
 Fitting mixed-effects models in R (version 1.5.1)  
 

1 A brief introduction to R 

1.1 Background 
R is a system for statistical computation and graphics developed initially by Ross Ihaka and Robert 
Gentleman at the Department of Statistics of the University of Auckland in Auckland, New 
Zealand Ihaka and Gentleman (1996).  It can be regarded as an Open--Source implementation of 
the S language, which in turn underlies the S-Plus software. 

R offers facilities for data manipulation, calculation and graphical display either through build-in 
functions or add-on packages contributed by users.  

It is distributed freely under the GNU General Public License (www.gnu.org/copyleft/gpl.html) and 
can be used for commercial purposes. The latest version and documentation can be obtained via 
CRAN, the Comprehensive R Archive Network  that can be found at the URL http://cran.r-
project.org. 

1.2 Operating System 
R is available for Unix/Linux (most platforms/distributions including i386-freebsd, i386-linux-gnu, 
i386-sun-solaris, powerpc-linux-gnu, powerpc-apple-darwin, mips-sgi-irix, alpha-linux-gnu, alpha-
dec-osf4, rs6000-ibm-aix, hppa-hp-hpux, sparc-linux-gnu, and sparc-sun-solaris), Windows (95, 
98, ME, NT4, 2000 and XP) and MacOS (8.6 to 9.1 or X natively). 

1.3 Data input/output functionality 
R can read from and write to ASCII and text files (*.txt, *.dat), spreadsheet-like data (e.g. *.csv for 
input in Excel), read from fixed-width-format files using command-line functions like scan, 
read.table, write.table. Also, the contributed package foreign available on CRAN 
provides facilities for importing data from other statistical packages namely Minitab, Octave, S-
Plus, SAS, SPSS, Stata and exporting to Stata.  

Since all data have to reside in memory, there are certain limitations on the size of data sets that R 
can handle (not more than a few tens of megabytes). On the other hand, R has facilities for 
communicating with Database Management Systems (DBMS). In particular, the contributed 
packages RPgSQL, RODBC, RMySQL also available on CRAN provide interfaces to most common 
DBMSs. 

R offers great graphical features. Mathematical symbols. Mathematical symbols can be easily 
added to a plot and the users have control over almost every aspect of the final output. Graphs can 
be saved as Postscript, Encapsulated Postscript or PDF files and incorporated into another 
document. Commands can be input interactively at the command-line or sourced from a previously 
saved file using the command source (any text editor can be used for this purpose and the file 
should be saved with extension *.R). The command history can be loaded, saved and displayed at 
any time using the build-in functions loadhistory, savehistory and history 
respectively. 

1.4 Interface features 



When R is launched, the user is presented with a console window for input/output and command 
line options (Windows and Macintosh). Under Unix-like systems, various editors can be used to 
add extra capabilities (e.g. Emacs Speaks Statistics or ESS). The GUI under Windows and 
Macintosh offers limited features and, in general, the only way of using R is through the command-
line input/output. Loaded data and intermediate results are kept in a working directory that can be 
specified by the used. At the end of a session, the user can choose whether or not to save its 
contents. 

R operates on named data structures like vectors, matrices and n-dimensional arrays, which can be 
created using assignment statements. Data manipulation is via build-in or add-on functions on these 
named structures; in particular, R offers operators for calculation on matrices and arrays and a 
simple programming language which included conditionals, loops and user defined functions.  

In addition to basic tools for summarising data, a non-exhaustive list of models statistical models 
that can be fit using R includes linear models, ANOVA, generalized linear models, survival 
analysis, non-linear least-squares and maximum likelihood models and linear and non-linear 
mixed-effects models through the functions lme and nlme respectively in the user-contributed 
package nlme. 

2 Packages for fitting mixed-effects models 

2.1 Features and syntax 

The package nlme by JC Pinheiro and DM Bates (2000} provides methods for fitting linear 
(function lme) and non-linear (function nlme) mixed-effects models assuming that both the 
random effects and the errors follow Gaussian distributions. Table 1 shows details of models that 
can be fitted using the package.   

Once the data have been loaded in the working directory, a grouped version is constructed that 
captures the clustering structure. This is done using the groupedData function, which in the 
simple case of two-level data with group as the clustering factor uses the following syntax  

groupedData(response~covariate(s) | group, data, options).    (1) 

A three level structure can be specified as group1/group2 where group2 is a grouping factor 
nested in group1, and so forth. 

Having specified the grouping structure, there are then methods for plotting and summarizing the 
data by the grouping factor(s).  

Fitting a linear mixed-effects model involves using the lme function on a grouped data object; by 
default, this includes the random effects implied by the structure in~(1) i.e. random terms 
associated with the intercept (which is always included and can be excluded using -1) and the 
covariate(s). Alternatively, random effects can be specified within the call to lme. For example, a 
simple two-level model with random intercept and slope across categories in group could be 
written as 

lme(fixed=respons~covariate(s), random=~covariate(s) | group, options)    (2) 

The user can also specify the form for the variance-covariance matrix for the random effects 
choosing from a block-diagonal, compound-symmetry structure, diagonal, multiple of an identity 
and general positive-definite matrix or create their own.  



The optional argument correlation allows specification of the within-group correlation 
structure choosing from 11 standard forms or by constructing one. 

Similarly, the optional argument weights specifies the within-group heteroscedasticity structure 
with available forms as follows: exponential of a variance covariate, power of a variance covariate, 
constant plus power of a variance covariate, constant variance(s) (used to allow different variances 
according to the levels of a classification factor), fixed weights (determined by a variance 
covariate) or a combination of variance functions. 

To fit a modified model, the function update can be used.  

The syntax of the function nlme for non-linear mixed-effects models is similar and will be 
omitted. 

Various packages are available for fitting generalized linear mixed models (GLMM) in R. The 
package GLMMGibbs available on CRAN uses a Bayesian approach and is limited to binomial and 
Poisson families with canonical link function. 

Libraries accompanying Lindsay's book `Models for repeated measurements' (Lindsey,1999) are 
available at the URL http://alpha.luc.ac.be/~lucp0753/rcode.html and include functions for fitting 
GLMM. 

A third option is the function glmmPQL available in the recommended library MASS (in the 
package bundle VR on CRAN). It uses the same syntax as in~(2) and parameter estimation is based 
on penalized quasi-likelihood (PQL) (Breslow,1993}. In this review, for non-Guassian outcomes, 
the latter function will be used. 

2.2 Tools for statistical inference and model diagnostics 

When using the function lme, models with different random effects specification can be compared 
using likelihood ratio tests or by simulation-based parametric bootstrap evaluations. The 
significance of fixed-effects terms is assessed by standard linear regression tests including t-test for 
individual coefficients or F-tests for complicated terms or linear combinations of coefficients.  

The function summary.lme, which takes as argument the output of a call to lme, gives 
additional information on the model fit including the Akaike and Bayesian Information Criterion 
(not valid with glmmPQL} as the latter uses PQL). 

Approximate confidence intervals for the fixed-effects and the variance-covariance parameters are 
produced by the command intervals.lme. Diagnostic plots include box plots of the residuals 
by level-1 units, scatter plots of standardized residuals versus fitted values possibly by the values of 
some categorical variable, observed values versus fitted values and normal plot of residuals. 

Finally, predicted values at any level can be obtained using the function predict.lme. 

A summary of available tools for inference and model diagnostics is given in Table 2. 

 

3 Model specifications -- Basic models 

3.1 Two-level Normal models 



Using standard MLwiN notation, the collected subscripts ij indicate variables measured on the i  
level 1 unit clustered in the  level-2 unit. The data set `exam' in the MLwiN manual is used for 
illustration. The response variable consists of exam scores obtained by each student at age 16 
normalised to have an approximate standard normal distribution (normexam). Covariates include:  

th

j th

x ij1 : school intake variable, standardised London reading test (standlrt);  

x ij2 : gender of students with boys as the reference group (gender as factor); 

x j3 : school gender for mixed school against girls' school (schgend as factor); 

x j4 : school gender for boys' school against girls' school (schgend as factor). 

Five models have been considered differing in both their fixed and random parts.  

Results are shown in Table 3. Notice that convergence times refer to R version 1.5.1 for Mac OS X 
10.1.5 running on PowerPC G4 700Mhz with 512MB of RAM.  

A variance component model with covariates standlrt, gender and schgend can be 
written as 

exxxxy ijjjijijjij 0443322110 +++++= βββββ  

u jj 000 += ββ  

where  and . Having defined the variables gender and schgend 
as categorical variables and set the desired contrasts with the command 
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options(contrasts=c(factor="contr.treatment",ordered="contr.poly")) 

the model is fitted using the expression  
lme(normexam~standlrt+gender+schgend,random=~1|school,data=tutorial). 

By default, REML estimates are given; maximum likelihood estimates can be obtained setting the 
option method=`ML' in the call to lme.  

The variance component model with standlrt*gender interaction term 

exxxxxxy ijijijjjijijjij 0215443322110 )( +×+++++= ββββββ  

u jj 000 += ββ  

 is fitted using the syntax 
lme(normexam~standlrt*gender+schgend,random=-1 |school,data=tutorial) 

or, equivalently 
lme(normexam~standlrt+gender+standlrt:gender+schgend,random=-1|school,data=tutorial). 

Random slopes on standlrt can be specified by modifying the formula for the random part as 
lme(normexam~standlrt*gender+schgend,random=~standlrt |school,data=tutorial) 

where the intercept term for school is implicit.  



Level 1 variance functions can be specified with the weights option. Thus the model with 
random slopes on standlrt and variances that differ by gender of students 

exxxxxxy ijijijjjijijjjij +×+++++= )( 215443322110 ββββββ  

u jj 000 += ββ  

u jj 111 += ββ  

xe ijij 210 αα +=  

is fitted using the syntax  
lme(normexam~standlrt*gender+schgend,random=~1 | school, 

                   weights=var | dent(form=~1 | gender),data=tutorial). 

Many other build-in variance functions are available. For instance, a level 1 variance model  

2|| 11
δδ x ij+  

corresponding to the variance function  i.e. a constant plus a power of the absolute 
value of the variance covariate standlrt is fitted as  

2
11 )||( 2δδ x ij+

weights=varConstPower(form=~standlrt). 

Notice that, for the `exam' dataset,  was held fixed at 1 using the optional argument fixed δ1

of varConstPower implying that the level-1 variance is equal to  for values of σ 2

standlrt close to zero and increases as a power of |standlrt| as standlrt increases in 
magnitude away from zero. In all cases, lme objects should be created using myfit< - call to lme. 
Then summary.lme(myfit), plot.lme(myfit) and intervals.lme(myfit) provide additional 
information on the model fit, diagnostic plots and approximate confidence intervals for all 
parameters, respectively. Each feature of the fitted model can be modified using the update.lme. 

3.2 Three-level Normal models 

The data used for illustration refer to A-level Chemistry point scores obtained by 31022 student 
with outer clustering represented by 2280 schools within 131 Local Education Authorities (LEA) in 
the example data set `chem97'. The only covariate is gcsecnt, the average GCSE score of 
students centered around its mean value. Two models have been considered and results are shown 
in Table~4. The syntax used in lme differs from the two-levels case in the expression used to 
specify the random part. Thus, for instance, the model with random terms on classes and schools  

euvy ijkjkkijk 0000 +++= β  

using the syntax  
lme(y~1, random=~1|LEA/school,data=chem97) 

and one including a fixed effect for gcsecnt has lme syntax 
lme(y~gcsecnt, random=~1|LEA/school,data=chem97). 

Parameter estimates for both models are shown in Table 4. 



3.3 Two-level models for binary data 
Data come from the 1988 Bangladesh Fertility survey and consists of a subsample of 1934 women 
grouped in 60 districts in data set `mmmec'. The response variable is contraceptive use status at the 
time of survey (binary outcome use with 1 indicating women who used contraception and 0 
otherwise). Covariates of interest were type of region of residence (variable urban with 1=urban, 
0=rural), age centred around mean (agecnt) and number of living children (livch as factor with 
`none' as the baseline category). 

Two-level models with logit or probit link functions have been fitted using the function glmmPQL 
with syntax 

glmmPQL(use~urban+agecnt+livch,random=~1 | district, 

                     family=binomial(link=logit(or probit)),data=mmmec). 

Parameter estimates are shown in Table 5. 

3.4 Growth models for repeated measures data 
Data consist in repeated measurements of height taken on 26 boys at 9 different time points in the 
example data set `oxboys'. The results from the fit of two different models are shown in Table 5. In 
particular, the polynomial growth curve  
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where t is the age of boys centred at mean, is fitted using the expression 
lme(ht~age+age2+age3+age4,random=~age+age2 | id,data=oxboys). 

The second model adds sine and cosine functions of π *season/6, sinseas and cosseas 
respectively, in the fixed part of the model where season is the season in decimal year and an 
autoregressive correlation structure of order 1 for the level 1 residuals 
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The syntax in nlme is 
lme(ht~age+age2+age3+age4+sinseas+cosseas, 

        random=~age+age2 | boy,corr=corAR1(),data=oxboys). 

3.5 Cross-classification model 
The data are on 3435 children who attended 148 primary schools and 19 secondary schools in Fife, 
Scotland in the example data set `XC'. The response variable consists of exam attainment at the age 
sixteen; children are cross-classified by the secondary school and the primary school they attended 



(indexed by j and k respectively). The only covariate considered is gender coded as 0 for boy and 1 
for girl. 

The model can be written as  

euuxy jkikjijijjki )(110)( ++++= ββ  
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In lme, crossed random-effects structures are represented and fitted as random-effects structures 
corresponding to a two-level model with a block-diagonal variance-covariance matrix with blocks 
corresponding to the cross-classifying effects (primary and secondary school in our case). First, a 
groupedData version of the data set is defined using the expression  

XCgroupedData <-groupedData(attain~sex | cons,data=XC) 

 where cons is a 3435 × 1 column vector of ones. The call to lme is then 
lme(attain~sex,random=pdBlocked(list(pdIdent(~pid-1),pdIdent(~sid-1))),data=XCgroupedData) 

where in the expression above, pid and sid contain identifying codes for primary and secondary 
schools respectively. 

Parameter estimates for this model are reported in Table 7. 

3.6 Multivariate Normal response model 
Multivariate mixed-effects models can be fitted using ad-hoc manipulation of the response vectors 
and design matrix, namely by stacking the former (within each cluster unit) and expanding the 
latter accordingly with extra columns of dummy covariates flagging each element of the original 
multivariate response.  

The data used for illustrative purposes consist of GCSE exam scores on a science subject obtained 
by 1905 students from 73 schools in England. A bivariate outcome was considered consisting of 
written paper and course work scores. Gender of student was the only covariate included (0= boy, 
1= girl). 

The model can be written as 

uvxy jkkjkjk 11101 +++= ββ  

uvxy jkkjkjk 22102 +++= αα  
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a possible way of specifying this model in lme is as follows 
               lme(score~-1+wtn+cwk+I(wtn*gender)+I(cwk*gender),random=~-1+wtn+cwk|school, 

weights=varIdent(form=~1| wtn),corr=corCompSymm(form=~1 | school/student),data=gcseex) 



where gcseex is the expanded data set obtained by stacking the two responses for each student, 
the term -1 in the fixed and random parts of the model is necessary to remove the overall intercept 
term fitted by default, the fixed effects wtn and cwk represent the population average scores for 
boys and I(wtn*gender) and I(csw*gender) are appropriate contrast terms for girls.  

Results are shown in Table 8. 

3.7 Documentation 
Documentation for R includes an online help for most of the functions, available also as one 
reference manual for on-line reading in HTML and PDF formats, five manuals that came with the 
installation (An Introduction to R, Writing R extensions, R data import/export, The R language 
definition, R installation and administration). Furthermore, there are many books available for 
S/Splus, which can be used in conjunction with R. In particular WN Venables and BD Ripley 
provide an `R Complements' to their book Modern Applied Statistics with S-PLUS, Third Edition, 
Springer, 1999 at the URL http://www.stats.ox.ac.uk/pub/MASS3/Sprog/ (the fourth edition 
released in August 2002 covers R as well). The library MASS accompanying the book comes with 
the current version of R on CRAN. At a more advanced level, the book S Programming, Springer, 
2000 by the same authors provides a guide to writing software using the S language with R-specific 
variants. 

Finally, there is a very active mailing list called R-help (details on how to subscribe are available 
on the R-project website). 

 

4 Conclusions 
R is a fast open--source clone of S-Plus that works on multiple computer platforms offering 
excellent data handling and graphical display features. It does however have a GUI with very 
limited capabilities and therefore requires some basic knowledge of command line input/output to 
get started. 

Mixed effect models for Gaussian outcome variables can be fitted in R using the package nlme 
freely available on CRAN and included in the current full distribution of the software (1.5.1). 
Models with more than two levels of nesting, cross-classified random effects as well as multivariate 
normal models can be fitted (the latter with ad-hoc manipulation of the response vectors and design 
matrix). The package is comprehensively documented in the book `Linear and nonlinear mixed-
effects models in S and S-Plus' by Pinheiro and Bates (2000). 

Generalized linear mixed models can be fitted using the function glmmPQL in the library MASS of 
the package bundle VR also available on CRAN. The syntax used for model specification is as in 
lme and parameter estimates are based on PQL. The function is documented in the fourth edition 
of the book `Modern Applied Statistics with S' by Venables and Ripley (2002). 

R is freely distributed under the GNU General Public License and available at the URL 
http://www.r-project.org. 
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Table 1: Random effects models that can and cannot be fitted in R using functions lme, nlme and glmmPQL. 
  Data/model type Estimation algorithm Max number 

of levels in 
data 

Covariates Random 
slopes 

Weighting Fitting
variance 
function 

Estimates available 

Normal response, 
Repeated Measures, 
Cross-classified, 
Multivariate Normal 
(function lme) 

Expectation-
Maximisation (EM) 
iterations followed by 
Newton-Raphson. 

Arbitrary     Yes Yes No Yes (built-in
and used-
defined). 

Maximum 
Likelihood or 
Restricted 
Maximum 
Likelihood. 

Binary/Binomial, 
Poisson, Gamma, 
Inverse Gaussian 
(function glmmPQL 
in library MASS) 

PQL coupled with 
call to estimation 
algorithm of lme 

Arbitrary      Yes Yes Yes No PQL estimates.

Negative Binomial ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ 
Nominal multinomial ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ 
Ordered multinomial ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ 
Multiple membership ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ 
Survival data ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ 
Time series ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ 
Multivariate mixed 
responses 

⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ 

Nonlinear (function 
nlme) 

Alternates between a 
penalized nonlinear 
least squares step and 
a linear-mixed-effects 
step (approximates 
the marginal 
likelihood of the 
response by that of a 
linear-mixed-effects 
model). 

Arbitrary     Yes Yes No Yes (built-in
and used-
defined). 

Maximum 
Likelihood or 
Restricted 
Maximum 
Likelihood. 

Structural Equation 
model 

⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ 

 



 
Table 2: Tools for inference and diagnostics. 
Models that can be 
fitted 

Tests for overall 
goodness of fit 

Inference on fixed 
effects 

Inference on 
random effects 

Diagnostics Other specific features 

Function lme: 
Normal response, 
Repeated Measures, 
Cross-classified, 
Multivariate Normal  

Likelihood ratio 
tests for nested 
models, Akaike 
and Bayesian 
Information 
criterions. 

t-tests for individual 
coefficients and F-tests 
for more complicated 
terms or linear 
combinations of 
coefficients; 
confidence intervals 
based on approximate 
distributions of ML or 
REML estimates. 

Likelihood ratio 
tests or simulation-
based parametric 
bootstrap; 
approximate 
confidence intervals 
for variance-
covariance 
parameters. 

Fitted values; 
Residuals; 
Predicted values; 
Normal 
probability plots; 
Semivariogram 
of within-group 
residuals; 
Various other 
diagnostic plots 
to assess 
assumptions for 
random effects. 

Patterned variance-covariate 
matrices for the random effects 
and various correlation 
structures can be specified; 
Custering can be accounted for 
by specifying correlation 
structures and variance functions 
in the gls function (many built-
in structures are available and 
the user can define his own); 
Function lmList fits separate 
linear regression models to data 
according to the levels of a 
grouping factor. 

Function nlme: 
Nonlinear mixed-
effects models 

Likelihood ratio 
tests for nested 
models, Akaike 
and Bayesian 
Information 
criterions. 

t-tests for individual 
coefficients and F-tests 
for more complicated 
terms or linear 
combinations of 
coefficients; 
confidence intervals 
based on approximate 
distributions of ML or 
REML estimates. 

Likelihood ratio 
tests and confidence 
intervals for 
variance-covariance 
parameters. 

Fitted values; 
Residuals; 
Predicted values; 
Normal 
probability plots; 
Semivariogram 
of within-group 
residuals. 

Patterned variance-covariate 
matrices for the random effects 
and various correlation 
structures can be specified; 
Custering can be accounted for 
by specifying correlation 
structures and variance functions 
in the gnls function (many built-
in structures are available and 
the user can define his own); 
Function nlsList fits separate 
nonlinear regression models to 
data according to the levels of a 
grouping factor. 

Function glmmPQL 
(library MASS): 
Generalized linear 
mixed models 

 t-tests for individual 
coefficients; 
confidence intervals 
based on approximate 
distributions. 

Approximate 
confidence intervals 
for variance-
covariance 
parameters. 

Fitted values; 
Residuals; 
Predicted values. 

Weights can be attached to level-
one units. Optional correlation 
structures can be specified. 

 



Table 3: Parameter estimates for two-level Normal models (using lme). 
Model Parameters Estimates (95% CI) Seconds to 

convergence
-2*loglik 

Fixed   
Intercept β0 -0.009(-0.162,0.143) 

standlrt β1 0.560(0.535,0.584) 
gender β2 0.167(0.100,0.234) 

Schgend (mixed vs girls’) β3 -0.159(-0.338,0.020) 
Schgend (boys’ vs girls’) β4 0.019(-0.233,0.270) 

Random   
school σ0u 0.293(0.239,0.359) 

Variance component 
with covariates 
‘standlrl’, ‘gender’ and 
‘schgend’ (0=girls’, 
1=mixed, 2=boys’) 

Residual σe 0.750(0.734,0.767) 

2 9347.67 

Fixed   
Intercept β0 -0.009(-0.162,0.143) 

standlrt β1 0.562(0.526,0.598) 
gender β2 0.167(0.100,0.234) 

Schgend (mixed vs girls’) β3 -0.159(-0.337,0.020) 
Schgend (boys’ vs girls’) β4 0.019(-0.233,0.271) 

Standlrt:gender β5 -0.005(-0.053,0.043) 
Random   

school σu0 0.293(0.239,0.360) 

Variance component 
with 
‘standlrt’*‘gender’ 
interaction 

Residual σe0 0.750(0.734,0.767) 

2  9353.20

Fixed   
Intercept β0 -0.012(-0.157,0.133) 

standlrt β1 0.550(0.500,0.601) 
gender β2 0.168(0.102,0.235) 

Schgend (mixed vs girls’) β3 -0.178(-0.342,-0.014) 
Schgend (boys’ vs girls’) β4 0.000(-0.233,0.232) 

Standlrt:gender β5 0.007(-0.051,0.065) 
Random   

σu0 0.289(0.236,0.355) 
σu1 0.123(0.091,0.167) 

4 

School,standlrt

ρu10 0.574(0.234,0.789) 

Random slopes on 
standlrt 

Residual σe0 0.742(0.726,0.758) 
 

9308.24 



Model Parameters Estimates (95% CI) Seconds to 
convergence

-2*loglik 

Fixed   
Intercept β0 -0.012(-0.157,0.133) 

standlrt β1 0.550(0.499,0.601) 
gender β2 0.169(0.102,0.235) 

Schgend (mixed vs girls’) β3 -0.178(-0.341,-0.015) 
Schgend (boys’ vs girls’) β4 0.000(-0.234,0.232) 

Standlrt:gender β5 0.007(-0.051,0.065) 
Random   

σu0 0.289(0.236,0.355) 
σu1 0.124(0.092,0.168) 

School,standlrt

ρu10 0.576(0.238,0.790) 
σe0 0.725(0.704,0.746) 

Level 1 variances by 
‘gender’ 

Residual 
σe2 0.767(0.732,0.803) 

30 9302.21 

Fixed   
Intercept β0 -0.012(-0.157,0.134) 

standlrt β1 0.550(0.500,0.601) 
gender β2 0.168(0.102,0.235) 

Schgend (mixed vs girls’) β3 -0.178(-0.342,-0.014) 
Schgend (boys’ vs girls’) β4 0.000(-0.233,0.232) 

Standlrt:gender β5 0.007(-0.051,0.065) 
Random   

σu0 0.289(0.236,0.355) 
σu1 0.123(0.091,0.167) 

School,standlrt

ρu10 0.576(0.240,0.789) 
σ 0.371(0.362,0.381) 

Level 1 variance as 
function of ‘standlrt’ 

Residual 
δ2 0.001(-0.037,0.039) 

35  9308.24

 



Table 4: Parameter estimates for three-level Normal models (using lme) 
Model Parameters Estimates (95% CI) Seconds to 

convergence 
-2*loglik 

Variance component without 
covariates 

Fixed   

 Intercept β0 5.319(5.205,5.433) 
 Random   

School (level 2) σu0 1.658(1.589,1.729)  
LEA (level 3) σv0 0.394(0.279,0.555) 

 Residual σe0 2.918(2.894,2.942) 

25  157873.8

Variance component with 
covariate ‘gcsescore’ 

Fixed   

 Intercept β0 5.635(5.574,5.696) 
 gcsescore β1 2.472(2.439,2.506) 
 Random   

School (level 2) σu0 1.080(1.035,1.127)  
LEA (level 3) σv0 0.120(0.049,0.294) 

 Residual σe0 2.270(2.252,2.289) 

25  141696.9

 



Table 5: Parameter estimates for two-level models for binary data (using glmmPQL) 
Model Parameters Estimates (95% CI) Seconds to 

convergence 
-2*loglik (PQL) 

Random intercept across 
districts (logit link) 

Fixed   

 Intercept β0 -1.660(-1.941,-1.380) 
 Urban β1 0.719(0.491,0.948) 
 Age β2 -0.026(-0.041,-0.011) 
 1 liv. children vs 0 β3 1.092(0.790,1.394) 
 2 liv. children vs 0 β4 1.354(1.021,1.688) 
 >3 liv. children vs 0 β5 1.324(0.982,1.666) 
 Random   
 District (level 2) σu0 0.457(0.330,0.632) 
 Residual σe0 0.984(0.953,1.016) 

5  8488.624

Random slope on ‘urban’  
across districts (logit link) 

Fixed   

 Intercept β0 -1.666(-1.967,-1.365) 
 Urban β1 0.791(0.470,1.113) 
 Age β2 -0.026(-0.041,-0.011) 
 1 liv. children vs 0 β3 1.099(0.796,1.401) 
 2 liv. children vs 0 β4 1.334(1.000,1.668) 
 >3 liv. children vs 0 β5 1.323(0.979,1.666) 
 Random   
 Rural σu0 0.608(0.448,0.825) 
 Urban σu1 0.797(0.509,1.250) 
 ρu10 -0.793(-0.931,-0.456) 
 Residual σe0 0.976(0.945,1.008) 

29  8519.092

Random intercept across 
districts (probit link) 

Fixed   

 Intercept β0 -1.021(-1.187,-0.854) 
 Urban β1 0.445(0.306,0.585) 
 Age β2 -0.016(-0.025,-0.007) 
 1 liv. children vs 0 β3 0.665(0.483,0.848) 
 2 liv. children vs 0 β4 0.829(0.627,1.030) 
 >3 liv. children vs 0 β5 0.809(0.603,1.014) 

6  6554.516



Model Parameters Estimates (95% CI) Seconds to 
convergence 

-2*loglik (PQL) 

 Random   
 District (level 2) σu0 0.280(0.204,0.386) 
 Residual σe0 0.985(0.954,1.017) 

  

Random slope on ‘urban’ 
across districts (probit link) 

Fixed   

 Intercept β0 -1.029(-1.209,-0.850) 
 Urban β1 0.494(0.296,0.692) 
 Age β2 -0.016(-0.025,-0.007) 
 1 liv. children vs 0 β3 0.674(0.491,0.856) 
 2 liv. children vs 0 β4 0.821(0.619,1.023) 
 >3 liv. children vs 0 β5 0.815(0.609,1.022) 
 Random   
 Rural σu0 0.373(0.276,0.506) 
 Urban σu1 0.493(0.315,0.771) 
 ρu10 -0.797(-0.932,-0.464) 
 Residual σe0 0.977(0.946,1.009) 

25  6576.054

 
 



Table 6: Parameter estimates for repeated measures ‘growth’ models (using lme). 
Model Parameters Estimates (95% CI) Seconds to 

convergence 
-2*loglik 

Fixed   
Intercept β0 148.975(145.879,152,070) 

age β1 6.166,5.461,6.870) 
age2 β2 1.090(0.395,1.785) 
age3 β3 0.467(0.145,0.790) 
age4 β4 -0.340(-0.936,0.255) 

Random   
σu0 8.000(6.062,10.558) 
σu1 1.695(1.277,2.248) 
σu2 0.8125(0.571,1.157) 
ρu10 0.613(0.305,0.804) 
ρu20 0.218(-0.220,0.583) 

Intercept, age, age2

ρu21 0.660(0.289,0.859) 

Polynomial growth model (up to 
quartic term) with random 
coefficients (up to quadratic) without 
time series 

Residual σe 0.470(0.420,0.525) 

10  629.82

Fixed   
Intercept β0 148.873(145.778,151.967) 

age β1 6.174(5.461,6.886) 
age2 β2 2.061(1.148(2.973) 
age3 β3 0.405(0.051,0.760) 
age4 β4 -1.432(-2.310,-0.555) 

sin(pi*season/6) β5 0.015(-0.088,0.118) 
cos(pi*season/6) β6 -0.223(-0.356,-0.089) 

Random   
σu0 7.993(6.053,10.553) 
σu1 1.664(1.250,2.222) 
σu2 0.764(0.506,1.155) 
ρu10 0.618(0.307,0.810) 
ρu20 0.261(-0.212,0.635) 

Intercept, age, age2

ρu21 0.702(0.265,0.900) 
ρ 0.239(-0.074,0.509) 

The model above plus sine and 
cosine functions in the fixed part and 
autocorrelation structure for level 1 
residuals of order 1 

Residual 
σδ 0.507(0.407,0.630) 

12  623.554

 



Table 7: Parameter estimates for cross-classified models (using lme). 
Model Parameters Estimates (95% CI) Seconds to 

convergence 
-2*loglik 

Fixed   
Intercept β0 5.255(4.893,5.616) 

gender β1 0.498(0.306,0.691) 
Random   

Primary school σuj 1.053(0.934,1.187) 
Secondary school σuk 0.608(0.386,0.958) 

Attainment scores of 
students cross-classified 
by primary and secondary 
school with covariate 
‘gender’ (0=boy, 1=girl) 

Residual σe 2.838(2.770,2.907) 

198  17127.91

 
 
Table 8: Parameter estimates for the multivariate Normal response model (using lme). 
Model Parameters Estimates (95% CI) Seconds to 

convergence 
-2*loglik 

Fixed   
Intercept wtn (boy) β0 49.010(47.171,50.849) 
Intercept csw (boy) α0 69.621(67.308,71.934) 

Gender wtn (girl) β1 -2.491(-3.590,-1.392) 
Gender csw (girl) α1 6.757(5.442,8.072) 

   
Random   

School wtn σv1 6.883(5.650,8.385) 
School csw σv2 8.743(7.218,10.590) 

School corr wtn,csw ρv12 0.421(0.182,0.614) 
Residual   

wtn σu1 11.158(10.784,11.544) 
csw σu2 13.423(12.862,14.007) 

Bivariate model for 
written  paper and course 
work scores by gender of 
student 

Corr wtn,csw ρu12 0.486(0.446,0.523) 

68  26794.58
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