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The Hat Matrix in Regression and ANOVA

1. INTRODUCTION

In fitting linear models by least squares it is very often

useful to determine how much influence or leverage each data

y-value (yi) can have on each fitted y-value (yj). For the fitted

value yi corresponding to the data value yi the relationship

is particularly straightforward to interpret, and it can reveal

multivariate outliers among the carriers (or x-variables) which

might otherwise be difficult to detect. In a regression problem

the desired information is available in the "hat matrix", which

gives each fitted value i as a linear combination of the

observed values yj . (The term "hat matrix" is due to John W.

Tukey, who introduced us to the technique about ten years ago.)

The present paper derives and discusses the hat matrix and gives

several examples which illustrate its usefulness.

Section 2 defines the hat matrix and derives its basic

properties. Section 3 formally examines some familiar simple

examples, while Section 4 gives two numerical examples. In

practice one must, of course, consider the actual effect of the

data y-values in addition to their leverage; we discuss this in

terms of the residuals in Section 5. Section 6 then sketches how

the hat matrix can be obtained from some of the numerical algo-

rithms used for solving least-squares problems.
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2. BASIC PROPERTIES

We are concerned with the linear model

y = X B + e , (2.1)

nx nxp pxl nx 1

which summarizes the dependence of the response y on the

carriers X1,...,Xp in terms of the data values y. and

Xil,...,xip for i=l,...,n . (We refrain from thinking of

X 1 ...,Xp as "independent variables" because they are often not

independent in any reasonable sense.) In fitting the model (2.1)

by least squares (assuming that X has rank p and that E(e) = 0

and var(c) = a2I ), we usually obtain the fitted or predicted

values from y = Xb , where b = (XX) lXy . From this it is

simple to see that

y X(XTX) 1X y . (2.2)

To emphasize the fact that (when X is fixed) each yj is a

linear function of the yi , we write equation (2.2) as

y = Hy (2.3)

where H = X(XTX) X The nxn matrix H is known as "the

hat matrix" simply because it takes y into y . Geometrically
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y is the projection of y onto the p-dimensional subspace of

n-space spanned by the columns of X . Also familiar is the role

which H plays in the covariance matrices of y and of r = y - y

var(y) = a H (2.4)

2var(r) = (I-H) . (2.5)

For the data analyst the element h.. of H has a direct
:]

interpretation as the amount of leverage or influence exerted on

Yi by yj (regardless of the actual value of yj , since H

depends only on X ). Thus a look at the hat matrix can reveal

sensitive points in the design, points at which the value of y

has a large impact on the fit [ 7 ]. In using the word "design"

here, we have in mind both the standard regression or ANOVA

situation, in which the values of X1,...,X p are fixed in advance,

and the situation in which y and X1,...,Xp are sampled together.

The simple designs, such as two-way analysis of variance, give

good control over leverage (as we shall see in Section 3); and

with fixed X one can examine, and perhaps modify, the experimental

conditions in advance. When the carriers are sampled, one can at

least determine whether the observed X contains sensitive points

and consider omitting them if the corresponing y value seems

discrepant. Thus we use the hat matrix to identify "high-leverage

points". If this notion is to be really useful, we must make

it more precise.
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The influence of the response value Yi on the fit is most

directly reflected in its leverage on the corresponding fitted

value i , and this is precisely the information contained in

hii the corresponding diagonal element of the hat matrix. We

can easily imagine fitting a simple regression line to the data

(xi,Yi) , making large changes in the y-value corresponding to

the largest x-value, and watching the fitted line follow that

data point. In this one-carrier problem or in a two-carrier

problem a scatter plot will quickly reveal any x-outliers, and we

can verify that they have relatively large diagonal elements hi .

When p>2 , scatter plots may not reveal "multivariate outliers",

which are separated in p-space from the bulk of the x-points but

do not appear as outliers in a plot of any single carrier or pair

of carriers, and the diagonal of the hat matrix is a source of

valuable diagnostic information. In addition to being somewhat

easier to understand, the diagonal elements of H can be less

trouble to compute, store, and examine, especially if n is

moderately large. Thus attention focuses primarily (often exclu-

sively) on the hii , which we shall sometimes abbreviate h i.

We next examine some of their properties.

As a projection matrix, H is symmetric and idempotent

(H2 = H), as we can easily verify from the definition below (2.3).

Thus we can write

n > 2 h2h.. h. . + h h. (2.6)
1= 1 -J (2,6

IIl
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and it is immediately clear that O<h..<l . These limits are
-- 11-

helpful in understanding and interpreting hi , but they do not

yet tell us when h.. is "large". It is easy to show, however,

that the eigenvalues of a projection matrix are either 0 or 1

and that the number of non-zero eigenvalues is equal to the rank

of the matrix. In this case, rank(H) = rank(X) = p , and hence

trace(H) = p , that is,

n
* hi p * (2.7)

i=l1

The average size of a diagonal element of the hat matrix, then,

is p/n . Experience suggests that a reasonable rule of thumb

for "large" h i is h. > 2p/n . Thus we determine high-leverage

points by looking at the diagonal elements of H and paying

particular attention to any x-point for which h > 2p/n

Usually we treat the n h values as a batch of numbers and bring

them together in a stem-and-leaf display (as we shall illustrate

in Section 4).

From equation (2.6) we can also see that whenever h..=O or
11

h..=l , we have h..=O for all jfi . These two extreme cases

can be interpreted as follows. First, if hii=O , then Yi must

be fixed at zero by design -- it is not affected by yi or by

any other yj . A point with x=O when the model is a straight

line through the origin provides a simple example. Second, when

hii=l , we have Yi = i -- the model always fits this data
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value exactly. In effect, the model dedicates a parameter to

this particular observation. We examine this situation further

in the appendix.

Now that we have developed the hat matrix and a number of

its properties, we turn to a variety of examples, some designed

and some sampled. We then discuss (in Section 5) how to handle

yi when hii indicates a high-leverage point.

3. FORMAL EXAMPLES

To illustrate the use of the hat matrix and develop our

intuition, we begin with a few familiar examples in which the

calculations can be done by simple algebra. The most basic of
A

these is the sample mean: yi = y for all i , and every element

of H is 1/n . Here p=l , and each hi=p/n

For a straight line through the origin, X = (x1,...,xn)

and we can immediately calculate X(XTX) XT to obtain
n n

h = xixj/ i x . Again h. = 1
k=g i=l, =

The usual regression line

Yi = 0 + Blxi + i

has

X .(. x n



-7-

and a few steps of algebra give

(x -x)(x-x)
h.. 1 . (3.1)

]hi n n
(Xk-X)

k=l

Finally, we should examine the relationship between structure

and leverage in a simple balanced design: a two-way table with

R rows and C columns and one observation per cell. (Behnken

and Draper [4] discuss variances of residuals in several more

complicated designs. It is straightforward to find H through

equation (2.5).) The usual model for the RxC table is

Yij = ~ + + + z]

with the constraints al+...+aR 0 and +...+0 C ; here

n = RC and p = R + C -1. We could, of course, write this model

in the form of (2.1), but it is simpler to preserve the subscripts

i and j and to denote an element of the hat matrix as hijk .

When we recall that

9ii Yi. + y - y (3.2)

(a dot in place of a subscript indicates the average with respect

to that subscript), it is straightforward to obtain
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1 1 1 R+C-1hij~i + = ; (3.3)
hij ij C R RC RC

R-1
hij,iZ RC ' ; (3.4)

C-

hij kj RC kfii (3.5)

hij,kZ RC , kji, ZQj (3.6)

From equation (3.3) we see that all the diagonal elements of H

are equal, as we would expect in a balanced design. It is worth

mentioning, however, that such balance of leverage does not pro-

vide any particular "robustness" of fit. The appropriate notion

is "resistance" -- a fit is resistant if a substantial change in

only a small fraction of the data causes only a small change in

the fit. Equations (3.3) through (3.6) show that two-way ANOVA

is not resistant: Yij will be affected by any change in YkZ

for any values of k and . If, instead of fitting by least

squares, we were fitting by least absolute residuals (or by the

related technique of median polish [10,12]), the result would be

a resistant fit. This is true in part because the complete two-

way table provides balance; the same degree of resistance is not

in general to be found when fitting a simple straight line by

least absolute residuals. Of course, such resistant alternatives
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to least squares do not give rise to the hat matrix, which,

together with other diagnostic tools, helps make possible

effective data analysis by least squares. (We can expect,

however, that future developments in resistant or robust linear

fitting will yield their own analogues of H.) We turn now to

two numerical examples showing the use of the hat matrix in

multiple-regression situations.

4. NUMERICAL EXAMPLES

In this section we examine the hat matrix in two regression

examples, emphasizing (either here or in Section 5) the connections

between it and other sources of diagnostic information. We

begin with a ten-point example, for which we can present H in

full, and progress to a larger example, for which we shall work

with only the diagonal elements, h i.

The data for the first example comes from Draper and

Stoneman [5]; we reproduce it in Exhibit 1. The response is

strength, and the carriers are the constant, specific gravity,

and moisture content. To probe the relationship between the non-

constant carriers, we plot moisture content against specific

gravity (Exhibit 2). In this plot point 4, with coordinates

(0.441, 8.9), is to some extent a bivariate outlier (its value is

not extreme for either carrier), and we should expect it to have

substantial leverage on the fit. Indeed, if this point were
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Exhibit 1

Data on Wood Beams

specific
gravity

0.499

0.558

0.604

0.441

0.550

0.528

0.418

0.480

0.406

0.467

moisture
content

11.1

8.9

8.8

8.9

8.8

9.9

10.7

10.5

10.5

10.7

strength

11.14

12.74

13.13

11.51

12.38

12.60

11.13

11.70

11.02

11.41

beam

1

2

3

4

5

6

7

8

9

10
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absent, i- would be considerably more difficult to distinguish

the two carriers.

The hat matrix for this X appears in Exhibit 3, and a

stem-and-leaf display [11, 12] of the diagonal elements (rounded

to multiples of .01) is as follows:

0

1

2

3

4

5

6

.559

456

2

22

0

We note that h 4 is the largest diagonal element and that it

just exceeds the level (2p/n = 6/10) set by our rough rule of

thumb. Examining H element by element, we find that it responds

to the other qualitative features of Exhibit 2. For example, the

relatively high leverage of points 1 and 3 reflects their

position as extremes in the scatter of points. The moderate

negative value of h4 is explained by the positions of points

1 and 4 on opposite sides of the rough sloping band where the

rest of the points lie. The moderate positive values of h1 8

and h 1 show the mutually reinforcing positions of these
1,10

three points. The central position of point 6 accounts for its

low leverage. Other noticeable :lues of hij have similar

explanations.
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Having identified point 4 as a high-leverage point in this

data set, it remains to investigate the effect of its position

and response value on the fit. Does the model fit well at point

4 , or should this point be set aside? We return to these

questions in the next section. Now we turn to a larger example.

Our second example is based on savings rate data collected

by Arlie Sterling of Massac! setts Institute of Technology. For

purposes of illustration we u an econometric regression model

for data of this type discussed. by Leff [9]. Briefly, the life-

cycle model of consumption implies that the aggregate propensity

to save is related to the age distribution of the population, the

level of real per capita disposable income, the rate of growth of

real per capita disposable income, and other factors. For the 50

countries listed in Exhibit 4 the present set of data (Exhibit 5)

consists of a response and four non-constant carriers and

represents averages over the years : through 197' The response

is a country's aggregate personal s. rgs rate (abbreviated SR).

The four carriers are the per cent or the population under age 15

(POP15), the per cent of the population over 75 (POP75), the level

of real per capita disposable income measured in U.S. dollars (DILEV),

and the per cent growth rate of DILEV (DIGRO).

In this example it is not too tedious to make and examine

all pairwise scatter plots of the non-constant carriers. We include

only two of the six scatter plots: Exhibit 6 shows DIGRO vs. POP15,
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Exhibit 4

Country Labels for the Savings Rate Data

Australia

Austria

Belgium

Bolivia

Brazil

Canada

Chile

China (Taiwan)

Colombia

Costa Rica

Denmark

Ecuador

Finland

France

Germany (F.R.)

Greece

Guatemala

Honduras

Iceland

India

Ireland

Italy

Japan

Korea

Luxembourg

26 Malta

27 Norway

28 Netherlands

29 New Zealand

30 Nicaragua

31 Panama

32 Paraguay

33 Peru

34 Philippines

35 Portugal

36 South Africa

37 Southern Rhodesia

38 Spain

39 Sweden

40 Switzerland

41 Turkey

42 Tunisia

43 United Kingdom

44 United States

45 Venezuela

46 Zambia

47 Jamaica

48 Uruguay

49 Libya

50 Malaysia

1

2

3

14

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

l:CMI(I���IIY�II .1_1-_--�1_�_lra__�_II __1_. 1111114_11�^1^_--�.-I-_---���(-i*�-·l�ll
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Exhibit 5

Savings Rate Data

country POP15 POP75 DILEV DIGRO SR

1 29.35 2.87 2329.68 2.87 11.43

2 23.32 4.41 1507.99 3.93 12.07

3 23.80 4.43 2108.47 3.82 13.17

4 41.89 1.67 189.13 0.22 5.75

5 42.19 0.83 728.47 4.56 12.88

6 31.72 2.85 2982.88 2.43 8.79

7 39.74 1.34 662. '-- 2.67 0.60

8 44.75 0.67 289. 6.51 11.90

9 46.64 .1.06 276. 3.08 4.98

10 47.64 1.14 471. 2.80 10.78

11 24.42 3.93 2496.53 3.99 16.85

12 46.31 1.19 287.77 2.19 3.59

13 27.84 2.37 1681.25 4.32 11.24

14 25.06 4.70 2213.82 4.52 12.64

15 23.31 3.35 2457.12 3.44 12.55

16 25.62 3.10 870.85 6.28 10.67

17 46.05 0.87 289.71 1.48 3.01

18 47.32 0.58 232.4 3.19 7.70

19 34.03 3.08 190C ) 1.12 1.27

20 41.31 0.96 88. 1.54 9.00

21 31.16 4.19 1139. 2.99 11.34

22 24.52 3.48 1390.00 3.54 14.28

23 27.01 1.91 1257.28 8.21 21.10

24 41.74 0.91 207.68 5.81 3.98

25 21.80 3.73 2449.39 1.57 10.35

------- ---.-~---~ ~---- - - 1~~~~-~- ~ - - - I - - .-· 11· ` -- - -- I - -- - ~- .I ----,,-.,-
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Exhibit 5 continued

country POP15 POP75 DILEV DIGRO SR

26 32.54 2.47 601.05 8.12 15.48

27 25.95 3.67 2231.03 3.62 10.25

28 24.71 3.25 1740.70 7.66 14.65

29 32.61 3.17 1487.52 1.76 10.67

30 45.04 1.21 325.54 2.48 7.30

31 43.56 1.20 568.56 3.61 4.44
32 41.18 1.05 220.56 1.03 2.02
33 44.19 1.28 400.06 0.67 12.70

34 46.26 1.12 152.01 2.00 12.78

35 28.96 2.85 579.51 7.48 12.49
36 31.94 2.28 651.11 2.19 11.14
37 31.92 1.52 250.96 2.00 13.30
38 27.74 2.87 768.79 4.35 11.77
39 21.44 4.54 3299.49 3.01 6.86
40 23.49 3.73- 2630.96 2.70 14.13
41 43.42 1.08 389.66 2.96 5.13
42 46.12 1.21 249.87 1.13 2.81
43 23.27 4.46 1813.93 2.01 7.81
44 29.81 3.43 4001.89 2.45 7.56
45 46.40 0.90 813.39 0.53 9.22
46 45.25 0.56 138.33 5.14 18.56
47 41.12 1.73 380.47 10.23 7.72

48 28.13 2.72 766.54 1.88 9.24

49 43.69 2.07 123.58 16.71 8.89

50 47.20 0.66 242.69 5.08 4.71
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while Exhibit 7 plots DILEV against POP75. Examination of all

six plots led us to regard Libya (country 49) and perhaps

Jamaica (47) and the United States (44) as unusual.

Exhibit 8 gives a stem-and-leaf display of the 50 diagonal

elements of the hat matrix (whose full numerical values appear

in Exhibit 14). Since 2p/n = .2 here, we identify Ireland (21),

Japan (23), the United States (44), and Libya (49) as high-leverage

points. We investigate their influence on the estimated coeffi-

cients and on the fitted values in the next section.

5. BRINGING IN THE RESIDUALS

So far we have examined the design matrix X for evidence

of points with high leverage on the fitted value y. If such

influential points are present, we must still determine whether

they have had any adverse effects on the fit. A discrepant value

of y, especially at an influential design point, may lead us to

set that entire observation aside (planning to investigate it in

detail separately) and refit without ':it, but we emphasize that

such decisions cannot be made automatically. As we can see for

the regression line (3.1), the more extreme design points generally

provide the greatest information on certain coefficients (in this

case, the slope), and omitting such an observation may substantially

reduce the precision with which we can estimate those coefficients.

Alternatively, the accuracy of the apparently discrepant point may
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Exhibit 8

Diagonal Elements of H for Savings Rate Data

stem-and-leaf display

(unit = .001)

3

4

5

6

7

8

9

10

11

12

13

14

15

16

789

7

047

00023445556799

01345779

66779

02677

6

03

6

0

8

0

hi .212, .223, .333, .531

country tags:
+ +
21 23 44 49

1III~~--~--CI-L^ ~ --~~-^--_1_1 ._1111~ ---iXI~~~II~^I ~ 11_1_11--_1__11_~~___----I___ ~ ~--- ------ 
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be beyond question, so that dismissing it as an outlier would be

unacceptable. In both these situations, then, the apparently

discrepant point may force us to question the adequacy of the

model.

In detecting discrepant y-values, we always examine the

residuals, ri = i - Yi using such techniques as a scatterplot

against each carrier, a scatterplot against y , and a normal

probability plot. (Anscombe has discussed and illustrated some

of these [1].) When there is substantial variation among the hi

values, equation (2.5) indicates that we should allow for differ-

ences in the variances of the r [2] and look at ri/Vl-hi .
1 1 i

This adjustment puts the residuals on an equal footing, but it

is often more convenient to use the standardized residual,

ri/(s/l-h) , where s is the residual mean square.

For diagnostic purposes we would naturally ask about the

size of the residual corresponding to yi when data point i

has been omitted from the fit. That is, we base the fit on the

remaining n-l data points and then predict the value for yi 

Denoting row i of X, that is, (xil,..., ip) , by x i , this

residual is yi - x(i , where a(i) is the least-squares

estimate of 8 based on all the data except data point i

Similarly s)2 is the residual mean square for the "not-i" fit,

and the standard deviation of yi - xi8(i) is estimated by

s(i) +.ii)xi x . ( X(i) is obtained from X by
deleting row i .X(i) define the studentized residual:
deleting row i .) We now define the studentized residual:
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rYi Xi(i) (5.1)

1 s + x(XTX )-xT
s(i) i Ci) i)

Since the numerator and denominator in (5.1) are independent, r*

has a t distribution on n-p-l degrees of freedom, and we can

readily assess the significance of any single studentized residual.

(Of course, r and r will not be independent.) In actually
1 j

calculating the studentized residuals we can save a great deal of

effort by observing that the quantities we need are readily

available. Straightforward algebra turns (5.1) into

r = ri/(s 1i/-i 7) (5.2)

and we can obtain s(i) from

2

(n-p-l)si = (n-p)s 1-h (5.3)

Once we have the diagonal elements of H, the rest is simple.

Our diagnostic strategy, then, is to examine the hi for

high-leverage design points and the r for discrepant y-values.

When h i is large, it may still be the case that r* is moderate
1

or small (because yi is not discrepant or because it has exerted

its leverage on the fit), and we must determine the impact of

such points by setting them aside and refitting without them.

I·�·-L�YI·I^C··II�I�-.�.--1-1_1_---_-.._ ��-���



Thus by examining the hi we are able to find troublesome points

which we might miss if we used only the studentized residuals.

Since we have already discussed the h. for our two numerical

examples, we now turn to their studentized residuals.

For the wood beam example, we plot strength against specific

gravity in Exhibit 9 and strength against moisture content in

Exhibit 10. With the exception of beam 1, the first of these

looks quite linear find well-behaved. In the se -. d plot we see

somewhat more scatter, and beam 4 (which e have iready flagged

as high-leverage) stands apart from the rest. EiiJLbit 11 gives

ri , Vl-h i , s(i ) , and the studentized residuals r* . Among

the r9 , beam 1 appears as a clear stray (p<.02), and beam 6 may
1

also deserve attention (p<.l). Since beam 4 is known to have high

leverage (h.=.604), we should still be suspicious of it, even
1

though r is not particularly large. The fit for the full data is

y= 10.302 + 8.495(SG) - C,2663(MC) (5.4)

with s = 0.275 ; and when we set aside beam 4, the fit changes to

y 12.411 + 6.799(SG) - 0.3905(MC) , (5.5)

a noticeable shift. To judge the importance of these coefficient

changes, we must consider the variability of the eimates. The

most convenient source for this information is the covariance

2 T -1
matrix of B, which is equal to s (X X) . In this case

2
s 0.07578 , and

- -1 1 1 . ....I - 1 - 11 1 I ~ ~ I - - -- - ._- _ _ _._._ _ - -- -- -- --- 1- -~~~~~- -., -~ -,~~- -" .~--.-~~, -~ -1", --~~ -,-~-~~----- --~- -- --- -- -----, -~~~-~ --,- --- --- ---,-- ' , , _·-·-_ _ -
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Exhibit 11

Studentized Residuals and Related Quantities

(wood beam data)

~ir. hi J1h. h s. r*
i 1 1 i () 1

1 -. 448 .418 .763 .176 -3.338

2 .065 .242 .871 .296 .252

3 .038 .417 .764 .297 .168

4 -. 171 .604 .629 .276 - .985

5 -. 253 .252 .865 .272 -1.074

6 .446 .148 .923 .222 2.172

7 .123 .262 .859 .292 .491

8 .113 .154 .920 .293 .419

9 .062 .315 .828 .296 .253

10 -. 013 .187 .902 .297 .048

:�·-·-^·a�r-· �uxlrr �WIIIII�-I^--_I__X��··--···�·-·---�-·�·
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47.408 -38.275 -2.870

(X X) = -38.275 41.998 1.769

2.870 1.769 0.202

Thus the coefficient changes from (5.4) to (5.5) are, in

standard-error units, 0.306, -0.262, and -0.276, respectively.

Whether we take these individually or as a whole, we are not led

to conclude that beam 4 is seriously discrepant. We could

examine the effect of setting aside beam 1 and possibly beam 6,

but we do not pursue this here.

For the savings rate data we can examine the plots of the

response against each carrier as in the wood beam example. In

one of these, Exhibit 12, we plot SR against PO?15 and see

that Zambia (46) and Japan (23) are notable but that Lybia (49),

a point we have also flagged, is n-: The same three points are

marked in Exhibit 13, which plots against DIGRC Point 49

is again notable, but it is hard t :Ay from this p. alone how

much it affects the multiple regresa .on fit.

Turning next to the studentized residuals r[ (in Exhibit 14),

we can use the value 2 (approximately the two-sided 95% point of

t 44) as a rough cut-off, finding Chile (7) and Zambia (46) dis-

crepant. In this example, analysis of the residuals does not

reveal any of the high-leverage points.

To assess the impact of these four leverage points, we

compute the change in the coefficients when each of the points is

removed. The formula

___ _ _ - - - -1 - 1 - - _ - _ _ _ " I - - - 1 - _ 1 -_ 1 - _ _ --- -- ~ _ _ - - - -1 I--- -- - ---_ _ - ~ __ ~ '
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Exhibit 14

Studentized Residuals for the Savings Rate Data

i hi z (i) r*.

1 0.864 .0677 .9656 3.843 0.233

2 0.616 .1204 .9379 3.844 0.171

3 2.219 .0875 .9553 3.830 0.607

4 -0.698 .0895 .9542 3.844 -0.190

5 3.55'3 .0696 .9646 3.805 0.968

6 -0.317 .1584 .9174 3.845 -0.090

7 -8.242 .0373 .9812 3.631 -2.313

8 2.536 .0780 .9602 3.825 0.690

9 -1.452 .0573 .9709 3.839 -0.389

10 5.125 .0755 .9615 3.761 1.417

11 5.400 .0627 .9681 3.753 1.486

12 -2.406 .0637 .9676 3.827 -0.650

13 -1.681 .0920 .9529 3.836 -0.460

14 2.475 .1362 .9294 3.825 0.696

15 -0.181 .0874 .9553 3.846 -0.049

16 -3.116 .0966 .9505 3.814 -0.860

17 -3.355 .0605 .9693 3.810 -0.909

18 0.710 .0601 .9695 3.844 0.191

19 -6.211 .0705 .9641 3.721 -1.731

20 0.509 .0715 .9636 3.845 0.137

21 3.391 .2122 .8876 3.802 1.005

22 1.927 .0665 .9662 3.834 0.520

23 5.281 .2233 .8813 3.738 1.603

24 -6.107 .0608 .9691 3.726 -1.691

25 -1.671 .0863 .9559 3.837 -0.456
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Exhibit 14 continued

i i h.i 5 ih. s i) ri

26 2.975 .0794 .9595 3.817 0.812

27 -0.872 .0479 .9757 3.843 -0.232

28 0.426 .0906 .9536 3.845 0.116

29 2.286 .0542 .9725 3.829 0.614

30 0.646 .0504 .9745 3.844 0.173

31 -3.294 .0390 .9803 3.812 -0.881

32 -6.126 .0694 .9647 3.725 -1.705

33 6.539 .0650 .9669 3.708 1.824

34 6.675 .0643 .9673 3.702 1.864

35 -0.768 .0971 .9502 3.844 -0.210

36 0.483 .0651 .9669 3.8.45 0.130

37 1.291 .1608 .9161 3.840 0.367

38 -0.671 .0773 .9606 3.844 -0.182

39 -4.260 .1240 .9360 3.784 -1.203

40 2.487 .0736 .9625 3.826 0.675

41 -2.666 .0396 .9800 3.824 -0.711

42 -2.818 .0746 .9620 3.820 -0.767

43 -2.692 .1165 .9399 3.821 ...750

44 -1.112 .3337 .8163 3.840 - .355

45 3.633 .0863 .9559 3.803 0.999

46 9.751 .0643 .9673 3.533 2.854

47 -3.019 .1408 .9270 3.814 -0.854

48 -2.264 .0979 .9498 3.829 -0.623

49 -2.830 .5315 .6845 3.795 -1.089

50 -2.971 .0652 .9668 3.818 -0.805

labels, see Exhibit 4.Note: For country
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=- x(iX) (xTr -/(lh) (5.6)

simplifies this considerably. Exhibit 15 gives the changes for

countries 49, 44, 23, and 21 along with the components of ~ and

their standard errors. Since removal of Libya (49) causes the

coefficient of DIGRO to change by more than one standard error,

we should be cautious about including that data point. In

contrast, removing the United States (44) has little impact on B,

and thus this country appears to be consistent with the rest of

the data. Such a leverage point should usually be retained

because it can play an important role in limiting the variances

and covariances of coefficient estimates. The other two high-

leverage countries, Japan (23) and Ireland (21), do not appear to

be especially influential, but we have lost very little by

checking to make sure.

In both examples we have used two sources of diagnostic

information, the diagonal elements of the hat matrix and the

studentized residuals, to identify data points which may have an

unusual impact on the results of fitting the linear model (2.1)

by least squares. We must interpret this information as clues to

be followed up to determine whether a particular data point is

discrepant, but not as automatic guidance for discarding observations.

Often the circumstances surrounding the data will provide expla-

nations for unusual behavior, and we will be able to reach a much

�I 1__ _�_____�_�_____111_______^_1__11__�_1��_
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Exhibit 15

Coefficient Changes When Individual

Data Points Are Omitted

(Entries are components of -6(i))

carrier

CONST

4.042

0.513

4.626

-2.280

28.566

7.354

POP15

.0698

-. 0106

-. 0933

.0428

-. 4612

.1446

POP75

-. 4106

.0410

-. 7178

.5218

-1.6915

1.0836

DILEV

-. 000018

-. 000219

.000134

-. 000240

.000337

.000931

Note: CONST is the constant carrier, whose value is

always 1 .

country
omitted

49

44

23

21

s.e.

DIGRO

-. 2005

-. 0065

.0749

-. 0183

.4097

.1962
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more insightful analysis than if we had followed a routine or

automated pattern of analysis. Judgment and external sources

of information can be important at many stages. For example, if

we were trying to decide whether to include moisture content in

the model for the wood beam data (the context in which Draper and

Stoneman [5] introduced this example), we would have to give

close attention to the effect of beam 4 on the correlation between

the carriers as well as the correlation between the coefficients.

Such considerations do not readily lend themselves to automation

and are an important ingredient in the difference between data

analysis and "data processing" 103.

6. COMPUTATION

Since we find the hat matrix (at least the diagonal elements

hi ) a very worthwhile diagnostic addition to the information

usually available in multiple regression, we now briefly describe

how to obtain H from the more accurate numerical techniques

for solving least-squares problems. Just as these techniques pro-

vide greater accuracy by not forming X TX or solving the normal

equations directly, we do not calculate H according to the

definition.

For most purposes the method of choice is to represent X as

X = Q R (6.1)

nxp nxn nxp

�--U
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(with Q an orthogonal transformation and R = [i, ,

where R is pxp upper triangular) and obtain Q as a product

of Householder transformations. Substituting (6.1) and the

special structure of R into the definition of H, we see that

H = Q P QT (6.2)

With a modest increase in computation te and/or storage, a

simple modification of the basic algorithim yields H as a by-

product. If n is large, we can use a somewhat different modi-

fication to calculate and store only the h.

Some least-squares solvers use the modified Gram-Schmidt

algorithm to find a different QR-factorization of X

X = Q R (6.3)

nxp nxp pxp

Here Q Q = I and R is upper triangular, and it is easy to

see that

H =QQT (6.4)

It is possible to build up the hi during the calculation without

storing Q, but modified Gram-Schmidt is not as accurate for this

as it is for determining the least-squares estimate of S.
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Finally we mention the singular-value decomposition,

X U VT (6.5)

nxp nxp pxp pxp

where UT I , is diagonal, and V is orthogonal. If this
p

more elaborate approach is used (for example, when X might not

be of full rank), we can calculate the hat matrix from

H = UUT . (6.6)

These and other decompositions are discussed in [6]. For a

recent account of numerical techniques in solving linear least-

squares problems, we recommend the book by Lawson and Hanson [8].

.i�db4a���·�l�-�. .·-�--X--·--l� � �-Larra�--�lr�-a�^rr�-----�--l�l---- I--------- ----------
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Appendix

In this appendix we formally show that when hl=l (we can

take i=l without loss of generality), there exists a nonsingular

_l^= -1^ = y
transformation T, such that a 1 = (T 1 = 1 and a 2 ..'' p

do not depend on Yl. This implies that, in the transformed

coordinate system, the parameter ael has been dedicated to

observation 1.

When h 1 l , we have for the coordinate vector = (1,0,...,O)T

He e
-1 -1

since (2.6) shows that hlj = , jl . Let P be any pxp

nonsingular matrix whose first column is (XTX) XTe . Then

~~~1 a

XP= 1

where a is lx(p-l) and 0 is (p-l)xl . Now let

with I denoting the (p-l)x(p-l) identity matrix. The trans-

formation we seek is given by T = PQ , which is nonsingular

because both P and Q have inverses. Clearly

XT 

____ I--- __ --.- , --1- ._ -- -11 I _ _ _ _ -1 I- __ , __' -1 ---I'll -1 I----- -- ·' - -· -, -. -.. - - I I · - " - ' - I- I -- - · ·- -,,- - -- ---- --_ -- -- ----- - -- -- - - I I - .- - -- I- I_-- - --I-- .-.--·
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and the least-squares estimate of the parameter a = T -l will

have the first residual, y l-al , equal to zero since a 2,...,ap

cannot affect this residual. This also implies that a2,...,p

will not depend on Y1 '

;i�Bca. irm-�-------··-·-�- -------- --..--ucY�� irrr �.ll.�,·.ll�·a�^lrr�-·-··r�-------------
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