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Abstract. Logistic Multiple Regression, Principal Compo-
nent Regression and Classification and Regression Tree Analy-
sis (CART), commonly used in ecological modelling using
GIS, are compared with a relatively new statistical technique,
Multivariate Adaptive Regression Splines (MARS), to test
their accuracy, reliability, implementation within GIS and
ease of use. All were applied to the same two data sets,
covering a wide range of conditions common in predictive
modelling, namely geographical range, scale, nature of the
predictors and sampling method.

We ran two series of analyses to verify if model validation
by an independent data set was required or cross-validation on
a learning data set sufficed. Results show that validation by
independent data sets is needed. Model accuracy was evalu-
ated using the area under Receiver Operating Characteristics
curve (AUC). This measure was used because it summarizes
performance across all possible thresholds, and is independent
of balance between classes.

MARS and Regression Tree Analysis achieved the best
prediction success, although the CART model was difficult to
use for cartographic purposes due to the high model complex-
ity.

Keywords: Classification and Regression Tree; Fagus;
Grimmia; Logistic regression; Multivariate Adaptive Regres-
sion Splines; Regression Tree Analysis.

Abbreviations: AUC = Area under the ROC curve; CART =
Classification and Regression Trees; FN = False negative; FP =
False positive; GAM = Generalized Additive Model; GIS =
Geographic Information System; GLM = Generalized Linear
Model; LMR = Logistic Multiple Regression; MARS = Multi-
variate Adaptive Regression Splines; NDVI = Normalized
Difference Vegetation Index; PCR = Principal Components
Regression; ROC = Receiver Operating Characteristics.

Introduction

Modelling studies have employed different statisti-
cal techniques to unravel the complexity of interactions
between distributions and environmental factors. Those
include Generalized Linear Models (GLM; Guisan et al.
1998), especially Logistic Multiple Regression (LMR;
Narumalani et al. 1997; Felicísimo et al. 2002); Gener-
alized Additive Models (GAM; Yee & Mitchell 1991)
and Classification and Regression Trees (CART, also
known as Regression Tree Analysis, RTA; Moore et al.
1991; Iverson & Prasad 1998). Recently, Guisan &
Zimmermann (2000) made a comprehensive review of
predictive modelling and noticed the lack of compara-
tive studies in which more than two statistical tech-
niques were applied to the same data set.

Most classical papers on predictive modelling are
based on methodologies that assume a Gaussian relation
between response and predictors, and also that the con-
tribution to the response from the interactions among
predictors is uniform across their range of values. Both
assumptions are unwarranted in most cases (Austin &
Cunningham 1981; Austin et al. 1990, 1994). Neverthe-
less, LMR with a quadratic function to represent Gaussian
responses has often implied high predictive success.
Further problems associated with classical regression
analysis arise when many predictors are used. Such
increase in the number of predictors implies an increase
greater than exponential in the number of possible re-
gression structures, and the almost inevitable problem
with multicollinearity.

To sidestep these problems, analysts impose strong
model assumptions, forcing the variables to act globally
over the response by limiting or eliminating local changes
in response or interactions. This strategy can no longer
be justified if suitable predictors are likely to act and
interact differently on the response variable across their
range of values. The search for a model that handles the
above problems lead us to experiment with a relatively
new statistical technique employed in data-mining strat-
egies in fields such as chemical engineering, marketing
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campaigns or weather forecasting: multivariate adap-
tive regression splines (MARS; Friedman 1991).

The aim of this paper is to compare, using the same
data sets, two techniques commonly used in modelling
species/communities distributions (LMR and CART)
and a relatively new technique (MARS). We test their
efficiency, accuracy, reliability, implementation within
GIS and ease of use in ecological modelling studies.

Material and Methods

Test data sets

The two data sets employed were selected to cover a
variety of characteristics. They are considered repre-
sentative of typical ecological data sets, thus allowing
results to be extrapolated to other studies. The data sets
cover different geographical ranges (continental vs re-
gional), spatial resolutions (coarse vs high), nature of
the predictors (direct vs indirect) and sampling methods
(no sampling strategy vs stratified sampling).

The Grimmia data set (1285 cases; 419 present, 866
absent) represents the distribution of species of the moss
genus Grimmia in Latin America, from Mexico to Cape
Hornos (Fig. 3). Grimmia was recently revised for Latin
America and its taxonomy is well known worldwide
(Muñoz 1999; Muñoz & Pando 2000). It is a genus
typical of bare rocks in cool or cold regions, in
intertropical regions only present at high altitudes
(Grimmia austrofunalis, G. navicularis and G. longi-
rostris recorded at 5300 m a.s.l. in the Andes). The
dependent variable was presence/absence of plants of
this genus at a given locality. The Grimmia data set was
selected as an example to study model response at a
continental scale. It was also selected because it is
representative of many environmental studies: pres-
ences are based on museum collections, not on a sam-
pling design and therefore suffer from biased sampling.
Absences, not recorded in museums, were generated
with a random grid in the GIS, and were approximately
double the number of presences. Such proportion was
chosen because with an equal number of absences/
presences over such a large area, the model will tend to
underestimate real absence. Randomly generated ab-
sences will inevitably increase the number of false
negatives, but arising from the nature of the data this
problem has no solution and will equally affect all
statistical methods tested. Predictor variables were of
three different types: altitude, climatic and normalized
difference vegetation index (NDVI). Apart from alti-
tude, they are all direct gradients, which can generate
more general models (Guisan & Zimmermann 2000).
Gridded altitude data were obtained from GTOPO30

(http://edcdaac.usgs.gov/gtopo30/gtopo30.html). Cli-
matic data span the period 1961-1991 and were obtained
from the Data Distribution Centre (DDC) of the Inter-
governmental Panel on Climate Change (IPCC) at its
web site, http://ipcc-ddc.cru.uea.ac.uk/. Each observa-
tion corresponds to the monthly 30-yr mean of the
following variables: ground frost frequency (‘frost’,
units: days·10), maximum temperature (‘tmax’, ∞C·10),
minimum temperature (‘tmin’, ∞C·10), precipitation
(‘prec’, 10·mm day–1 (=10 L.m–2.d–1)), radiation (‘rad’,
W.m–2) and wet day frequency (‘wet’, days·10). Cli-
matic grids have a horizontal grid spacing of 0.5∞ (ca. 55
km at the Equator and 32 km at 55∞ S). NDVI was
derived from the SPOT satellite remote sensing imagery
(http://www.vgt.vito.be). We used four data sets, one per
year season, extracted from a ten day global synthesis
compiled from daily syntheses over the previous ten
days at a resolution of 1 km (VGT-S10 SPOT products).
NDVI was selected for its influence on factors such as
albedo and heat exchange, as well as being a good
descriptor of vegetation phenologic status or a surrogate
for vegetation classes.

The Fagus data set (103 181 cases; ca. 50% each of
presences and absences) was selected to represent high
spatial resolution at a regional scale. The dependent
variable was the presence/absence of Fagus sylvatica
oligotrophic forest in the La Liébana region (Cantabria
Province, NW Spain). A random sampling was per-
formed in the GIS over a digitized vegetation map
created at the Earth Sciences Department of the Univer-
sity of Cantabria (Spain). Equal numbers of samples
were taken from the target forest type and the remaining
vegetation classes. Predictor variables were derived from
the digital elevation model generated from topographic
maps, all of them have a horizontal grid spacing of 50 m.
Altitude (constructed using Delaunay’s triangulation
algorithm), slope (derived using Sobel’s operator; Horn
1981), potential insolation (constructed as a function of
the sun’s trajectory for standard date periods, which
estimates the amount of time that each point receives
direct sun radiation with 20 minutes temporal resolution;
Fernández-Cepedal & Felicísimo 1987) and distance from
the sea were used to estimate the oceanic-continental
gradient given that other climatic data were not available.
Complete details of this data set can be found in Felicísimo
et al. (2002). Contrary to the Grimmia data set, all predic-
tors except radiation must be considered indirect, which
theoretically generate more local models.

Software included the GIS ArcInfo and ArcView 3.2
(ESRI Inc., http://www.esri.com/) and the packages SPSS
10.0 for LMR and Principal Component Regression,
CART 4.0 (http://www.salford-systems.com) for Regres-
sion Trees and MARS 2.0 (http://www.salford-systems.
com/) for multivariate adaptive regression splines.
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Modelling methods

Methods used in predictive modelling consist of two
main types: global parametric and local non-parametric.

Global parametric models use a strategy of global
variable selection. Each variable enters the model as ‘a
whole’ to explain its contribution to the response. This
strategy is clearly inappropriate when the hypothesis is
that variables interact in a non-homogeneous way across
their range of values. However, global techniques are
still appropriate for small data sets where the analyst is
forced to use parametric modelling techniques because
all points will influence almost every aspect of the
model. As an example of global parametric model we
have used LMR. Although widely used (e.g. Augustin et
al. 1996; van de Rijt et al. 1996; Narumalani et al. 1997;
Guisan et al. 1998; Mladenoff et al. 1999; Felicísimo et
al. 2002), GLM and LMR have several important disad-
vantages. Ecologists frequently assume a unimodal and
symmetric response to gradients, which real life obsti-
nately tends to refute (Austin & Smith 1989; Yee &
Mitchell 1991; also see Rydgren et al. in press). Such
multi-modal or skewed distributions are sometimes dealt
with using high-order polynomial functions, but this
strategy heavily increases the risk of over-fitting – find-
ing patterns that only apply to the training data – creat-
ing models that work almost perfectly with original data
but have poor predictive ability with new data.

Secondly, in GLM the relationships between re-
sponse and predictors are assumed to be linear, when
real-world effects are generally more complex.

Our hypothesis is that in modelling organism/com-
munities distributions, response is related to predictor
variables in a non-linear and local fashion. Local non-
parametric models are suitable under such a hypothesis
as they use a strategy of local variable selection and
reduction, and are flexible enough to allow non-linear
relationships. From this type we have tested CART and
MARS.

Classification and Regression Trees (CART; Breiman
et al. 1984) is a rule based method that generates a
binary tree through binary recursive partitioning, a
process that splits a node based on yes/no answers about
the values of the predictors. Each split is based on a
single variable. Some variables may be used many times
while others may not be used at all. The rule generated at
each step maximizes the class purity within each of the
two resulting subsets. Each subset is split further based
on entirely different relationships. CART builds an over-
grown tree based on the node purity criterion that is later
pruned back via cross-validation to avoid over-fitting.

The main drawback of CART models, when used to
predict organism distributions, is that with more than
just a handful of predictor variables or cases to classify,

the generated models can be extremely complex and
difficult to interpret. This is exemplified by the work on
Australian forests by Moore et al. (1991), generating a
tree with 510 nodes for just ten predictors. In the present
study, the optimal tree obtained for the Fagus data set
(103 181 cases) has 1726 terminal nodes! Such com-
plexity makes the tree impossible to interpret, whereas
in many studies interpretability is a key issue. Moreo-
ver, implementation of such a tree within GIS is un-
workable. Prediction maps are often a required outcome
of modelling, and this shortcoming affects the use of
CART when complexity grows beyond a reasonable
limit.

Multivariate Adaptive Regression Splines (MARS;
Friedman 1991) is a relatively novel technique that
combines classical linear regression, mathematical con-
struction of splines and binary recursive partitioning to
produce a local model where relationships between
response and predictors are either linear or non-linear.
To do this, MARS approximates the underlying func-
tion through a set of adaptive piecewise linear regres-
sions termed basis functions (BF) For example, the
basis functions and the final function from the Grimmia
model with 2nd. order interactions include mean number
of frost days during April·10 (FROST04), mean number
of frost days during August·10 (FROST08) and mean
precipitation per day in April·10 (PREC04) (Fig. 3;
below) are:

BF2 = max (0, 3318 – elevation);
BF3 = max (0, FROST04 – 67) * BF2;
BF4 = max (0, 67 – FROST04) * BF2;
BF6 = max (0, 6 – PREC04);
BF7 = max (0, FROST08 - 85) * BF2;

Y = 0.913 + 0.363496E-05 * BF3 – 0.449372E-05 * BF4 –
0.072 * BF6 – 0.271023E-05 * BF7 (1)

Changes in slope of those basis functions occur at
points called knots (values 3318, 67 and 6 in the above
examples). The regression line is thus allowed to bend at
the knots, which mark the end of one region of data and
the beginning of another with different behaviour of the
function (Fig. 1). Like splits in CART, knots are estab-
lished in a forward/backward stepwise way. A model
which clearly overfits the data is produced first. In
subsequent steps, knots that contribute least to the effi-
ciency of the model are discarded by backwards pruning
steps. The best model is selected via cross-validation, a
process that applies a penalty to each term (knot) added
to the model to keep low complexity values.

Another key improvement of MARS over global
parametric models is the way it deals with interactions.
In local modelling, interactions can no longer be treated
as global. MARS considers interactions not between the
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Table 1. MARS sample output for the Grimmia data set with
2nd. order interactions. See p. 3 for explanation of variables.

Basis function Coefficient Variable Parent Knot

0 0.913
3 3.63E-006 FROST04 altitude 67
4 – 4.49E-006 FROST04 altitude 67
6 – 0.072 PREC04 6
7 – 2.71E-006 FROST08 altitude 85

original predictors, but between the sub-regions of every
basis function generated. A particular sub-region of a
given basis function can interact with a particular sub-
region of another basis function, but other regions of
these basis functions might display none or a different
interaction pattern. Examples are shown in Fig. 2, which
illustrate the contribution to the response by interactions
specified in Table 1.

Interactions among predictors

Common regression analysis rapidly becomes unre-
liable when dimensionality becomes high, a phenom-
enon known as the ‘curse of dimensionality’ (Hastie &
Tibshirani 1990). An immediate consequence of the
‘curse of dimensionality’ is the severe limitation in the
number of usable variables in a given analysis. Suppose
we consider two regions for each predictor. With two
predictors the number of regions to be considered will
be four; with three predictors they will be eight (23) etc.
In the present study, and limiting the number of regions
to 2 – a number we do not know a priori –, the number
of regions will be 32 with Fagus (five predictors), but
15·1022 with the Grimmia data set (77 predictors) which
is simply not feasible.

Most statistical techniques perform poorly with high
dimensionality, a problem that in predictive modelling
literature is usually circumvented by limiting the number
of variables employed through a priori selection, which
is not always biologically warranted, or by eliminating
the interactions from the model, as in Yee & Mitchell
(1991). Some models for acceptable selection of predic-
tors have been proposed, including the use of CART to
identify the interactions, then fit GLM or GAM based
on those variables (Guisan et al. 2002).

To compare the performance of each technique with
regard to interactions, all statistical analyses were run
with no interactions (i.e. main effects) and with interac-
tions up to 5th order in MARS (when the results start to
deteriorate). The same interactions that produced the
best model in MARS were then used to run a new LMR
analysis to compare against MARS performance.

Dealing with multicollinearity

Multicollinearity occurs when one or more variables
are exact or near exact linear functions of other variables
in the data set. This is a common problem associated
with organism/communities modelling (Brown 1994;
De Veaux & Ungar 1994). Assessment of model per-
formance when multicollinearity may be an issue was
done by including the following analyses (all LMR are
forward conditional stepwise LMR with P-to-enter =
0.05 and P-to-remove = 0.1, no polynomial functions
used due to the high number of predictors): LMR with
original variables; LMR with Varimax orthogonalized
PCA factors (Principal Component Regression); LMR
using as variables the basis functions generated in the
MARS main effects (i.e. no-interactions) analysis (five
basis functions in Grimmia data set and ten in Fagus

Fig. 1. Example of MARS functions showing the relationship between response and a single predictor: A. Effect of Frost12 (mean
number of frost days during December·10) on the response. This almost flat-bottom function with three very different slope regions
is difficult to model under the assumption of a linear relationship, because the positive and negative sloping sections cancel each
other out. B. The basis function has a negative slope from sea level to 1157 m a.s.l., then ascends tol 3318 m a.s.l. where it reaches
a semi-plateau value.
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data set); CART with original variables; CART with the
same PCA factors as above; CART with the same MARS
basis functions as above and MARS with the original
variables.

We used two LMR projection methods to avoid
multicollinearity problems: principal component regres-
sion (PCR), already used in predictive modelling (see
references in Guisan & Zimmermann 2000) and LMR
using as variables the basis functions generated in the
MARS main effects analysis. PCR uses the projections
of the predictor variables onto a subset of PCs in place of
the predictor variables themselves. Since the PCs are
linearly uncorrelated (Varimax rotation), there are no
multicollinearities between the projection coefficients.
To our knowledge, MARS basis functions has not previ-
ously been combined with LMR to circumvent
multicollinearity.

Evaluation of the models

Assessment of model performance was done by a
method that was independent of any threshold: the area
under the Receiver Operating Characteristic (ROC)
curve, commonly termed AUC. The ROC curve is rec-
ommended for comparing two class classifiers, as it
does not merely summarize performance at a single
arbitrarily selected decision threshold, but across all
possible decision thresholds (Fielding & Bell 1997). It
plots the sensitivity (i.e. true positives) vs (1– specificity)
(i.e. false positives). An ideal classifier hugs the left side
and top side of the graph and the area under the curve
equals one. A random classifier should achieve ca. 0.5.
Whilst most analyses use 0.5 as the decision threshold to
consider a case as present or absent, this value is arbi-
trary and it does not necessarily give a more accurate
model (Fielding & Bell 1997; Manel et al. 1999). AUC
eliminates this problem by considering the performance
of the model across all possible threshold values. Moreo-
ver, ROC curves are invariant under changing distribu-
tions of the binary classes (presence/absence), as they
actually plot the ‘percentage of class-1 observations’ vs

‘percentage of class-0 observations’ and are therefore
independent of the balance between the two classes.
Hanley & McNeil (1983) have shown that when dealing
with a single scoring model, the AUC is equal to the
empirically observed probability of a class-1 observation
attaining a higher score than a class-0 observation. They
have also shown that the AUC is actually equivalent to
the normalized Mann-Whitney two-sample statistic, which
makes it equivalent to the Wilcoxon statistic.

AUC is a measure of model accuracy, but it does not
provide a rule for the classification of cases (Fielding &
Bell 1997). The final decision about which threshold
should be selected in a particular study depends upon its
objectives. The relative importance of FP (False posi-
tives, Type I) and FN (False negatives, Type II) error
rates must be individually considered in each study, and
this decision is independent of model accuracy. If the
purpose of the study is to identify sites where we need to
be certain that an organism will be found, we must select
the threshold that minimizes FP error rates. Contrarily,
if the aim is conservation of the same organism, the
threshold must be chosen to minimize FN error rates.

Finally, and in order to have a reliable estimate of the
prediction power of each model, we use two approaches:

1. Tenfold cross-validation: The original data set is
randomly divided into ten mutually exclusive subsets
(the folds) of about equal size. A subset is removed and
the remaining cases are used to generate a model. This
model is afterwards applied to the removed section and
its empirical error calculated. The process is repeated
with the remaining nine subsets and the mean empirical
error is used as the final estimate of the total error of the
model. We report results obtained by applying the opti-
mal models to the entire (i.e. learning) data sets.

2. Use of independent data sets for training and
evaluation: Both the Grimmia and Fagus data sets were
split randomly into one training and one evaluation data
set, containing approximately 70% and 30% of the total
cases, respectively. The training data sets were used to
generate the models which were then tested with the
independent evaluation data sets.

Fig. 2. Example of MARS functions ob-
tained from the Grimmia data set with 2nd.
order interactions among predictors, show-
ing the contribution to the response from
such interactions: A. Altitude and Frost04
(mean number of frost days during April·10)
only interact below 3318 m a.s.l., but not
above this elevation. B. Altitude only inter-
acts with Frost08 (mean number of frost
days during August·10) below 3318 m a.s.l.
and then only when there are less than 21
frost days.
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Results

Model performance

Tables 2 and 3 present the results of the different
statistical techniques applied to the Grimmia and Fagus
data sets, respectively. For both data sets differences
between evaluation via 10-fold cross-validation and
independent data are evident. Confidence intervals rarely
overlap between the two approaches, confirming the
results of Manel et al. (1999) that evaluation via inde-
pendent test samples is needed. The following discus-
sion therefore applies to the evaluation by the independ-
ent data set.

With the Grimmia data set the best performance was
achieved by the MARS with 2nd. order interactions
model (Fig. 3), with AUC = 0.954, although LMR
results were very similar. Improvement of MARS over
LMR is evident for Fagus, with an increase from 0.778
to 0.909 in AUC. In this data set, however, the best
results were obtained with CART (AUC = 0.946). Un-
fortunately, the complexity of the tree which generates
such results, with 1726 terminal nodes, makes this model
inadequate for cartographic purposes, a frustration al-
ready pointed out by Guisan & Zimmermann (2000).
The MARS model, very similar in performance to the
CART model, can then be considered as a surrogate
mapping technique (Fig. 4).

Interactions among predictors

The best results were achieved with models allow-
ing for higher order interactions. MARS was better than
CART in that the models generated were easier to
interpret, and interactions between predictors could be
more easily understood and explained in terms of their

biological relevance. In the particular case of the Grimmia
data set, Fig. 2 shows that between ‘Elevation’ and
‘Frost04’ (Fig. 2A) or ‘Frost08’ (Fig. 2B) there is inter-
action only below 3318 m a.s.l. and not above this
altitude, where in both cases Contribution = 1. Fig. 2A
should be interpreted as that in South America, below
3318 m a.s.l., contribution of the interaction to the
model (Eq. 1) increases linearly above 6.7 frost days in
April (basis function BF3, units are days·10), according
to the idea of Grimmia as a genus typical of cool or cold
regions. Similarly, Fig. 2B shows that contribution to
the model (Eq. 1) equals one below 3318 m a.s.l. only
when frost days in August are less than 8.5 (basis
function BF7, units are days·10). As BF7 enters nega-
tively in the model (Eq. 1, coefficient – 0.271023E-05),
it means that probability of finding Grimmia increases
when the number of frost days in August increases.

Multicollinearity

Tables 2 and 3 show that the projection methods
used to circumvent multicollinearity, which a priori
should outperform the methods using the original pre-
dictors (De Veaux & Ungar 1994), always reduced
predictive power. This was an unexpected result, be-
cause the data sets included a large number of predictors
that might intuitively be considered highly correlated.
The reason of this apparent contradiction is that interac-
tions among predictors, demonstrated in the previous
section, are masked when using projected variables (De
Veaux & Ungar 1994).

Table 2. Results with the Grimmia data set (best-fit model in bold). LMR = Logistic Multiple Regression; PCA = Principal
Component Analysis; CART = Classification and Regression Trees; AUC = Area under ROC curve; MARS = Multiple Adaptive
Regression Splines; CI = Confidence interval (95%).

Evaluation by ten-fold Evaluation by
cross-validation independent data set

Model AUC CI AUC CI

LMR with original variables 0.960 0.951-0.970 0.953 0.933-0.972
LMR with original variables, same interactions as MARS best model 0.963 0.954-0.972 0.951 0.931-0.971
LMR with PCA factors 0.892 0.874-0.910 0.879 0.844-0.914
LMR with MARS BFs 0.939 0.926-0.951 0.942 0.920-0.963
CART with original variables 0.970 0.960-0.980 0.912 0.876-0.947
CART with PCA factors 0.950 0.937-0.962 0.845 0.801-0.889
CART with MARS BFs 0.956 0.945-0.967 0.927 0.898-0.957
MARS with original variables, no interactions 0.977 0.970-0.984 0.931 0.899-0.964
MARS with PCA factors 0.933 0.919-0.946 0.897 0.865-0.928
MARS with original variables 2nd. order interactions 0.957 0.947-0.967 0.954 0.930-0.978
MARS with original variables 3rd. order interactions 0.980 0.974-0.987 0.945 0.915-0.974
MARS with original variables 4th. order interactions 0.982 0.976-0.988 0.939 0.908-0.969

MAR
Highlight
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Discussion

Our results show that distributions of species and
communities can be better defined if we accept that they
may follow multivariate non-linear mappings. At present
there are many sources of predictors which may interact
or correlate with each other in an unknown fashion,
especially if we are considering remote sensing data.
Simplifications, both in the number of predictors em-
ployed or assuming linear relationships with the re-
sponse, may render misleading models that perform
poorly on real world data. Our results support the view
that global parametric methods are inferior in such
modelling studies.

LMR has been successfully used in predictive mod-
elling to predict distributions of species and communi-
ties, despite its drawbacks such as its inability to deal
with skewed or multi-modal responses. CART, which
may produce better numerical predictions on new data,
generates complex models that can lead to no or spurious
model interpretations, and is occasionally of no use for
cartographic purposes. One goal of predictive model-
ling is to generate ‘potential habitat distribution maps’.
According to Guisan & Zimmermann (2000), such maps
are cartographic representations of (1) the probability of
occurrence; (2) the most probable abundance; (3) the
predicted occurrence; or (4) the most probable entity.
Cartographic implementation is therefore crucial.

Table 3. Results with the Fagus data set (best-fit model in bold). LMR = Logistic Multiple Regression; PCA = Principal Component
Analysis; CART = Classification and Regression Trees; AUC = Area under ROC curve; MARS = Multiple Adaptive Regression
Splines; CI = Confidence interval (95%). a Model used to generate the map shown in Fig. 4.

Evaluation by ten-fold Evaluation by
cross-validation independent data set

Model AUC CI AUC CI

LMR with original variables 0.793 0.790-0.796 0.778 0.772-0.783
LMR with PCA factors 0.755 0.752-0.758 0.757 0.751-0.762
LMR with MARS BFs 0.898 0.896-0.900 0.897 0.894-0.901
CART with original variables 0.979 0.978-0.980 0.946 0.943-0.949
CART with PCA factors 0.805 0.802-0.808 0.794 0.789-0.799
CART with MARS BFs 0.976 0.975-0.977 0.946 0.943-0.949
MARS with original variables 0.896 0.894-0.898 0.909a 0.906-0.912
MARS with PCA factors 0.792 0.790-0.795 0.789 0.784-0.794
MARS with original variables 2nd. order interactions 0.907 0.905-0.909 0.906 0.903-0.912

Fig. 3. Estimated probability of presence of plants of the genus
Grimmia in South America according to MARS with 2nd.
order interactions model. Inset shows in detail the northern tip
of the Andean range.

Fig. 4. Predicted map representing the probability of occur-
rence of oligotrophic forest with Fagus sylvatica in La Liébana
(NW Spain).
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Contrary to all of these disadvantages, MARS is
better suited to model situations that include a high
number of variables, non-linearity, multicollinearity and/
or a high degree of interaction among predictors. MARS
has been shown to perform as well as and more consist-
ently than other methods with two very different data
sets. Moreover, it is extremely easy to implement within
GIS, and we conclude that it can be seen as an alterna-
tive that extends the use of Generalized Methods and
avoids unsupported inferences derived from uncritical
use of standard procedures.
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