnostic tool to
components of the mean vector as the parameters and itvhich we return below.

is easy to see that the ML estimates are the observations

themselvesu; = y;. We will denote the maximum of

the log-likelihood function under the saturated model 3-4.1. Distribution of the deviance; tests of fit
as: For the normal case, the expression for the deviance

is the residual sum of squares:

ogs(6) = Y1, | 500000 ~ ¥60))

Dy =) (yi— )
re(on )] o MTh

Notice that any model we may specify for the means, and hence for the identity link this quantity does have a
that is any design matriX we may propose, specifiesa  distribution proportional to the chi-squaretl; /¢ ~
model that is nested within the saturated model. To see x2(n — r), exactly. This leads to the usual ‘variance
this, note that that any model imposing a restriction on component’ estimate of the scale parameter:

the mean vector through a real design ma¥rimuste

a special case of the saturated model, which imposesg — Dy

no restrictions at all. The maximized log-likelihood for h=p

any real model, then, cannot exceed that for the satu- . . : :
rated model which for the normal case is the usual restricted maxi-

mum likelihood (REML) estimate of the variance, usu-
ally denoted by2. REML estimation can be viewed as
maximum likelihood estimation, but using a likelihood
based on functions of the data which have a distribu-
tion depending only on the parameter of interest, in this
caser2. In this sense, the likelihood is ‘restricted’, and

Temporarily assuming is known (as it is for bi-
nomial and Poisson cases, but usually not otherwise)
the likelihood ratio statistic for testing some specific
model, say, within the saturated model is then found
by subtracting Eq(1) from Eq.(2) and multiplying by

2 the resulting estimate is usually closer to unbiased than
x% = 2(logLs(¢) — log L y(¢)) the strict ML estimate, while retaining high efficiency.
n The distributional properties af are virtually un-
1 . .
- = ZAi[{in(yi) — y(0())} known for the gamma and inverse Gaussian cases.
¢ = Nevertheless, if a fitted model for a distribution with
D ¢ known hasDy/¢ > n — p, the data is said to be
—{yif(ini) — y(O@(i)H det. v 3 ‘overdispersed’ with respect to the assumed distribu-
¢ tion. Similarly if we haveD,; /¢ > n — p the data are

The quantityDy so defined is the deviance for model ‘underdispersed’. Thisis less common, but can happen,
M. Thus, the deviance may be defined as ‘the likeli- for example, with binomial data when models have es-
hood ratio statistic for testing any specific model within timated probabilities close to 0 or 1. The variance com-
the saturated model, assuming the scale parameter igoonent estimate af is very unreliable for some classes
known and has the value 1'. The assumption is very of data such as binary data or gamma data with values
important. The assumption is met for the binomial and close to zero, and a different estimator is used based on
Poisson distributions and the deviance is then merely athe Pearson chi-squared statistic (see Section 4.4.5 of
re-located version of-2logL, but for the normaland ~ McCullagh and Nelder (198R)In these cases, a view
gamma distributions the assumption is usually not met on whether the data are ‘overdispersed’ or ‘underdis-
and the deviance is not directly related to a likelihood persed’ relative to the assumed model should be based
ratio statistic at all. on this alternative estimator.

The quantity inside the summation sign on the mid- The assumptiop = 1 holds for the binomial and
dle expression of E(3) is calledthe deviance incre-  Poisson cases, and the deviance is often used as a global
ment These quantities in turn lead to the definition ‘test of fit', using the approximatioily + x*(n=p) |
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with large values leading to rejectiGrHowever, this Wheng is not known, the usual approximation uses
approximate distribution has to be treated with some anF-statistic. In this case the usual (butin some cases,
caution. It cannot be directly justified on the grounds Somewhat speculative) approximation is:
oflarge-sample likelihood ratio theory. That theory per- (Dy, =Dy /(p=py)
tains to testing one hypothesis within another, both of ¢

which have fixed degrees of freedom as the sample size o . S
increases. As the sample size increases the number of again W'th_ large valu_eg leading to rejection. For the
degrees of freedom associated with the saturated modelnormal-ldentlty case this is an exact result. For the nor-

by definition also increases, thus negating the assump-mal case V.V't.h non-identity links, the behaviour of this
tion. test statistic is not completely known. However, the ap-

For the distribution of the deviance to be approx- prox?mation s usua]ly assumed tq be reasonably good,
imately chi-squared, a sufficient condition is that the prowdec_i the modelis nottoo non-linear. Forothercgses
distribution of the observations from which it is com- wherep is unknown, such as the gamma, the behaviour

puted must become nearly normal. Thus, for the bino- of this test statistic is not well known.

mial case, we might then expect the distribution of the o

deviance, and hence the customary test of fit, to become3-2- Quasi-likelihood

approximately correct if the number of observations ) ] ]

remains constant but the sizes of each of the numbers_ Generalized linear models offer considerable flex-
of trials, what we have called ttg's above, increases.  IPility in modelling. The link function can be used to
This is because by the central limit theorem each obser- SPECify @ non-linear connection between the linear pre-
vation will become more nearly normally distributed. dictor and the mean, and the distribution itself can be

However, for the case of logistic regression with binary USed to specify the variance function, that is, the con-
data, increasing the number of observations in general N€ction between the variance and the mean. As we saw

has an unknown effect on the distribution of the de- N Section3.2, with transformations of the response it-
viance. The approximate distribution theory will then Self, @ single transformation had to be used to try to
usually not apply. achieve both of these features, and the result was in-
If a test of fit is required in the binomial or Poisson €Vitably something of a compromise. _
cases, a better proposal is to fit an enclosing model ~ 1he estimation procedure and approximate infer-
that includes all contemplated models as special casestce methods presented above do not require the dis-
and to test any given model within it. The degrees of tribution to be s_tated epr|C|tIyZ _but rather rely on a
freedom associated with the enclosing model should Number of functions to be specified. These are:
be relatively small compared with the sample size. 4 the link function,I(), which connects the mean to
L_|keI|hqod ra}tlo theory su.ggests tha_lt even if the the linear predictor, and conversely;
dgwance itself is. not apprommatgly chi-squared cﬁs— o the variance functionp(x), which specifies the
tributed, scaled differences of deviance (between fixed  ean—variance relationship up to proportionality:

models with relatively low degrees of freedom com- 4 the deviance increment, which is only required at the

+F(p—p,,n—p) if M, istrue

pared tan) will have approximately chi-squared distri- inferential rather than the estimation stage.
butions. Thus iM andMg are two fixed models with
p andpo degrees of freedom, arMg is nested within This realisation le@Vedderburn (1974p introduce
M, implying po < p < n, and¢ is known, then under  the notion of a quasi-likelihood model, which is only
reasonably general conditions: partially parametric in that it only requires these three
v, Pu . ingredients to be specified rather than a fully parametric
e =X (p=po) model.

if Mg is true. This provides the usual likelihood ratio ~ Quasi-likelihood models (s&@odambe and Heyde

test. (1987)for a comprehensive treatment) can be shown

to have various optimality properties regardless of the

2 The symbol=- is used to mean ‘is approximately distributed ~ Precise underlying distribution (e.§irth, 1987. Us-
as’. ing quasi-likelihood models with the same link and
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variance function as the binomial or Poisson distri-
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all reduce to the same value for ordinary linear models,

butions produces the same estimates as for those dis-as might be expected.

tributions, but can be used with the scale parameter

Perhaps the most widely used definition of resid-

assumed unknown and estimated. These are sometimesials for generalized linear models is the so-called
called quasi-binomial or quasi-Poisson models. One ‘deviance residuals’ as introduced lcCullagh and

way of allowing for overdispersion in inferences is

Nelder (1989) The deviance residual for an observa-

to use a quasi-deviance to estimate a scale paramedion is defined as the signed square-root of the deviance

ter. This device is closely related to one of the earli-
est ways of dealing with overdispersion (ekinney,
1971).

Most software implementations of GLMs allow
guasi-likelihood models to be specified in a straight-
forward way. For example, both S-PLUS and R allow
a family argument in the GLM fitting function that
may be used to specify a quasi-likelihood model in
terms of the link and variance functions. R also has

quasi-binomial and quasi-Poisson families that spec-

ify binomial- and Poisson-like ‘distributions’, but for

which the scale parameter is assumed unknown and is

estimated. The fact that no known discrete distribution

has these properties is not an impediment to the non-

parametric optimality properties still enjoyed by the

increment for that observation, where the sign is that of
vi — [ti- Hence, just as the squares of the residuals in
a linear model add to the residual sum of squares, the
squares of the deviance residuals add to the deviance
in a generalized linear model.

No definition of residuals is completely satisfactory
for some classes of data. These include binary data
and other frequency data with small numbers. In these
cases, diagnostic investigations have to rely on other
methods more specific to the particular problem (see,
for exampleCox and Snell (1968andLaird (1996).

Discreteness in the data is not a particular problem
for much of the machinery of inference using general-
ized linear models. Likelihood ratio tests, for example,
rely on the likelihood being approximately quadratic

estimation and inference procedures associated within a sufficiently wide region about the maximum. Al-

quasi-likelihood methods.
3.6. Diagnostics and possible problems

Most of the diagnostic techniques for discovering
problems with linear models can be applied fairly di-

though there can be some problems with binomial
models (e.g. the Hauck—Donner effectenables and
Ripley (2002) p.197ff) this affects the convergence of
the estimation process and Wald'’s tests more than like-
lihood ratio tests.

rectly when using generalized linear models, with some 3.7. Overdisperson and model extensions

caveats (e.gwilliams, 1987; Fox, 199) The discov-
ery of points of high leverage should use a projector
matrix that takes into account the weights at the final

We have already discussed overdispersion as a po-
tential problem with binomial- and Poisson-like data.

stage of iteration, but otherwise the technique is identi- An alternative to using quasi-likelihood models is to
cal to the ordinary linear regression case. This feature extend generalized linear models to incorporate ex-

is automatically included in the facilities provided by
the R software function ‘influence.measures’, to which
readers may refer for additional examplBs¥evelop-
ment Core Team, 2003

Residual plots are also useful in most cases. Plots of

tra components of variation which account for the
increased dispersion. Technically this makes them gen-
eralized linear mixed models (GLMMs) of a kind, a
subject to which we return below.

There is a considerable literature on this approach,

sorted residuals against normal scores and against thewith Williams (1982)one of the earliest papers on the

individual predictor variables or the fitted values (or
linear predictor values) are often used (egtiz and
Arocha, 2004 and should generally behave similarly

to those for normal data. The residuals themselves are

binomial. One approachisto assume a two-stage model
of the form:

yilmi ~ B(nj, m;), 7 ~ B(, y)

not uniquely defined and the S-PLUS and R software The marginal distribution of; is then beta-binomial,

systems, for example, both allow four possible defini-

and the extra variation induced by the beta component

tions of residual for generalized linear models. These (the second above) induces the extra dispersion in
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the model relative to the binomial (the fil8} alone. extremely poor behaviour elsewhere. Within the gen-
Williams (1982)also describes two other possible ap- eralized linear modelling family, one way around this
proaches. is to use a link function in the model that incorporates

Another distribution often used for frequency data some non-linear behaviour. For example, the mean of
overdispersed relative to the Poisson is the negative a binomial proportion can only lie between 0 and 1; the
binomial distribution (e.gBannerot and Austin (1983) link function ‘wraps’ the linear predictor into this finite
for catch rate data). This may also be specified using a range. Another way to extend the range of applicability
two-stage formulation, namely: of a model is to use a genuinely non-linear regression,
yilzi ~ Poiz)).  zi ~ I'(6.6) Vn\:k(])lgzlﬁﬁgefzrtr:ﬁzl_m()del outside the generalized linear
The mixing gamma distribution hal[z] = 1 and Remaining within the GLM family, this obstacle
Var[z] = 1/6 so the distribution of; approaches the can sometimes be overcome by using a family of
Poisson again a8 — oo, i.e. as the mixing variable  functions that can adapt to the local behaviour of
becomes constant. It is also easy to see by conditionalthe regression function almost independently in sev-
expectation and conditional variance arguments that: eral regions at once. One such family is the spline

2 family.
Elyi] = wi Var[yi] = ui + Hi Spline functions (e.gde Boor, 1978 are piece-
0 wise polynomials, usually over a finite range. At the

The distribution has variance which is quadratically ‘knots’, the points where the polynomial pieces join,
related to the mean rather than linearly as in the Pois- the function is constrained to remain continuous and
son and quasi-Poisson cases for small valu®s the smooth. Atthe ends of the range (the ‘boundary knots’),

marginal distribution ofj; is given by: a further constraint is applied to identify the func-
tion. For example, so-called ‘natural cubic splines’
fOis i 6) are piecewise cubic polynomials with continuous first
_I(yi+6) derivatives at the knots and constrained to be linear

Oy @+ p) yi=012 . oquide the t_)oundary knots. The two_impo_rtant prop-
erties of splines from a data analysis point of view
which, if 8 is known, conforms to the generalized lin- are.
ear model distributional form. In waiting time data this
occasionally is the case, but, in genegalyill be un-
known. Thus, the model may be fitted by adapting the
iterative scheme to accommodate the extra parameter
(see Chapter 7 offenables and Ripley (200Zpr a
more complete discussion, including examples).

e They may be expressed as linear combinations of
known basis functions, analogous to the power terms
used to define polynomials, and hence may be fitted
with no more difficulty than polynomials.

e They are more flexible than, say, polynomials or har-
monic functions. This is because being piecewise
functions with discontinuous higher derivatives at
the knots their local behaviour at a point does not
entirely determine their global behaviour, i.e. they
can ‘adapt’ to local conditions almost independently
in several parts of their range.

4. Achieving flexibility in the linear predictor;
moving to GAMs

We have noted above that including polynomial
terms in the linear predictor is a natural way of en- One price that has to be paid for this less rigid be-
larging the region within which an empirical regres- haviour relative to high-order polynomials is in the in-
sion relationship may be useful. This is analogous to terpretability of the coefficients. Spline regressions are
increasing the number of terms in an approximating most easily appreciated graphically through the pre-
Taylor series to an unknown function. A problem with dicted or fitted values in the regression rather than
polynomials, in mathematical terms, is that the local be- through the values for their coefficients. In testing a
haviour determines the global behaviour. Often good spline model the entire block of terms should either
behaviour in one region is bought at the expense of be in the regression or out; in general it makes little
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Fig. 1. An artificial example showing the true regression function (solid), the natural spline regression approximation with 10 degrees of freedom
and knots ak = —8, —6, .. ., 6, 8 and boundary knots &at= —10, 10 (dashed) and a polynomial regression, also with 10 degrees of freedom
(dotted).

sense to consider the separate significance of individ- and the true regression curve virtually coincide in this

ual terms3 case, but it does require that the data analyst knows the
Fig. 1 shows an artificial example of a regression true form of the regression.

in one variable that is almost constant for much of One of the earliest papers on spline regressions

its range but with a ‘hump’ in one region. The true (Boneva et al., 1970suggested using them for ex-

function is a standard normal density over the region ploratory purposes and this is still possibly their most

(—10, 10) and there are 501 evenly spaced observa-effective use. Most statistical software platforms that

tions. The (artificial) data are showninthe top left panel provide generalized linear model fitting facilities now

and in the top right panel the true function is plotted provide for spline regression, usually with a choice of

together with the least squares estimates of a polyno- ‘natural’ or ‘B-spline’ bases. The distinction between

mial and a natural spline regression, both of which use these lies in the identification constraint imposed at the

10 degrees of freedom. The polynomial fails to cap- ends of the range, but for most regression purposes the

ture the behaviour of the regression virtually every- two bases are virtually equivalent.

where, whereas the natural spline does a reasonable

job. In particular, the polynomial fails spectacularly at 4.1, Cross-product terms

the ends of the range; the natural spline would not fare

that much better for extrapolation very farfromthe ends When there are several predictorvariab]es' itiscom-

of the range, but is certainly more stable. The only way mon practice to fit independent spline terms in each, at

we know of achieving stable extrapolation would be least during exp|oratory ana|yses:

to fit a non-linear regression of the true form, namely

y = exp(Bo + P1x + P1x2) + &, whichhasameanthat 7 = Bo + s(x1, B1) + s(x2, B2) + - + 5(xp. B))

is a non-linear function of the unknown parameters.

This is a non-linear regression, but the non-linearity

can be captured by a log-link, thus remaining within

the generalized linear model family. The fitted model

(where, despite notational appearancespgalloccur
linearly). The individual terms are then easy to plot
against the variable on which they depend, and usu-
ally easy to interpret. This presumes that the linear
predictor can be so written, however, and that cross-
3 To construct a nested sequence of natural cubic spline models product terms between different variables are not re-
in one variable of increasing complexity, the knot sequences have to quired. Unfortunately this is not necessarily the case

be nested in the obvious sense. The complexity could be increased in. ti Th timat f the ‘main effects’ (h
this way and the testing theory would be entirely analogous to testing In practice. e estimates of the ‘main effects’ (here

polynomial models of increasing degree. However, we are not aware SPIiN€) terms can be very misleading ifimportant cross-
of this being done commonly in practice. product terms are omitted.
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Including cross-product terms greatly complicates is, however,Agnew et al. (2003where a combined
the interpretation, and analysts are often loathe to in- GLM/GAM of parasite abundance iMicromesistius
clude such terms for this reason. There is no easy solu-australiswas modelled as a binomial GAM on the pres-
tion tothis, however, and the analysthas aresponsibility ence/absence component and infection intensity was
to address this issue seriously. modelled using a simple GLM.

One general way around this problem can be to A generalized additive modeH@astie and Tibshi-
choose variables in such a way that one would not rani, 1990 is a generalized linear model that allows an
expect, a priori, interactions among them to be very extended form of linear predictor, namely:
large. For example, it may be tempting to choose ad-
ditive spline terms in latitude and longitude for mod- n = Bo + fi(x1) + f2(x2) + - - + fp(xp)
els where graphical location is an important predictor.

However, for a coastal fishery it may be more natural to where thefi(x;) terms may well involve unknown pa-
take the distance along the coastline as one geographtameters, but these are suppressed in the notation.
ical co-ordinate and distance from the coastline out to The fi(x) terms are, in general, ‘local smoothers’,
sea as the complementary co-ordinafen@ables and  meaning they may be explicit functions or they may
Dichmont, 2004 If the GLM is describing, for ex-  be, for example, ‘loess’ terms, which are more like
ample, fish abundance measures, it is easy to envisagerescriptions for achieving a local approximation by
situations where the latitude and longitude predictors weighted averaging of near neighbours than explicit
are strongly interacting, but alternative geographical function definitions. One common choice is the so-
predictors are not. called ‘smoothing splines’, which are splines with
knots at each distinct value of the variable. If the esti-
mation were not penalized, ‘smoothing splines’ would
5. Generalized additive models interpolate the data. The use of smoothing splines
in regression is discussed comprehensivelWahba

Spline regression models can be parametrically very (1990)
expensive and easily lead to over-fitting. Generalized In addition to local smoother terms, generalized
additive models address this problem by deliberately additive models may contain other terms with fixed
fitting a model with a large number of parameters, but degrees of freedom such as polynomials, harmonic
compensating for this by estimating them using a pe- terms or ordinary splines. These are omitted from
nalized likelihood, with the balance between likelihood the discussion here for simplicity. They enter the
and penalty chosen by cross-validation. likelihood but not the penalty terms to be described

The use of GAMs in fisheries science is much less below.
common that GLMs, but their use has increased sub-  The comments on cross-product terms made in Sec-
stantially over the last decade. Many scientists are us- tion 5.1 still apply: it is assumed that the analyst has
ing GAMs instead of GLMs, and, as a result, the most chosen the-variables in such a way that cross-product
common use in fisheries science is similar to that for terms are not likely to be important relative to the terms
GLMs, namely standardization of abundance data (e.g. in each single variable that remains. If this is possi-
Walsh and Kleiber, 2001 Most studies use a com- ble, it implies that the effect of each variable on the
bination of commercial and/or survey data together response is summarised by thé) term which in-
with geographic and environmental variables for un- cludes it. This makes interpretation of the model rel-
derstanding and predicting abundance (8grchers atively easy.
et al., 1997; Bigelow et al., 1999; Denis et al., 2002;

Brynjarsdbttir and Stehnsson, 2004 stock or species  5.1. Estimation with penalties

structure (e.gCardinale and Arrhenius, 2000; Venables

and Dichmont, 200¢or distribution (e.gWright et al., If Lis the likelihood function (initially assuming the
2000. scale parameter has a known value of 1), estimation

Rarely does one find that a mixture of GLMs and is achieved by minimising the penalized negative log-
GAMs has been used in the same study. One examplelikelihood:
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p ) with the approximate inference procedures usually sug-
—logL + > 4, / (f (xj))” dx; gested.
j=1

where first term measures the closeness of the fit to

the data and the second term measures the degree 06. Generalized linear mixed models

‘roughness’ in the regression function. Thgs are

‘tuning’ constants that effect the trade-off between ac- 6.1. Mixed models

curacy and smoothness, and are generally chosen by

cross-validation. The fitting process is fully described Before describing GLMMs we find it useful to

in Hastie and Tibshirani (1990) present an artificially simple example based on ordi-
nary mixed models. Consider perhaps the simplest of

5.2. Discussion of GAMs all possible linear models, that of a single mean:
Vi=Hpnte

In our view, generalized additive models, if the prob-
lem of cross-product terms can be satisfactorily settled  |f we do not specify this model any further and re-
a priori, can be a powerful exploratory tool highlight-  gard all unknowns as parameters, there are more param-
ing unexpected behaviour of some variables in their etersthan observations, namglyes, €2, . . ., &,. Ifwe
influence on the distribution of the response. However, identify the problem by imposing some constraint, for
they come at a relatively high cost. While the interpre- exampleZZ’zlgi = 0, then the model is saturated and
tation of the results may be relatively simple, at least the parameters are merely a different way of presenting
graphically, any formal inference procedure, such as the full data set and nothing is achieved. If, on the other
hypothesis tests or even obtaining confidence intervals hand, we extend the model in the usual way by requir-
for the fitted values, can be somewhat problematical. ing thats; ~ N(0, o2), independently, then the number
Itis even possible for the deviance to increase in some of parameters condenses to twoando?, with esti-
cases if additional terms are added to the model, lead- matesy ands? = 1/n — (i — ;)2 and the sta-
ing naive analysts to arrive at notional chi-squared test tus of the differences, or residudls= y; — y changes
statistics that are negative. This apparently anomalousfrom parameter estimates to ‘predictors’ of the value
behaviour is resolved by noting that the fitting process of the unobserved variable. In this sense, all sensible
does not minimize the deviance butrather the penalized models are ‘mixed’ models in that they have systematic
deviance and the tuning constants may easily changeand random components. It is more usual, however, to
considerably between any two models, implying a dif- reserve this description for the situation where more
ferent trade-off. than one random term enters the model.

In fisheries research, the added flexibility of Robinson (1991)rovides a good reference on linear
generalized additive models over, for example, gen- mixed models and best linear unbiased prediction.
eralized linear models with fixed spline, or even poly-
nomial terms may sometimes be necessary, butin ourg 2. GLMMs proper
experience this is uncommon. We find that most ap-
plications in fisheries research are adequately handled  Generalized linear mixed models are like general-
by a judicious use of spline and polynomial terms jzed linear models but some of the terms in the linear
(or harmonic terms if the function has a known pe- predictor are random variates. The model may be for-

riod), and the stable and relatively straightforward majly described conditionally as (now using an obvious
inference procedures that this allows is a highly im-yector notation):

portant bonus. This is not to say that generalized addi-

tive models might not be used for exploratory purposes YI{ ~ GLM(7, ¢),

prior to an analy;is. In some cases, thg extra ﬂfaxibillity where g = XB+Z¢ and ¢~ N(0, 5(6))

of, say, smoothing splines with penalized estimation

may really not be adequately replaced by fixed knot Note that the design matrix is expressed in two patts,
splines, but in this case we urge users to be cautiousfor the fixed effects and for the random effects. The
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random effectsg, need not be multivariate normally Several closely related approximate procedures are
distributed, but this is the common practice. Since the now most often known as ‘penalized quasi-likelihood’
random effects are not observed, the true likelihood methods.Schall (1991)used the iterative weighted

is based on the marginal distribution yfwhich, in linear regression analogy, and suggested an estima-
principle, can be obtained by integration. For a more tion scheme for GLMMs that amounted to an iterative
extensive discussion of this possibility and its practi- weighted version of fitting linear mixed effects mod-
cal limitations, see Chapter 7 ¥enables and Ripley els. Breslow and Clayton (1993Jeveloped a similar

(2002) The marginal density of is: method using the Laplace method for approximating
the multiple integral involved. This latter method and
fr(; B, ¢,0) = / frice; B, $)gz(¢;0) dg their term, PQL, is now perhaps the most commonly

used method, although others are gaining in popularity
where the integral over the multivariate distribution of (see alsolfinger and O’Connell (1993)Some soft-
the random effects is generally not tractable. ware is becoming available that uses numerical integra-

This rather formal definition can obscure both the tion or Markov Chain Monte Carlo (MCMC) methods.
simplicity of the method and its flexibility to cap- See, for example, the GLMMGibbs and Ime4 pack-
ture real features of an actual situation. For exam- ages in R. For a very different approach, based on
ple, random effects will usually be nested at differ- the EM algorithm, segan Dyk (2000)and references
ent levels, such as ‘between areas’ and ‘between ves-therein.
sels within areas’, assuming areas can be modelled as
random. For exampld,ai and Helser (2004jnodel
growth data where individuals are nested within survey
strata.

Also, longitudinal data will normally capture
‘within vessel, between times’ variation either with
an explicit correlation structure or by assuming an
additive random vessel effect. In other cases, we
may have random slope and intercept terms, which
will normally be correlated, where the individual ran-
dom regression lines occur, say, within vessel over
time.

Estimation in GLMMs is still a research topic, but
several approximate techniques are now (still some-

what cautious_ly) gaining accep_tanc@iggle et al. the catch, by weight, of a species within a catch group.
(1994) and Laird (1996) summarise the theory and  a gpecific example is described¥enables and Dich-
other issues related to GLMMs in the context of longi- -+ (2004))

tudinal data, a common context in which mixed mod-  The opservations driving the model are the total
els arise. Longitudinal data are cases in which several yeights, T, of catch in survey trawls, and the propor-
measurements are made on the same experimental unitsions of the weight for one of the specigsAlthough
(e.g. vessels) over time. The fact that the same vesselthe proportions are not binomially distributed, it is rea-
is used normally induces correlations among the ob- sonable to consider a quasi-likelihood model that has
servations, which are important for the model to cap- & mean and variance function similar to the binomial.
ture. One very effective way of achieving this is to Hence, ifi. is the true proportion, we propose a quasi-
attribute a random effect to each vessel, implying a Pinomial model of the form:

GLMM. The use of GLMMs in fisheries science nev- o e n(l— )
ertheless remains fairly rare with only a few examples Y ~ qua3|-b|nom|a<u = Ty abl= W)
inthe mainstream fisheries literature (€£goke, 1997;

Squires and Kirkley, 1999; Olsen, 2002; Braocet al., (where here,~" means ‘is modelled as’). The vari-
2004. ables available for the linear predictor include fine- and

6.3. GLMMs: a generalized example

The implications of using GLMM are probably best
conveyed by a concrete, but generalized, example. In
many fisheries, the catch is a combination of several
species. However, because of the substantially differ-
ent biology of the species, separate stock assessments
are needed for each species in the catch. Survey or
observer data, even though very patchy in distribution
and time, can be used to gain information on the relative
species proportions in the catch in different areas and at
different times of the season. We consider the problem
of building a GLMM for predicting the proportion of
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large-scale spatial coordinates, fine- and large-scaleposes. This is the rule rather than the exception in fish-
time, periodic time, and geographical variables such eries research in our experience. The data sets are often
as depth and sediment type. In the specific example re-very unbalanced and even the experimental protocols
ferred to above, the final model contained a mixture of are changing astime proceeds in perhaps subtle and un-
spline terms, a linear term, four harmonic terms and an known ways. All these possibilities point to modelling
interaction term. There were also two random terms, the situation using random terms.

which convert the model from a GLM into a GLMM.

These were random increments for:

1. the season in which the survey took place, and /. Summary

2. the stock region within each season. This overview of theory has not attempted to be

These, respectively, allow for changes among sea- comprehensive but has instead tried to focus on issues
sons, and differences among stock regions within that we find are perennial in fisheries research.
seasons, not otherwise captured by the model. They We began with a view of the mathematical genesis
introduce two additional components of variation into of a linear model that we hope made it clear that most
the model. More importantly, they induce correlations linear models are empirical and local in practice, in the
among observations at two levels, namely within the sense that they are not expected to perform well out-
same stock region and season, and within the same seaside a restricted domain centred on the observations.
son. These may be important in allowing for unmea- With a first-order model, ordinary least-squares nor-
surable factors influencing the proportions that need mal theory models might be adequate, at least for a
to be included in this surrogate way to enable the ef- continuous response variable. We might expect that in-
fect of other factors to be estimated accurately. If these teractions among predictors, curvature terms, variance
random terms (technically a random main effect and heterogeneity and non-normality will start to play an
a random interaction) were estimated as fixed effects, increasingly important role as the domain of applica-
there would be two main differences: bility is extended.

If the simple assumptions underlying the normal as-
sumption are not met (well enough), one way of cor-
recting the situation is to transform the response. The
goal of atransformation has classically been to stabilise
the variance. Even so, atransformation will also change
the relationship between the linear predictor and the
mean as well as possibly promote overall normality by
reducing skewness and kurtosis. Transforming the re-
sponse may even complicate things if it is necessary
to make inference on the mean of the untransformed

The random terms do not contribute to the fixed part scale.
of the mean, but the variance components associated Extending the region of applicability of the model
with them will inflate the tolerance intervals associated may involve including higher-degree polynomial terms
with predictions in an appropriate way. in the predictor variables, as suggested by the Tay-

The property that random terms have of inducing lor series analogue. Other ways of doing this are usu-
correlations among the observations is possibly the ally preferable. In particular, regression splines offer
most important effect of a mixed effects model, asthey a simple way of modelling the dependence of the
allow a measure of data integration to take place in the mean on a predictor variable that offers greater lo-
analysis, the so-called ‘borrowing strength’ property. cal flexibility. There is still the need, however, either
This is particularly important in situations where the to include cross-product terms or to choose predictor
data set has not been collected for the primary purposevariables in a way that would minimise the need for
at hand, but has been drawn together from historical such terms. This requires an intimate knowledge of the
data sets that were originally collected for other pur- context.

1. the number of parameters in the model would
be greatly increased, possibly leading to over-
parameterization and, more importantly,

2. the fixed effect model would not allow any future
prediction, because, to make a prediction for a given
future fishing season, we would need to know the
unique increment for the season, as well as the
unique increments of the stock areas within the sea-
son.
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Generalized linear models offer a way of modelling Mixed effects models offer an important way of us-
in the original scale, but effectively of accommodating ing models that are flexible but at the same time have
agreater range of (a) links between linear predictor and their parameterization strongly controlled. Typically a
mean and (b) forms of dependence of the variance on group of related parameters enters the model as a sin-
the mean, than is possible under simple normal theory. gle random term. The model now focuses not on the
Inference methods in generalized linear models mainly separate parameters as would be the case for the fixed
use the concept of the deviance, which is somewhat effects model but on the variance component, that is,
like —2 x log-likelihood, but differs in some essential the variance of the distribution from which the pa-
respects. rameters are assumed to come. The estimation pro-

Quasi-likelihood models form a non-parametric ex- cedure generally produces ‘predictors’ (often called
tension of the idea. They only require a link function, ‘best linear unbiased predictors’, or BLUPSs) of the
variance function and deviance increment to be sup- individual values, although they now have a differ-
plied and the analysis can proceed even without formal ent logical status from separate parameter estimates.
identification of an underlying distribution. They are, in fact, somewhat analogous to residuals.

Generalized additive models offer a way of gaining The BLUPs of the random effects, like the (condi-
extra flexibility in the linear predictor while automat- tional) residuals, can be subjected to a range of di-
ically controlling the parametric complexity. GAMs agnostics such as normal QQplots since the random
allow the linear predictor to include local smoothers effects are assumed to be normally distributed in the
as terms. These then entail an estimation procedureGLMM. Detection of atypical values of the random
that differs from maximum likelihood in that a penal- effects may also be possible using scatterplots of the
ized likelihood is maximized, where the penalty uses BLUPs which include their approximate confidence
a measure of roughness in the fitted surface. The tun-bounds.
ing parameter that determines the compromise between In modelling key parameters as random, mixed ef-
fit and roughness is often chosen by cross-validation. fects models have the capacity to ‘borrow strength’
These methods offer a powerful exploratory toolinfish- from different parts of the data set and produce pre-
eries research, but we have seen few occasions wherdictors of the individual terms that usually show some
using appropriately chosen fixed spline terms in the re- ‘shrinkage’ towards the general mean, which is seen
gression is not sufficient. There is also, in practice, a as natural and reasonable. In other words, the predic-
strong incentive to ignore cross-product terms in the tors are often much more stable than individual pa-
linear predictor, because to do so makes the interpre-rameter estimates would be, because those use more
tation much simpler and the software facilities pro- information in the data. This property makes mixed
vided almost encourages this omission. In our view this effect models very effective in situations where the
avoidance of cross-product terms is a trap. There is a data are very unbalanced or fragmentary, which in turn
strong requirement for the user of GAMs firstto choose can result if the data set itself has been put together
variables where the need for cross-product terms is un-from historical data sets originally collected for other
likely to be strong (or to include such terms in the purposes.
model). This is usually not easy and requires some in-
sight into the context.

Generalized linear mixed models are a powerful Acknowledgements
extension of GLMs. The linear predictor now con-
tains both fixed and random terms. The model is  The authors wish to thank AnérPunt and Yong-
within the GLM family conditional on the random shun Xiao for the invitation to write this paper. We
terms, but marginally (i.e. unconditionally), it usually especially appreciate the comments on a draft of the
is not. Estimation in GLMMs is still a research topic, manuscript by Malcolm Haddon, Nick Ellis, Peter
and the currently available methods all use some ap- Toscas, Mark Bravington and Janet Bishop. We also
proximation to the multiple integral that defines the wish to thank three anonymous referees for many use-
marginal distribution in a way that avoids its explicit ful suggestions which have led to very useful improve-
evaluation. ments.



336

References

Agnew, D.J., Marlow, T.R., Lorenzen, K., Pompert, J., Wakeford,
R.C., Tingley, G.A., 2003. Influence of Drake Passage oceanogra-
phy on the parasitic infection of individual year-classes of south-
ern blue whitingMicromesistius australigviar. Ecol. Prog. Ser.
254, 281-291.

Bannerot, S.P., Austin, C.B., 1983. Using frequency distributions of
catch per unit effort to measure fish stock-abundance. Trans. Am.
Fish. Soc. 112, 608-617.

Bigelow, K.A., Boggs, C.H., He, X., 1999. Environmental effects
on swordfish and blue shark catch rates in the US North Pacific
longline fishery. Fish. Oceanogr. 8, 178—198.

Boneva, L.I., Kendall, D., Stefanov, I., 1970. Spline transformations:
three new diagnostic aids for the statistical data analyst. J. Roy.
Stat. Soc. Ser. B. 32, 1-71.

Borchers, D.L., Buckland, S.T., Priede, I.G., Ahmadi, S., 1997. Im-
proving the precision of the daily egg production method us-
ing generalized additive model. Can. J. Fish. Aquat. Sci. 54,
2727-2742.

Brandio, A., Butterworth, D.S., Johnston, S.J., Glazer, J.P., 2004.
Using a GLMM to estimate the somatic growth rate for male
South African west coast rock lobster Jasus lalandi. Fish. Res.
70, 335-345.

Breslow, N.E., Clayton, D.G., 1993. Approximate inference in gen-
eralized linear mixed models. J. Am. Stat. Assoc. 88, 9-25.

Bromley, P.J., 2000. Growth, sexual maturation and spawning in cen-
tral North Sea plaiceRleuronectes platesda), and the genera-
tion of maturity ogives from commercial catch data. J. Sea Res.
44, 27-43.

Brynjarsdbttir, J., Stehnsson, G., 2004. Analysis of cod catch data
from Icelandic groundfish surveys using generalized linear mod-
els. Fish. Res. 70, 195-208.

Cardinale, M., Arrhenius, F., 2000. The influence of stock struc-
ture and environmental conditions on the recruitment process of
Baltic cod estimated using a generalized additive model. Can. J.
Fish. Aquat. Sci. 57, 2402-2409.

Cooke, J.G., 1997. A procedure for using catch-effort indices in
bluefin tuna assessments (revised). ICCAT Col. Vol. Sci. Pap.
46 (2), 228-232.

Cox, D.R., Snell, E.J., 1968. A general definition of residuals (with
discussion). J. Roy. Stat. Soc. Ser. B 30, 248-275.

de Boor, C., 1978. A Practical Guide to Splines. Springer-Verlag,
New York.

Denis, V., Lejeune, J., Robin, J.P., 2002. Spatio-temporal analysis of
commercial trawler data using general additive models: patterns

of Loliginid squid abundance in the north-east Atlantic. ICES J.
Mar. Sci. 59, 633-648.

Diggle, P, Liang, K.-Y., Zeeger, S.L., 1994. Analysis of Longitudinal
Data. Oxford University Press, Oxford.

Finney, D.J., 1941. On the distribution of a variate whose logarithm
is normally distributed. Suppl. J. Roy. Stat. Soc. (Ind. Agric. Res.
Sec.) VII(2) 104, 155-161.

Finney, D.J., 1971. Probit Analysis, 3rd ed. Cambridge University
Press, London.

Firth, D., 1987. On the efficiency of quasi-likelihood estimation.
Biometrika 74, 233—-245.

W.N. Venables, C.M. Dichmont / Fisheries Research 70 (2004) 319-337

Firth, D., 1988. Multiplicative errors: lognormal or gamma. J. Roy.
Stat. Soc. Ser. B 50, 266-268.

Fisher, R.A., 1954. The analysis of variance with various binomial
transformations. Biometrics 10, 130-139.

Fox, J.,1997. Applied Regression, Linear Models, and Related Meth-
ods. Sage Publications, Thousand Oaks.

Godambe, V.P., Heyde, C.C., 1987. Quasi-likelihood and optimal
estimation. Int. Stat. Rev. 55, 231-244.

Hastie, T., Tibshirani, R., 1990. Generalized Additive Models. Chap-
man & Hall, London.

Kimura, D.K., 1981. Standardized measures of relative abundance
based on modelling log(c.p.u.e.), and the application to Pacific
ocean perchSebastes alutysJ. Cons. Int. Explor. Mer. 39,
211-218.

Lai, H-L., Helser, T., 2004. Linear mixed-effects models for
weight—length relationships. Fish. Res. 70, 373-383.

Laird, N.M., 1996. Longitudinal panel data: an overview of current
methodology. In: Cox, D.R., Hinkley, D.V., Barndorff-Nielsen,
O.E. (Eds.), Time Series Models in Economic, Finance and Other
Fields. Chapman & Hall, London, pp. 143-175.

Maunder, M.N., Punt, A.E., 2004. Standardizing catch and effort
data: a review of recent approaches. Fish. Res. 70, 141-149.
McCullagh, P., Nelder, J.A., 1989. Generalized Linear Models, 2nd

ed. Chapman & Hall, London.

Myers, R.A., Hoenig, J.M., 1997. Direct estimates of gear selectivity
from multiple tagging experiments. Can. J. Fish. Aquat. Sci. 54,
1-9.

Nelder, J.A., Wedderburn, R.W.M., 1972. Generalized linear models.
J. Roy. Stat. Soc. Ser. A 135, 370-384.

Olsen, E., 2002. Errors in age estimates of North Atlantic minke
whales when counting growth zonesBulla tympanicaJ. Cet.
Res. Manage. 4, 185-191.

Ortiz, M., Legault, C.M., Ehrhardt, N.M., 2000. An alternative
method for estimating bycatch from the U.S. shrimp trawl fish-
ery in the Gulf of Mexico, 1972-1995. Fish. Bull. US 98, 583—
599.

Ortiz, N., Arocha, F., 2004. Alternative error distribution models for
standardization of catch rates of non-target species from a pelagic
longline fishery: billfish species in the Venezuelan tuna longline
fishery. Fish. Res. 70, 275-294.

Punt, A.E., Walker, T.l., Taylor, B.L., Pribac, F., 2000. Standardiza-
tion of catch and effort data in a spatially-structured shark fishery.
Fish. Res. 45, 129-145.

Punt, A.E., Smith, D.C., Thomson, R.B., Haddon, M., He, X., Lyle,
J.M., 2001. Stock assessment of the blue grenadéaruronus
novaezelandiagesource off south-eastern. Mar. Freshw. Res. 52,
701-717.

Quinn, T.J., 1985. Catch-per unit effort: a statistical model for Pacific
halibut. Can. J. Fish. Aquat. Sci. 42, 1423-1429.

R Development Core Team, 2003. R: alanguage and environment for
statistical computing. R Foundation for Statistical Computing,
Vienna, Austriahttp://www.r-project.org/

Richards, L.J., Schnute, J.T., 1992. Statistical models for estimating
CPUE from catch and effort data. Can. J. Fish. Aquat. Sci. 49,
1315-1327.

Robinson, G.K., 1991. That BLUP is a good thing: the estimation of
random effects (with comments). Stat. Sci. 6, 15-32.


http://www.r-project.org/

W.N. Venables, C.M. Dichmont / Fisheries Research 70 (2004) 319-337 337

Schall, R., 1991. Estimation in generalized linear models with ran- Walsh, W., Kleiber, P., 2001. Generalized additive model and re-

dom effects. Biometrika 78, 719-727. gression tree analysis of blue shafkripbnace glaucs by the
Squires, D., Kirkley, J., 1999. Skipper skill and panel data in fishing Hawaii-based longline fishery. Fish. Res. 53, 115-131.

industries. Can. J. Fish. Aguat. Sci. 56, 2011-2018. Wedderburn, R.W.M., 1974. Quasi-likelihood functions, generalized
Stefansson, G., 1996. Analysis of groundfish survey abundance data: linear models, and the Gauss—Newton method. Biometrika 61,

combining the GLM and delta approaches. ICES J. Mar. Sci. 53, 439-477.

577-588. Wiens, B.L., 1999. When lognormal and gamma models give diver-
van Dyk, D.A., 2000. The nested EM algorithm. Stat. Sinica 10, gent results: a case study. Am. Stat. 53, 89-93.

203-225. Williams, D.A., 1982. Extra-binomial variation in logistic linear
Venables, W.N., Dichmont, C.M., 2004. A generalized linear model models. Appl. Stat. 31, 144-148.

for catch allocation: an example of Australia’s Northern Prawn  Williams, D.A., 1987. Generalized linear model diagnostics using

Fishery. Fish. Res. 70, 405-422. the deviance and single case deletions. Appl. Stat. 36, 181-191.
Venables, W.N., Ripley, B.D., 2002. Modern Applied Statistics with ~ Wolfinger, R., O’Connell, M., 1993. Generalized linear mixed mod-

S, 4th ed. Springer-Verlag, New York. els: a pseudo-likelihood approach. J. Statist. Comp. Sim. 48,
Wahba, G., 1990. Spline Models for Observational Data. CBMS- 233-243.

NSF Regional Conference Series in Applied Mathematics, vol. Wright, P.J., Jensen, H., Tuck, I., 2000. The influence of sediment

59. Society for Industrial and Applied Mathematics (SIAM), New type on the distribution of the lesser sand@simodytes marinus

York. J. Sea Res. 44, 243-256.



	GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research
	Introduction
	Ordinary linear models
	Generalized linear models
	The link function
	Connection with transformation models
	Estimation and inference in GLMs
	The deviance, its definition and its uses
	Distribution of the deviance; tests of fit

	Quasi-likelihood
	Diagnostics and possible problems
	Overdisperson and model extensions

	Achieving flexibility in the linear predictor; moving to GAMs
	Cross-product terms

	Generalized additive models
	Estimation with penalties
	Discussion of GAMs

	Generalized linear mixed models
	Mixed models
	GLMMs proper
	GLMMs: a generalized example

	Summary
	Acknowledgements
	References


