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Abstract

Asymptotic analysis has always been very useful for deriving dis-
tributions in statistics in cases where the exact distribution is unavail-
able. More importantly, asymptotic analysis can also provide insight
into the inference process itself, suggesting what information is avail-
able and how this information may be extracted. The development of
likelihood inference over the past twenty years provides an illustration
of the interplay between techniques of approximation and statistical
theory.

1 Introduction

The development of statistical theory has always relied on extensive use of
the mathematics of asymptotic analysis, and indeed asymptotic arguments
are an inevitable consequence of a frequency based theory of probability.
This is so even in a Bayesian context, as all but the most specialized appli-
cations rely on some notion of long run average performance. Asymptotic
analysis has also provided statistical methodology with approximations that
have proved in many instances to be relatively robust. Most importantly,
asymptotic arguments provide insight into statistical inference, by verifying

that our procedures are moderately sensible, providing a framework for com-



paring competing procedures, and providing understanding of the structure
of models.

One used to hear criticisms of asymptotic arguments on the grounds that
in practice all sample sizes are finite, and often small, but this criticism ad-
dresses only the possibility that the approximations suggested by the analysis
may turn out to be inaccurate; something that can be checked in applica-
tions of particular interest. The insights offered through asymptotics and the
development of improved approximations using asymptotic expansions have
effectively answered this criticism. Here are some simple examples.

A common technique in statistical consulting, often useful in helping the
client to formulate the problem, is the “infinite data” thought experiment —
what would the client expect to see with an arbitrarily large amount of data
from the same experiment?

An early use of asymptotics for comparison of competing methodologies

was Fisher’s (1920) comparison of the variance of two competing estimators
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s9 being scaled to have the same asymptotic mean as s;. Fisher showed that
s1 has smaller asymptotic variance in independent, identically distributed
sampling from the normal distribution, thereby in his view clinching the
argument for its superiority. Interestingly, a further analysis of the model led
Fisher to discover sufficiency, surely one of the most important insights into
the structure of inference in the early development of theoretical statistics
(Stigler, 1973).

A more recent example is the derivation of the minimax efficiency of



local linear or polynomial smoothing techniques of Stone (1980, 1982) and
Fan (1993), reviewed in Hastie and Loader (1993), which led to such methods
generally being preferred to competitors such as kernel estimates for problems
of nonparametic density estimation and regression.

An early example of asymptotic theory providing an important insight
into likelihood based inference was Neyman and Scott’s (1948) paper showing
that maximum likelihood estimators could be inconsistent or inefficient in
problems with increasing numbers of nuisance parameters. More recently
Smith (1985, 1989) showed that asymptotic behaviour of maximum likelihood
estimators in nonregular models can be very different from that in regular
models.

In the following we consider the insight offered by asymptotic analysis
for inference based on the likelihood function. This is an area that has seen
considerable development in the past twenty years, largely based on asymp-
totic expansions and improved approximation. Section 2 reviews the main
asymptotic results in likelihood inference and mentions a number of other
applications of asymptotics to areas of statistics of especial current interest.
In Section 3 we provide additional detail on a particular type of approxima-
tion; that of approximating p-values in tests of significance. We emphasize
here recent work of Barndorff-Nielsen and colleagues and of Fraser and Reid
and colleagues. In Section 4 we discuss the gap between the theoretical de-
velopment and applications with special emphasis on reviewing recent work

that is aimed at narrowing this gap, and outlining work still needed.



2 Likelihood Asymptotics

2.1 First order theory

The main asymptotic results of likelihood based inference, presented in most

graduate courses on statistical theory, can be summarized as follows:

i) the maximum likelihood estimator is consistent, asymptotically normal

and asymptotically efficient

ii) the score statistic has mean zero and is asymptotically normally dis-

tributed
iii) the likelihood ratio statistic has an asymptotic chi-squared distribution
iv) the posterior distribution is asymptotically normal.

To make those statements slightly more precise, we introduce the following
notation. We assume that we have a parametric model with density function
f(y;0), where 6 takes values in a subset of R¥ and y = (y1,...,¥,) is an
observed vector of observations, each component taking values in the same
space, typically a subset of R or occasionally R¢. The likelihood function
L(6;y) = c(y)f(y; 0) is proportional to the density and £(;y) = log L(f) is
the log-likelihood. The maximum likelihood estimator § = (y) is the value
of # at which L(f) or £(f) reaches a maximum, the score function is U(f) =
0£(6) /00, the observed Fisher information function is j(#) = —9%£(0) /00067,
and the expected Fisher information is i(f) = E{j(6)}. The posterior dis-
tribution for € based on a prior 7(6) is 7(6|y) o< L(#)x(#). The asymptotic



results summarized above can then be expressed as
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where in (2.4) we have assumed k = 1, a, = 0 + a{j(0)}""/, b, = 0 +
b{j(6)}~'/2, and ®(-) is the cumulative distribution function for a standard
normal random variable. The convergence is as n — oo and is in distribution
in (2.1)—(2.3) and in probability in (2.4). The vector version of (2.4) is given
in Walker (1969, p.87).

Conditions are needed on the model f(y;0) to ensure that these results
are true, and some set of conditions is given in most textbook treatments,
such as Lehmann and Casella (1998, Ch. 6). For example, if the components
of y are independent and identically distributed, then assuming that j(f) is
positive definite, and the third derivative of £(6) is bounded by an integrable
function will be sufficient to apply a Taylor series expansion to the score
equation U(f) = 0. As long as the solution to this equation does indeed
identify the maximum point of the likelihood function then a central limit
theorem applied to U(f) will lead to convergence in distribution results for
both # and the likelihood ratio statistic.

When the n components of y are independent and identically distributed,
the central limit theorem for the score statistic is usually easily established
under relatively weak conditions on the model. A central limit theorem ap-
plied to the score statistic is the usual starting point for generalizations to
more complex data structure. If the components are not identically dis-

tributed then the relevant asymptotic limit is one in which i(f) — oo, where
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i(#) is the expected Fisher information in y = (y1,...,¥,). In the propor-
tional hazards model, asymptotic normality of the partial likelihood estima-
tor follows from a martingale central limit theorem for the partial likelihood
score function (Cox, 1972). In a regression model 7(#) will depend on X7 X
and the condition that i(f) — oo essentially means the explanatory vari-
ables do not concentrate on a finite number of distinct values as n — oo.
Some types of dependence among the components of y can also be accom-
modated, as for example in the AR(1) model with p < 1; again the crucial
assumption is that a central limit theorem holds for the score vector. That
conventional asymptotic theory can be quite misleading in the case of long
range dependence is amply illustrated in Beran (1994).

There are many models where results (2.1) to (2.4) will not hold, and
studying these often provides further insight. If the maximum likelihood
estimator is not a root of the score equation then establishing (2.1) will
typically require a specially tailored analysis.

One class of nonregular models, those with endpoint parameters, exhibits
particularly interesting asymptotics. Suppose 8 = (¥, A, @) and f(y;0) =
(y — ¥)*tg(y — ¢, ), y > 9 for a smooth function g. Smith (1985, 1989)
shows that the behaviour of the maximum likelihood estimator of # depends
crucially on A; very different asymptotic behaviour resulting as A > 2, A = 2,
l1<A<2,and 0 < A< 1.

Another class of non-regular problems are Neyman-Scott problems, in
which cross-classified or stratified observations have a common parameter of

interest:
fiio,N)) s i=1,...,J54i=1,...,1.

Neyman and Scott (1948) showed by example that as J — oo for fixed I the

maximum likelihood estimator of ) may be consistent but not efficient, or



may be inconsistent. Recent work in two-index asymptotics, allowing I — oo
at a rate related to J, investigates this phenomena in more detail (Portnoy,
1984, 1985; Barndorff-Nielsen, 1996; Sartori, 2001).

The scaling in (2.1) and (2.2) is by observed Fisher information, evaluated
at 6. The asymptotic statement would be true, under the same regularity
conditions, if j (é) were replaced by expected Fisher information i(f) or by
z(é) Asymptotic theory has established the superiority of j (é) on several
grounds. Efron and Hinkley (1978) establish that j(#) more nearly approxi-
mates the variance of § conditional on an ancillary statistic; this result turns
out to be closely related to the p* approximation discussed below. Numer-
ical work has indicated that approximations using j (é) are typically more
accurate than those based on i(d) or i(0); this again is predicted by the p*
approximation. In models that incorporate strong dependence among the
components of y such as often arise in stochastic processes; it is typically the
case that j(6)/i(#) does not converge in probability to 1 and scaling by j(6)
is required in order that (2.1) and (2.2) hold (Barndorff-Nielsen and Cox,
1994, Ch. 9).

Although (2.1) and (2.2) also holds if j(é) were replaced by j(6), this
is not a natural substitution to make. In the language of the differential
geometry of statistical models both #(6) and j(d) are Riemannian metrics for
the statistical manifold defined by the model f(y;#) and thus in a geometric
sense provide the ‘right’ scaling; j(#) does not (Barndorff-Nielsen, Cox and
Reid, 1986).

Another interesting way in which the simplest first order asymptotic the-
ory can fail is in models for which the score function is identically zero: in this
case an asymptotic theory needs to be developed for the second derivative,

and this can have quite different behaviour. The general case is discussed in



Rotnitzky et al. (2000).

Analogues to results (2.1) and (2.2) are often used in more general con-
texts. The theory of estimating functions replaces the score function by a
general function g(#;Y") required to have mean zero under the model. The
estimator defined by equating ¢(0;Y") to zero will typically converge to 6,
and have asymptotic variance larger than that of 6. The advantage is that
9(0;Y) may be defined to have certain robustness properties, or to capture
first order properties of an incompletely specified model. In other cases the
estimating function may be a score function obtained from ‘likelihood-like’
function, such as the partial likelihood function from the proportional hazards
model discussed above, or one of many so-called adjusted profile likelihoods,
¢(8,) + B(v), where f, is the maximum likelihood estimate of # under the
restriction that ¢ = ¢(0) is fixed, and B(v) is an adjustment motivated
usually by higher order asymptotic arguments.

Murphy and Van der Waart (2000) establish a first order asymptotic
theory for general classes of semiparametric models. Their arguments rely
on the construction of a least-favorable family, and the application of the
usual asymptotic results to that parametric family.

Result (2.3), that the log-likelihood ratio statistic is asymptotically chi-
squared, follows (again in regular models) by a simple Taylor series expansion

establishing that to first order

2{0(0) — £(6)} =~ UT(O)LiO)}'U®)
~ (0-6)"{j(0)}(6-9)
so of course will not be in any of the cases discussed above where a central
limit theorem is not available for U(#), or where the maximum likelihood

estimator is not a root of the score equation. Result (2.4) relies on similar

regularity conditions on the models, and on the assumption that the prior

8



is of O(1) in an asymptotic theory. Walker (1969) establishes the result for
bounded (proper) priors, and Fraser and McDunnough (1984) extends it to
improper priors. Freedman (1999) shows that the result cannot be true for
nonparametric settings, and Wasserman (2000) provides insight into why this
is the case.

In models for which (2.1) to (2.4) are valid, the following results are imme-
diately available. First, the three likelihood-based test statistics are asymp-
totically equivalent, so any choice among them must be made on grounds
other than their limiting distribution. Second, the influence of the prior van-
ishes in the limit, as is expected by requiring the prior to supply an amount
of information equivalent to that contained in one observation. Using the
normal approximation suggested by the limiting distributions will lead to
the same p-values and confidence bounds in either a frequentist or Bayesian
approach.

The classical approach to distinguishing among these test statistics is to
investigate their power under alternatives to the model. This has not led
very far, because there is typically no uniform domination under alternative
models, although it can be shown for example that the score statistic (2.2)
is locally most powerful, i.e. most powerful under alternatives of the form
f(y;600 + 6/+/n). Amari (1985) shows that the asymptotic power of the
likelihood ratio test is largest over a wide range of alternatives. Properties
in addition to power, such as invariance or unbiasedness, have come to seem
increasingly arbitrary. Of course in much applied work the choice is made on
the basis of convenience, and in some quite complex models a version of the
score statistic (2.2) using i(#) for scaling is easiest to compute, as it doesn’t

involve computation of the maximum likelihood estimator.



An approach closer to that of the work surveyed here is to consider how
good an approximation is provided by the limiting distribution. There are no
definitive results available, but in problems with a scalar parameter of interest
the signed square root of w(f), which preserves information on the direction
of departure from the assumed model value 6, has in a large number of
numerical studies given the most accurate p-values. Higher order asymptotic
criteria also favour the signed square root of w(f), as outlined in the next
section. It is difficult to make direct comparisons of (2.4) with (2.1) to (2.3)
in a non-asymptotic context because of the presence of the arbitrary prior
7(f) in (2.4). However, higher order asymptotic analysis has lead to some
direct comparisons of confidence limits, as outlined below in connection with

matching priors.

2.2 Higher order asymptotics for likelihood

The main higher-order asymptotic results for likelihood based inference are:
(i) the p* approximation to the density of the maximum likelihood estimator

(ii) the r* approximation to the distribution function of the signed square

root, of the log likelihood ratio statistic
(iii) adjustments to profile likelihood to accommodate nuisance parameters
(iv) Laplace expansions for posterior distributions and matching priors.

We briefly discuss each of these in turn.
Barndorff-Nielsen (1980, 1983) emphasized the central importance of the

following approximation to the density of the maximum likelihood estimator:

Cc

f(6;0]a) = p*(0;0]a) = le(é)l”2 exp{¢(6) —€(0)}  (2.5)
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where ¢ = ¢(f,a) is a renormalizing constant, j(#) is the observed Fisher
information, and 2{£(d) — £(#)} is the log-likelihood ratio statistic. In the
right hand side of (2.5), £(8) = £(6;0,a) and j(0) = j(6;0,a), where (8, q)
is a one to one transformation of y, or equivalently the minimal sufficient
statistic based on y. Note that the normal approximation obtained from
(2.5) by Taylor expansion of the exponent has variance ](é)

In applications of (2.5) a is exactly or approximately ancillary, i.e. distri-
bution constant; if not then its marginal distribution will carry information
for # and (2.5) will not be very useful for inference. The right hand side of
(2.5) can be obtained from L(0)/ [ L(#)d6 by a Laplace approximation to the
integral in the denominator, and thus generalizes Fisher’s (1934) exact result
in location models. Approximation (2.5) can also be derived in canonical
exponential families from a saddlepoint approximation to the distribution of
the minimal sufficient statistic.

The ancillary statistic a is best regarded as providing a dimension re-
duction (by conditioning) from the full dimension, n, of the data, to the
dimension k of the parameter. What the approximation suggests is that
conditioning on an ancillary statistic is an essential component of frequentist
inference.

Approximation (2.5) is usually referred to as the p* approximation, or
Barndorft-Nielsen’s p* approximation. The connection to location models
and exponential families was discussed in Reid (1988). Skovgaard (1990)
outlined the main elements of the proof that (2.5) provides an approximation
to the exact conditional density with relative error O(n~3/2), although a
completely general and rigorous proof is still lacking. The difficulty is that
it is not clear in a very general setting what the transformation from y to

(A, a) is. The easiest route is to embed the model in a full exponential family
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in which 6 is a restriction of the parameter to a curve. If the full model
has a parameter with fixed dimension (free of n) then an approximately
ancillary statistic is readily constructed. This is the approach outlined in
Barndorff-Nielsen and Cox (1994, Ch.7). Skovgaard (2001) refers to (2.5)
as a Laplace-type approximation, and notes the similarity to Wiener germs,
defined by Dinges (1986).
In the special case that 6 is a scalar parameter, (2.5) can be re-expressed
as an approximation to the density of the likelihood root r(6), defined by
0(0) — ¢(6) = —%ﬁ(e) (2.6)
and this is the basis for the approximation of the cumulative distribution

function of r by

F(r;0la) = ®(r") (2.7)
1 1
= a0+ (3= 2] ol (28)
where
r=r+ %logg (2.9)
g ={£;00) - L5035 (0)} ' (2.10)
045(0;0,a) = 00(0;0,a)/00 . (2.11)

This was derived in Barndorff-Nielsen (1986, 1990, 1991) by integrating the
p* approximation. A more direct version that avoids the transformation from
y to (9, a) was outlined in Fraser (1990, 1991).

The insights provided by (2.7) and (2.8) are several, and arguably of more
importance for inference then the p* approximation, since in most cases we
need the distribution function in order to compute p-values and confidence

limits. In going from (2.5) to (2.7) or (2.8), the transformation to r is key,
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which suggests that the likelihood root, r, is the intrinsic statistic with which
to measure the departure of § from §. Approximation (2.7), with (2.9), shows
that r is nearly normally distributed, and a small adjustment makes it much
closer to normally distributed. The ‘smallness’ of the adjustment can be
quantified by Taylor series expansion of (2.10):

r=q+ in(f + gq?’ +0(n™*?) (2.12)

7

where A and B are free of n. The appearance of 0¢/ 90 in ¢ is an inevitable
consequence of the change of variable from f to r: in other words it is essential
to consider how the likelihood function changes with small changes to the
data. These changes are in only certain directions, namely those in which
the ancillary statistic a is held fixed.

Note that if we were interpreting the p* approximation as an approximate
posterior density with a flat prior, then the corresponding posterior distribu-
tion function would involve the change of variable dr /0, instead of dr /8,
and as a result the corresponding ¢ would be a standardized score statistic.

The dependence of p* on an exact or approximate ancillary statistic a
has somewhat hampered its usefulness, as in general models it is not usually
clear how to construct such a statistic, and an explicit expression is rarely
available. However, in (2.7) and (2.8) the only dependence on a is on the first
derivative of ¢; Fraser (1988, 1990) exploited this fact to derive an alternate

expression for g¢:

q={tv(0;y) — Lv(0;9)Hi(0)}/* o (B)| (2.13)

where V' = V(y) is an n x 1 vector tangent to the ancillary statistic, and
L (0) is the directional derivative £¢(;1° + tV') computed at a fixed data

value 3°. A fuller description of ¢ and V is given in Section 3.
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To describe results in models with vector parameters some additional
notation is needed. We assume that the parameter = (1, A) is partitioned
into a vector of parameters of interest, ¢ and nuisance parameters A. The
more general case where the parameter of interest is expressed as a restriction
on # by ¢ = ¢(0), and the nuisance parameterization is not given explicitly, is
discussed briefly in Section 3. We denote the restricted maximum likelihood
estimator of A by 5\¢, and write é¢ = (v, :\¢) We assume /A\w is defined by
dL(), \y)/OX = 0. The observed information function j(6) is partitioned as

=[50 52 |
with a similar partitioning of its inverse
Fo= [ e
3 0) 3*(0)
The profile log-likelihood function is £,(1)) = £(¢, A), and the profile ob-
served information is j,(¥) = —02£,(1))/0v0y" . The result

7o) = 13, M)/l (@, Ay)| (2.14)

follows from the definition of 5\1,, and the formula for the determinant of a
partitioned information matrix.
In problems with nuisance parameters, a central role is played by the

adjusted profile log likelihood function

() = £y(08) — 5 log i (16, )] (215)
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The easiest way to see why is to consider Laplace approximation of the

posterior marginal density for :

Tl = [ 7 A
J exp{e(x), A) }r (1, \)dA

[ exp{t(v }7r( , A)dapd\

exp{£(6, 3} s (5. ) hg) 1
exp{€(sh, \)}j (b, N) |72 (4, \) V/(2m)

= g V) — ()} )\1/27;((95)) (2.16)

where the first approximation results from the leading term of a Laplace

expansion of the integrals, and the second by using (2.14) and the results
that [, ()| = |j,()|{1 + Op(n")}, and 1, — ¢ = O,(n™"), where 1), is the
solution of #,(¢) = 0.

The structure of (2.16) is very similar to that of the p* approximation
(2.5), with an additional factor due to the prior, and with the log-likelihood
function replaced by the adjusted log-likelihood function. As a result, when
1) is a scalar this approximation can be integrated to give an r*~type approx-
imation to the marginal cumulative distribution function.

The approximation of the marginal posterior density can also be expressed
in terms of the profile log-likelihood function. To the same order of approxi-

mation as in (2.16), i.e. O(n~%?2), we have

1 1/2 ‘jAA(éN (%)
expi/t / -
) () — D)) {m(ewn} 6 @10

which leads to a tail area approximation involving the signed root of the

Tm (Y]y) =

profile log likelihood, as outlined in Section 3.
In a frequentist approach to inference it is more difficult to find a gen-

eral prescription for eliminating the nuisance parameter. But in two classes
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of models, exponential families and transformation families, elimination of
nuisance parameters can be achieved by conditioning (in exponential fami-
lies) or marginalizing (in transformation families), as long as the parameter
of interest v is a component of the canonical parameter for the model. In
these cases r*—type approximations are derived from p*—type approximations
to the appropriate conditional or marginal density. The frequentist versions
involve sample space derivatives, as in the one-dimensional case, and are
reviewed in Reid (1996).

What is striking about these approximations from a theoretical point of
view is that to this order of approximation nuisance parameters are accom-
modated by a relatively simple adjustment based on the nuisance parameter
information, and except for this adjustment the calculations are essentially
the same as in the case of no nuisance parameters. A p*-type density approx-
imation is needed as a starting point for computing significance probabilities,
which suggests in the general case that conditioning on an approximate an-
cillary is needed to reduce the dimension from n to k. As will be discussed
in more detail in Section 3, the dimension reduction from that of # to that
of 1 is achieved by marginalizing.

The higher order expansion (2.16) for the posterior marginal density us-
ing Laplace approximation is due to Tierney and Kadane (1986). They also
showed that the relative error in (2.16) is O(n~%/?). A different approxima-
tion based on Edgeworth expansions was derived in Johnson (1970) and by
Welch and Peers (1963) and Peers (1965). These latter two papers were par-
ticularly concerned with answering a question posed by Lindley: does a prior
exist for which posterior probability limits have a frequentist intepretation
as confidence limits? In location models it follows from Fisher (1934) that

p(6la;0) = w(A|y) under the flat prior m(#) o 1, and this was generalized
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to transformation models in Fraser (1968) and Barndorff-Nielsen (1980): the
flat prior is replaced by the right Haar measure.

Welch and Peers showed that when 6 is a scalar, Jeffreys’ prior
7(0) ox {i(0)}"/? (2.18)
ensures the matching condition
Pryjp{0 < 0 9(m,Y)}=1-a+0(n™") (2.19)
where (1= (7, y) is the (1 — a) posterior limit:
Proy {0 < 0" (m, )y} =1-« . (2.20)

In the case that € is a vector parameter there is no simple condition for
matching posterior and sampling probabilities (Peers, 1965). If § = (¥, \),

and 1 is orthogonal to A matching priors for inference on 1) are defined by

m(8) o {iyy(8)} 9 (N) (2.21)

where g()\) is an arbitrary function (Tibshirani, 1989; Nicolau, 1993). The
lack of a general solution has led to a large literature on finding matching
priors using more restrictive matching conditions; see Ghosh and Mukerjee
(1998) for a review. An alternative approach to matching based on r*-type
approximations is discussed briefly in Section 3.

A Bayesian approach can be used to derive frequentist asymptotic expan-
sions by an elegant shrinkage argument due to J.K. Ghosh, and to Dawid
(1991). An expository account is given in Mukerjee and Reid (2000). The
main point is that expansions can be carried out in the parameter space,
rather than the sample space, which as we have seen in the derivation of r*

is typically much easier.
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2.3 Other applications

There are a number of related areas where asymptotic arguments have been
crucial for the advancement of the theory of statistics: in fact it is difficult
to find an area in the theory where asymptotic arguments do not play a
central role. In this section we mention briefly particular areas that seem
most closely related to statistical theory based on likelihood.

The most important of these is the asymptotic analysis of the boot-
strap. As a methodological tool, the bootstrap is indispensable, but in terms
of understanding when and how it is useful, its asymptotic properties are
paramount and in this connection the result that the bootstrap provides
second order correct confidence limits was key (Bickel and Freedman, 1981;
Singh, 1981). In this sense bootstrap methods are also higher order asymp-
totic methods, and there are several close points of contact between results
of the previous subsection and the parametric bootstrap. Although the con-
nections are not yet completely clear, much progress is made in DiCiccio and
Efron (1992) and Davison and Hinkley (1998).

Another development in higher order asymptotics is the development of
Edgeworth expansions for U statistics; see Bentkus, Botze and van Zwet
(1997) and Bloznelis and Gotze (2000). This enables the development of
asymptotic theory for that accommodates certain types of dependence, which
is important in several applications. From the point of view of establishing
proofs, Edgeworth expansions are key, because the saddlepoint type expan-
sions used in likelihood asymptotics are essentially specialized Edgeworth
expansions.

Edgeworth expansions for martingales have been developed by Mykland
(1995) and these provide the possibility of a type of higher order asymptotic

analysis in settings like the proportional hazards model. A key component
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of this is the verification that the likelihoods derived from martingales obey
the Bartlett identities (Mykland, 2000).

As mentioned in Section 2.1, a different approach to higher order inference
from that discussed here is to investigate the power properties of the standard
test statistics. Edgeworth expansions for this are given in Amari (1985) and
Pfanzagl (1985).

Empirical likelihood (Owen, 1988, 2001) has many properties of para-
metric likelihood, and second order properties have been investigated by, for

example, DiCiccio, Hall and Romano (1991).

3 On p-values for a scalar parameter

3.1 Introduction

In this section we develop the approximation discussed briefly in Section 2 in
more detail. In particular, we describe the construction of ¢ used to compute
p-values when testing a scalar parameter of interest, 1) = 1(#) in the presence
of nuisance parameters. When computed as a function of v, p(v), say, this
provides approximate confidence bounds at any desired level of confidence,
so the testing problem is not essentially different from the problem of interval
estimation. This function p(¢) is called the significance function in Fraser
(1991) and the confidence distribution function in Efron (1997). It provides
a direct comparison to Bayesian inference, as the significance function is
analogous to the marginal posterior cumulative distribution function.

The approximation to the p-value function is the same as that given by
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(2.7) and (2.8):
) = W)+ o(r )(3—1) (3.1)

= (r n %log é) qu)(r*) (3.2)

where ®(-) and ¢(-) are the standard normal distribution function and density
function. Here r = r(¢) is the log-likelihood root based on the profile log
likelihood

r() = sign(v —)[2{6(¥) — L)} (3.3)
= sign(y — ¥)2{6(%, A) — £, A) )V

and ¢ = ¢(¢) is a type of maximum likelihood or score statistic to be de-
scribed below.

Other asymptotically equivalent approximations to (3.1) and (3.2) use
as the starting point the likelihood root obtained from an adjusted profile
log-likelihood. Numerical work in relatively simple models seems to indicate
that approximations based on adjusted likelihood roots are better (Butler,
Huzurbazar and Booth, 1992b; Pierce and Peters, 1992; Sartori, 2001) so the
use of £,(¢) in (3.3) may be a drawback of the approach developed here. An
advantage though of this approach is the derivation of an expression for ¢
that can be used in general models. Versions of the p-value approximation
that use adjusted likelihood roots are currently available only for inference
on a canonical parameter in full exponential models or a linear parameter in
transformation models.

Approximations of the form (3.1) and (3.2), but accurate to O(n™!) in-
stead of O(n~3/?) can be constructed without specification of an approximate
ancillary statistic. Several such approximations have been suggested in the

literature; see for example Barndorff-Nielsen and Chamberlin (1991, 1994)
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and DiCiccio and Martin (1993). The version due due to Skovgaard (1996)
seems most useful for both theoretical and applied work. Severini (1999) gives
an alternate expression for Skovgaard’s statistic and an alternate derivation
of his result.

The steps in the derivation of (3.1) or (3.2) are the following:

1) Find a density or approximate density supported on R* rather than R",
for example by using a p* approximation for the conditional density

given an approximate ancillary statistic.

2) Transform this density to that of a one-dimensional pivotal statistic for
1, and a complementary statistic of dimension £ — 1, and find the

marginal density of the pivotal.
3) Integrate this marginal density up to (or beyond) the observed data point.

Note that steps 1 and 3 are also needed for problems without nuisance
parameters, so follow the pattern outlined in Section 2. As we will see, step
2 can be obtained using the same argument as in step 1. We now discuss

steps 1 to 3 in more detail.

3.2 Reduction from n to k.

This reduction can be achieved using the p* approximation to the density
of the maximum likelihood estimator by conditioning on an approximate
ancillary statistic. That is, we find a statistic a = a(y) of dimension n — k
so that the transformation from y to (é, a) is one to one. In some models it
may be convenient to first replace y by the minimal sufficient statistic for 6,

if such exists, but the end result is the same.
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We transform the joint density for y into that for (é, a), and express the

result as
p(fla; 0)p(a) , (3.4)

where the requirement that a be ancillary ensures that all the information
about € is contained in the conditional density. As described in Section 2,
p(6a; 0) can be approximated with relative error O(n3/2) by the p* approx-
imation (2.5) and to this order of approximation it is sufficient that a be
ancillary only to O(n™!), i.e. that p(a; 6y + d/v/n) = p(a;60){1+ O(n™1)}.

The derivation of (3.4) is outlined most clearly in Skovgaard (1990), and
from there the derivation of the p* approximation proceeds by finding a suit-
able approximate ancillary statistic. This last step can be done explicitly
if f(y;0) can be embedded in a model with a k£ + d—dimensional minimal
sufficient statistic and a k + d—dimensional parameter; i.e., in a k +d full ex-
ponential family, thus making f(y;6) a (k + d, k) curved exponential family.
Skovgaard’s (1990) derivation assumes this to be the case, as do most papers
by Barndorff-Nielsen and colleagues, see, for example, Barndorff-Nielsen and
Wood (1998). In this case the approximate ancillary statistic can be con-
structed by a sequence of r* statistics, defined as in (3.2), but treating each
component of the nuisance parameter successively as a parameter of interest.
An explicit construction along these lines is given in Barndorff-Nielsen and
Wood (1998); see also Jensen (1992) and Skovgaard (1996).

However, since the end goal is to integrate the density approximation
to obtain p-values, a simpler approach is possible that does not involve the
explicit specification of 6 and a. As in the case with no nuisance parameters,
the full dependence of the log-likelihood function on (f,a) is not needed.
All that is needed is information on how the log-likelihood changes with

changes in 0 that keep a fixed, and even this information is needed only to
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first derivative at the observed data point: to first derivative because the
integration of the density approximation involves a Jacobian for a change
of variable, and at the observed data point because we are approximating a
p-value.

This leads to a simplification of the p* approximation, called in Fraser

and Reid (1993, 1995) a tangent exponential model, and given by

prev(sla; 0) = clj(@)] 2 exp[£(8;y°) — £(8°% y°) + {0(0) — ¢(0°)}7s] (3.5)

where 3° is the observed data point, § = 0(y°) is the observed maximum

likelihood estimate of 6,

o(0) = (09 = G| (36)

is a local reparametrization of the model, V(y) is an n x k matrix whose
columns are vectors tangent to the approximate ancillary statistic a, and

_ PHe(0); 9"}

O (37)

is the observed information in the new parameterization ¢. In the left hand
side of (3.5), (s,a) is a one-to-one transformation of y that is assumed to
exist, but the precise form of the transformation is not needed. The variable
s plays the role of a score variable, replacing 0 in the p* approximation, and
a is the approximate ancillary statistic. The existence of a is established in
Fraser and Reid (1995) by using an local location model approximation to
f(y;0).

The right hand side of (3.5) has the structure of a full exponential model,
with ¢ = ¢(f) the canonical parameter, s = s(y) the minimal sufficient
statistic, and £(f) = ¢{p(#)} playing the role of the cumulant generating

function. In its dependence the log-likelihood function, we need only £(6;y°)
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and £,7(6;4°), not £(6;y) as is needed for p*. The information determinant
17(4)|7/? is the volume element for the score variable s. The approximate
ancillary a appears only through the matrix V' used to define the canonical
parameters. The k£ columns of V' are vectors in R” that are tangent to the
subspace of R* defined by holding a fixed. As in the scalar parameter case,
these tangent vectors will determine the Jacobian for the change of variable to
the likelihood root r» which is needed to compute the p-value approximation.

It is shown in Fraser and Reid (1995) that the vectors V' can be con-
structed using a vector of pivotal statistics z = {z1(y1,0),- .., 20 (Yn,0)},
where each component z;(y;,6) has a fixed distribution under the model.
(This assumes that the components of y are independent.) Such a vector
always exists in the form of the probability integral transformation F'(y;; ),

although simpler alternatives may be available. The vectors vy,...,v; are

defined by
B AT
oy 00

and it can be shown that these are tangent to the surface in the sample space

(3.8)

(y°,60)

on which a second order ancillary statistic is held constant.
Example: Tilted logistic
We will illustrate the detailed calculations for a sample of size 2 from the

model
e(y_e)

f(y;e) = {1 T 6(?’_0)}2

where () = 0.5tanh(f) and c(f) = log{(7w#)/sin(nf)}. The joint density
of (y1,y2) for fixed 6 is shown in Figure 3.1.

e O=0-cr(®} — _1<p<1 (3.9)

To compute the p* approximation to the joint density of 0 given a, we

need to find coordinates (4,a) as a function of (yi,y») for which ¢(6) = 0
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Figure 3.1: The joint density when 6 = 1, for the model given in (3.9).
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and f(a;0) is free of 0 exactly or approximately. Fixing a will define a curve
on the two-dimensional surface expressed in 0 coordinates with its associated

A~

measure |5(6)|'/2.

To compute the tangent exponential model we start at the data point

y° = (v9,%9), and trace a curve in R? by finding at the ith step

NOR- _Fy(y1,9)
! f(y1,0) 1= 660
(3.10)
NON _ Fy(y2,0)
2 S (Y2, 0) 1y§0 66-0

where we are using the probability integral transformation to define the piv-

otals (21, 22). The curve is then
yo’ y(l) — yo _|_ 5/0(1)’ e, y(Z) — y(zil) _|_ 51}(1)’ .

illustrated in Figure 3.2.

The tangent exponential model (3.5) gives the density function at each
point along this curve, with relative error O(n=3/?), in terms of a score vari-

able s = s(y) with associated measure |5(¢)|~'/2.

3.3 Reduction from k to 1.

We now work within the model conditional on an approximate ancillary
statistic; using either p*(]a) or prewm(s|a). The dimension reduction from &
to 1 for inference about the scalar parameter 1 is achieved by finding a one
dimensional pivotal statistic, i.e. a function of § and ¢ or s and ¢ that has
a distribution free of the nuisance parameter A: in other words a statistic
that is ancillary for A when % is fixed. Thus an application of Step 1 to p* or

prem With 9 fixed will provide an ancillary statistic. This statistic, ay, say,
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Figure 3.2: The curve along which the second order ancillary, with tangent

vectors given by V', is constant.
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will be only approximately ancillary, but as long as it is ancillary to O(n 1)
or better it will suffice to produce tail area approximations to O(n=%/2).

In Barndorff-Nielsen’s approach, starting with p*(A|a), the pivotal is taken
to be

1 U,w
¥ = — log —=. 3.11
Ty =Ty + r og r (3.11)

The joint density of 6 is transformed to the joint density of (T35 /A\d,) An
application of the p* approximation (Step 1) to the conditional density of ;\¢
given 7y, then gives the marginal density of rj, as N(0,1) to O(n=%?). This
marginal density is used to compute the p-value. This argument was first
presented in Barndorff-Nielsen (1986), where a rather complicated expression
for u,, is given. Subsequent work simplified the expression for u,, to that given
in (3.15) below.

Nearly the same argument is used in Fraser and Reid (1995), starting
from the tangent exponential model (3.5). As in Step 1, but now in the
model for s given a with 9 fixed, there exists an ancillary statistic a, for A,
and a score variable s, with an approximating tangent exponential model;
ie.

prev(sla; 0) = pi(sy; 0lay)p2(ay)
where p; also has exponential family form. The ratio of prgy to p; gives the
marginal density of a, as
_ prem(s|a; ¥, A)
p1(sylay; ¥, A)

Since we know the result is free of both A and sy, we can evaluate the right

pa(ay)

hand side at convenient values of A and s, which we take to be ;\,/, and 0.
The resulting approximation has the form of a tangent exponential model
with an adjustment factor involving the information matrix for the nuisance

parameter.
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3.4 Approximate tail areas.

In either approach the resulting marginal density is readily integrated to
compute tail area approximations. In Barndorff-Nielsen’s approach this is
a trivial by product of the result in Step 2 that 7, has a standard normal
distribution. In the Fraser-Reid approach the marginal density of the pivotal
statistic lends itself to a Lugannani and Rice (1980) type approximation,
as described in Cheah, Fraser, Reid (1995) and illustrated below at (3.xx).
Skovgaard (2001) refers to these approximations as being a “Laplace type”.
The result is that the p-value is approximated by

o o L oe
O(ry) = @ ( v+ Twl g w) (3.12)
11
= () + o) (- - )
o o e
o(ry) = @ < ot gm)) (3.13)
11
= @) +60) (- - )
where
ry = sign(yh —)[2{€(8) — £(6,)}]"/? (3.14)
0y = [445(0) —f;é(éw)A bi(B) \jae(é)\m (3.15)
[£9.5(0)] [7ax(0y)[1/2
_ v0) —tv(By) v (B)]  Lies(9)]' 316
CI¢ ) A‘Ee;v(é)\ |jAA(é¢)|1/2 (316)
= {v(0) —v(0y)}/6, . (3.17)

Another way of describing uy, is as a dual score statistic (Barndorff-Nielsen

and Cox, 1994 §6.6). In contrast ¢, is a type of dual maximum likelihood
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statistic, as indicated at (3.17), for a derived scalar parameter v. In (3.17)

we have

v(0) = eup(0),

€y = wtp’(é¢)/|¢w’(é¢ |,

)
(

&2 = |jow 0s)l/ld0s @), (3.18)
|J(0e)(é)\ = jss(0)]|00 ()%, (3.19)
o @) = 1ia@)llex(8) 72 . (3.20)

Although the expression for g, is relatively complicated, it is not difficult
to implement algorithmically, starting from ¢(6;y) and a specification for
V. This is described in Fraser, Reid and Wu (1999) and implemented there
in Maple. The most difficult aspect of making the algorithm robust is the
computation of the restricted maximum likelihood estimator 5\,/,.

It will sometimes be more convenient to have a version of ¢ that is suit-
able when the nuisance parameter is available only implicitly. This can be
obtained from (3.17) using a Lagrange multiplier argument; the details are
given in Fraser, Reid and Wu (1999).

3.5 Bayesian asymptotics

Bayesian implementation of approximate inference for a scalar parameter
is much simpler. First, the inferential basis is prescribed; one simply com-
putes the marginal posterior for ¥. Second the asymptotic expansions are
all computed in the parameter space for fixed data, with the result that the
expansions are easier and the change of variable for integration is also easier.
The resulting approximation is very similar to the frequentist version, and
the precise nature of the difference helps to shed some light on the role of

the prior.
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Laplace approximation to the marginal posterior density was described

in the previous section:

m(l) = s espl0) — G
|j,\/\(7/;;}\)|1/2 W(@DA, S\qu) (3.21)
17 (0, Ap) [/2 (¢, N)
= ! ex — ) (1 1/2M
L) p{la () — La(a) Hia(¥)] @A) (3.22)

Expression (3.22) has the same structure as the p* approximation and
the tangent exponential model approximation; i.e. it is a density of “Laplace
type” which is readily integrated to give approximate posterior probabilities.

Expression (3.22) is integrated as follows

OOW _ © 1 ex _ 0 " 1/27(1/%5‘1#)
/w () /Qp S5 OPUl) — LGN T

) /OO vz () STTIEE %A;)) "
= /T:o\/%_wexp (—%79) (QLB +1-— 1) dr

= o) +/rq§(r) (qu _ %) dr

= B+ (qu - %) o(r) (3.23)

where

ro= sign(gs)[2{t(¥) — u(¥)}]"*

s = -/ ()12 W(’/A’a?‘) :
q o(V){Ja ()} (03

compare (3.13), (3.14) and (3.17). The relative error in approximation (3.23)

is O(n~3/?), which is verified by obtaining the asymptotic expansion of 7 in
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terms of ¢ in the form r = ¢+ (a/v/n)¢* + (b/n)¢* + O(n?), and noting that
d(1/r—1/q) = O(n™).
The result obtained starting from (3.21) has gg and r replaced by

i (o2 T A) L A)
4B (W p(¥)} 71, Ao) Lian (1, )72

ro= sign(gn)2{6) — 4(v) N

The derivation of the tail area approximation sketched above is of exactly
the same form as the derivation of the tail area approximations discussed in
Section 3.4. The details in Section 3.4 are more difficult, because it is more
difficult to get workable expressions of the remainder term. The integration
of Section 3.4 is in the sample space, so the change of variable to r in the
first step of the integration involves a Jacobian on the sample space and
this is where the ancillary directions are needed. It is much easier to work
backwards from the Bayesian derivation to arrive at the non Bayesian version.
A version of (3.23) was derived in DiCiccio, Field and Fraser (1990), and in
full generality in DiCiccio and Martin (1993). Series expansions for r in
terms of ¢ are given in Cakmak et al (1998). The structure of the Bayesian
significance function is examined in Sweeting (1995).

One conclusion available from comparing (3.23) and (3.13) is that the
approximate tail areas will be identical if gg = ¢. Since ¢p involves the
prior, this may be considered a definition of a “matching prior”, i.e. a prior
for which frequentist and Bayesian inference agree to some order of approx-
imation. Such a prior necessarily depends on the data, as is evident from
inspection of the expression for ¢ given at (3.16). Such priors are called
strong matching priors in Fraser and Reid (2001) where it is shown that in
most cases a usable solution does not emerge unless we consider matching

only to O(n™!). In this case the strong matching prior is a version of the
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observed Fisher information.

Data dependent priors are somewhat unusual objects from a Bayesian
point of view, but they do arise in other contexts as well. Box and Cox (1964)
proposed a data dependent prior for the transformed regression model as the
only way to sensibly take account of the scale of the observations. Wasser-
man (2000) shows in a mixture model that matching priors must be data
dependent at least in a weak sense. Pierce and Peters (1994) discuss the
asymptotic frequentist-Bayesian connection from a slightly different point of
view and come to the same conclusion: in going from O(n~') to O(n=3/?)
there is an essential dependence on the sample space in the frequentist ver-
sion that has no counterpart in a Bayesian analysis with fixed prior. This
dependence is seen in the derivation of (3.13) or more simply (2.8) as required
by the integration of p* or prgy in the sample space.

A more conventional approach to matching priors involves Edgeworth
expansions for the posterior density. As described at the end of Section 2,
Welch and Peers (1963) showed that in models with a single parameter of
interest the Jeffreys’ prior, m(#) oc {i(#)}'/?, is the unique prior for which
the (1 — «) posterior quantile has the property under the sampling model of
giving a one-sided confidence bound with confidence coefficient 1—a+O(n™).
Unfortunately, subsequent attempts to generalize this result to higher order
and to models with nuisance parameters have generally not been successful.
The higher order asymptotic results discussed here make clear in retrospect
that this was inevitable. A survey of work on matching priors is given in

Reid, Mukerjee and Fraser (2001).
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4 Applications and Implementation

Implementation of higher order approximations has lagged behind the the-
oretical development, in part because of the complexity of expressions like
(3.16), in part because the inferential basis is not well understood, and in
part because the improvement offered by refined approximation is in many
applications overshadowed by the sample size, the complexity of the sampling
frames, the provisional nature of the model, and so on.

By far the most numerous applications of the asymptotic theory discussed
in Section 3 available in the literature are illustrative examples, typically
involving highly simplified models and extensive simulation. These are meant
to highlight the accuracy of the approximations and the sometimes dramatic
improvement in going from a first order approximation to a second or third
order approximation. A fairly comprehensive list of published examples is
given in Reid (1996).

An amusing but highly artificial example is a sample of size 1 from a
Cauchy location model (Fraser, 1990; Barndorff-Nielsen, 1991). In this case
the first order approximations to the distributions of the Wald, score and
likelihood root statistic differ by hundreds of orders of magnitude, whereas
the third order approximation is very nearly exact.

Our focus throughout continues to be accurate approximation of p-values
for testing H : ¢ = 1)y. These may be computed for a fixed data value
and a range of values for v, leading to confidence limits or more generally a
confidence distribution function or significance function (Fraser, 1990; Efron,
1997).

Ezxample 4.1: Normal coefficient of variation
Table 4.1 gives selected points of the significance function for the one pa-

rameter model N(f,6%) and a sample of size 5 generated randomly from the
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Table 4.1: Comparison of exact and approximate p-values for selected values
of § in the model N(#,0?). Data vector is y = (0.69, 1.56, 3.69, 2.09, 1.10).

6| 06 0.8 1.6 1.8 2.0
Method
exact 0.9976 0.8863 0.0794 0.0416 0.0228
r* using ¢ or v (3.13) | 0.9976 0.8855 0.0787 0.0412 0.0225
r* using Skovgaard 0.9975 0.8837 0.0768 0.0400 0.0217
normal approximation | 0.9960 0.8465 0.0513 0.0249 0.0128

N(1,1) distribution. The exact distribution is compared to the usual normal
approximation for r, the third order approximation described in Section 3.3,
and a second order version due to Skovgaard (1996). In this example, dis-
cussed in more detail in Fraser, Reid and Wu (1999), ¢ and u are identical,

as there is a unique ancillary.

Ezxample 4.2: Log-normal distribution

The illustrative data set given in Table 4.2 is is a small subset of five
observations (on Volkswagen cars) from the car crash test data from the
Data and Story Library. In the full data set the response Y is a measure
of injury, and appears to be approximately lognormally distributed. There
are a number of covariates relating to properties of the various cars. We
use the model logY ~ N(u,0?) and define the parameter of interest to be
the mean of Y. Figure 4.1 illustrates the significance function for the log of
the mean: ¢ = p + 0%/2. The significance function using the usual normal
approximation to r is compared to the third order approximations (3.12) and

(3.13); the latter two cannot be distinguished on the graph.

Example 4.3: Bivariate normal

Our next example provides detailed calculation for the general formula
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Figure 4.1
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6.5 7.0 7.5 8.0 8.5

Figure 4.3: The significance function for ¢ = i+ 0?/2, based on the data in
Table 4.2 and a log-normal model. Solid line is the third order approximation
using (3.12) and dashed line is the standard normal approximation to the dis-
tribution of the likelihood root r. The r* approximation is indistinguishable
from (3.12).
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in the case of no nuisance parameters. The emphasis is on the calculation of

the approximate ancillary using a pivotal statistic. The model is

1 1
f(y1,y2;0) = o (1= o)1 P {—m(y% + Y5 — 9yly2)} ,  (41)

a (2,1) curved exponential family. The minimal sufficient statistic based on

a sample of size n is (S,7T), where
S = XY13Yai/n, T =%(Y] + Y5)/(2n). (4.2)

Working in the sample space defined by (S, 7T") we have the pivotal statis-

tics
7 T+S_E(}/1i+1/2i)2
! 1460 2n(1+06)
T—S _ B(Vi—Ya)?
Z2 -

1—-60  2n(1-90)

which are independently distributed as x2/n. Using these in (3.8) to define

T (t‘és) (4.3)

:1_é2 s—ét

the vector V' gives

where 0 is the real root of the cubic equation
0 — 50+ (2t —1)0 — s = 0.

The ancillary curve defined by the components of V is plotted in Figure
4.2, where the axes are rotated from the S, T plane to the T'— S, T+ .S plane.
Also shown in Figure 4.2 is the curve where the approximately ancillary
statistic A = (T — 1)/v/S2 + 1 is constant. This statistic was used by Wang
(1993), following a suggestion in Cox and Hinkley (1974, Ch.2). Note that
A has mean zero and variance 1, although its higher cumulants depend of

course on 6.
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Figure 4.4: The curve defined by the tangent directions to the second order
ancillary (solid line), and the curve defined by a fixed value of Wang’s an-
cillary statistic (dashed line). The line Y = X corresponds to f = 0; where
X =T-Sand Y =T+S. The dotted lines show the local ancillary defined
by integrating the vector V at a fixed value of p.
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From (4.1), the likelihood function is

_ _n 9 n
0(0;s,t) = —§log(1 —6%) — T (t — 6s) (4.4)
giving
or ov
E;V(H,s,t) = &‘/14‘&‘/2 )
. nf t—08_ n s—0t
1= 1621 ¢2
and

Lo (0) =n(Bs +1)/(1 — 6%)%

~

This, combined with j(#) in (2.13) gives an explicit expression for ¢, and
hence the approximate significiance function for 6.

Note that no calculation of an explicit approximate ancillary is involved.
In this case it is possible to find an approximate ancillary, by embedding the
model in a two-parameter exponential family, for example by treating oy Z;
and aeZs as independent chi-squared random variables, where oy = a/(1—6),
as = a/(1 + ), thus recovering (4.4) when o = 1. It is possible to calculate
the components of the r*-type statistic for testing @ = 1 in this full model,
thus giving an explicit expression for an approximate ancillary, although the
detailed expressions are in this case unenlightening.
Example 4.4: Gamma hyperbola

Another (2, 1) exponential family where the computation of the ancillary

statistic is particularly straightforward is the model
—6

e
f(y;0) = exp <_7y1 - 0y2> ; 0>0;y1>0,y0 > 1. (4.5)

This example is considered in this context in Barndorff-Nielsen and Cham-
berlin (1994) and DiCiccio, Field and Fraser (1990). An explicit expression
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for an approximately ancillary statistic is derived in Barndorff-Nielsen and
Wood (1998). Because a simple scale model underlies (4.5), pivotal statistics

are readily available as

1

z1 = 5679% , =00y —1)

from which we have

1 1
V= —(1+5)y1 , —g(yz—l) ;
—e 1
0@) =Lty(0) = 9 (1 + A)yl + =(y2 — 1)

and

~ ~ 1/2
e %70 0 60 2 1\ ' [ 12(2/60 +2+6) /
= — — = | Yo+ = Yo+ —— — = ~
e ?/60 0 6 6 0 1+46
where 41, y» and 0 are related via the likelihood equation #(6) = 0 as

T ()
é é 1 Yo .

Numerical comparisons of (2.7) using ¢ or u from Barndorff-Nielsen and

Chamberlin (1991) are given in Fraser, Reid and Wu (1999).

Ezxample 4.1 continued: log-normal

We now illustrate the step-by-step calculations for the third order approx-
imation in the case of nuisance parameters, using the log-normal model of
Figure 4.1. We suppose X1, ..., X, are independent and follow the N (u,o?)
distribution, and that the parameter of interest is v = p + (1/2)0?, the
log of the mean of the associated log-normal distribution. Using the pivotal

zi = (x; — pu)/o, the ith row of the n x 2 matrix V is (1, (x; — f2)/6). From
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this we have ¢(0) = £,y (0) = zn: (0€/0x;) -v; = (n(fi—p)/o?, —nd/o?). Note
that ¢ is an affine transformazt:ii)n of the canonical parameter, as it must be,
by construction. We now extract from ¢ the component corresponds to our
parameter of interest 1, using (3.19) and (3.20)—(3.22). It is simpler to work
with ¢ = (u/0?,—1/20?), from which we can express 1 in terms of ¢; and

@2 as P = —(2p1 + 1)/2¢5, and

Vo 1 (0
vel0) = (m T VT w2>>

2

which in this case does not depend on p or 0“ except through 1. The resulting

expression for v(8) — v(8,) is
(7 —v)/6%+ (1/2)
V(L +9?)
which is then standardized by the ratio of information functions, using (3.19)

and (3.20).

Example 4.5: exponential family

In special classes of models the expressions for v and ¢ given in Section 3.3
simplify substantially. First, in the scalar parameter case discussed in Section
2.2, where ¢ is given by (2.13), suppose we have an exponential family model
fly;0) = exp{fy — c(d) — d(y)}. In iid. sampling from this model the
sample sum Yy; is minimal sufficient and a one-to-one function of #. Thus

L.y is replaced by ¢,, = 0, and the expression for ¢ simplifies to
g=(0-0{i6)}",

the standardized maximum likelihood estimate. Similarly, if the model is
f(y; 0, ) = exp{voy; + \Tya — (¥, \) —d(y) } then expression (3.16) simplifies

to

0= (& = ) ()} {4, )}
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where
|J,\,\(¢a /\w) \1/2

N ,/\)|1/2
is an adjustment to allow for estimation of the nuisance parameters.

p(, ) = (4.6)

The asymptotically equivalent approximation using the adjusted likeli-
hood can be obtained by saddlepoint approximation to the exact conditional
density f(y1|y2), which is of exponential family form and free of .

Ezxample 4.6: Location models

In the one parameter location model f(y — ), the exact ancillary from n
independent samples is (a4, . . ., a,) where a; = y; — 6. The exact conditional
density of 0 given a is obtained by renormalizing the likelihood function, and

the approximation (2.10) or (2.13) gives

¢=LO){i0)}

the standardized score statistic.
In the location regression setting where y; = u + ¥xy; + ATxy; + €;, say

where e; ~ f(e), the general expression for ¢ in (4.16) reduces to

a=~LW) {50} p(d, ).

To see this note that using the pivotal z; = y; — ¥x1; — AT'xy; gives the

ith row of V' as (1 zy; x9;), and hence

o(0) = Ly = (Zg(ei)a Yx1ig(es), Exg;g(ei))

where g(e) = dlog f(e)/de and e; = e;(0) = y; — p—1px1;— AT xy;. The compo-
nents of ¢ are simply the score functions (0¢/0u, 0¢/0, 0€/OAT). Similarly
Lo (0) = joo(0) and Ly (By) = jan(0y), leading to
) ( ) A \J,\,\( )|
5(0)]
)

3 (
= —2y(0y)15p(0) {0, )},
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using (2.14) and (4.6).

The improvements achieved by relatively simple adjustments in a number
of examples suggest that if the approximations could be made simple from the
point of view of the user, they would be well worth incorporating in routine
analyses. In some cases the approximations could reduce or avoid the need
for lengthy simulations, for example. In this connection applications the
might be described as case studies are very useful. These involve moderately
realistic models, although the data sets are often fairly stylized examples
from the statistical literature. The focus is typically on illustrating the use
of higher order methods in models of potential interest for applications, and
on comparing first order and third order methods. Usually simulations are
too cumbersome to enable comparison of the approximations to the “exact”
answer to be computed.

A substantial number of such case studies have been carried out by Butler
and co-authors; see Reid (1996) for a description of this work and Butler,
Huzurbazar and Booth (1992ab) and Butler, Booth and Huzurbazar (1993).
Several of their applications involve the construction of exponential families
for which the related approximations are particularly straightforward.

Fraser, Wong and Wu (1999) study a class of linear regression models of
the form y = z(8)+oe, where x(/) is a known and possibly nonlinear function
of z and unknown parameter 3, and e is either a normal or ¢ distribution. In
this class of models the pivotal statistic z = {y —z(5)}/o leads to an explicit
expression for ¢ which generalizes in a natural way the location model version
given above. Expressions for ¢, nu and g are given in (35), (38) and (41) of
their paper. The formulae are illustrated on four simulation studies and four
sample datasets from the statistical literature on nonlinear regression.

Bellio (1999, Ch.1) gives an overview of r*—type approximations with
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particular emphasis on the version proposed by Skovgaard (1996). In Chap-
ter 2 he gives a systematic account of higher order likelihood inference for

generalized linear models of the form

Yij = (i, B) + ey (4.7)

where e;; ~ N(0, ¢g*(xi, 8, p)) and the forms of u(-) and ¢*(-) are assumed
known. His work thus illustrates the use of higher order likelihood based
methods in models of practical importance. Of particular interest is the use
of enhanced profile plots to compare the usual normal approximation to the
higher order version. Bellio (2000) illustrates the use of Skovgaard’s approxi-
mation in inverse regression problems. An important contribution of Bellio’s
work is to consider as well inference for vector parameters of interest, based
on an 7*-type extension developed in Skovgaard (2001). Several aspects of
higher order approximations that can be applied to the study mixed linear
models are described in Bellio (1999, Ch.4).

The potentially most useful category of applications is what might be
called “nearly automatic” software. An attempt at this was made in Fraser,
Reid and Wu (1999) using Maple. The user provides the model function and
the pivotal statistic, and the software computes the necessary sample space
derivatives. The computations of the profile log likelihood and its curvature
needs a fair bit of input from the user.

The most important advances in nearly automatic software are provided
by Brazzale (1999, 2000). Splus libraries, available at statlib, require from
the user only a specification of the model function and the parameter of

interest. Three classes of models are currently incorporated into the software:
1. Conditional inference for logistic regression and log linear models
2. Marginal inference for linear regression with non-normal errors
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3. Conditional inference for model (4.2).

Again the most difficult aspect of the computation is the evaluation of the
profile log likelihood and its curvature. Another, more minor, difficulty arises
in computing the entire significance function: at the sample point 6= f, both
r and ¢ are zero and the r* and Lugannani and Rice type approximations
are no longer valid. A simple expedient incorporated in Brazzale’s software
is to fit a spline curve through the middle of the significance function. How-
ever, automatic selection of the “middle” is not straightforward, as the range
of numerical instability is generally problem specific. Some details on the
implementation of Brazzale’s approach are described in Bellio and Brazzale
(2001).

There is limited experience with much more general models. Butler (2000,
2001) has investigated saddlepoint approximations for first passage time dis-
tributions in very complex reliability trees, Huzurbazar (2000) has applied
similar ideas for models of cellular telephone nextworks, and Yau and Huzur-
bazar (2002) have applied similar ideas in multi-stage survival models. This
work is not as yet very closely related to likelihood inference, but rather closer
to numerical approximation theory. Kolassa and Tanner (1994) combined
third order approximations to conditional densities in exponential families
with Markov chain Monte Carlo methods. Limited experience with higher
order approximations for empirical likelihood indicates that theoretically ac-
curate formulae do not have good finite simple behaviour (Davison, Corcoran
and Spady, 1999) indicating that continued development of case studies is
needed.

Although implementation of Bayesian approximations is quite straight-
forward, the approximations do not appear to be much used in the literature

on applications of Bayesian methods, preference being given to Markov chain
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Monte Carlo computation of ‘exact’ posteriors. Notable exceptions are Hsu
(1995), and Tierney (1990). This seems somewhat surprising, as the approxi-
mations are very easily computed and the inferential basis is straightforward.
Using approximations to compare the effect of different priors and as a check
on the accuracy of MCMC methods was suggested in Kass, Tierney and
Kadane (1988).

In addition to the need for both more widely available automatic software
and a larger library of case studies, there are several other aspects of appli-
cation and implementation to be investigated. By far the most important
is robustness: what happens to the approximations if the model is incor-
rect, and does the comparison of first order and higher order approximation
provide any information on the adequacy of the model. The work by Bel-
lio is an important first step in the use of the higher order approximations
for improved diagnostics in regression. In the extension to more complex
models, some of which may have a nonparametric component, comparison
to bootstrap inference is necessary. Some theoretical discussion is given in
DiCiccio and Efron (1996) but the main practical comparisons are due to
Bellio (1999).

Establishing connections, if possible, between the type of likelihood in-
ference described here and the inference obtained by Markov chain Monte
Carlo methods, typically applied in complex hierarchical models, seems a very
valuable next step. The inference of the prior on the results obtained from
MCMC methods seems very unclear in most applications, and it would be
very useful if the asymptotic theory for likelihood inference could shed some
light on this. In a related development, Brazzale (2000, Ch.7) describes the
use of MCMC methods for conditional inference in regression models, thus

implementing higher order asymptotic solutions by a different route.
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Whether or not higher order approximations are used in “real” applica-
tions should depend on a considerable extent to the context of the problem.
In a large prospective study of a relatively common disease, aspects of study
design and sampling bias will be much more important than the type of in-
ference made, which in any case is likely to involve little more than simple
summary statistics. In contrast, a comparison of brain activation rates by
functional magnetic resonance imaging may well involve a very small number
of subjects, even though a large database may be created for each subject. In
this setting modelling and precise inference may be expected to be relatively
more important.

There are also a number of theoretical areas for potential further develop-
ment. Higher order asymptotic results for dependent data may potentially be
useful in time series and spatial data models. It is not clear if a higher order
theory may be available for heavy-tailed distributions. The current interest
in several application areas in models more variables than observations sug-
gests that it is important to understand how best to deal with large numbers
of nuisance parameters. It also seems likely that a higher order asymptotic
theory can be developed for some types of semi-parametric models.

Higher order asymptotics has a very large literature, and it has not been
possible to survey all the results here. The most useful general references
for the particular emphasis here on tail area approximation and likelihood
methods are Skovgaard (1990, 1996, 2001), Barndorff-Nielsen and Cox (1994,
Ch. 6), Barndorff-Nielsen and Wood (1998), Fraser, Reid and Wu (1999),
and Reid (1996). A web site on higher order asymptotic theory is maintained
at the University of Padua (www.stat.unipd.it/LIKASY).
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