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Conditional and Marginal Models:
Another View
Youngjo Lee and John A. Nelder

Abstract. There has existed controversy about the use of marginal and
conditional models, particularly in the analysis of data from longitudinal
studies. We show that alleged differences in the behavior of parameters
in so-called marginal and conditional models are based on a failure to
compare like with like. In particular, these seemingly apparent differences are
meaningless because they are mainly caused by preimposed unidentifiable
constraints on the random effects in models. We discuss the advantages of
conditional models over marginal models. We regard the conditional model
as fundamental, from which marginal predictions can be made.

Key words and phrases: Generalized linear model, hierarchical generalized
linear model, joint modeling of mean and dispersion, spatial correlation,
temporal correlation.

1. INTRODUCTION

In longitudinal studies, models for repeated mea-
surements, constructed directly to describe marginal
means and treating any covariance structure as nui-
sance parameters, have come to be widely used. These
marginal (or so-called population-average) models are
often contrasted with conditional (subject-specific or
random-effect or multilevel) models. The principal
distinction between marginal and conditional models
has often been asserted to depend on whether the re-
gression coefficients are to describe an individual’s
response or the marginal response to changing co-
variates, that is, one that does not attempt to control
for unobserved subjects’ random effects. For example,
a marginal gender contrast compares the mean among
men to that among women, while a conditional gen-
der contrast compares the mean among men to that
among women holding the same value of a random ef-
fect (a particular value that corresponds to each indi-
vidual). Diggle, Liang and Zeger (1994) recommended
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the random-effect model for inferences about individ-
ual responses and the marginal model for inferences
about margins, that is, the objectives (or the type of in-
ferences) in a study should determine which suitable
statistical model to use. By contrast, we see the analy-
sis process as consisting of two main activities: the
first is model selection, which aims to find parsimo-
nious well-fitting models for the basic responses being
measured; the second is model prediction, where esti-
mates from selected models are used to predict quan-
tities of interest and their uncertainties. In our view,
inferences about both margins and individual subjects’
responses belong to the prediction phase of the analy-
sis. We show that alleged differences in the behavior of
regression coefficients in so-called marginal and con-
ditional models are based on a failure to compare like
with like. We shall see that these differences are mainly
caused by the choice of unidentifiable constraints on
the random effects. To compare two different models,
we must compare analogousquantities. We show that
different constraints can lead to seemingly very dif-
ferent, but inferentially identical, models. We believe
the conditional model is the basic model and that any
conditional model leads to a specific marginal model.
We work within a framework of conditional models
derived from hierarchical generalized linear models
(HGLMs; Lee and Nelder, 1996, 2001a), and marginal
models derived in turn from these conditional models.
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Marginal models have often been fitted using gener-
alized estimating equations (GEEs), whose drawbacks
are also discussed.

2. CONDITIONAL VERSUS MARGINAL MODELS

In this section we discuss why random-effect models
should be preferred to marginal models. Consider two
normal models: one is a random-effect model

Yij = Xijβ + vi + eij ,(1)

where vi ∼ N(0, λ) is a random effect andeij ∼
N(0, φ); the other is a marginal model

E(Yij ) = Xijβ,(2)

where the parameters in var(Y ) = � are nuisance pa-
rameters that have an arbitrary chosen pattern. Zeger,
Liang and Albert (1988) pointed out that given only (2),
their GEE solution is consistent. An obvious advantage
of using random-effect models is that they allow con-
ditional inferences in addition to marginal inferences
(Robinson, 1991). With model (1) we can obtain not
only a conditional mean

µc
ij = E(Yij |vi) = Xijβ + vi,

but also the marginal mean

µij = E(µc
ij ) = E(Yij ) = Xijβ,

while with the marginal model (2), we can obtain only
the marginal meanµij . The conditional model (1)
is a basic model, which leads to a specific marginal
model Y ∼ N(Xβ,�), that is, a multivariate normal
model with a specific covariance structure. In this
paper, we distinguish the marginal model (2), where
the distribution ofY is given an arbitrary covariance
structure, from a true multivariate model.

It may be reasonable to assume that an individ-
ual’s unobservable trait (vi ) follows a certain distribu-
tion. However, the center of this distribution cannot be
identified because it is confounded with the intercept
term. Thus, in the random-effect model (1) we put the
unidentifiable constraintsE(vi) = 0 andE(eij ) = 0 as
we do for error terms in linear models. This puts con-
straints

∑
i v̂i = 0 and

∑
ij êij = 0 in any correspond-

ing estimating procedure (e.g., that of Lee and Nelder,
1996). In this paper, we show that these constraints on
random components are crucial if theβs in the models
(1) and (2) are to be comparable in general. It is the
constraintsE(vi) = 0 andE(eij ) = 0 in the random-
effect model (1) that lead toE(Yij ) = Xijβ in the mar-
ginal model (2), so that theβs in models (1) and (2)
share a common meaning.

A marginal mean and a population average have of-
ten been assumed to mean the same thing. In this paper,
we interpret the marginal mean to be the mean obtained
by integrating out individuals’ heterogeneities, and this
will be a population average if and only if the individ-
uals in the study can be regarded as a random sample
from a population. Thusβ cannot be interpreted as a
population average unless the subjects can be consid-
ered as a representative random sample from a pop-
ulation: See the detailed discussion in Lindsey and
Lambert (1998) about why the subjects in longitudi-
nal studies often cannot be considered as a representa-
tive random sample (e.g., because they are volunteers).
However,β can still be interpreted as the marginal ef-
fect for the covariateX, eliminating the heterogeneities
of individual units.

In random-effect models, the difference between the
conditional meanµc

ij and the marginal meanµij of an
individual is the random effect

vi = E(Yij |vi) − E(Yij ).

There are two ways to define a marginal meanE(Yij )

from the conditional meanE(Yij |vi): Either we take
the expectation overvi to give

µij = E(µc
ij )(3)

or take the value atvi = 0 to give

µij = µc
ij |vi=0.(4)

Because individuals’ deviations have been eliminated
in (3) by integration, the marginal meanµij does not
involve any individual. However, in (4),µij is the
response of a notional individual with a null random
effect, that is, one at the center of the distribution of
random effects. With normal models the two marginal
means in (3) and (4) are the same, but this is not
generally true in nonlinear models (Crowder and Hand,
1990). In the next section, we show that for HGLMs
both forms of marginal means are possible, but only on
particular scales of the mean parameters.

We prefer the random-effect model. First, we can
have a simple marginal interpretation using the condi-
tional model not only in normal random-effect models,
but also in a wider class. Second, ignoring important
random effects may render invalid many traditional
techniques of statistical analysis (Goldstein, 1995).
Consider the two models

Yijk = β0 + βj + vi + eijk(C1)

and

Yijk = β0 + βj + vi + vij + eijk,(C2)
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where β0 is the intercept,βj are fixed treatment
effects,vi ∼ N(0, λ1) are random subject effects,vij ∼
N(0, λ2) are random treatment–subject interactions
andeijk ∼ N(0, φ). The common marginal model M
that corresponds to C1 and C2 has the form

E(Yijk) = β0 + βj(M)

with an arbitrary�. Users of such a marginal model
cannot check assumptions about the covariance struc-
ture, so many advocates of marginal approaches treat
covariance structures as nuisance parameters, claim-
ing that their methods are insensitive to assumptions
about�. However, C1 and C2 are qualitatively very
different models, and ignoring differences between
them could lead to wrong conclusions. When C1 is
true, that is, there are no treatment–random-effect in-
teractions (vij = 0), and if the subject effectsvi are
not of inferential interest, we can use the marginal
model M. However, in the presence of treatment–
subject interactions (i.e., when C2 is true), marginal
parameters in M may have a misleading interpretation
in terms of treatment effects, exhibiting the so-called
Simpson (1952) paradox. Lindsey and Lambert (1998)
provided an example where a treatment can be superior
on the average, while being poorer for every individ-
ual. They further listed no less than eight drawbacks of
such a marginal approach and concluded that

. . . the “statistical” argument that we should
directly model margins if scientific interest
centres on them, is not acceptable on sci-
entific grounds, for it implies that we are
generally imposing more unrealistic phys-
iological mechanisms on our data than by
direct conditional modelling and that these
are most likely rendering simple marginal
models greatly biased.

For example, with a heterogeneous population the
usual marginal model can show a long-term decreasing
risk of adverse events under the treatment because
that treatment has killed off the more frail subjects.
Thus, the use of marginal models can be dangerous,
even when marginal inferences are of interest. The
usefulness of marginal inferences requires the absence
of interactions, checkable only via conditional models.

The random-effect models leads to an equivalent
multivariate model whose distribution ofY is ob-
tained by integrating out the random effectsv from
the joint distribution ofY and v. However, the inte-
gration necessary to obtain the multivariate distribu-
tion inevitably uses model assumptions about the form

of the random effects, which then become impossi-
ble to check given just that multivariate distribution.
For example, in the random-effect model (1), the er-
rors are decomposed into two independent components
(eij = Yij − Xijβ − vi and vi ), so that model check-
ing can be done separately for each component (Lee
and Nelder, 2001a), while with the errors (Yij − Xijβ)
of the corresponding multivariate model, such model
checking is difficult, maybe impossible: See Lee and
Nelder (2001b) for model checking with various spa-
tial and temporal correlations.

3. POISSON HGLMs

In this section we study parametrizations of random
effects and show that each parametrization leads to
simple models about margins on a particular scale. In
contrast to the parametrization of fixed effects, those
for random effects do not seem to be well known.
To clarify the argument, we start with a data set which
can be modelled with a Poisson HGLM.

Galbraith and Laslett (1993) considered a set of data
that comprise numbers of spontaneous and induced fis-
sion tracks(Yi1,Yi2) counted in matched areas(Ai) of
crystal and mica for 27(I ) zircon crystals. Sponta-
neous tracks form over geological time by spontaneous
fissions of trace238U. Induced tracks are created arti-
ficially by placing the sample in a nuclear reactor and
bombarding it with thermal neutrons, a measured pro-
portion of which collide with trace235U atoms, thereby
causing fission. This indirectly measures the amount of
uranium in the crystal (see Table 1).

TABLE 1
Number of spontaneous and induced fission tracks counted in

matched areas for 27 zircon crystals

Crystal Yi1 Yi2 Ai Crystal Yi1 Yi2 Ai

1 24 459 80 15 2 70 49
2 8 52 30 16 3 94 28
3 136 310 30 17 23 128 60
4 56 257 70 18 153 264 70
5 3 57 70 19 90 143 32
6 6 332 80 20 31 49 16
7 73 98 14 21 38 120 40
8 131 226 50 22 51 46 25
9 9 173 80 23 38 85 12

10 6 28 12 24 127 45 20
11 141 229 70 25 5 24 30
12 11 74 36 26 24 56 20
13 12 61 18 27 10 31 18
14 10 28 40
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A natural model for such data would be that the
counts have Poisson distributions with means that vary
both within and between pairs. We can model these
data using two Poisson HGLMs. One is the Poisson–
normal model (PN1)

Yij |vi ∼ P (µn
ij ),

ηn
ij = log(µn

ij ) = logAi + βn + vi, vi ∼ N(0, λn),

where P (µn
ij ) means the Poisson distribution with

mean µn
ij = E(Yij |vi). The other is the Poisson–

gamma model (PG1)

Yij |ui ∼ P (µ
g
ij ),

µ
g
ij = Ai exp(βg)ui, ui ∼ G(1, λg),

whereµ
g
ij = E(Yij |ui) andG(1, λg) denotes the gam-

ma distribution with mean 1 and varianceλg . Here we
use superscriptsn andg to refer to normal and gamma
distributions of random effects, respectively.

In the multiplicative model PG1, the log link leads
to an additive model with linear predictor

η
g
ij = logµ

g
ij = logAi + βg + logui.

Each conditional model leads to a specific marginal
model. Model PG1 leads to the marginal model

logE(Yij ) = logE(µ
g
ij ) = logAi + βg,

while PN1 leads to the marginal model

E{log(µn
ij )} = logAi + βn.

These models are different because the operatorsE and
log do not commute. The definition of marginal means
depends on the scale on which the margins are formed.
For example, whenµij = E(Yij ), g(µij ) is the mar-
ginal mean ofg(Yij ) only if g(·) is a linear transfor-
mation. Similarly, log(µij ) is not a marginal mean, but
a nonlinear transformation of the marginal meanµij ,
while E(log(µn

ij )) with µn
ij = E(Yij |vi) could be a

marginal mean of interest, after integrating out indi-
vidual heterogeneities. Once the marginal model is
formed, we may not be able to make inferences about
the conditional means, so conditional models such as
PN1 or PG1 are more basic.

Here βn and βg describe marginal means, but
on different scales, so that they cannot be directly
compared. Now suppose that we are interested in
estimating the marginal meanE(Yij ) of Yij . In PN1,

E(Yij ) = Ai(expβn)E(expvi) = Ai expβg
n ,

say, where

βg
n = βn + λn/2.(5)

In PG1, E(Yij ) = Ai(expβg), so that βg
n and βg

are comparable. Suppose we are interested in es-
timating the marginal meanE(log(µn

ij )). In PN1,
E(log(µn

ij )) = logAi + βn, and in PG1,

E(log(µ
g
ij )) = logAi + βg + E(logui)

= logAi + βn
g ,

say, where

βn
g = βg + logλg + ψ(1/λg)(6)

and ψ(·) is the digamma function. Soβn and βn
g

are comparable. For comparable quantities such as
(βn and βn

g ) or (βg and β
g
n) the differences in our

example are not very great (Table 2) compared with
the difference betweenβn and βg. In Table 2, for
gamma random effects, we use Lee and Nelder’s
(2001a) second-order Laplace method to estimate the
dispersion components; for normal random effects, we
use the first-order method, which works well with these
models.

In an additive model such as PN1, the location
of vi is unidentifiable sinceβ + vi ≡ (β + a) +
(vi − a) for i = 1, . . . , I , while in a multiplicative
model such as PG1, the scale ofui is unidentifiable
since (expβ)ui ≡ (a expβ)(ui/a) for a > 0. When
we form random-effect models we can impose a
constraint either on the fixed effects or on the random
effects. However, imposing constraints on random
effects is more convenient when we move to models
with more than one random component. Thus, in
the additive model we may use the unidentifiable
constraintE(vi) = 0 and in the multiplicative model
use E(ui) = 1; this results in constraints on the
estimators

∑
v̂i/I = 0 and

∑
ûi/I = 1, respectively

(Lee and Nelder, 1996). Remember that if, in linear
models, we put a constraint on fixed effects such as∑

βi/I = 0, least-squares estimates similarly satisfy∑
β̂i/I = 0.
In linear models we sometimes put constraints on pa-

rameters, but any relevant inferential quantities must

TABLE 2
Parameter estimates from two HGLMs

PN1 β̂n = 0.629 β̂
g
n = 0.905 λ̂n = 0.5515

PG1 β̂n
g = 0.609 β̂g = 0.870 λ̂g = 0.4847
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be independent of the constraints imposed. For ex-
ample, we do not compare two estimates ofβ̂i that
arise from two different constraints (e.g.,β1 = 0 and∑

βi/I = 0), because different constraints lead to dif-
ferent meanings for the parameter estimates; for exam-
ple, β̂i underβ1 = 0 estimatesβi − β1, while under∑

βi/I = 0 it estimatesβi − ∑
βi/I . Nelder (1994)

discussed the unnecessary complexity caused by treat-
ing such constraints as an intrinsic property of linear
models. Similarly, we should not treat constraints on
random components as intrinsic properties of models.
Consequently, parameters from random-effect models
that have different constraints on the random compo-
nents cannot be compared directly because they have
different meanings. In PN1, it is the log scale on
which the marginal meanE(log(µn

ij )) can be inter-
preted as the response of a notional individual having
logµn

ij |vi=0 = logAi +βn, while in PG1, it is the orig-

inal scale on which the marginal meanE(µ
g
ij ) can be

interpreted as that of a typical individual with an aver-
age random effectµg

ij |ui=1 = Ai exp(βg).
Care is necessary with inferences about quantities

with constraints imposed. For example, in making a
profile likelihood for βi , any constraint on theβis
should be kept. Otherwise, the resulting likelihood in-
ferences do not compare the different values of pa-
rameter estimates from the same model. Similarly, in
making valid profile-likelihood inferences for individ-
ual responses, constraints on random effects should
also be kept (Lee and Nelder, 2002).

Note that the Poisson–normal model with a marginal
parametrization (PNM),

Yij |vi ∼ P (µn
ij ),

µn
ij = Ai exp(βg

n + v∗
i ) with v∗

i ∼ N(−λn/2, λn),

provides the marginal meanE(Yij ) = µij = Ai expβ
g
n ,

which has the constraintE(u∗
i ) = 1 with u∗

i = exp(v∗
i ),

while the Poisson–gamma model with a conditional
parametrization (PGC),

Yij |ui ∼ P (µ
g
ij ), log(µ

g
ij ) = logAi + βn

g + v∗∗
i ,

where v∗∗
i = log(ui) − logλg − ψ(1/λg) and ui ∼

G(1, λg), provides the marginal meanE(log(µ
g
ij )) =

logAi + βn
g , which has the constraintE(v∗∗

i ) = 0.
Thus PNM gives parameters forE(Yij ), while PGC
gives those forE(log(µ

g
ij )). Thus, it is the constraint

on the first moment of the random effects which de-
termines whether the parameters contribute toE(Yij )

or E(log(µ
g
ij )), not the shape of random-effect distri-

bution. In all four models, there is a particular scale

on which one obtains simple marginal interpretations:
PG1 and PNM provide the marginal meanE(Yij ),
while PN1 and PGC provideE(log(µc

ij )).
Models PN1 and PNM (and similarly PG1 and PGC)

are equivalent, but with different parametrizations, pro-
viding identical inferences for the same thing. Esti-
mates ofβn and βn

g should be integrated over the
random-effect distribution before any comparison is
made with estimates ofβg

n andβg . Thus, estimates of
β

g
n = log{E(Yij )/Ai} andβn = E[log{E(Yij |vi)/Ai}]

(and alsoβg = log{E(Yij )/Ai} andβn
g = E[log{E(Yij |

vi)/Ai}]) cannot be directly compared. The differ-
ence between the estimates is not caused by differ-
ences between the two models (they are equivalent
here), but because they predict two different quanti-
ties. The difference between̂βn andβ̂

g
n (or β̂g andβ̂n

g )

is caused by putting different constraints in the equiv-
alent normal (gamma) random-effect models, while
the difference between̂βn and β̂n

g (or β̂g and β̂
g
n )

is caused by assuming different random-effect dis-
tributions, keeping a common constraintE(vi) = 0
[E(ui) = 1]. Because arbitrary constraints can lead to
seemingly very different models, especially in nonlin-
ear cases, care should be exercised when comparing
such models. When we compare two different models,
we should compare them under common constraints.
Models PN1 and PG1 (and similarly PNM and PGC)
are similar when heterogeneities of individuals (vari-
ances of random effects,λg andλn) are small. How-
ever, when heterogeneities are large, they can be quite
different because they assume different shapes for the
random-effect distributions.

We (Lee and Nelder, 1996, 2000, 2001a, b) have de-
veloped various model-checking procedures. Our 1996
paper extends the scaled deviance test of GLMs, and
in these tests the degrees of freedom for random ef-
fects are noninteger. Here, for PN1 the scaled de-
viance is 1994 with 27.49 degrees of freedom; for PG1
the scaled deviance is 1994 with 27.38 degrees of
freedom. If the Poisson assumption were appropriate
for the Yij |vi distribution, the scaled deviance would
be close to its degrees of freedom. Thus, its large
value implies that there exists extra-Poisson variation
in the conditional distribution. Subsequent investiga-
tion showed that a term for pair effects should have
been added to the fixed effects.

Our final Poisson-normal model (PNF) for Galbraith
and Laslett’s (1993) data is

Yij |(vi, vij ) ∼ P (µn
ij )
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and

log(µn
ij ) = logAi + βn + τn

j + vi + vij ,

whereτn
j , for j = 1,2, is a pair effect,vi ∼ N(0, λn

1)

andvij ∼ N(0, λn
2j ), that is, var(vij ) is changing withj.

Our final Poisson–gamma model (PGF) is

Yij |(ui, uij ) ∼ P (µ
g
ij )

and

µ
g
ij = Ai exp(βg + τ

g
j )uiuij ,

where τ
g
j is a pair effect, ui ∼ G(1, λ

g
1) and

uij ∼ G(1, λ
g
2j ). Differences in regression coefficient

estimates for the two models are again caused mainly
by the parametrizations rather than by the choice of
random-effect distribution. For example, in Table 3
the intercept estimates in PNF and PGF have differ-
ent signs. Note that we use the log scale for dispersion
parameters because it often gives near-quadratic profile
likelihoods (Lee and Nelder, 1996).

Now suppose that we are interested in inferences
aboutE(Yij ). In PNF,

µ∗n
ij = E(Yij/Ai) = exp(βn + τn

j )E(exp(vi + vij ))

= exp{βn + τn
j + (λn

1 + λn
2j )/2},

and in PGF,

µ
∗g
ij = E(Yij/Ai) = exp(βg + τ

g
j ).

We notice some differences in marginal mean predic-
tions between the two models in Table 3. Note that in
Poisson HGLMs with the log link, prediction from the

TABLE 3
Marginal mean prediction from two models for nuclear data

PNF PGF

Estimate s.e. Estimate s.e.

β̂n = − 0.386 0.257 β̂g = 0.293 0.242
τ̂ n
2 = 1.401 0.228 τ̂

g
2 = 0.893 0.214

γ̂ n
1 = − 0.899 0.283 γ̂

g
1 = − 0.970 0.287

γ̂ n
2 = 0.266 0.287 γ̂

g
2 = 0.122 0.285

γ̂ n
22 = − 5.734 2.980 γ̂

g
22 = − 4.231 1.261

µ̂∗n
i1 = 0.886 GM= 0.642 µ̂

∗g
i1 = 1.340 AM= 1.467

µ̂∗n
i2 = 2.763 GM= 2.727 µ̂

∗g
i2 = 3.272 AM= 3.318

τ̂ n
1 = τ̂

g
1 = 0 γ n

1 = log(λn
1) γ

g
1 = log(λ

g
1)

log(λn
2j ) = γ n

2 + γ n
2j γ̂ n

21 = 0 log(λg
2j ) = γ

g
2 + γ

g
2j γ̂

g
21 = 0

NOTE: GM stands for geometric means ofyij /Ai for j = 1,2;
AM stands for arithmetic means ofyij /Ai for j = 1,2.

normal random-effect model (such as PNF) gives simi-
lar results to the use of geometric means, and that from
the gamma random-effect model (such as PGF) yields
similar results to arithmetic means. Geometric means
are preferred if the log scale provides symmetry of re-
sponses, while arithmetic means are preferred if the
original scale does. Thus, on which scale we should
take margins may depend on the shape of the distrib-
ution assumed for the responses. Similarly, in HGLMs
the shape of the random-effect distribution may deter-
mine an appropriate scale of margins for analysis.

Certain parametrizations may achieve insensitivity
of estimates to model assumptions. This is not a mat-
ter of different models, but a choice of parametrization
within the same model. All the models we have consid-
ered for Poisson HGLMs are conditional models, but
they provide both marginal and conditional interpre-
tations of the regression coefficients. The conditional
interpretation ofβn in PN1 (or ofβg in PG1) depends
on a preimposed unidentifiable constraint on the ran-
dom effectsvi , while the marginal interpretation does
not, so that only the meaningful interpretation ofβn

(βg) is a marginal one. The principal distinction in
the regression coefficients is caused by parametrization
(constraints on random effects), and each parametriza-
tion allows a marginal interpretation, but only on a par-
ticular scale.

Our final question concerns which parametrizations
should be preferred. For example, in choosing between
the PN1 and PNM (or PG1 and PGC) parametrizations,
we prefer PN1 (PG1) becauseβn (βg) are orthogonal
to the dispersion parameters (Lee and Nelder, 1996),
whereasβg

n (βn
g ) are sums of components from or-

thogonal fixed effects and dispersion parameters; see
(5) and (6). However, Heagerty and Zeger’s (2000)
study indicates that some people may prefer PNM
(PG1) because theβg

n (βg) parametrization could yield
estimates insensitive to covariance assumptions. Fur-
ther study is required on parametrizations in random-
effect models.

4. GEEs

For independent responses, Wedderburn (1974)
showed that quasilikelihood (QL) estimating equations
can be formed by using assumptions solely about the
first two moments. It is sometimes said that use of QL
depends on assumptions about the mean–variance rela-
tionship only, but this is not so. Lee and Nelder (1999)
pointed out that QL estimating equations are the score
equations derived from a QL and that the shape of
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the distribution follows a pattern of higher-order cu-
mulants similar to that predicted from a one-parameter
exponential family if one existed. This makes the re-
sulting QL estimator robust against misspecification
of skewness. By replacing the variance with the co-
variance matrix of responses in the QL estimating
equations, this approach can be extended to corre-
lated responses (Liang and Zeger, 1986; Zeger and
Liang, 1986). However, for correlated errors, there is
in general no QL for which these QL-type estimating
equations are score equations (McCullagh and Nelder,
1989). Because of the lack of a likelihood basis, we
regard this approach as not being a proper extension
of Wedderburn’s (1974) QL approach to models with
correlated errors. By contrast, random-effect models
can give QL’s for correlated errors (Lee and Nelder,
2001a).

The GEEs are QL-type estimating equations in
which the pattern of the covariance matrix is to
some extent arbitrary. Thus, they inherit the lack of
a likelihood basis. Estimates of regression coefficients
from GEEs have been claimed to be consistent un-
der various model misspecifications as long as the re-
gression equation for the mean is correctly specified
(Zeger, Liang and Albert, 1988); however, this was
shown by Crowder (1995) to be incompletely estab-
lished. A referee pointed out that the more specific as-
sumptions one makes about a model, the more likely it
is that some of them fail in practice. We support the use
of robust methods, but dislike the use of marginal mod-
els without probabilistic or likelihood basis, because
use of such models makes checking almost impossible.
Without proper model checking, there is no simple em-
pirical means to discover whether the regression for the
mean has been correctly or, more exactly, adequately
specified. Estimates can of course be biased if im-
portant covariates are omitted. Withoutproper model
checking, the validity of inference cannot be assured.
Note also that an insensitivity of estimates to model
assumptions does not necessarily imply that the con-
clusions are correct. Lee and Nelder (2001b) gave an
example where estimates from three different models
are similar, but model checking shows that none of
them is the right one.

The use of robust procedures and the use of marginal
models are separate issues. All robust procedures used
in GEEs can also be used for random-effect models.
Consider use of the model C2 in Section 2, which as-
sumes that thevij are independent, when, in fact, they
are serially correlated. Obviously in this case the con-
ditional model fails. However, estimateŝβ from the

random-effect model C2 are as robust as the GEE esti-
mator against such misspecification (Seely and Hogg,
1982). If the standard error estimates are unlikely to
capture the true variation, we can use the sandwich
standard error estimates (Kent, 1982); furthermore,
another useful sandwich estimator (Lee, 2002) is avail-
able which cannot be derived from marginal mod-
els. There is no single robust procedure that protects
against all circumstances, that is, robustness is not an
absolute quality, so various robust methods need to be
developed. For example, the nonparametric maximum
likelihood estimator of Laird (1978) is robust against
the wrong choice of distribution of random effects,
the semiparametric approach against the wrong choice
of baseline distribution of survival data (Ha, Lee and
Song, 2001) and so forth. Thus, robustness is not nec-
essarily a guarantee of the usefulness of the GEE ap-
proach. For a list of drawbacks to the GEE approach,
see Lindsey and Lambert (1998).

A referee pointed out that given two approaches that
provide similar inferences for equivalent elements, the
choices of approach should be decided by the robust-
ness of the method and the stability of the algorithm.
We agree that the GEE approach is competitive in both
respects. The use of numerically intractable marginal
likelihoods causes difficulty in implementing random-
effect methods for complicated correlation structures.
The use of hierarchical likelihood allows both compu-
tationally simple and statistically efficient estimation
algorithms (Lee and Nelder, 2001a) that are easily ex-
tendable to more general models that allow for vari-
ous temporal and spatial correlations (Lee and Nelder,
2001b). Developments of various robust procedures
and stable algorithms for various correlation structures
in random-effect models are fertile areas for further re-
search.

5. BERNOULLI HGLMs

Heagerty and Zeger (2000) analyzed binary data
from Weil (1970). The 21-day survival of pups from
the litters of 16 exposed and 16 unexposed rats was
compared. LetYij denote the survival of pupj ,
j = 1, . . . , ni , born to animali, i = 1, . . . ,m. The
single covariate of interest is a between-subject binary
indicator of the treatment assignment of the mother.
Letpc

ij = E(Yij |vij ) andpij = E(Yij ) be, respectively,
the conditional and marginalprobabilities. We consider
the binomial-normal model (BN)

Yij |vij ∼ B(pc
ij ),

(7)
logit(pc

ij ) = βc
0 + xijβ

c + vij , vij ∼ N(0, λc
j ),
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TABLE 4
Parameter estimates from three models for Weil’s data

OBM BM BN BN0

Coefficient Estimate s.e. Estimate s.e. Estimate s.e. Estimate s.e.

β

Intercept 2.183 0.315 2.175 0.286 2.191 0.294 2.340 0.446
Treatment −0.961 0.518 −1.069 0.476 −0.728 0.608 −0.955 0.607

logφj̄

Intercept 0.356 0.377 −1.593a −1.380 2.071 0.583b 0.304b

Treatment 1.107 0.525 2.188c 2.611 2.097

aHeagerty and Zeger used theλ0.5
j scale, so we have transformed their estimate to our logλj scale.

blogλ scale.
clogλj scale.

whereB(p) means the Bernoulli distribution with a
probability p, and also the overdispersed binomial
model (OBM)

Yij |vij ∼ OB(pij ), logit(pij ) = βo
0 + xijβ

o,

where OB(pij ) means the overdispersed Bernoulli
with pij = E(Yij ) and var(Yij ) = φjpij (1 − pij ).
We also consider the binomial–normal model with
common heterogeneityλc (BN0)

Yij |vij ∼ B(pc
ij ),

logit(pc
ij ) = βc

0 + xijβ
c + vij , vij ∼ N(0, λc).

The results are shown in Table 4. In Heagerty and
Zeger (2000),|β̂c| in BN0 is twice that in BN, while
our estimates (Lee and Nelder, 2001a) for the two
models BN0 and BN are not very different.

5.1 A Marginalized Random-Effect Model

There may not exist a simple constraint onvij in
BN that allows a logit model in the form logit(pij ) =
βm

0 + xijβ
m. For inferences about marginal probabil-

ities, Heagerty and Zeger (2000) proposed to use the
marginalized random-effect model (BM)

Yij |vij ∼ B(ph
ij ), logit(ph

ij ) = 	 + wij ,

logit(pij ) = βm
0 + xijβ

m, wij ∼ N(0, λm
j ),

where

ph
ij = E(Yij |wij ) = exp(	 + wij )

1+ exp(	 + wij )

and

pij = exp(xijβ
m)

1+ exp(xijβ
m)

(8)

=
∫ exp(	 + wij )

1+ exp(	 + wij )
dF (wij ),

F (wij ) being the cumulative distribution ofwij . Given
the values ofxijβ

m andλm
j , the integral equation (8)

can be solved numerically for	. In BM, the model as-
sumption about the linear predictor of the ordinary BN
model is split into two parts:

logit(pij ) = xijβ
m and logit(ph

ij ) = 	+wij .(9)

However, the multivariate logit model

logit(pij ) = xijβ
m

implicitly implies a strange random-effect model in
which

ph
ij = E(Yij |uij )

(10)

= exp(xijβ
m)

1+ exp(xijβ
m)

uij with E(uij ) = 1.

Appropriate distributional assumptions onuij lead to
a multivariate model for the marginal parameterspij .
However, we cannot find a distribution ofuij which
leads to Heagerty and Zeger’s BM. This shows that
there are two alternatives for generating multivariate
logit models.

Regression coefficients from BN and BM are not
directly comparable. Using the first equality in (8),
we can directly predict the marginal probability from
the BM. However, from BN models, we can also easily
predict it by using the fact

pij = E(Yij ) =
∫ exp(βc

0 + xijβ
c + vij )

1+ exp(βc
0 + xijβ

c + vij )
dF (vij ).

From Table 5 we see that there are only small differ-
ences in the predicted margins for the three models
BN, BM and OBM. Fromp̂ij , we can compute mar-
ginal logistic regression estimates from BN, giving an
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TABLE 5
Predicted margins from three models

OBM BM BN BN0

p̂i1 p̂i2 p̂i1 p̂i2 p̂i1 p̂i2 p̂i1 p̂i2

0.899 0.772 0.898 0.751 0.891 0.719 0.858 0.740

interceptβ̂m
0 = logit(p̂i1) = 2.101 and treatment effect

β̂m
1 = logit(p̂i2) − logit(p̂i1) = −1.156. Comparing

these with those from BM in Table 4, we see that there
is not much difference between the results from the so-
called marginalized random-effect model BM and the
ordinary BN. Furthermore, BN0 provides marginal es-
timators for the intercept̂βm

0 = 1.801 and for the treat-
ment effectβ̂m

1 = logit(p̂i2) − logit(p̂i1) = −0.758.
A look at the difference inβ̂m

1 between models with
the common and separate heterogeneity suggests that
the insensitivity ofβ̂m

1 (compared withβ̂c
1) to disper-

sion misspecification may not hold, at least with this
dataset. Furthermore, if we compare like with like, we
see no dramatic differences in sensitivity.

In Poisson random-effect models the two seemingly
different models, such as PN1 and PNM, are equiva-
lent, but assume different constraints on the random
effects. However, in binomial random-effect models,
BN and BM are different and we may have to make
a choice. If we compare like with like, these two mod-
els may not be very different. With BM inferences
about conditional probability are difficult. By contrast,
the integration required to obtain a marginal probabil-
ity at the prediction stage from BN is not difficult; see
also Goldstein and Rasbash (1996). Further studies, in
particular about parametrizations related to the model
prediction stage, would be interesting.
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Comment
Stephen Senn

I welcome this paper by Youngjo Lee and John
Nelder (L&N), which considerably advances our un-
derstanding of random-effect modeling. There is much
that the authors state with which I am in complete
agreement, in particular, their demonstration that the
claim is false that marginal models must be used
where inferences about populations are desired. As
John Nelder pointed out many years ago in a paper
with Peter Lane, prediction is a different purpose to
estimation and you do not have toestimate directly
analogous quantities to those which you wish topredict
(Lane and Nelder, 1982). Estimates form the building
blocks of predictions and often much work is required
before you can construct the latter from the former. In
any case, in the field in which I work, that of clinical
trials, it is a pernicious but all too widespread delusion
that the patients are a representative sample of those
for whom the treatments might be indicated: In real-
ity we have precise control of the allocation algorithm,
but very little of the presenting process (Senn, 2000a).
In fact, the results for the patients in a clinical trialas
a population are frequently not of interest (Lindsey and
Lambert, 1998). What one is trying to establish is the
causal effects of treatments on individuals: After all, if
the treatment cannot affect individuals, it has no effect
on populations, and it is individuals we treat. Estab-
lishing such effects can, of course, yield predictions for
populations. In short, I have a great deal of sympathy
with the authors’ creed, which can be summed up suc-
cinctly using the last sentence in their abstract, “We re-
gard the conditional model as fundamental, from which
marginal predictions can be made.” If, in the rest of this
note, I raise a few quibbles with this point of view, this

Stephen Senn is Professor, Department of Statistics,
University of Glasgow, Glasgow G12 8QQ, Scotland
(e-mail: stephen@stats.gla.ac.uk).

is simply for the sake of discussion; basically, I think
that their thesis is correct.

However, before proceeding to see if anything can
be said in favor of marginal models, I wish to amplify
some points of agreement. For example, in my opin-
ion, and as already stated, estimation and prediction
are not the same except by accident. It is misleading
that a standard statistical paradigm, to which textbooks
often return, is that of estimating a population mean
using simple random sampling. For this purpose, the
parameter estimate of the simple model is, indeed, the
same as the prediction. However, as soon as we turn to
more complex sampling schemes, this is not so. Strati-
fied random sampling, for example, yields estimates of
stratum means from which the population mean can be
predicted using the sampling fractionsif one wishes,
but there is noimmediate connection between any of
the parameters estimated and the target quantity. There
is also a very common confusion between samples and
experiments: The latter carry with them no necessary
implication about any population quantity whatsoever.
Consider, for example, random-effect meta-analysis.
The usual random-effect estimate down-weights the in-
fluence of larger trials compared to fixed-effect analy-
sis in producing an “overall mean effect.” However,
this overall mean effect is not, although it is a point
regularly overlooked, a prediction in itself of anything
useful whatsoever. For example, if one believed that
larger trials were more likely to have recruited “typi-
cal” patients and that a prediction for typical patients
was needed, one might wish to give larger trials more
weight after all (Senn, 2000b).

These distinctions sometimes come to a head when
causal analyses are carried out on sample surveys.
For example, one might have carried out a stratified
survey on dietary habits with very different sampling
fractions per stratum. To the extent that one wishes
to establish the dietary habits of the population, these
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fractions are relevant to inferences, but if a separate
object of the study is the effect of diet on health, then
for this purpose the study is quasiexperimental and the
fractions are not relevant for causal inferences. It is
perhaps interesting to note that the statistical package
SUDAAN is particularly strong with regard to the
former purpose and that great play is made of its ability
in estimating effects for clustered data to implement
the GEE approaches criticized by L&N.

A related issue concerns certain types of measure-
ment. We are now also seeing a plethora of rec-
ommendations regarding, for example, sigma-divided
measures of treatment effects. For instance, instead of
measuring the difference between two treatments on
some natural scale, such as liters of forced expiratory
volume in one second in asthma or millimeters of mer-
cury diastolic blood pressure in hypertension, we do
so in terms of the degree of overlap between the two
treatment groups (Rom and Hwang, 1996; Stine and
Heyse, 2001). Such measures, depending as they do on
the variability observed in the sample, which may be
quite different from that in some target population, are
almost uninterpretable (Senn, 1997) and have no appli-
cation at an individual level. Again, a reification of the
population is involved.

Thus, I agree wholeheartedly with the authors’ claim
that marginal predictions do not require marginal
estimation and indeed that such predictions will be
better served (usually) by conditional models. Once
the parameters of these models have been estimated,
they may then, together with further quantities that may
be necessary, yield marginal predictions for a given
population of interest.

What causes me to hesitate in signing up 100% to
the thesis of L&N is the thought that because our
knowledge is limited, we may be forced from time
to time to be marginal. There has been considerable
work over the last two decades on the effect of miss-
ing covariates or model-misspecification in nonlinear
models. For example, Gail, Wieand and Piantadosi
(1984) examined exactly what type of model ran-
domization would ensure asymptotically unbiased es-
timates despite a missed prognostic covariate. They
showed that whereas many such models existed, for
“certain important nonlinear regression models,” bi-
ased estimates were produced. (See in particular their
extremely useful Table I, Gail, Wieand and Piantadosi,
1984, page 437.) In labeling the estimates as biased,
they implicitly assumed that the model conditioning
on the covariate was the correct one. Ford, Norrie and
Ahmadi (1995) in the specific context of proportional

hazards models, took the more cautious view that dif-
ferent quantities were being measured. Similar points
have been made by others (Beach and Meier, 1989;
Robinson and Jewell, 1991). It seems plausible that
those cases where missing covariates lead to biased
estimates are the cases for which, in a random-effect
framework, conditional and marginal models appear to
yield different results. (This is probably also relevant to
the discussion in L&N toward the end of Section 3 re-
garding choice of parametrization.) The connection be-
tween the effect of stratification and fitting covariates
on parameter estimation and random effects modeling
must be particularly close when one considers that,
from one point of view, a fixed-effect model is simply
a more complex version of the random-effect model,
involving separate distributions for each stratum or co-
variate rather than regarding them as realizations of
some parent distribution. Furthermore, since one can
always imagine covariates that could have been mea-
sured but were not, there is always a possible model to
which the model actually used is marginal.

Suppose we are faced with performing a meta-
analysis of a mixture of parallel and crossover trials for
the sort of models for which the marginal and condi-
tional model parameters represent different quantities.
How should we proceed? One argument is that since
we can fit a marginal model in both cases, this is the
way that we should analyze individual trials. Presum-
ably the L&N philosophy would be that we fit condi-
tional models where we can do so and then combine
them at the level of marginal predictions.

I am puzzled, however, by L&N’s opening exam-
ple. Consider a concrete instance. When modeling
an AB/BA crossover trial using random effects and
a Normal model [fixed patient effects are also common
(Senn, 2002)], the two usual approaches are the condi-
tional approach using between- and within-subject er-
rors corresponding to L&N model (1) and the marginal
approach using a block diagonal variance–covariance
matrix. However, I do not see what is wrong with the
latter approach. Indeed, it seems slightly more gen-
eral than the former, allowing as it does for negative
correlations. Such negative correlations are implausi-
ble, but are occasionally encountered, as in Grizzle’s
(1965) famous paper (where, however, the analysis was
of differences from baseline, which therefore has the
patient effect eliminated). In fact, I would say that the
two models are equivalent, apart from the implied con-
straintρ ≥ 0 in the former, which constraint might or
might not be appropriate, depending on the degree of



230 Y. LEE AND J. A. NELDER

prior knowledge, but which in any case could be incor-
porated in estimation for the latter. I also believe that
the reference to Simpson’s paradox here is a red her-
ring. This pace L&N has no essential connection to
treatment–subject interaction and no such interaction is
present in the example of Lindsey and Lambert (1998;
at least on the probability scale) nor do they claim that
there is. Indeed, the pure paradox exhibits itself most
forcibly when there is no interaction at all and the treat-
ment effect is constant in every stratum, but different in
terms of marginal contrasts. For excellent discussions
of confounding and Simpson’s paradox, see Pearl’s
(2000) important book, Garrett (2003) or Greenland,
Robins and Pearl (1999).

Another issue is that of judgement in modeling. All
statisticians choose to be marginal at some level or
another in their choice of measure on some occasion
or another. Consider a simple AB/BA crossover trial
in bioequivalence. The object is to estimate relative
bioavailability and show that this is close to unity.
Conventionally this is done by comparing the area
under the concentration time curve (AUC) using a
log transformation. It is sometimes mistakenly claimed
that, due to properties of the log-Normal, this implies
something about comparison of population medians
rather than means. In fact, if there are no missing
observations, efficient analysis may be reduced to
an analysis of the log ratios for individual subjects.
Essentially one conditions on the subject effects and
it make no difference whether the subject effects
themselves are Normal or not. The subjects in the trial
could have been recruited in equal numbers from sumo
wrestlers and jockeys, yielding a curious bivariate
bimodal distribution of the original measurements, but
leaving the distribution of log ratios unaffected. The
inference is about the causal effect of the treatment and
not about any populations as such, and these population
parameters are of no interest whatsoever apart from the
relative bioavailability itself, each subject providing
a means of estimating this. This is consonant with the
philosophy of L&N.

However, an analysis of AUCs from such a trial will
not permit identification of patient by formulation in-
teractive effects: For that a crossover trial with three or
more periods would be needed (Hauck, Hyslop, Chen,
Patnaik and Williams,2000; Senn, 2002). However,
since blood samples will be taken at frequent inter-
vals, by using a sufficiently parsimonious model for
within-subject errors together with a suitable pharma-
cokinetic model, individual subject effects could be
estimated using the individual concentrations at each

time point. If the purpose of the exercise were to es-
timate pharmacokinetic parameters such as clearance,
volume of distribution and so forth, this might, indeed,
be a good thing to do. There is a long and impressive
tradition of this approach, stretching back at least to
the work of Sheiner and colleagues in the early 1970s
(Sheiner, Rosenberg and Melmon, 1972). However, in
a bioequivalence trial, this is not the object of the ex-
ercise, but simply to prove that the two concentration-
time profiles are equivalent. In my view, there really
would be little point to doing anything other than com-
paring AUC’s (Senn, 2001). Many similar examples
can be found where the statistician makes a judgement
as to how far it is worth going into the business of ana-
lyzing lower levels of the data. A famous example that
involves such a choice of level, although this has not
always been appreciated, is the epilepsy data of Thall
and Vail (1990), which also was used by Diggle, Liang
and Zeger (1994). The data comprise an 8-week trial
divided, in my opinion to no useful purpose, into four
2-week periods: why not eight 1-week periods or 56
1-day periods or, more naturally, one 8-week period?
Probably the most logical approach would be to look at
it in terms of repeated interseizure intervals in terms of
some complex survival analysis model. In short, some-
times enthusiasm for driving the model downward is
taken too far. This was certainly Yates’ (1982) view of
approaches to analyzing repeated measures designs as
if they were split-plot experiments, which they are not;
this habit is widespread in the psychometric literature.

The point I am making here is that all statisticians
decide on a certain degree of aggregation. Therefore,
if the drive for conditional models is interpreted as im-
plying that no level of aggregation is ever acceptable,
in my opinion this goes too far. However, it seems to
me that the general message of L&N is sound and I of-
fer my summary of some of the lessons of this paper as
follows.

1. The desire to issue marginal predictions is not in
itself a reason for not using conditional models.

2. Inferences will usually be superior if conditional
models are employed.

3. We should be careful when comparing parameter
estimates from different models; it may require
much thought to compare like with like.

4. In particular, certain explicit or implicit side condi-
tions on models may have important consequences.
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Comment
Naisyin Wang

I would like to begin by thanking Professor Lee
and Professor Nelder for an interesting and well writ-
ten article. The comparison between conditional and
marginal modeling of longitudinal data has generated
great interest in recent years. As pointed out by Lee
and Nelder, certain controversies were simply raised
due to the failure to “compare like with like.” Even
though this issue may be well known among statis-
ticians whose research interests include longitudinal
data analysis, the clearly presented examples in this
article certainly help to make the issue transparent
to general users of these methods. The current arti-
cle discusses another interesting and related question:
the choice between conditional and marginal modeling.
The authors tend to focus on the notion that conditional
modeling is absolutely superior to the marginal model-
ing. Beside the scenarios that the scientific aims dictate
the choice of modeling approach, I feel there are vari-
ous issues that are worthwhile to consider and have not
been discussed fully in the current article.

A POPULATION-AVERAGING INTERPRETATION
FOR MARGINAL MODELING

As the authors have noted, when the subjects in
the study can be regarded as random samples from a
population, a marginal mean and a population mean
are often taken as the same thing. It is known that
a weighted marginal mean with the weights inversely
proportional to the sampling probabilities of the sam-
ples still possesses the same interpretation. Precisely,
when a marginal estimation equation is solved us-
ing data from a study, its solution is consistent with
the parameter that solves the corresponding popula-
tion estimating equation. This can be established us-
ing generalM-estimator theory under mild conditions,
provided that the subjects under study are properly
sampled from the target population. That is, the esti-
mator based on marginal modeling is meaningful in the
population-averaging sense. The issue that needs to be
carefully addressed now is whether this population pa-
rameter can be used to answer the scientific question
of interest. Obviously, the construction of the marginal

Naisyin Wang is Professor, Department of Statistics
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estimating equations should have this goal as the top
priority.

The authors argue that this population-averaging in-
terpretation often does not hold for marginal model-
ing because subjects in longitudinal studies may not
represent the population of interest (e.g., they are vol-
unteers). They further state that, nevertheless, even
under this situation, the estimates obtained from the
conditional modeling are still meaningful. I am puz-
zled by this argument. Consider the situation that all
subjects under study are random samples from one
subpopulation and the parameter of interest has val-
ues that differ between this subpopulation and the rest
of the target population. In this situation, regardless of
which modeling approach is taken, the conclusion can
only be made for the subpopulation where the sam-
ples are taken and not for the entire target population.
One might argue that the assumption that the parame-
ter of interest is the same across all subjects in the
population can be used to rule out this problem. It is
worth noting that such an assumption is uncheckable
because no subjects are taken from the complement of
the subpopulation, and thus no observations from there
can be used for assumption checking.

STABILITY AND ROBUSTNESS OF
MARGINAL ESTIMATION

For any assumed structure, there is always a pos-
sibility that the structure is misspecified. When the
model is misspecified, a method is preferred if either
it is less susceptible to the potential biases or it is easy
to diagnose such a misspecification. Marginal model-
ing is strong in both aspects. One known advantage of
using a marginal approach is that it is less suscepti-
ble than the conditional approach to biases induced by
the misspecification of random-effect models. Such bi-
ases were discussed in detail by Neuhaus, Hauck and
Kalbfleisch (1992) and Heagerty and Kurland (2001).
Since the main concentration of the marginal approach
is to properly model the first moment marginally, there
are many traditional graphical diagnostic tools that are
applicable here. Furthermore, because the marginal ap-
proach fits directly under the simplestM-estimation
framework in which many robustness procedures are
available, it is easy to adopt existing robustness meth-
ods (e.g., outliers down-weighting) into the marginal
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approach. On this front, more research is warranted for
conditional methods under mixed effect models.

Finally, I wish to point out that both approaches have
their strengths and applications. I emphasized certain
advantages of the marginal approach above simply
because the authors have provided strong supportive
arguments for conditional methods. Among them, the
conditional prediction (e.g., providing a prediction
confidence interval for a potential outcome given a
subject’s risk factors) is one aspect that is unique

to conditional modeling and has broad aspects of
application. With more new developments on topics
such as outlier detection or model checking, both
approaches could be more accessible and useful to
practitioners.
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Comment
Jiming Jiang

Professor Lee and Professor Nelder have presented
us with a well written article regarding a controversy
about the use of conditional and marginal models,
particularly in the analysis of longitudinal data. In this
field, there have been two main approaches: one using
the GEE method based on marginal models and the
other using methods of mixed model analysis based
on conditional models. My comments focus on three
important issues: the use of conditional and marginal
models, differences between linear and generalized
linear mixed models, and consistency.

1. CONDITIONAL OR MARGINAL?

The choice between the two models—conditional
or marginal—should depend on the kind of inference
needed in practice. Note that there are some similarities
between analysis of longitudinal data and small-area
estimation (SAE; e.g., Datta and Lahiri, 2000; for
a review on SAE, see Ghosh and Rao, 1994), so I use an
example from SAE for illustration. Consider the model

Yij = x′
ij β + ui + eij , i = 1, . . . ,m, j = 1, . . . , ni,

whereYij corresponds to thej response from theith
small area,xij is a vector of known covariates,β is
a vector of unknown regression coefficients,ui is a
small-area-specific random effect andeij is an error.
This model is often called anested error regression

Jiming Jiang is Professor, Department of Statistics,
University of California, Davis, California 95616,
USA.

model (e.g., Ghosh and Rao, 1994) and it is a condi-
tional model. A conditional model is needed here, be-
cause in SAE the small-area means are often of main
interest, which for theith small area is associated with
the random effectui . More specifically, the prediction
of a mixed effect of the formx′β +ui is of primary in-
terest, wherex is a known vector. No marginal model
can provide inference about such a quantity, because
the random effects do not appear in a marginal model.

On the other hand, in analysis of longitudinal data
the main interest is often about the (fixed) regression
coefficients (e.g., Diggle, Liang and Zeger, 1994). In
such cases, I do not see why it is always necessary
to assume a conditional model, because, as Lee and
Nelder mentioned, the more specific the assumptions
one makes, the more likely it is that some of the as-
sumptions will fail in practice. A conditional model
assumes the appearance of random effects in a spe-
cific manner (e.g., linear or generalized linear). Such
assumptions are delicate, and one certainly risks the
possibility of failure. By the way, unlike standard re-
gression diagnostics, methods of diagnosing mixed ef-
fect models are not fully developed (e.g., Jiang, 2001),
especially in the generalized linear case. Furthermore,
the random effects themselves are not of interest in this
case, unlike in SAE. Of course, this is not to say that
conditional models should never be used unless the
random effects are of direct interest, but the idea is cer-
tainly questionable that the conditional model is fun-
damental and, therefore, should be preferred over the
marginal model.
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2. LINEAR OR GENERALIZED LINEAR?

Lee and Nelder used an example of a linear mixed
model to show that two conditional models can lead to
the same marginal model. What they did not say is that,
for the most part, this is true only in the linear case. For
example, consider the following mixed logistic models,
which are, in a way, similar to models C1 and C2
considered by Lee and Nelder,

logit{p(Yijk = 1|vi)} = β0 + βj + vi(D11)

and

logit{p(Yijk = 1|vi, vij )} = β0 + βj + vi + vij ,(D12)

where theβs are fixed effects (there should be a
constraint

∑
j βj = 0 to ensure identifiability) and

the v’s are random effects which have mean zero.
In this case, the marginal model is defined in terms of
the (unconditional) probabilityp(Yijk = 1). Under D1,
we have

p(Yijk = 1) = E{h(β0 + βj + ξ)},(1)

whereh(x) = ex/(1 + ex) andξ has the same distrib-
ution asvi , while under D2,

p(Yijk = 1) = E{h(β0 + βj + η)},(2)

where η has the same distribution asvi + vij . If
vi andvij are independent and both normally distrib-
uted, models (1) and (2) are considered to be the same;
otherwise, the two marginal models may be different.
Note that models C1 and C2 considered by Lee and
Nelder have the same marginal model as long as the
random effects have mean zero (regardless of normal-
ity). To see an example in which the marginal models
are different even under normality, consider

logit{p(Yijk = 1|vi, si)} = β0 + βj + vi + siβj ,(D3)

wheresi is another random effect with mean zero. Note
that here the model has arandom slope si in addition
to the random intercept vi . A linear analogue of C3,
Yijk = β0 +βj +vi + siβj + eijk (eijk is the same as in
Lee and Nelder’s paper), results in the same marginal
model as C1 and C2. However, under D3 we have

p(Yijk = 1) = E{h(β0 + βj + ζ )},(3)

whereζ has the same distribution asvi + siβj . For
example, under normality and independence ofv ands,
ξ has distributionN(0, σ 2

v ), while ζ has distribution
N(0, σ 2

v + σ 2
s β2

j ), so the marginal models (1) and (3)
are different unless theβj ’s are all zero (note the sum
constraint about theβj ’s), which is a meaningless case.

When a conditional model is assumed, I am in fa-
vor of using robust methods of inference, an approach
that Lee and Nelder also seem to support (see Sec-
tion 4 of their paper). However, they dislike the use
of marginal models without a likelihood basis. Can
a likelihood-based method also be robust? There are
some well-known examples in linear (mixed) models.
For example, the weighted least squares (WLS) esti-
mator, which is the maximum likelihood estimator un-
der the assumptionY ∼ N(Xβ,W−1), whereW is the
weight matrix (e.g., Diggle, Liang and Zeger, 1994,
page 58), is known to be consistent under failure of
normality and misspecification of the covariance ma-
trix; the restricted maximum likelihood (REML) es-
timator, which is derived under normality, is known
to be consistent, even if normality fails (Richardson
and Welsh, 1994; Jiang 1996, 1997). Note that WLS
and REML work under both conditional and marginal
models. However, similar properties do not seem to be
shared by existing methods, likelihood-based or not, in
generalized linear mixed models (GLMM). For exam-
ple, the likelihood equation under GLMM and normal-
ity of the random effects will be biased if normality
fails. This suggests that, unlike GEE, likelihood-based
inference in GLMM is more sensitive to failure of dis-
tributional assumptions, such as normality, than in lin-
ear mixed models.

3. CONSISTENT OR OTHERWISE?

Since I mentioned consistency, I had better continue,
because there is some serious issue of consistency
regarding methods based on Laplace approximation (to
integrals). Such a method was used by Lee and Nelder
to make inference about the hierarchical generalized
linear model; they claim that the method “works well.”
The Laplace-approximation-based method is known
to work well when the variances of the random
effects are close to zero, and the second-order Laplace
approximation is more accurate than the first-order
one (e.g., Lin and Breslow, 1996). However, these
estimators are not consistent unless the number of
observations that correspond to each random effect
goes to infinity (e.g., Lee and Nelder, 1996; Jiang
1999). While the latter assumption may be realistic in
some cases (of longitudinal data), it is certainly not
in SAE, where the sample size for each small area is
usually small.
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Rejoinder
Youngjo Lee and John A. Nelder

We thank the discussants for their comments. The
title of our paper was carefully chosen and was
meant to imply that we were making the case for
conditional models, rather than trying to survey all
possible approaches to this kind of modeling. We are
glad to have Senn’s support for our distinction between
estimation and prediction, the case for which Lane and
Nelder made more than 20 years ago, but which seems
still to be little appreciated. Senn’s arguments deserve
to be widely studied.

Senn’s crossover example raises the interesting point
about what should be done with negative correlations
(within litters, say). Formally these can be expressed
by negative variance components, and in some soft-
ware this is the route taken. However if, as in our
HGLM software, the variance components are mod-
elled on the log scale (which has advantages), the cor-
relations must be left as correlations and estimated
accordingly. We accept his point about the irrelevance
of Simpson’s paradox, having learnt much from the re-
cent discussion about it on the Genstat bulletin board.

Senn’s general point about decisions on levels of ag-
gregation is well taken. An analysis with no aggrega-
tion may be practically impossible because it would
involve impossibly large datasets. What we suspect the
statistician is doing, or should be doing, is aggregat-
ing over lower-level classifications which he or she be-
lieves have little effect on the inferences made.

RESPONSE TO WANG

When the subjects in a study can be regarded as
random samples from a population, a marginal model
is useful for estimation of population parameters. For
such cases, however, there will almost always be a
conditional model, leading to that marginal model, to
allow inferences about population parameters, unless
the marginal model does not have a likelihood or
probabilistic base. Thus, inferences for the population
can be made from the conditional model as well.
When the subjects in the study cannot be regarded
as random samples from a population, the marginal
means from the conditional model can still be useful
for inference about causal effects of treatments and so
forth on individuals’ margins. As Senn noted in his
discussion, it also indicates the change of population,
because the treatments affect individuals that compose

the population, which would be informative on the
population change.

RESPONSE TO JIANG

All three models, D1, D2 and D3 of Jiang, lead to
the common marginal model

E(logit{P (Yijk = 1|vi)}) = β0 + β1,

with arbitrary covariance structure for logit(P (Yijk =
1|vi)). So each leads to a marginal model on a
particular scale. As we said, these three models are
qualitatively very different, and ignoring differences
between them could lead to wrong conclusions.

Jiang raised doubts about the performance of the
h-likelihood method, and both Wang and Jiang raised
the robustness issue. The rest of our discussion is
devoted to these points.

PERFORMANCE OF THE h-LIKELIHOOD METHOD

There have been various criticisms of theh-likeli-
hood method, deriving from a belief thath-likelihood
provides qualitatively different (i.e., noninvariant) in-
ferences for trivial reexpressions of the underlying
model and that theh-likelihood estimator does not
work well, especially for binary data; see Jiang’s last
comment. This we believe is mainly due to a mis-
understanding of theh-likelihood procedure. Lee and
Nelder (2003a) discussed invariance associated with
h-likelihood, and Noh and Lee (2003) gave numeri-
cal evidence to show that it outperforms all the other
Laplace-approximation-based alternatives in estima-
tion of GLMMs for binary data. We developed the
h-likelihood method and read a paper to the Royal Sta-
tistical Society about it in 1996. The discussion was
a disaster because everybody took the worst possible
case of binary data and described difficulties with it.
Nobody said it worked in other cases. We are glad
to have an opportunity to clarify these matters. There
have been many criticisms about the performance of
the h-likelihood estimator, but surprisingly we never
see any actual numerical studies to verify such criti-
cism. We have not seen any method which outperforms
theh-likelihood estimator. We do not say that the cur-
renth-likelihood method will always perform the best,
but we believe that it can always be modified to give
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an improvement, as has been done with Fisher’s likeli-
hood method.

We explained why Lee and Nelder’s proposal gener-
ally “works well,” while the other Laplace-approxima-
tion-based methods, such as those of Schall (1991),
Breslow and Clayton (1993), Breslow and Lin (1995),
Shun and McCullagh (1995), Lin and Breslow (1996)
and Shun (1997), do not. All of them, except for
theh-likelihood method, are limited (i.e., restricted to
GLMMs and/or to some particular design structures)
and miss some terms (Noh and Lee, 2003).

h-LIKELIHOODS

Ever since Fisher (1921) introduced the concept
of likelihood, the likelihood function has played an
important part in the development of both the the-
ory and the practice of statistics. There have been
several attempts to extend likelihood beyond its use
in parametric inference to inference from models of
a more general nature that may include fixed para-
meters, random parameters and unobserved variables.
Special cases are subject-specific inference, prediction
of unobserved future observations and missing data
problems. For the use ofh-likelihood as a predictive
likelihood, see Pawitan (2001); for missing data, see
Lee, Noh and Ryu (2003).

Consider HGLMs

µ = E(y|u) and var(y|u) = φV (µ)

with a linear predictor

η = g(µ) = Xβ + Zv,

whereg(·) is a generalized linear model (GLM) link
function,X andZ are model matrices for fixed and ran-
dom parameters (effects), respectively, andvi = v(ui)

are random effects after some transformationv(·).
The joint density of the responsesy and the random

effectsv can be written

L(v(u), y|β,φ,λ) = fβ,φ(y|v(u))fλ(v(u)),

where fβ,φ(y|v(u)) is a density with a distribution
from a one-parameter exponential family for GLMs
and the second termfλ(v) is the density function of
the random effectsv with parameterλ. Note that the
function v(u) defines the scale on which the random
effects are assumed to combine additively with the
fixed effectsβ in the linear predictor. Lee and Nelder
(1996) defined theh (log-)likelihood as

h = log{L(v(u), y|β,φ,λ)}.
In this definition we use a particular scalev = v(u)

for the h-likelihood, which gets rid of alleged coun-
terexamples related to noninvariance (Lee and Nelder,
2003a).

USE OF h-LIKELIHOOD

Theh-likelihood is not a likelihood in the Fisherian
sense because of the presence of unobservables,
namely random effects. Lee and Nelder (1996) claimed
that a systematic likelihood inference is possible for
HGLMs by using theh-likelihood. In this discus-
sion, we concentrated on estimation of the fixed pa-
rameters(β,φ,λ). From theh-likelihood we have the
following two profile likelihoods: (1) The marginal
log-likelihoodm can be obtained from theh-likelihood
by integrating out the random parameters, that is,

m = l(y|β,φ,λ) = log
∫

exp(h) dv.

(2) In mixed linear models the restricted (or residual)
likelihoodr of Patterson and Thompson (1971), that is,

r = l(y|β̃, φ,λ) = logfφ,λ(y|β̃)

whereβ̃ are ML estimators given(φ,λ),

has been proposed for inference about the dispersion
parameters(φ,λ) to reduce bias, especially in finite
samples. Under theh-likelihood framework, the mar-
ginal likelihood is a profile likelihood for the fixed
parameters(β,φ,λ), after eliminating random para-
metersv by integration from theh-likelihood; the re-
stricted likelihood is that for the dispersion parameters
(φ,λ), after eliminating fixed effectsβ by conditioning
on the marginal likelihood.

Lee and Nelder (2001a) considered a function de-
fined as

pα(l) = [
l − 1

2 logdet{D(l,α)/(2π)}]∣∣α=α̃,

whereD(l,α) = −∂2l/∂α2 and α̃ solves∂l/∂α = 0.
For fixed effectsβ, the use ofpβ(m) is equivalent to
conditioning onβ̃ [i.e., pβ(m) � r = l(y|β̃, φ,λ) to
first order (Cox and Reid, 1987)], while for random
effectsv, the use ofpv(h) is equivalent to integrating
them out using the first-order Laplace approximation,
[i.e., pv(h) � m = log

∫
L(y, v|β,φ,λ) dv (Lee and

Nelder, 2001a)]. In mixed linear models, Lee and
Nelder (2001a) noted that

m ≡ pv(h) and pβ(m) ≡ pβ,v(h).

The use ofpβ,v(h) for estimating the dispersion pa-
rameters(φ,λ) means that we eliminate both random
and fixed effects simultaneously from theh-likelihood.
Lee and Nelder (2001a) showed that, in general,
pβ,v(h) is approximatelypβ(pv(h)) and that numer-
ically pβ,v(h) provides good dispersion estimators for
HGLMs. In principle we should use theh-likelihoodh
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for inferences aboutv, the marginal likelihoodm for β

and the restricted likelihoodpβ(m) for the dispersion
parameters. Whenm is numerically hard to obtain,
we can usepv(h) and pβ,v(h) as approximations to
m and pβ(m); pβ,v(h) gives approximate restricted
MLEs andpv(h) gives approximate MLEs.

h-LIKELIHOOD VERSUS
PENALIZED-QUASILIKELIHOOD ESTIMATION

Lee and Nelder (1996) observed that although, in
general, a joint maximization ofh-likelihood does not
provide marginal MLEs forβ, the deviance differences
constructed fromh andpv(h) are often very similar,
so they proposed to useh for estimatingβ. In these
models joint optimization of theh-likelihood offers a
numerically and statistically efficient fitting algorithm
(Lee and Nelder, 2001a). This algorithm can be ex-
pressed as the fitting of a set of interlinked GLMs; it
requires neither prior distributions of parameters nor
multidimensional quadratures. Except for binary data,
the resulting estimators generally work well; see the
simulation studies of Poisson and binomial models
(Lee and Nelder, 2001a), of frailty models (Ha, Lee
and Song, 2001) and of mixed linear models with
censoring (Ha, Lee and Song, 2002). Schall’s (1991)
method is the same as Breslow and Clayton’s (1993)
penalized-quasilikelihood (PQL) method for GLMMs.
They are the same as theh-likelihood method, but ig-
nore ∂v̂/∂φ and ∂v̂/∂λ in the dispersion estimation
(Lee and Nelder, 2001a), which results in severe bias,
especially in binary data (Noh and Lee, 2003). So
Breslow and Lin (1995) and Lin and Breslow (1996)
proposed a bias correction for the PQL estimator; how-
ever, this cannot overcome the difficulty caused by ig-
noring important terms (Noh and Lee, 2003). Bellamy
et al. (2000) and Ten Have and Localio (1999) ob-
served empirical results through simulation studies that
the PQL estimator performs well in situations involv-
ing small numbers of large clusters. For good per-
formance, theh-likelihood estimator does not require
large clusters, but works well with a small number
of clusters (Yun and Lee, 2004; Kang, Lee and Lee,
2003). Shun and McCullagh (1995) and Shun (1997)
omitted terms related to profiling ofβ in pβ(m), and
this results in a nonignorable bias in finite samples such
as the salamander data (Noh and Lee, 2003).

USE OF PROFILE LIKELIHOOD FOR
BIAS REDUCTION

In binary data theh-likelihood method can have non-
ignorable bias. However, this reflects a general diffi-
culty with likelihood inference, namely how to deal

with a subset of parameters in the presence of many
nuisance parameters. It should be noted that MLEs for
the dispersion parameters also have severe biases when
the number of fixed effects increases with the sam-
ple size. Such biases can be avoided by introducing
restricted likelihood (i.e., profile likelihood), which,
however, results in larger variance. With binary data
such biases of theh-likelihood estimatorβ can also
be avoided by introducing the profileh-likelihood, ei-
ther m or pv(h), whenm is hard to obtain. The bias
of the h-likelihood estimator in binary data should be
treated as that for the MLE for dispersion parame-
ters; use of a profileh-likelihood pv(h), based on the
Laplace approximation, eliminates such undesirable
bias (Yun and Lee, 2004) in the same way as the re-
stricted likelihood does for dispersion parameters. Noh
and Lee (2003) found that when the cluster size ex-
ceeds 3 there is no recognizable asymptotic bias at all.
In their study for binary data, the computed asymptotic
bias is within the third decimal point in dispersion pa-
rameter estimation and within the fourth decimal point
in fixed-effects estimation. Furthermore, higher-order
approximation such as the second order is useful for
improved approximation. So for the analysis of small-
area estimation theh-likelihood procedure will work
very well if the proper procedure is used. In summary,
we believe that the complaints about theh-likelihood
method are caused by a confusion with other methods
which miss some important terms.

ROBUSTNESS AND HGLMs

Diagnostic tools for HGLMs are well developed
(Lee and Nelder, 2001a, b, Lee, Yun and Lee, 2003),
while those for marginal models are not, due to lack of
a probabilistic basis. It has been claimed that marginal
models provide robust estimators. However, we have
demonstrated that robustness is not a matter of mod-
els, but rather of parameterizations, that is, a margin on
one particular scale may be less sensitive than one on
another scale. Without a probabilistic base (and there-
fore without the possibility of proper model check-
ing), there may be no way to guarantee robustness.
Recently, Lee and Nelder (2003b) introduced double
HGLMs in which random effects are allowed not only
in the means, but also in the dispersions. Heavy tailed
distributions are available fory|v andv by introduc-
ing random effects inφ and λ, respectively. This is
very promising, because it will allow robust estimation
for random-effect models. This class will, among other
things, also enable models of types widely used in the
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analysis of financial data to be explored, and should
give rise to new extended classes of models within that
framework.

h-LIKELIHOOD: LIKELIHOOD
FOR UNOBSERVABLES

Under the h-likelihood framework, the marginal
likelihood appears as a profile likelihood similar to
the restricted likelihood, which has been recommended
to reduce the bias. With the use of theh-likelihood,
inference for random or combined fixed and random
parameters is possible. It is perhaps unfortunate that
Bayesians, from Lindley and Smith (1972) onward,
seem to have made a takeover bid for all hierarchical
models, implying that one has to be Bayesian to deal
with them. The availability of Markov chain Monte
Carlo methods, which make all problems seem more
easily solvable via Bayesian computations, has ap-
peared to justify this. However, by usingh-likelihood,
we can deal with such models directly in a likelihood
framework because there is an explicit analytic form
for that kind of likelihood. Furthermore, inferences for
unobservables are possible without resorting to an em-
pirical Bayesian framework.h-likelihood gives a pow-
erful and practical tool for statistical inference; being
a natural extension of Fisher likelihood to models with
unobservables, it will become, we believe, widely used
for inference from hierarchical models.
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