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SUMMARY

1. We compared the capacity of logistic regression (LR) and classification tree (CT) models

to predict microhabitat use and the summer distribution of juvenile Atlantic salmon, Salmo

salar, in two reaches of a small stream in eastern Quebec.

2. The models predicted the presence or absence of salmon at a location on the basis of

habitat features (depth, current velocity, presence of instream and overhead cover,

substratum particle size, and distance to stream bank) measured at that location. Models

were validated by means of crossover field tests evaluating the performance of models

developed for one reach (calibration trials) when applied to the other reach (validation

trials). Model performance was evaluated with regard to accuracy, generality and ease of

use and interpretation. Prediction maps based on habitat features were also built to

compare the observed position of fish with those predicted by LR and CT models.

3. The spatial distribution of active fish differed markedly from that of resting fish,

apparently as a result of the selection for water greater than about 30 cm depth by active

fish and for the presence of rocky cover by resting fish.

4. All models made accurate predictions, validated by crossover trials. For both LR and CT

models, the prediction maps reflected well the actual fish distributions. However, CT

models were easier to build and interpret than LR models. CT models also had less

variable performance and a smaller decline in predictive capability in crossover trials (for

fish at rest), suggesting that they may be more transferable than LR models.
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Introduction

Habitat selection by juvenile salmonids during their

stream-dwelling phase reflects variable tradeoffs

between net energy gain and avoidance of various

risks, such as predation, stranding, and entrapment or

injury by ice. As such, habitat selection is a dynamic

and flexible process, which responds to temporal and

spatial variations in habitat conditions (Heggenes

et al., 2002). Previous studies have shown that habitat

selection in stream-dwelling fish is influenced by net

energetic gain from foraging on invertebrate drift

(Fausch, 1984; Hughes & Dill, 1990; Hill & Grossman,

1993), swimming costs associated with current velo-

city (Fausch, 1984), predation risk (Metcalfe, Hun-

tingford & Thorpe, 1987; Gotceitas & Godin, 1993;

Gregory & Griffith, 1996), agonistic interactions

(Kalleberg, 1958; Fausch & White, 1981), and the

availability of instream (Cunjak, 1988; Gries & Juanes,

1998) and overhead cover (Shirvell, 1990; Grand &

Dill, 1997). Instream structures, such as large un-

embedded rocks, can provide refuge from predators

and fast flow (Fausch, 1984) and reduce agonistic

interactions by preventing individuals seeing each

other (Kalleberg, 1958; Fausch & White, 1981).
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Many models of microhabitat selection do not

distinguish between active behaviour, such as fora-

ging, and more passive behaviour, such as resting and

sheltering. However, this distinction may be informa-

tive in some cases. For example, use of cover can vary

in space and time as a function of predation risk,

hydrological fluctuations (Gotceitas & Godin, 1993;

Giannico & Healey, 1999), or ontogenetic develop-

ment (Cunjak, 1988; Gries & Juanes, 1998). Also,

daytime sheltering by juvenile Atlantic salmon, Salmo

salar L., in summer appears to be more common than

previously thought and may be a key factor affecting

production (Gries & Juanes, 1998). Therefore, distin-

guishing between active and resting behaviour in

microhabitat models may enhance our understanding

of the habitat needs of stream salmonids and provide

more accurate predictions of their spatial distribution.

To be useful as conservation and management tools,

habitat models should be accurate (correctly predict

presence and absence), general (transferable to new

sites), and easily applied (parsimonious, readily inter-

pretable) (Lek et al., 1996; Guisan & Zimmermann,

2000). Logistic regression (LR) (Hosmer & Lemeshow,

2000) and classification trees (CT) (Breiman et al., 1984)

are powerful tools for modelling ecological data

(Manel, Dias & Ormerod, 1999; De’ath & Fabricius,

2000; Olden & Jackson, 2002). CTs offer several

advantages over conventional linear models: they can

readily detect complex interactions among predictors,

are relatively easy to conceptualise and represent

graphically, and have no distributional assumptions

(Breiman et al., 1984; Rejwan et al., 1999; De’ath &

Fabricius, 2000). Although both techniques have been

used to model habitat selection in salmonids (LR:

Rieman & McIntyre, 1995; Knapp & Preisler, 1999;

Torgersen et al., 1999; Guay et al., 2000; CT: Stoneman &

Jones, 2000), we know of no studies that directly

compare the two techniques in this context.

Validation and assessment of performance are

critical steps in developing useful models (Fielding

& Bell, 1997; Manel, Williams & Ormerod, 2001;

Olden, Jackson & Peres-Neto, 2002). Data-partitioning

techniques (Olden et al., 2002) are often used to

validate ‘internally’ a model based on statistical

properties of a single data set whenever independent

data are not available. However, examining the

predictive performance of models when applied to

new or independent data is a more rigorous, and thus

preferable, method of ‘external’ validation (Verbyla &

Litaitis, 1989; ‘prospective sampling’ sensu Fielding &

Bell, 1997). To assess model performance, many

studies of habitat selection rely solely on the percen-

tage of correctly predicted presences and absences, or

accuracy, a measure calculated from the confusion

matrix (cross-tabulated values for observed versus

predicted presence and absence). However, accuracy

may be artificially inflated when the prevalence

(frequency of occurrence) is low (Fielding & Bell,

1997). Other measures of model performance, such as

Cohen’s kappa (j), Matthews correlation (MC), nor-

malised mutual information (NMI), and odds ratio

(OR) or log-odds ratio (LOR), use the information in

the confusion matrix more effectively and allow for

assessment of the extent to which models correctly

predict occurrence at rates better than expected by

chance (Fielding & Bell, 1997; Baldi et al., 2000; Manel

et al., 2001). Two of these measures, j and NMI, have

been shown to be relatively insensitive to variation in

prevalence (Manel et al., 2001).

In this paper we develop and test quantitative

models for predicting the spatial distribution of active

and resting juvenile Atlantic salmon. For the two

types of behaviour, we: (i) compare LR and CT

models for predicting summer distributions at the

microhabitat scale, (ii) validate the models based on

crossover field tests in which models developed for

one reach (calibration trials) are applied to the other

reach (validation trials), (iii) use multiple measures of

prediction capability to assess model performance,

and (iv) build prediction maps based on instream

habitat features and compare observed fish positions

with those predicted by LR and CT models.

Methods

Study site and sampling schedule

Field work was conducted in Big Jonathan Brook

(drainage area: 98 km2), a third-order tributary of the

Grande Cascapedia River in eastern Quebec, Canada

(48�27¢20¢¢N, 66�01¢70¢¢W). Two reaches were studied,

one (R1) located approximately 100 m from the brook

mouth, 75 m a.s.l., and the other (R2) 100 m upstream

of R1. Both reaches were 75 m long and 15–20 m

wide, and encompassed sequences of riffle, run and

pool habitats (Fig. 1). Atlantic salmon, brook trout

(Salvelinus fontinalis Mitchill) and slimy sculpin

(Cottus cognatus Richardson) were present at the site.
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The sampling schedule covered a 63-day period

between 28 June (flow: 1.58 m3 s)1) and 29 August

2002 (flow: 0.55 m3 s)1). Water temperature (Vemco

thermograph recorder placed midway between the

two reaches) varied between 5.8 �C and 16.3 �C
(mean ± SD: 10.1 ± 2.1 �C) over the sampling period.

The two reaches were divided into adjacent sections

5 m in length, which were sampled in a fixed

sequence, one section at a time and alternating

between reaches, from the downstream end to the

upstream end of both reaches. For each 5-m section,

all sampling was carried out on two consecutive days:

fish observations and microhabitat measurements

were made on first day, and habitat characterisations

used to build prediction maps were made on the

second day.

Underwater fish observation and microhabitat

measurement

Atlantic salmon parr (1+ and older; 5–16 cm total

length) were observed by snorkelling, following the

protocol in Heggenes et al. (2002). Underwater visi-

bility exceeded 5 m during dives, which were always

carried out between 11:00 and 14:00 hours. Each

diving session covered one 5-m section of the reach

and lasted 60–120 min depending on the number of

fish encountered. To avoid startling fish, the diver

entered the stream 10–15 m downstream of the target

section. Within the section, the diver moved slowly

upstream in a ‘zigzag’ pattern until a fish was

encountered. The fish was then observed for 3–

5 min to ensure that it was holding a position and

was not disturbed by the diver. Species identity, total

length (nearest centimetre), distance from bottom

(nearest centimetre), and behaviour (activity or at

rest) were noted for each fish. Active fish held a

position in the water column and were observed

foraging or engaging in agonistic interactions with

other fish. Fish at rest lay on the substratum and were

largely immobile. An assistant on the shore recorded

data called by the diver, and the location of the fish

was then marked by placing a numbered rock on the

streambed.

Fig. 1 Study reaches in Big Jonathan Brook, a tributary of the Grande Cascapedia River, Quebec. Both reaches are approximately 75 m

long and 15–20 m wide. Contour lines within the study reaches represent water depth (cm). Woody debris and submerged rocks

>30 cm are also shown.
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For each reach, a subset of locations (90 locations in

R1 and 106 locations in R2, to approximately match

the number of locations with fish observations) were

randomly selected from a uniform xy grid (1 · 1 m

cells) covering the entire surface of the reach. A

selected location was marked as an ‘absence’ location

if it was not used by fish at the time of observation (no

fish seen within a radius of 50 cm of the location over

a period of at least 3 min); otherwise, it was discarded

and replaced by another randomly chosen location

not used by fish. A random subset was used because

including all of the absence locations in the reaches

would have greatly reduced prevalence, possibly

leading to an artificial increase in accuracy (Fielding

& Bell, 1997).

At each marked location, we recorded water depth,

current velocity at 15 and 40% depth (from bottom)

(pygmy-type meter; Scientific Instruments 1205,

Milwaukee, WI, U.S.A.), substratum particle size

(Wentworth scale; DeGraaf & Bain, 1986), presence

of instream cover within a 15 cm radius of the location

(unembedded rock >20 cm along the major axis,

submerged vegetation or woody debris), presence of

overhead cover (broken water surface, undercut bank,

or overhanging vegetation), and distance to the

stream bank.

Model development

All models were fit to aggregate data collected over the

63-day study period (28 June to 29 August). LR and CT

models were developed separately for each study

reach and behaviour in calibration trials (a total of

eight models: two model types · two behaviours ·
two study reaches). The models aimed at predicting

presence or absence of salmon at a location, either

active or at rest, on the basis of habitat features at the

location. An alternative approach, in which activity

and rest were integrated in a single outcome variable,

would also have been feasible (i.e. one polytomous

instead of two binary LR, and one three-group CT

instead of two two-group CT). However, models

obtained by the latter approach, although more syn-

thetic, would also be less specific and more difficult to

interpret than the models with simpler outcome

(dependent) variables (Hosmer & Lemeshow, 2000).

Logistic regression represents the probability of

occurrence, P, as a function of a linear combination of

habitat predictors, which can include single variables

as well as higher-order (quadratic and interaction)

terms:

P ¼ e
b0þ

Pk

i¼1

bixi

1 þ e
b0þ

Pk

i¼1

bixi

where the xi are single-variable or higher-order

habitat predictors, b0 is a constant, the bi are regres-

sion coefficients associated with the k predictors, and

e is the base of natural logarithms. Higher-order terms

were included among the potential predictors in the

variable selection procedure to allow for significant

nonlinear effects in addition to linear ones.

The program SYSTAT, v. 10.2, was used to build LR

models. Squared variables and all pairwise interac-

tions between single variables were included as

potential predictors. All variables were z-standard-

ised prior to calculating products of variables, to

remove non-essential collinearity in quadratic and

interaction terms and facilitate comparisons among

predictors. A stepwise selection procedure, with

nominal cut-off at P ¼ 0.05, was used to determine

which variables should be retained in the final model.

The tolerance (a measure of the amount of variation

unique to each predictor; Tabachnick & Fidell, 2000)

was >0.68 for all predictor variables in final models,

indicating only mild collinearity among predictors.

Because model performance can be highly sensitive to

the choice of prediction threshold (Fielding & Bell,

1997; Manel et al., 1999; Hosmer & Lemeshow, 2000),

an optimal decision threshold (ODT) was used, in

addition to the normal threshold of P ¼ 0.5 used in

applications of LR models, to predict presence or

absence. Receiver-operating characteristic plots were

drawn to evaluate predictive ability over all decision

thresholds in the calibration trials (Pearce & Ferrier,

2000), and the ODT was chosen to equalise the costs of

misclassifying species as present (sensitivity) or

absent (specificity) (Fielding & Bell, 1997). McFad-

den’s q2 was used as a measure of association between

P and the predictor variables in the final models. q2

tends to be much lower than R2 for multiple regres-

sion, with values in the range 0.2–0.4 considered

highly satisfactory (Tabachnick & Fidell, 2000).

The RPART3 software library (Atkinson & Ther-

neau, 2000) was used to develop CT models (S-PLUS

program, v. 6.2). RPART3 uses the binary recursive

partitioning algorithm developed by Breiman et al.
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(1984), which is the best known, most dependable and

most thoroughly tested available (Lim, Loh & Shih,

2000). Beginning with the entire data set (the ‘root

node’ at the top of the tree), the algorithm examines

all possible splits for each possible value of the

predictor variables, and selects the candidate split

(the ‘splitting value’) that maximises the homogeneity

within the two resulting subgroups, or nodes, with

respect to the response variable. We used ‘pruning’

and cross-validation to select optimal trees (Atkinson

& Therneau, 2000; De’ath & Fabricius, 2000). First, we

generated a sequence of trees of increasing size, using

a cost-complexity parameter, CP, to eliminate (‘prune

off’) splits that were obviously not worthwhile, i.e.

that did not improve the fit by at least the value of CP

(¼0.01 for all trials) (Atkinson & Therneau, 2000).

Then, 10-fold cross-validation was used to estimate

prediction error, and final tree size was determined by

the 1-SE rule, which favours the largest tree for which

the cross-validated error falls within 1 SE of the

minimum relative error determined by cross-valid-

ation (Atkinson & Therneau, 2000; Feldesman, 2002).

Given that the selected tree size will vary under

repeated cross-validation, 50 sets of 10-fold cross-

validation were run and the most frequently occur-

ring tree size was chosen (De’ath & Fabricius, 2000).

The influence of individual predictor variables was

gauged by the proportional reduction in error (PRE, a

measure of the variability accounted for by the splits

associated with each predictor in the tree), an

approach similar to the use of partial R2 to assess

the contribution of individual predictors in multiple

regression.

Model validation and assessment

Crossover field tests were used to validate models and

assess transferability. Models developed and cali-

brated with data from R1 were used to predict

presence or absence on the basis of habitat data from

R2, and vice versa, yielding a total of eight validation

trials.

To evaluate model accuracy, the following mea-

sures were obtained from the confusion matrices:

correct classification rate (CCR; percentage of all cases

correctly predicted), sensitivity (percentage of true

positives correctly predicted), and specificity (per-

centage of true negatives correctly predicted).

Four additional measures were calculated from the

confusion matrices to assess whether model perform-

ance differed from expectations based on chance

alone: j (proportion of specific agreement; range: )1

to 1), MC (range: )1 to 1), NMI (range: 0–1), and the

LOR (range: )¥ to ¥). For all measures, a value of zero

indicates no difference from random prediction. We

used the following formulae:

j ¼
ðaþdÞ� ðaþcÞðaþbÞþðbþdÞðcþdÞ

N

N � ðaþcÞðaþbÞþðbþdÞðcþdÞ
N

MC ¼ ad � cbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða þ cÞða þ bÞðb þ dÞðc þ dÞ

p

LOR ¼ ln
ad

cb

� �
;

where a (true positives), b (false positives), c (false

negatives), and d (true negatives) are the four entries

in a 2 · 2 confusion matrix, and N ¼ a + b + c + d is

the total number of cases.

Prediction maps

Prediction maps for active and resting salmon were

used to represent the spatial distribution of probabil-

ities of occurrence, predicted on the basis of habitat

features in the two reaches. As with model develop-

ment, prediction maps were built from data aggrega-

ted over the study period. Depth, current velocity,

substratum particle size, instream and overhead cover,

and distance to the stream bank were measured (as

described above, Underwater fish observation and micro-

habitat measurement) at the centre of each 1 · 1 m cell of

the xy grids. For each reach, stream flow was measured

approximately twice per week. The LR and CT models

were used to predict a binary value reflecting either

presence (1) or absence (0) for each cell of the xy grids.

For the LR models, predictions for individual cells

NMI ¼ 1 ��a lnðaÞ � b lnðbÞ � c lnðcÞ � d lnðdÞ þ ða þ bÞ lnða þ bÞ þ ðc þ dÞ lnðc þ dÞ
N ln N � ða þ cÞ lnða þ cÞ � ðb þ dÞ lnðb þ dÞ
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were made by comparing the P-value obtained based

on the habitat features of that cell to the ODT threshold.

For the CT models, predictions were made by ‘drop-

ping down’ the cells along tree branches so that

assignment of cells to terminal nodes was determined

by the habitat features of individual cells (Feldesman,

2002). Then, these binary values were smoothed to

obtain continuous values for probability of occur-

rence over the whole surface of the reaches (distance-

weighted least-squares; program SYSTAT, v. 10.2).

Results

Microhabitat models

Average habitat conditions were broadly comparable

in the two study reaches (‘Absence’ columns in

Table 1), although the pattern of spatial heterogeneity

varied between reaches, as illustrated by the differences

in depth contours (Fig. 1). In both reaches, available

cover was mostly in the form of embedded rocks

(Table 1). LR and CT models identified water depth

and the presence of an unembedded rock >20 cm as key

predictor variables (Table 2; Fig. 2). Both types of

model indicated that active salmon selected positions

based mostly on water depth and avoided shallow

sites, whereas salmon at rest selected positions behind

or alongside an unembedded rock >20 cm. However,

the LR models always retained additional predictors

beyond those retained by the CT models.

Logistic regression models differed between reaches

for a given behaviour, both in the number and identity

of predictor variables (Table 2). The final model for

active salmon included four single variables and one

quadratic term in R1, but only one variable and one

quadratic term in R2. The final model for resting salmon

included five variables and one interaction term in R1,

but only three variables and one quadratic term in R2.

When simpler linear models excluding the significant

quadratic or interaction terms were considered,

McFadden’s q2 showed declines ranging from 4.7%

(salmon at rest in R2) to 38.1% (active salmon in R2).

Only one or two variables were useful predictors in

the final CT models (Fig. 2). Final models for active

salmon were almost identical in the two reaches,

including the same single predictor (water depth) and

very similar splitting values, indicating that active

salmon were most likely to be present where water

depth exceeded 26.5–31.5 cm. For resting salmon,

final models differed slightly between reaches, but

in both reaches the most influential variable (as

reflected by PRE values) was the presence of an

unembedded rock >20 cm. Water depth also contri-

buted secondarily to prediction in R2: the second split

in the CT model indicates that even in the presence of

rocky cover, salmon were unlikely to be present if

water depth was below 19.5 cm.

Model accuracy (CCR) was similar across model

types and was slightly higher for resting than for

active salmon (Fig. 3). In calibration trials, CCR

Table 1 Fish length and habitat variables (mean ± SD) at locations used by active and resting juvenile Atlantic salmon, and unused

locations, by reach

Fish length and habitat variables

Reach 1 Reach 2

Active

(N ¼ 92)

At rest

(N ¼ 37)

Absence

(N ¼ 90)

Active

(N ¼ 46)

At rest

(N ¼ 25)

Absence

(N ¼ 106)

Fish length (cm) 10.4 ± 1.7 10.3 ± 1.3 – 9.7 ± 1.7 11.9 ± 1.6 –

Water depth (cm) 41.9 ± 14.9 28.5 ± 12.5 21.7 ± 8.8 34.3 ± 9.2 27.0 ± 12.8 18.8 ± 12.4

Current velocity at 15% depth from

bottom (cm s)1)

36.7 ± 12.2 32.1 ± 20.5 32.1 ± 20.1 51.1 ± 19.5 41.8 ± 25.7 40.3 ± 27.3

Current velocity at 40% depth from

bottom (cm s)1)

43.3 ± 14.6 40.2 ± 22.4 35.7 ± 21.8 62.4 ± 25.4 46.9 ± 23.6 43.8 ± 30.3

Substratum particle size (Wentworth scale) 8.5 ± 1.4 7.9 ± 2.4 8.2 ± 1.6 8.7 ± 2.0 9.8 ± 2.3 8.5 ± 1.6

Presence of cover (number of locations)

Rocky cover 15 28 13 5 20 11

Broken water surface 0 0 1 0 0 2

Overhanging bank 0 1 0 0 0 0

Overhanging vegetation 0 0 1 0 0 0

Submerged vegetation or wood 0 0 0 0 0 0

Distance to stream bank (m) 3.7 ± 1.2 3.3 ± 1.3 2.6 ± 1.5 3.1 ± 1.6 3.9 ± 1.8 3.8 ± 1.8
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generally exceeded 80% and variation between rea-

ches was low. In validation trials, CCR declined but

remained high (>70%) and variation in CCR between

reaches remained low. LR and CT models generally

had higher specificity than sensitivity in calibration

and in validation trials (Fig. 3). Variation in specificity

and sensitivity in validation trials was generally

higher than in calibration trials.

The four measures of model performance that

account for chance variation were strongly correlated

(Pearson correlation: mean: 0.95, range: 0.89–1.00 for

LR; mean: 0.95, range: 0.90–1.00 for CT); therefore,

graphical results are presented only for j and the LOR

(Fig. 4). Model performance was better than random

for all cases (none of the 95% confidence intervals

includes zero). Performance generally declined be-

Table 2 Coefficients of logistic regression

models for activity and resting behaviour,

by reach. Coefficients are given only for

terms retained by the stepwise selection

procedure (P < 0.05).
Model term

Active At rest

Reach 1

(N ¼ 182)

Reach 2

(N ¼ 152)

Reach 1

(N ¼ 127)

Reach 2

(N ¼ 131)

Constant 0.807 )0.673 )1.656 )1.701

Depth 3.544 3.959 0.638 –

Velocity at 40% )0.075 – – 1.155

Distance to bank 0.854 – 0.673 –

Substratum particle size – – 0.622 1.008

Rock > 20 cm 0.610 – 1.816 1.721

Depth2 – )1.756 – –

(Velocity at 40%)2 )0.497 – – )0.862

Substratum · Depth – – )0.722 –

McFadden’s q2 0.52 0.45 0.47 0.50

All models were globally significant at P < 0.0001. McFadden’s q2 is reported for each

model also.

(a) Absence versus active (reach 1)

Depth < 31.5 cm Depth < 26.5 cm

Presence of rock > 20 cm

Depth < 19.5 cm

(90/92)

(80/22) (10/70)

(106/46)

(92/8) (14/38)

(13/28)(77/9)

(90/37) (106/25)

(95/5)

(9/4) (2/16)

(b) Absence versus active (reach 2)

(c) Absence versus at rest (reach 1) (d) Absence versus at rest (reach 2)

Presence of rock > 20 cm

PRE = 0.428 PRE = 0.452

PRE = 0.354
PRE = 0.414

PRE = 0.126

(11/20)

Fig. 2 Classification tree models for predicting activity versus absence (a: reach 1; b: reach 2) and resting versus absence (c: reach 1;

d: reach 2). Vertical bars represent the frequency of absence (black) and presence (white) at each node. Splitting values and pro-

portional reduction in error (PRE) values are given on the branches of the trees. Absence/presence numbers for each node are given in

parentheses.
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tween calibration and validation trials, for all behav-

iours and model types. Performance (absolute values

and pattern of decline between calibration and valid-

ation trials) was similar for LR and CT models for

active salmon. However, performance of CT models

declined less than that of LR models in validation

trials for salmon at rest.

Prediction maps

The prediction maps clearly show that the overall

spatial distribution for active salmon (Fig. 5a–h)

differed markedly from that of salmon at rest

(Fig. 5i–p). In addition, the probability of presence

was more spatially heterogeneous for active than for

resting salmon. LR and CT often yielded similar

prediction maps which closely matched the observed

distributions (e.g. Fig. 5a,b), but differences between

model predictions arose in several trials; e.g. LR

underestimated the probability of presence of active

salmon in R1 (blue area to the left of Fig. 5e), in

contrast with CT, which provided accurate predic-

tions (Fig. 5f). Overall, however, for both types of

model the prediction maps for calibration and valid-

ation trials reflected well the actual distributions of

fish in activity and at rest.

Discussion

Microhabitat selection in active and resting fish

Final models for active and resting fish incorporated

substantially different predictor variables and yielded

different prediction maps, suggesting that models
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based solely on active behaviour such as foraging may

yield an incomplete picture of microhabitat selection

in juvenile Atlantic salmon. For example, resting

salmon can be abundant in areas predicted to have

low probability of occurrence by a model focusing on

activity (cf. Fig. 5a–p). Because of the close association

of fish at rest with rocky cover, it seems likely that

these fish were sheltering. Competitive (Kalleberg,

1958; Fausch & White, 1981) and predatory (Metcalfe

et al., 1987; Gotceitas & Godin, 1993) interactions may

drive fish to seek refuge, thereby increasing the

frequency of sheltering behaviour (Gries & Juanes,

1998). The availability of shelter may affect salmon

populations because individuals that fail to find

shelter may either be forced to emigrate or, more

likely, are eaten by predators (Metcalfe et al., 1987;

Gotceitas & Godin, 1993).

Juvenile Atlantic salmon can adapt rapidly to a

changing environment; their habitat selection beha-

viour is flexible and stream-specific, which may

therefore limit model transferability (Heggenes et al.,

2002). However, LR and CT models based on data

collected over a summer period (28 June to 29 August)

during which flow ranged between 0.55 and

1.58 m3 s)1 provided accurate predictions of habitat

selection by both active and resting fish. Fitting

habitat models to data collected over an extended

time period expands the range of environmental and

behavioural variation that must be accounted for by

the models. Possible losses in precision arising from

increased temporal variability in longer studies must

therefore be weighed against potential gains in trans-

ferability, relative to models developed from shorter

‘snapshot’ studies.

Comparison of models

The results suggest that LR and CT are suitable but

not equivalent tools for modelling distribution of

juvenile Atlantic salmon. For both types of model,

accuracy (predictive power) was high. Values of

performance measures were high in calibration trials

and declined in validation trials for both methods

(Fig. 4). In both calibration and validation trials, the

performance of LR and CT was broadly similar

(Figs 3 & 4) with the exception of the LR (P ¼ 0.5)

model for resting salmon, which had lower sensitivity

than the CT model in the validation trial (Fig. 3).

However, performance of CT in validation trials was

less variable between reaches and generally declined

less (particularly for salmon at rest) than that of LR

(Fig. 4). LR models based on the ODT had higher

sensitivity and less variable performance between

reaches than those based on the P ¼ 0.5 threshold.

Use of the ODT may thus reduce costs associated

with misclassification of true presence, i.e. those

incurred when the model incorrectly classifies as

poor (absence) a location at which a fish is actually

present.

The decline in performance between calibration and

validation trials illustrates the value of crossover field

tests in model assessment. Because it is less subject to

statistical or ecological quirks peculiar to a specific

study site, external validation provides a more rigor-

ous and realistic test of model generality than do

internal validation or, clearly, no validation at all.

Following rigorous validation by means of crossover

field tests and assessment of model performance by
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use of chance-corrected measures, we found that both

LR and CT had high prediction accuracy in calibra-

tion, and generality, as indicated by their accuracy in

crossover validation. CT models had less variable

performance and smaller decline in performance (for

salmon at rest) in validation trials, suggesting that

they may be more transferable than LR models. In

evaluating potential model transferability, however, it

must be noted that the crossover field validation in the

present study involved relatively minor changes

Fig. 5 (a–p): Prediction maps based on output of logistic regression (LR) and classification tree (CT) models for active and resting fish

in validation and calibration trials, by reach. Probabilities of occurrence predicted as a function of habitat features are coded as colour

hues (six intervals). Active and resting fish are represented by black dots. Woody debris and submerged rocks >30 cm are also shown.
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between reaches within a single stream. Clearly, more

stringent tests comparing the transferability of LR and

CT models across rivers (Mäki-Petäys et al., 2002)

would be desirable.

Logistic regression and CT models differed in ease

of use and interpretation. Building LR models

required verification of statistical assumptions, trans-

formation of variables, tolerance checks, and deter-

mination of ODTs (although not all these steps will be

needed in all instances). In contrast, CT did not

require transformation or standardisation because

they use the rank-order of a variable to determine a

split (De’ath & Fabricius, 2000). LR models were

generally more difficult to interpret than CT models

because the former retained more predictors,

including quadratic and interaction terms, and the

predictors retained for a given behaviour differed

substantially between reaches (Table 2). In compar-

ison, CT models generated simpler graphical inter-

pretations (Fig. 2), were more consistent in predictor

selection between reaches (Fig. 2), and were more

parsimonious, requiring only one or two variables to

generate predictions comparable in accuracy to those

of more complex LR models.

This study highlights the value of examining

passive behaviour in habitat selection models, as a

means for refining the description of the spatial

distribution of juvenile Atlantic salmon and identify-

ing habitat needs in relation to this behaviour.

Specifically, the spatial distribution of active fish

differed markedly from that of resting fish, apparently

as a result of differential association with habitat

features, primarily depths greater than about 30 cm

for fish in activity and rocky cover for fish at rest. Few

previous studies have found summer sheltering in

Atlantic salmon parr (e.g. Gries & Juanes, 1998), and

none seems to have examined the association between

summer spatial distribution and activity and shelter-

ing behaviour. Remarkably, relatively simple LR and

CT models for the distribution of fish in small stream

reaches sufficed to generate accurate prediction maps

(Fig. 5), which have traditionally been developed at a

larger spatial scale, by use of more complex quanti-

tative procedures (cf. Guay et al., 2000; Guensch,

Hardy & Addley, 2001). Our results indicate that, in

addition to identifying areas of favourable habitat,

prediction maps can clearly depict associations

between reach-wide horizontal patterns of spatial

distribution and specific behaviour.
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