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Abstract

We consider the problem of comparing complex hierarchical models in which the number of
parameters is not clearly defined. Using an information-theoretic argument we derive a measure
pp for the effective number of parameters in a model as the difference between the posterior
mean of the deviance and the deviance at the posterior means of the parameters of interest.
In general pp approximately corresponds to the trace of the product of Fisher’s information
and the posterior covariance, which in normal models is the trace of the ‘hat’ matrix project-
ing observations onto fitted values. Its properties in exponential families are explored. The
posterior mean deviance is suggested as a measure of fit, and the contributions of individual
observations to fit and complexity can give rise to a diagnostic plot of deviance residuals against
leverages. Adding pp to the posterior mean deviance gives a Deviance Information Criterion
(DIC) for comparing models, which is related to other information criteria and has an approx-
imate decision-theoretic justification. The procedure is illustrated in a number of examples,
and comparisons drawn with alternative Bayesian and classical proposals. Throughout it is
emphasised that the required quantities are trivial to compute in a Markov chain Monte Carlo
analysis.

1 Introduction

The development of Markov chain Monte Carlo (MCMC) has made it possible to fit increasingly
large classes of models with the aim of exploring real-world complexities of data (Gilks et al.,
1996). This ability naturally leads us to wish to compare alternative formulations with the aim of
identifying a class of succinct models which appear to describe the data adequately: for example,
we might ask whether we need to incorporate a random effect to allow for over-dispersion, what
distributional forms to assume for responses and random effects, and so on.

Within the classical modelling framework, model comparison generally takes place by defining a
measure of fit, typically a deviance statistic, and complexity, the number of free parameters in the
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model. Since increasing complexity is accompanied by better fit, models are compared by trading
off these two quantities and, following early work of Akaike (1973), proposals are often formally
based on minimising a measure of expected loss on a future replicate dataset: see, for example,
Efron (1986), Ripley (1996), and Burnham and Anderson (1998). Bayesian model comparison
using Schwarz’s information criterion as a Bayes factor approximation also requires specification
of the number of parameters in each model (Kass and Raftery, 1995), but in complex hierarchical
models, parameters may outnumber observations and these methods clearly cannot be directly
applied (Gelfand and Dey, 1994). The most ambitious attempts to tackle this problem appear in
the smoothing and neural network literature (Wahba, 1990; Moody, 1992; MacKay, 1995; Ripley,
1996). This paper suggests a measure of complexity and fit that can be combined in order to
compare models of arbitrary structure.

In the next section we use an information-theoretic argument to suggest a complexity measure
pp for the effective number of parameters in a model, as the difference between the posterior
mean of the deviance and the deviance at the posterior estimates of the parameters of interest.
This quantity can be trivially obtained from a Markov chain Monte Carlo (MCMC) analysis, and
Section 3 shows that pp is approximately the trace of the product of Fisher’s information and
the posterior covariance matrix. In Section 4 we show that for normal models pp corresponds to
the trace of the ‘hat’ matrix projecting observations onto fitted values, and illustrate its form for
different hierarchical models, while its properties in exponential families are explored in Section 5.
The posterior mean deviance D can be taken as a measure of fit, and Section 6 shows how in
exponential family models an observation’s contributions to D and pp can be used as residual and
leverage diagnostics respectively.

In Section 7 we tentatively suggest that the fit D and complexity pp may be added to form a
Deviance Information Criterion (DIC) which may be used for model comparison. We describe how
this parallels development of non-Bayesian information criteria, and has an approximate decision-
theoretic justification. In Section 8 we illustrate the use of this technique on a number of reasonably
complex examples. Finally, Section 9 draws some conclusions concerning these proposed techniques.

2 The complexity of a Bayesian model

2.1 ‘Focussed’ full probability models

Parametric statistical modeling of data y involves specification of a likelihood p(y|#), e©. For a
Bayesian ‘full probability’ model, we also specify a prior distribution p(#) which may give rise to a
marginal distribution

p(y) = /6 p(y|0)p(9)do. (0.1)

Particular choices of p(y|f) and p(@) will be termed a model ‘focussed’ on ©. Note that we might
further parameterise our prior with unknown ‘hyper-parameters’ ¢ to create a hierarchical model, so
that the full probability model factorises as p(y,0,v) = p(y,0)p(8|y)p(v)). Then depending on the
parameters in focus, the model may compose likelihood p(y|6) and prior p(6) = [ p(0|¢)p(¢)dip,
or likelihood p(y|y) = [gp(y|0)p(6|Y)dd and prior p(¢). Both these models lead to the same
marginal distribution (0.1), but can be considered as having different numbers of parameters. A
consequence is that in hierarchical modelling we cannot uniquely define a ‘likelihood’ or ‘model
complexity’ without specifying the level of the hierarchy that is the focus of the modelling exercise
(Gelfand and Trevisani, 2000). In fact by focussing our models on a particular set of parameters
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O, we essentially reduce all models to non-hierarchical structures.

For example, consider an unbalanced random-effects one-way analysis of variance focussed on the
group means:

yz|01 ~ N(eza Ti_l)a ‘91 ~ NW: )‘_1)7 1= ]-7 -y P- (02)

This model could also be focussed on the overall mean v to give
Yl ~ N (9, Ti_l + /\71)a

in which case it could reasonably be considered as having a different complexity.

It is natural to wish to measure the complexity of a focussed model, both in its own right, say to
assess degrees of freedom of estimators, and as a contribution to model choice: for example, criteria
such as BIC (Schwarz, 1978), AIC (Akaike, 1973), TIC (Takeuchi, 1976) and NIC (Murata et al.,
1994) all trade off model fit against a measure of the effective number of parameters in the model.
However, the foregoing discussion suggests that such measures of complexity may not be unique and
will depend on the number of parameters in focus. Furthermore, the inclusion of a prior distribution
induces a dependency between parameters that is likely to reduce the effective dimensionality,
although the degree of reduction may depend on the data available. Heuristically, complexity
reflects ‘difficult in estimation’ and hence it seems reasonable that a measure of complexity may
depend both on the prior information concerning the parameters in focus, and the specific data
observed.

2.2 Is there a true model?

We follow Box (1976) in believing “all models are wrong, but some are useful”. However, it can be
useful to posit a ‘true’ distribution p(Y") of unobserved future data Y conditional on the focussed
model considered, since this defines a ‘pseudo-true’ parameter value 67 (Sawa, 1978) as that which
specifies a likelihood p(Y'|#7) that minimises the Kullback-Leibler distance E”[log p” (Y)/p(Y|67)]
from p? (V). Having observed data g, under reasonably broad conditions (Berk, 1966; Bunke and
Milhaud, 1998) p(f|y) converges to §7 as information on the components of @ increases.

2.3 True and estimated residual information

The residual information in data y conditional on # may be defined (up to a multiplicative con-
stant) as —2logp(y|d) (Kullback and Leibler, 1951; Burnham and Anderson, 1998), and can be
interpreted as a measure of ‘surprise’ (Good, 1956), logarithmic penalty (Bernardo, 1979) or un-
certainty. Suppose we have an estimator é(y) of the pseudo-true parameter 7. Then the excess of
the true over the estimated residual information will be denoted

de(y,07,0(y)) = —2logp(y|67) + 21og p(y|0(y)). (0.3)

This can be thought of as the reduction in surprise or uncertainty due to estimation, or alternatively
the degree of ‘over-fitting’ due to é(y) adapting to the data y. We now argue that dg may form
the basis for both classical and Bayesian measures of model dimensionality, with each approach
differing in how it deals with the unknown true parameters in dg.
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2.4 Classical measures of model dimensionality

In a non-Bayesian likelihood-based context, we may take 9~(y) to be the maximum likelihood es-
timator 6(y), expand 2logp(y|6T) around 2logp(y|f(y)), take expectations with respect to the
unknown true sampling distribution p’'(Y’), and hence show (Ripley, 1996)[p 34]

ET e (Y,67,0(Y)| ~ p* = tr(KJ7Y), (0.4)
where ) . .
6°logp(Y,0 dlogp(Y, 0
J=—E" l%] , K =VarT l#] . (0.5)

This is the measure of complexity used in TIC (Takeuchi, 1976). Burnham and Anderson (1998)[p.
244] point out that
p* = tr(JX), (0.6)

where ¥ = J71KJ~! is the familiar ‘sandwich’ approximation to the variance-covariance matrix of
the §(y) (Huber, 1967). Note that if p” (y) = p(y|07), i.e. one of the models is ‘true’, then K = J
and p* = p, the number of independent parameters in ©.

For example, in a fixed-effect ANOVA model
y1|01 ~ N(gz, Ti_l), 7= 1, ey P

with Ti_hS known,

d@(ya eT, e(y)) = ZTl(yZ - 6?)2

i

whose expectation under p’ (V) is p* = 3; V7 (Y;). If the model is true, V7 (Y;) = 7, ' and so
p*=p.
Ripley (1996)[p 140] shows how this procedure may be extended to ‘regularised’ models in which a
specified prior term p(0) is introduced to form a penalized log-likelihood L1 = log p(y|6) + log p(6).
Replacing logp by L; in (0.5), and defining 6 as obeying 6 L1(Y,67)/66 = 0, yields a more general
definition of p* that was derived by Moody (1992) and termed the ‘effective number of parameters’.
This is the measure of dimensionality used in NIC (Murata et al., 1994): estimation of p* is generally
not straightforward (Ripley, 1996).

In the random-effects ANOVA example with §; ~ N (1, A\™1), 1, A known, let p; = 7;/(7; + \) be
the intra-class correlation coefficient in the ith group. We then obtain

p* = ZpiTiVT(Y;'), (07)

which becomes

p* = Zpi (0.8)

if the likelihood is true.
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2.5 A Bayesian measure of model complexity

From a Bayesian perspective, the unknown 7 may be relaced by a random variable 6. de(y, 6, 0(y))
can then be estimated by its posterior expectation with respect to p(f|y), denoted

bD (ya 0, é(y)) = E9|y[d® (ya 0, é(y))]
= Eg,[-2log p(y|0)] + 2log p(y|6(y))- (0.9)

»p(y, O, é(y)) is our proposal as the ‘effective number of parameters’ with respect to a model with
focus ©: we will usually drop the arguments (y, ©,6(y)) from the notation. In our examples we will
generally take 6(y) = E[f|y] = 0, the posterior mean of the parameters. However, we note that it is
not strictly necessary to use the posterior mean as an estimator of either dg or 6: see Section 2.6.

Taking f(y) to be some fully specified standardising term that is a function of the data alone, pp
may be written as

pp = D(0) — D(0) (0.10)
where

D(8) = —2logp(y|f) + 21log f(y).

We shall term D(0) the ‘Bayesian deviance’ in general and, more specifically, for members of the
exponential family with E(Y') = u(6) we shall use the saturated deviance D(6) obtained by setting

f(y) = p(y|pu(f) = y): see Section 5.

(0.10) shows that pp can be considered as a ‘mean deviance minus the deviance of the means’.
A referee has pointed out the related argument used by Meng and Rubin (1992), who show that
such a difference, between the average of log-likelihood ratios and the likelihood ratio evaluated at
the average (over multiple imputations) of the parameters, is the key quantity in estimating the
degrees of freedom of a test.

For example, in the random-effects ANOVA with 1, A known,

D) = 7i(yi — 6:)°,

7

which is -2 log(likelihood) standardised by the term —2log f(y) = Y, log QT—’: obtained from setting

0; = yi. Now O;ly ~ N(piyi + (1 — pi)i/J,pinl) and hence it can be shown that the posterior
distribution of D(€) has the form

D) ~ > pix*(1, (yi — 9)*(1 = pi)A),
where x2(a, b) is a non-central chi-square distribution with mean a+b. Thus, since p;A = (1— p;)7;,

we have
DO) =) pi+ > 7m(l—p)*wi—v)% DO) = 7(l—p)(yi — )

and so

Ti
= ;= . 0.11
PD ; pi ; > (0.11)
The effective number of parameters is therefore the sum of the intra-class correlation coefficients,
which essentially measures the sum of the ratios of the precision in the likelihood to the precision
in the posterior. This exactly matches Moody’s approach (0.8) when the model is true.
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Giving 9 a uniform hyper-prior we obtain a posterior distribution ¢ ~ N (7, (AY p;)~!), where
7= pivi/ Y pi- 1t is straightforward to show that

D) = Y pi+AY_pi(l—p)wi—0)7+ D pi(l—pi)/ Y pi
DO) = XY pi(1-pi)(yi —7)°

and so pp = > pi+ > pi(1 — pi)/ > pi. If the groups are independent, A = 0,p; = 1 and pp = p. If
the groups all have the same mean, A\ — oo, p; = 0 and pp — 1. If all group precisions are equal,
pp =14 (p — 1)p, as obtained by Hodges and Sargent (2001).

2.6

1.

Some observations on pp

Simple use of Bayes theorem reveals the expression

p(9|y)] + 2105 PO

p(9) p(6)

which can be interpreted as the posterior estimate of the gain in information provided by the
data about 6, minus the plug-in estimate of the gain in information.

PD = E0|y [—2log

. It is reasonable that the effective number of parameters in a model might depend both on the

data, the choice of focus ©, and the prior information (Section 2.1). Less attractive, perhaps,
is that pp may also depend on the choice of estimator é(y), since this can produce a lack of
invariance of pp to apparently innocuous transformations, such as making inferences on logits
instead of probabilities in Bernoulli trials. Our usual choice of the posterior mean is largely
based on the subsequent ability to investigate approximate forms for pp (Section 3), and
the positivity properties described below. Choice of, say, posterior medians would produce
a measure of model complexity that was invariant to univariate 1-1 transformations, and we
explore this possibility in Section 5.

. It follows from (0.10) and Jensen’s inequality that, when using the posterior mean as an

estimator é(y), pp > 0 for any likelihood that is log-concave in 6, with 0 being approached for
a degenerate prior on 6. Non log-concave likelihoods can, however, give rise to a negative pp in
certain circumstances. For example, consider a single observation from a Cauchy distribution
with deviance D(0) = 2log(1 + (y — 6)?), with a discrete prior assigning probability 1/11 to
0 =0, and 10/11 to # = 3. If we observe y = 0, then the posterior probabilities are changed
to .5 and .5, and so 6 = 1.5. Thus pp = D(f) — D(A) = log 10 — 2log 13/4 = log 160/169 < 0.
Our experience has been that negative pp’s indicate substantial conflict between prior and
data.

. The posterior distribution used in obtaining pp assumes the model is valid, and hence pp

may only be considered an appropriate measure of the complexity of a model that reasonably
describes the data. Thus our simple ANOVA example shows that pp (0.11) will not necessarily
be approximately equivalent to the classical p* (0.7) if the assumptions of the model are
substantially inaccurate. This suggests that, for models under serious consideration, we
should be willing to assume that p(Y|67) is a reasonable approximation to p (V).

. Since the complexity depends on the focus, a decision must be made whether nuisance pa-

rameters, for example variances, are to be included in © or integrated out before specifying
the likelihood p(y|0).
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6. pp may be easily calculated after an MCMC run by taking the sample mean of the simulated
values of D(f), minus the plug-in estimate of the deviance using the sample means of the
simulated values of #. This ease of computation should be contrasted with the frequent
difficulty within the classical framework with deriving the functional form of the measure of
dimensionality and its subsequent estimation.

pp has been defined and is trivially computable using MCMC, and so strictly speaking there
is no need to explore exact forms or approximations. However, in order to provide insight into
the behaviour of pp, the following three sections consider the form of pp in different situations
and draw parallels with alternative suggestions: note that we are primarily concerned with the
‘pre-asymptotic’ situation in which prior opinion is still influential and the likelihood has not
overwhelmed the prior.

3 Forms for pp based on normal approximations

In Section 2.1 we argued that focussed models are essentially non-hierarchical with a likelihood
p(y|0) and prior p(#). Before considering particular assumptions for these we examine the form of pp
under two general conditions: approximately normal likelihoods, and negligible prior information.

3.1 pp assuming a normal approximation to the likelihood

We may expand D(6) around Eg,[0] = 0 to give, to second order,

D) ~ D@ +(0—-0)T ‘;—?§+%<9_5)T %5(9‘5) (0.12)
= D(0)—2(0—0)"L;— (0 —6)"L3(6 - 0) (0.13)

where L = log p(y|f) = —D/2 and L' and L" represent first and second derivatives with respect to
f. This corresponds to a normal approximation to the likelihood.

Taking expectations of (0.13) with respect to the posterior distribution of 6 gives

~E[tr ((0-0)"L5(0-0))]
B [tr (L5(0-0)(0-0)")]
~tr (Ly B[(0-0)(0-0)"])

EgyD() ~ D
(4

where V = E [(0 —6)(0— 5)T} is the posterior covariance matrix of 6, and —LZ is the observed
Fisher’s information evaluated at the posterior mean of 6.

Thus
pp ~ tr (~LV), (0.14)

which can be thought of as a measure of the ratio of the information in the likelihood about the
parameters as a fraction of the total information in the likelihood and the prior. We note the
parallel with the classical p* in (0.6).
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We also note that
n_ A _ p
Lg=Q5-F;

where Q" = §2log p(8|y)/560% and P" = §21log p(0)/662, and hence (0.14) can be written
pp ~ tr (— gv) —tr (—Pei’V) .
Under approximate posterior normality V! ~ —Q’é and hence

PD A~ p— tr (—Poi’v) (0.15)

where p is the cardinality of ©.

3.2 pp for approximately normal likelihoods and negligible prior information

Consider a focussed model in which p(6) is assumed to be dominated by the likelihood, either due
to assuming a ‘flat’ prior or by increasing sample size. Assume the approximation

Oy ~ N (é, —Lg) (0.16)

holds, where 6 = 6 are the maximum likelihood estimates such that L;A = 0 (Bernardo and Smith,
1994)[Ch 5.3]. From (0.13)

~ ) NT 7! A
D) =~ D(0)—(0—0) Ly —0)
~ D(0)+ 2 (0.17)
since, by (0.16), —(6 — é)TLg (6 — 0) has an approximate chi-squared distribution with p degrees of
freedom.

Rearranging (0.17) and taking expectations with respect to the posterior distribution of 6 reveals
pp = Eqy[D(0)] — D(0) = p,

i.e., pp will be approximately the true number of parameters. This approximate identity is illus-
trated in Section 8.

We note in passing that in this context Vg, [D(6)] = 2p, so we can use MCMC output to estimate

~

the classical deviance D(0) of any likelihood-based model by

~

D) = By [D(6)] ~ 5V, [D6)] (018)

using the empirical mean and variance of the sampled values for D. Although this maximum
likelihood deviance is theoretically the minimum of D over all feasible values of 8, D(0) will generally
be very badly estimated by the sample minimum over an MCMC run, and so the estimator given

by (0.18) may be preferable.
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4 pp for normal likelihoods

4.1 The normal linear model

We consider the general hierarchical normal model described by Lindley and Smith (1972). Suppose
y~ N(A10,C1), 0~ N(Ax,C) (0.19)

where all matrices and vectors are of appropriate dimension, and C7, Cy are assumed known. Then
the standardised deviance is D(0) = (y— A10)TC ! (y — A16). Assume the posterior distribution for
6 is normal with mean 6 = Vb and covariance V: V and b will be left unspecified for the moment.
Then expressing y — A16 as y — A10 + A10 — A0 reveals that

D(0) = D(0) — 2(y — A10)"Cy A1(0 — 0) + (0 — 0)T AT CL M AL (6 - 0).

Taking expectations with respect to the posterior distribution of 6 eliminates the middle term and
gives
D = D(0) + tr(ATC A V),

and thus pp = tr(ATC71A1V). We note that ATC[ Ay is the Fisher information —L", V is the
posterior covariance matrix and hence

pp =tr (=L"V): (0.20)

an exact version of (0.14). It is also clear that in this context pp is invariant to affine transformations
of 6.

If ¢ is assumed known, then Lindley and Smith show that V~! = ATCy LA + cy 1 and hence from
(0.20)

pp =p—tr (CQ_IV> (0.21)

as an exact version of (0.15), and so 0 < pp < p, and p — pp is the measure of the ‘shrinkage’ of
the posterior estimates towards the prior means. If (C5'V)~! = ATC[1A;Cy + I, has eigenvalues
Ai+1,i=1,.. p, then
g A 0.22

PD = ; A+ 1 (0.22)
and hence the upper bound for pp is approached as the eigenvalues of Co become large, i.e. the
prior becomes ‘flat’. It can further be shown, in the case A1 = I,,, that pp is the sum of the squared
canonical correlations between data Y and the ‘signal’ 6.

4.2 The ‘hat’ matrix and leverages

A revealing identity is found by noting that b = ATCy ly and the fitted values for the data are
given by § = 410 = A1Vb = A{VATC['y. Thus the ‘hat’ matrix that projects the data onto the
fitted values is H = A, VATC!, and

pp = tr(ATC 1 A V) = tr(A VAT O Y = te(H). (0.23)

This identity also holds assuming v is unknown with a uniform prior, in which case Lindley and
Smith show that V-1 = ATCT1A; + C5 1 — Oy 1Ay (ATt Ap) AT ot
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Identification of the effective number of parameters with the trace of the ‘hat’ matrix is a standard
result in linear modelling, and has been applied to smoothing (Wahba, 1990)[p.63] and generalised
additive models (Hastie and Tibshirani, 1990)[Sec 3.5], and is also the conclusion of Hodges and
Sargent (2001) in the context of general linear models. The advantage of using the deviance
formulation for specifying pp is that all matrix manipulation and asymptotic approximation is
avoided: see Section 4.4 for further discussion. Note that tr(H) is the sum of terms which in
regression diagnostics are identified as the individual leverages, the influence of each observation
on its fitted value: we shall return to this identity in Section 6.3.

Ye (1998) considers the independent normal model
Yi ~ N(0i77—_1)7

and suggests that the effective number of parameters should be )", h;, where

0 Ey[0:]
hi(e) = —UE 0.24
the average sensitivity of an unspecified estimate 6; to a small change in y;. This is a generalisation
of the trace of the ‘hat’ matrix discussed above. In the context of the normal linear models, it is

straightforward to show that Ey4(f) = Hf, and hence pp = tr(H) matches Ye's suggestion for
model complexity. Further connections with Ye (1998) are described in Section 7.2.

4.3 Example: Laird-Ware mixed models

Laird and Ware (1982) specified the mixed normal model as
y~NXa+ Zp,Ch), B~ N(0,D),

where the covariance matrices C7 and D are currently assumed known. The random effects are S,
fixed effects are a, and placing a uniform prior on a we can write this model within the general
Lindley-Smith formulation (0.19) by setting 6 = (o, ), 41 = (X, Z),¥ = 0 and C3 as a block-
diagonal matrix with infinities in the top-left block, D in the bottom right, and zeros elsewhere.

We have already shown that in these circumstances that pp = tr[ATCT A (ATCT Ay + C51) 71,
and substituting in the appropriate entries for the Laird-Ware model gives pp = tr(V*V ~!), where

pe_ | XPorix xTer'z ] v l xTerlx  xTer'z

T | ZTor'x zTer'z zto'x zTc;'z+4+ Dt

which is the precision of the parameter estimates assuming D~! = 0, relative to the precision
assuming D is informative.

4.4 Frequentist approaches to model complexity: smoothing and normal non-
linear models

A common model in semiparametric regression is

y~N(Xa+p,77'C1), B~N(0,1"'D),
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where [ is a vector of length n of function values of the non-parametric part of an interpolation
spline (Wahba, 1990; van der Linde, 1995), and C1, D are assumed known. Motivated by the need to
estimate the unknown scale factors 7~ and A~1, for many years the ‘effective number of parameters’
has been taken to be the trace of the ‘hat’ matrix (Wahba, 1990)[p 63] and so, for example, 77! is
the residual sum of squares divided by the ‘effective degrees of freedom’ n — tr(H). In this class of
models this measure of complexity coincides with pp. Interest in regression diagnostics (Eubank,
1985; Eubank and Gunst, 1986) and cross-validation to determine the smoothing parameter 7/A
(Wahba, 1990)[Ch 4.2] also drew attention to the diagonal entries of the hat matrix as leverage
values.

A link to partially Bayesian interpolation models has been provided by G and G (1970); Wahba
(9878); Wahba (1983) and further work built on these ideas. For example, another large class of
models can be formulated using the following extension to the Lindley-Smith model:

y~ N(g(0),7 'C1), 6~ N(Axp,\'D)

where ¢ is a non-linear expression as found, for example, in pharmacokinetics or neural networks:
in many situations As will be 0 and Cy, D will be identity matrices. Define

a(8) = (y = 9(9)"Cr(y—9(8)), () = (6 — A2¢)" D (6 — Ax))

as the likelihood and prior residual variation. MacKay (1992) suggests estimating 7 and A by
maximising the ‘Type IT’ likelihood p(y|A, 7) derived from integrating out the unknown 6 from the
likelihood. Setting derivatives equal to zero eventually reveals that
0 N 0

o 00 r0)
n—DPD PD
which are the fitted likelihood and prior residual variation, divided by the effective degrees of
freedom which turns out to be equivalent to pp = tr(H).

These results were derived by MacKay (1992) in the context of ‘regularisation’ in complex inter-
polation models such as neural networks, in which the parameters 6 are standardised and assumed
to have independent normal priors with mean 0 and precision A\. Then expression (0.15) may be
written

pp ~p— A tr(V). (0.25)

However, Mackay’s use of (0.25) requires evaluation of tr(V'), while our pp arises without any addi-
tional computation. We would also recommend including A and 7 in the general MCMC estimation
procedure, rather than relying on Type II maximum likelihood estimates (Ripley, 1996)[p. 167]. In
this and the smoothing context a fully Bayesian analysis requires prior distributions for 771, \™! to
be specified (van der Linde, 2000), and this will both change the complexity of the model and re-
quire a choice of estimator of the precisions. We shall now illustrate the form of pp in the restricted

situation of unknown 71.

4.5 Normal models with unknown sampling precision

Introducing unknown variances as part of the focus confronts us with the need to choose a form for
the ‘plug-in’ posterior estimates. We may illustrate this issue by extending the general hierarchical
normal model (0.19) to the conjugate normal-gamma model with an unknown scale parameter 7
in both likelihood and prior (Bernardo and Smith, 1994)[Ch 5.2.1]. Suppose

y~ N(A10,771C1), 6~ N(Axp,7 1Cy), (0.26)



Bayesian model complexity and fit 12

and we focus on (0,7). The standardised deviance is D(0,7) = 7¢(0) — nlogr, where ¢(f) =
(y — A10)TC7 (y — A16) is the residual variation. Then, for a currently unspecified estimator 7,

pp = Eg.,[DI0,7] - D(0,7)
Erjy {Eeh,y[rq] —nlog 7':| - {i’q(?) —nlog ﬂ
= tr(H)+q(0)(T —7) — n(logT —log7) (0.27)
where H = ATC7 A1 (ATC Ay + C51) 1 is the ‘hat’ matrix which does not depend on 7. Thus
the additional uncertain scale parameter adds the second two terms to the complexity of the model.

A conjugate prior 7 ~ Gamma(a, b) leads to a posterior distribution 7|y ~ Gamma(a + 5,0+ %),
where S = (y — A1 Ao)T(C1 + AT Cy A1)~y — A1 As%). Tt remains to choose the estimator 7 to
place in (0.27), and we shall consider two options.

Suppose we parametrise in terms of 7 and use 7 = 7 = (a + 2)/(b+ 5), making the second term
in (0.27) zero. Now if X ~ Gamma(a,b), then E(log X) = 9(a) — log(b) where 1) is the digamma
function, and so logT = ¥(a + §) — log(b + g) Hence the term contributing to pp due to the
unknown precision is

pp—tulf) = —n(la+ )~ logla+))
N 2a — %
~ 2a +n

using the approximation ¥ (z) ~ logz — ﬁ - 121302. This term will tend to 1 + 1/3n as prior

information becomes negligible.

Were we to parameterise in terms of log 7 and use 7 = exp(log 7), the third term in (0.27) is 0 and
the second term can be shown to be 1 — O(n~!). Thus for reasonable sample sizes the choice of
parameterisation of the unknown precision will make little difference to the measure of complexity.
However in Section 7 we shall argue that the log scale may be more appropriate due to the better
approximation to likelihood normality.

5 Exponential family likelihoods

We assume that we have p groups of observations, where each of the n; observations in group 4
has the same distribution. Following McCullagh and Nelder (1989), we define a one-parameter
exponential family for the jth observation in the ¢th group as

log p(yij10i, ¢) = wi(yij6; — b(6:))/ P + c(yij, &), (0.28)
where

pi = E(Yi|0i,¢) = V'(0:), V(Yi16:,¢) = b"(0:)¢/wi.

If the canonical parameterisation © is the focus of the model, then writing b; = Eg,1y[b(0:)], we
easily obtain that the contribution of the ith group to the effective number of parameters is

pD: = 2nsw;(bi — b(6;))/¢. (0.29)
These likelihoods highlight the issue of the lack of invariance of pp to re-parameterisation, since the
mean parameterisation p will give a different complexity pf,,. This is first explored within simple
binomial and Poisson models with conjugate priors, and then exact and approximate forms of pp
are examined for generalised linear and generalised linear mixed models.
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5.1 Binomial likelihood with conjugate prior

In the notation of (0.28), ¢ = 1,w; = 1, and 0 = logit(u) = log[p/(1—pu)], and the (unstandardised)
deviance is

D(pi) = —2yilog pi — 2(ni — y;) log(1 — ps)
where y; = >°;yij. A conjugate prior y; = (1 + e~%)~1 ~ Beta(a,b) provides a posterior p; ~
Beta(a + yi,b + n; — y;) with mean (a + y;)/(a + b+ n;). Now if X ~ Beta(a,b), then E(logX) =
P(a) — Y(a+b), Eflog(1l — X)] = ¥(b) — ¢(a + b) where 1 is the digamma function, and hence it
can be shown that:

D(pi) = D(6;) = —2yip(a+yi) —2(ni — yi)P(b+n; —yi) + 2n¢p(a + b+ ny)
D(m) = —2yilog(a+yi) —2(n; — i) log(b+n; — yi) + 2n;log(a + b+ n;)
D@;) = —2ysp(a+ys) +2yip(b+ni — i) + 2n;log(1 4 eV (*Hv)v(Hmiu))
D(u*?) = D(6;**%) = —2y;log " — 2(n; — y;) log(1 — uf*?)

Exact pp,’s are obtainable by subtraction, and Figure 1 shows how the value of pp, depends on the
parameterisation, the data and the prior. We may also gain further insight into the behaviour of
pp,; by considering approximate formulae for the mean and canonical parameterisations by using
P(z) = logz — o= ~ log(z — 3). This leads to

P Yi o MY n;
D aty b+mni—y; a+b+n
P9 N

Di a+b+n;—3

We make the following observations. Behaviour of pp: for all three parameterisations, as the
sample size in each group increases relative to the effective prior sample size, its contribution to
pp,; tends towards 1. Agreement between parameterisations: this is generally reasonable except
in the situations in which the prior sample size is 10 times that of the data. While the canonical
parameterisation has pp, ~ 1/11, the mean and median give increased pp, for extreme prior means.
Dependence on data: with the exception of the sparse data and weak prior scenario for which the
approximate formulae do not hold, the canonical p%i does not depend on the data observed, and is
approximately the ratio of sample size to effective posterior sample size. When there is dependence
on data, pp, is higher in situations of prior/data conflict.

5.2 Poisson likelihood with conjugate prior

In the notation of (0.28), ¢ = 1,w; = 1,0 = log i1, and the (unstandardised) deviance is D(u;) =
—2y; log i + 2nip;. A conjugate prior p; = €% ~ Gammal(a, b) gives a posterior u; ~ Gamma(a +
Yi, b+ n;) with mean (a + y;)/(b+ n;). If X ~ Gamma(a,b), then E(log X) = 1(a) — log(b) and
hence we can show that

D(ps) = D(0:;) = —2yi(¢(a+yi) —log(b+ns)) + Zni%
D) = —2yi(log(a + yi) —log(b+ ni)) + 2n; EZI z;

B ew(a+yi)

D) = ~2ui(¥(a+y) — loglb+n) + iy~

D(/%med) _ D(emed) — _2% log ’umed + 2nlumed
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Figure 1: Binomial likelihood: contribution of the i¢th group to the effective number of parameters
under different parameterisations (canonical p%i, mean p%i and median pﬂed) as a function of the
data (sample size, n;, and observed proportion, y;/n;) and prior (effective prior sample size, a+b,

and the prior mean, a/(a + b) ).
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Exact pp,’s are obtainable by subtraction. Figure 2 shows how the value of pp, relates to the
parameterisation, the data and the prior. Using the same approximation as previously, approximate
pp,’s for the mean and canonical parameterisations are

o Yi
Pp. a+yi
o g
PD; b+ n;

Behaviour of pp, : for all three parameterisations, as the sample size in each group increases relative
to the effective prior sample size, its contribution to pp, tends towards 1. Agreement between
parameterisations: this is best when there is no conflict between the prior expectation and the
data, but can be substantial when such conflict is extreme. The median estimator leads to a pp,
intermediate between those derived from the canonical and mean parameterisations. Dependence
on data: except in the situation of a single y; = 0 with weak prior information, the approximation
for the canonical p%i is very accurate and so pp, does not depend on the data observed. There can
be substantial dependence for the mean parameterisation, with pp, being higher when the prior
mean underestimates the data.

In conclusion, for both binomial and Poisson data there is reasonable agreement between the
different pp,’s provided the model provides a reasonable fit to the data, i.e. there is not strong
conflict between prior and data. The canonical parameterisation appears preferable, both for its
lack of dependence on the data, and for its generally close approximation to the invariant pp, based
on a median estimator. Thus we would not normally expect the choice of parameterisation to have
a strong impact, although in Section 8.3 we present an example of a Bernoulli model where this
choice does prove to be important.

5.3 Generalised linear models with canonical link functions

Here we shall focus on the canonical parameterisation in terms of #;, both for the reasons out-
lined above and because its likelihood should better fulfill the normal approximation underlying
the optimality criterion described in Section 7.3: related identities are available for the mean pa-
rameterisation in terms of p; = w(6;). See SLATE (1994) for more refined analysis of likelihood
normality in this context.

Following McCullagh and Nelder (1989) we assume the mean p; of y;; is related to a set of covariates
x; through a link function g(u;) = z! a, and that g is the canonical link 6(u). The second order

Taylor expansion of D(6;) around D(6;) yields an approximate normal distribution for working
observations and hence derivations of Section 3 apply. We eventually obtain

pp ~ tr [XTWX V(a|y)} .
where W is diagonal with entries
w; —
Wi = —nib" (6;),
5 (6:)
the GLM iterated weights (McCullagh and Nelder, 1989, p. 40).

Under a N(ap,C2) prior on a, the prior contribution to the negative Hessian matrix at the mode
is just Cy ! so under the canonical link the approximate normal posterior has variance

Vialy) = [02_1 +XTWX]71 ,

again producing pp as a measure of the ratio of the ‘working’ likelihood to posterior information.
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Figure 2: Poisson likelihood: contribution of the ith group to the effective number of parameters
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) as a function of the
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5.4 Generalised linear mixed models

We now consider the class of generalized linear mixed models with canonical link, in which g(u;) =
zla+zI'B , where f ~ N(0, D) (Breslow and Clayton, 1993).

Using the same argument as for generalised linear models (Section 5.3), we find that
pp ~ tr (X, 2)"W(X, 2)V ((a, B)ly)] ~ tr(VV ),

where
Ve XTw-ix XxTw-lz v XTw-ix XTw—1z
|\ Z'wlx Z'wlz |0 T | ZTwWlXx ZTwWlZ+ D!

This matches the proposal of Lee and Nelder (1996) except their D! is a diagonal matrix of the
second derivatives of the prior likelihood for each random effect.

6 Diagnostics for fit and influence

6.1 Posterior expected deviance as a measure of fit

The posterior mean of the deviance Fy|, D(f)) has been used as a measure of model fit by a number of
authors: see, for example, Dempster (1974) (reprinted as Dempster (1997b)), Raghunathan (1988),
Zeger and Karim (1991), Gilks et al. (1993) and Richardson and Green (1997). These authors
have, however, not been explicit about how such a measure might be traded off against increasing
complexity of a model: Dempster (1997a) suggests plotting log-likelihoods from MCMC runs but
hesitates to dictate a model choice procedure. This issue is considered in Section 7.

6.2 Sampling-theory diagnostics for lack-of-fit

Suppose all aspects of the model were assumed true. Then before observing data Y our expectation
of the posterior expected deviance is

Ey(D) = By |Ey,D(0)] (0.30)
= By |By)[-210gp(Y]0) + 2log f(V)]]

by reversing the conditioning between Y and 0. If f(Y) = p(Y|4(Y)) where 6(Y) is the standard
maximum likelihood estimate, then

9lee PY10)
EY"’[ 2 gp(Y|é<Y>>]

is simply the expected likelihood ratio statistic for the fitted values 9(Y) with respect to the true null
model 0, and hence under standard conditions is approximately p, the dimensionality of 6. From
(0.31) we therefore expect, if the model is true, the posterior expected deviance (standardised by
the maximised log-likelihood) to be Ey (D) ~ E4[p] = p, the number of free parameters in 6. This
might be appropriate for checking the overall goodness-of-fit of the model.
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In particular, consider the one-parameter exponential family where p = n, the total sample size.
The likelihood is maximised by substituting ¥; for the mean of y;, and the posterior mean of the
standardised deviance has approximate sampling expectation n if the model is true. This will be
exact for normal models with known variance, but in general will only be reliable if each observation
provides considerable information about its mean (McCullagh and Nelder, 1989, p. 36). Note that
comparing D with n is precisely the same as comparing D(f) with n — pp, the effective degrees of
freedom.

It is then natural to consider the contribution D; of each observation i to the overall mean deviance,

so that
E = ZDZ = Zdr?
i i

where dr; = £1/D; (with sign given by the sign of (y; — E(y;|0)) ) termed the Bayesian deviance
residual, defined analagously to McCullagh and Nelder (1989) p 39. See Section 8.1 for an appli-
cation of this procedure.

6.3 Leverage diagnostics

In Section 4.1 we noted that in normal linear models the contribution pp; of each observation i to
pp turned out to be its leverage, defined as the relative influence each observation has on its own
fitted value. In general it can be shown, for y; conditionally independent given 6, that

p(0ly:) p(0]y:)
PD Oly 0og p(e) 0og

p(0)

which reflects its interpretation as the difficulty in estimating 6 with y;.

It may be possible to exploit this interpretation in general model fitting, and as a by-product of
MCMC estimation obtain estimates of leverage for each observation. Such diagnostics are illustrated
in Section 8.1.

7 A model comparison criterion

7.1 Model ‘selection’

There has been a long and continuing debate about whether the issue of selecting a model as a
basis for inferences is amenable to strict statistical analysis using, for example, a decision-theoretic
paradigm: see, for example, (Key et al., 1999). Our approach here can be considered semi-formal.
While we believe it is useful to have measures of fit and complexity, and to combine them into overall
criteria that have some theoretical justification, we also feel that an over-formal approach to model
‘selection’ is inappropriate since so many other features of a model should be taken into account
before using it as a basis for reporting inferences: for example the robustness of its conclusions, its
inherent plausibility and so on. In addition, in many contexts it may not be appropriate to ‘choose’
a single model. Our development closely follows that of Section 2.

A common characteristic to both Bayesian and classical approaches is the concept of an independent
replicate dataset Y;.p, derived from the same data-generating mechanism as gave rise to the observed
data y. Suppose that the loss in assigning to a set of data Y a probability p(Y|6) is L(Y, ). We
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assume that we shall favour models p(Y'|@) for which L(Y,#) is expected to be small, and thus a
criterion can be based on an estimate of Ey, gr [L(Yrep, é)}

A natural estimate of this quantity is the ‘apparent’ loss L(y, é(y)) suffered on re-predicting the
observed y that gave rise to 6(y). We follow Efron (1986) in defining the ‘optimism’ associated
with this estimator as

co(y,0",0(y)) = By, jor |L(Yrep,6(y))] — Ly, 6(v)) (0:31)

and assume a logarithmic loss function L(Y;0) = —2log p(Y'|0).

Both classical and Bayesian approaches to estimating the optimism will now be examined: as in
Section 2, the classical approach attempts to estimate the sampling expectation of cg, while the
Bayesian approach is based on direct calculation of the posterior expectation of cg.

7.2 Classical criteria for model comparison

From the previous discussion, approximate forms for the expected optimism
m(0") = Byjgr [co(Y,07,0(Y))]

will, from (0.31), yield criteria for model comparison based on minimising

By, o7 [L(Yoep, 0(9))] = L(y, 6(y)) + #(67). (0.32)

Efron (1986) derived the expression for (67 for exponential families and for general loss functions.
In particular, for the logarithmic loss function, Efron showed that

me(07) =23 Covl(V;,Y3), (0.33)

where Y; is the fitted value arising from the estimator 8: if @ corresponds to maximum likelihood
estimation based on a linear predictor with p parameters, then 7TE(0T) ~ 2p. Hence Efron’s result
can be thought of as generalizing Akaike (1973), who sought to minimise the expected Kullback-
Leibler distance between the true and estimated predictive distribution, and showed under broad
conditions that 7 (67) ~ 2p.

This in turn suggests that 7 /2, derived from (0.33), may be adopted as a measure of complexity in
more complex modelling situations. Ye and Wong (1998) extend the work mentioned in Section 4.2
to show that mg/2 for exponential families can be expressed as a sum of the average sensitivity of
the fitted values ¢; to a small change in g;: this quantity is termed by Ye and Wong the ‘generalised
degrees of freedom’ when using a general estimation procedure. In normal models with linear
estimators 7; = 6;(y) = > hijyj, and so 7(6T) = 2tr(H). Finally, Ripley (1996) extends the
analysis described in Section 2.4 to show that if the assumed model is not true then 7(67) = 2p*,
where p* is defined in (0.4). See Burnham and Anderson (1998) for a full and detailed review of
all aspects of estimation of 7 (67).

These classical criteria for general model comparison are thus all based on (0.32), and can all
be considered as corresponding to a ‘plug-in’ estimate of fit, plus twice the effective number of
parameters in the model. We shall adapt this structure to a Bayesian context.
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7.3 Bayesian criteria for model comparison

Gelfand and Ghosh (1998) and Laud and Ibrahim (1995) both attempt strict decision-theoretic
approaches to model choice based on expected losses on replicate datasets. Our approach is more
informal, in aiming to identify models that best explain the observed data, but with the expectation
that they are likely to minimise uncertainty about observations generated in the same way. Thus,
in analogy to the classical results described above, we propose a Deviance Information Criterion
(DIC), defined as a ‘plug-in’ estimate of fit, plus twice the effective number of parameters, to give

DIC = D(6)+2pp
= D+pp
by definition of pp (0.10). From the results in Section 3.2, we immediately see that in models with
negligible prior information DIC will be approximately equivalent to Akaike’s criterion.

An approximate decision-theoretic justification for DIC can be obtained by mimicing the develop-
ment of Ripley (1996)[p33] and Burnham and Anderson (1998)[Ch 6]. Using the logarithmic loss
function in (0.31), we obtain

co(y,0",0(y)) = Ey,,, o7 [Drep(0)] — D(6)
where —21og p(Yrep|@(y)) is denoted D,.p(6) and so on. cg can be broken down into
co = By, o7 [Drep(0) = Drep(6")] + By, jor [Drep(6") = D(67)] + [D(67) = D(B)].  (0.34)

We shall denote the first two terms by L; and Lo respectively and, since we are taking a Bayesian
perspective, replace the ‘true’ 7 by a random quantity 6.

Expanding the first term to second order gives

L1(9, é) ~ EYrep|l9[_2(é - O)TL;"ep,é’ - (é - Q)TL;{ep,B(é - 0)]

where Lyepp = logp(Yrep|0). Since Ey,, j9[Ly, ¢] = 0 from standard results for score statistics, we
obtain after some rearrangement

L1(6,6) ~ tr (I(0 — 0)(§ - 0)7)

where Iy = EYrepw[_L;’Iep,o] is the Fisher information in Y,.,, and hence also in y. This might

reasonably be approximated by the observed information at the estimated parameters, so that

L1(0,6) ~ tr (—Ly(0 - 0)(@ - 0)7). (0.35)

Suppose that under a particular model assumption we obtain a posterior distribution p(6|y). Then
from (0.34) and (0.35) our posterior expected optimism when adopting this model and the estimator
0 is

Egyylco] ~ tr (—Lj Bgy, (9 — 6)(0 — 0)T) + Eg, La(y, 6) + Eey, [D(6) — D(B).

Using the posterior mean 6 as our estimator makes the expected optimism

Epyylco] ~ tr (—LV') + Eg, La(y, 0) + pp, (0.36)
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where V' again is defined as the posterior covariance of #, and pp = D — D(). Now Ly(y,0) =
Ey, . 10[=2log p(Yrep|0)] + 2logp(y|0), and so EyEgyLa(Y,0) = EgEygL2(Y,0) = 0. We have
already shown in (0.14) that pp =~ tr (—L%’V), and hence from (0.31) and (0.36) the expected
posterior loss when adopting a particular model is

Ey|,lco] + D(@) ~ 2pp + D(B) = DIC

plus a term expected to be zero.

We make the following observations concerning this somewhat heuristic justification of DIC. First,
for the general normal linear model (0.19), it is straightforward to show that La(y,0) = p —
(y — 410)TC Yy — A10) where p is the dimensionality of 6, and hence for true § has sampling
distribution p — Xﬁ with mean 0 and variance 2p. This parallels the classical development, in which
Ripley (1996)[p 34] points out that the equivalent term is O(y/n).

Second, this development draws heavily on the approximations in Section 3, and hence encourages
parameterisations in which likelihood normality is more plausible.

8 Examples

pp and DIC have already been applied by other researchers in a variety of contexts, such as
alternative models for diagnostic probabilities in screening studies (Erkanli et al., 1999), longitudinal
binary data using Markov regression models (Erkanli et al., 2001), spline models with Bernoulli
responses (Biller and Fahrmeir, 2000), multi-stage models for treatment usage which combine to
form a total DIC (Gelfand et al., 2000), complex spatial models for Poisson counts (Green and
Richardson, 2000), pharmacokinetic modelling (Rahman et al., 1999), and structures of Bayesian
neural networks (Vehtari and Lampinen, 1999). The following examples illustrate the use of pp
and DIC to compare alternative prior and likelihood structures.

8.1 The spatial distribution of lip cancer in Scotland

We consider data on the rates of lip cancer in 56 counties in Scotland (Clayton and Kaldor, 1987,
Breslow and Clayton, 1993). The data include observed (y;) and expected (E;) numbers of cases
for each county ¢ (where the expected counts are based on the age- and sex-standardised national
rate applied to the population at risk in each county) plus the ‘location’ of each county expressed
as a list (A;) of its n; adjacent counties. We assume that the cancer counts within each county y;
follow a Poisson distribution with mean e E; where e’ denotes the underlying true area-specific
relative risk of lip cancer. We then consider the following set of candidate models for 6;, reflecting
different assumptions about the between-county variation in (log) relative risk of lip cancer:

Model 1: 91 = QO

Model 2: 0; = ap+ Yi
Model 3: 0; = a«ag+9;
Model 4: 0; = ag+ v+ 6
Model 5: 6; = oy

An (improper) uniform prior is placed on «p, independent (proper) Normal priors with large vari-
ance are specified for each o;(i = 1, ...,56), y; are exchangeable random effects with a Normal prior
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Figure 3: Posterior distributions of the deviance for each model considered in the lip cancer example

distribution having zero mean and precision A\, and d; are spatial random effects with a conditional
autoregressive prior (Besag, 1974) given by

1 1
d;|6\; ~ Normal(— iy——) -
’Ll \ (nz ; J nl)\é)

A sum-to-zero constraint is imposed on the {4;} for identifiability purposes, and weakly informative
Gamma(0.5, 0.0005) priors are assumed for the random effects precision parameters A, and A;
respectively. These five models cover the spectrum between a pooled model (1) that makes no
allowance for variation between the true risk ratios in each county, to the saturated model (5) that
assumes independence between the county-specific risk ratios (essentially yielding the maximum
likelihood estimates 6; = log(y;/E;). The random effects models 2—4 allow the county-specific
relative risks to be similar but not identical, with the autoregressive term allowing for the possibility
of spatially correlated variation.

We use the saturated deviance (McCullagh and Nelder, 1989)[p 34]

D(6) =2%; [yi log(yi/e® Bi) — (yi — e‘gl‘Ei)} obtained by taking —2log f(y) = —2 ¥;log p(yi|6i) =
208.0 as the standardising factor (see Section 2.5). For each model we ran two independent chains
of an MCMC sampler in WinBUGS (Spiegelhalter et al., 2000) for 15000 iterations each, following
a burn-in period of 5000 iterations. As suggested by Dempster (1997a), Figure 3 shows a kernel-
density smoothed plot of the resulting posterior distributions of the deviance under each competing
model. Apart from revealing the obvious unacceptability of Model 1, this clearly illustrates the
difficulty of formally comparing posterior deviances on the basis of such plots alone.

The deviance summaries proposed in this paper are shown for the lip cancer data in Table 1: D is
simply the mean of the posterior samples of the saturated deviance; D(f) is calculated by plugging
the posterior mean of y; = €% E; into the saturated deviance; D(f) is calculated by plugging the
posterior means of the relevant parameters (ag, a, y; and/or ¢;) into the linear predictor 6; and then
evaluating the saturated deviance; and D(med) is calculated by plugging the posterior median of 6;
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Model D D(m) py DIC* | D@®) pf DICY | D(med) pped DIC™ed
1 pooled 381.7 [ 380.7 1.0 382.7 | 380.7 1.0 382.7 | 380.7 1.0 3827
2 exch 61.1 |18.2 429 104.0 | 17.7 434 104.5 | 17.6 43.5  104.6
3 spat 58.3 |26.6 31.7 89.9 |27.1 31.2 89.5 |27.2 31.1  89.3
4 exch+spat | 57.9 | 26.1 31.8 89.7 | 265 314 89.3 |26.6 31.3  89.2
5 saturated |55.9 |0.0  55.9 111.7 [ 3.1  52.8 108.6 | 1.4 54.5 110.4

Table 1: Deviance summaries for lip cancer data using three alternative parameterisations (mean,
canonical and median) for the ‘plug-in’ deviance: ‘exch’ means an exchangeable random effect,
‘spat’ is a spatially correlated random effect.

(or equivalently, of y;) into the saturated deviance. The results are remarkably similar for the three
alternative parameterisations of the plug-in deviance. For fixed effects models we would expect from
Section 3.2 that pp should be approximately the true number of independent parameters. For the
pooled model (1), pp = 1.0 as expected, while for the saturated model (5), pp ranges from 52.8 to
55.9 depending on the parameterisation used, which is close to the true value of 56 parameters. The
models containing spatial random effects (either with or without additional exchangeable effects)
both have around 31 effective parameters, while the model with only exchangeable random effects
has about 12 additional effective parameters. Based on the results of Section 5.2 comparing pp
for Poisson likelihoods with different priors, this suggests that the spatial model provides stronger
prior information than the exchangeable model for these data.

Turning to the comparison of DIC for each model, we first note that DIC is subject to Monte Carlo
sampling error, since it is a function of stochastic quantities generated under an MCMC sampling
scheme. Whilst computing the precise standard errors for our DIC values is a subject of ongoing
research, the standard errors for the D values are readily obtained, and provide a good indication
of the accuracy of DIC and pp. In any case, in several runs using different initial values and
random number seeds for this example, the DIC and pp estimates obtained never varied by more
than 0.5. As such, we are confident that, even allowing for Monte Carlo error, either of Models 3
or 4 are superior (in terms of DIC performance) to models 2 or 5, which are in turn superior to
model 1. Comparison of DIC for models 3 and 4 suggests that the two spatial models are virtually
indistinguishable in terms of overall fit: pragmatically, we might prefer reporting Model 3 (spatial)
since its DIC is only marginally greater than the more complex Model 4.

Considering now the absolute measure of fit suggested in Section 6.2, we compare the values of D
in Table 1 with the sample size n = 56. This suggests that all models except the pooled model 1
provide an adequate overall fit to the data, and that the comparison is based on their complexity
alone.

Following the discussion in Section 6, Figure 4 shows a plot of deviance residuals dr; against
leverages pp; for each of the five models considered. The dashed lines marked on each plot are
of the form z? + y = ¢ and points lying along such a parabola will each contribute an amount
DIC; = ¢ to the overall DIC for that model. For models 2-5, parabolas are marked at values of
c =1, 2 and 5, and any data point whose contribution DIC; > 2 is labelled by its observation
number. For model 1, parabolas are marked at ¢ = 1, 10 and 50, since the size of the deviance
resiudals and individual contributions to DIC are much larger. For clarity, only points for which
DIC; > 10 are marked by their observation number. Observations 55 and 56, the only counties with
y; = 0, are clearly identified as potential outliers under each of the random effects models 2-4, as
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Figure 4: Diagnostics for lip cancer example: residuals vs leverages.

is observation 1 (the county with the highest observed risk ratio y;/E;). A few other observations
(2, 3, 4, 53, 54) have contributions DIC; just larger than 2 under model 2: with the exception of
the three counties already discussed, these five counties have the most extreme observed risk ratios
and so their estimates tend to be shrunk furthest under the exchangeable model. Observations
14, 15, 45 and 50 appear to be outliers in models 3 and 4 which have a spatial effect, but not in
the remaining models. Further investigation reveals that the observed risk ratios in these counties
are extreme compared to those in each of their neighbouring counties. For example county 50 has
only 6 cases compared to 19.6 expected, whilst each of its three neighbouring counties have high
observed counts (17, 16, 16) relative to expected (7.8, 10.5, 14.4). The spatial prior in models 3 and
4 causes the estimated rate in county 50 to be smoothed towards the mean of its neighbours’ rates,
thus leading to the discrepancy between observed and fitted values. However since the observation
still exercises considerable weight on its fitted value the leverage is high as well. Overall, we might
not consider there is sufficient evidence to cast doubt on any particular observations.

8.2 Robust regression using the stack loss data

Spiegelhalter et al. (1996)[pp.27-29] consider a variety of different error structures for the oft-
analyzed stack loss data of Brownlee (1965). Here the response variable (y), the amount of stack
loss (escaping ammonia in an industrial application), is regresssed on three predictor variables: air
flow (z1), temperature (z32), and acid concentration (x3). Assuming the usual linear regression
structure

wi = Po + Przin + Paziz + B3zi3
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where 2;; = (z4j— . j)/sd(z ;), the standardized covariates, the presence of a few prominent outliers
amongst the n = 21 cases motivates comparison of the following four error distributions:

Model 1: y; ~ Normal(u;, 771)
Model 2: y; ~ DE(u;, 77 1)
Model 3: y; ~ Logistic(u;, 771)
Model 4:  y; ~ tg(ps, 7 1)

where DE denotes the double exponential (Laplace) distribution, and ¢4 denotes the Student’s ¢
distribution with d degrees of freedom.

A well-known alternative to direct fitting of many symmetric but nonnormal error distributions is
through scale mixtures of normals (Andrews and Mallows, 1974). From p.210 of Carlin and Louis
(1996), we have the alternate t4 formulation

Model 5:  y; ~ Normal(u;, w%T), w; ~ éx?j = Gamma(%, %) )

Unlike our other examples the form of the likelihood changes with each model, so we must use the
full normalizing constants when computing —2log p(y|u, 7).

Model D D@ pp DIC
1 Normal 110.1 105.0 5.1 115.2
2 DE 107.9 102.3 5.6 113.5
3 Logistic 109.5 104.2 5.3 114.8
4ty 108.7 103.2 55 114.2
5 t4 as scale mixture | 102.1 94.5 7.6 109.7

Table 2: Deviance results for stack loss data.

Following Spiegelhalter et al. (1996) we set d = 4, and for each model we placed essentially flat priors
on the 3; (actually normal with mean 0 and precision 0.00001) and log7 (actually Gamma(0.001,
0.001) on 7), and ran the Gibbs sampler in BUGS for 5000 iterations following a burn-in period of
1000 iterations.

Replacing 7 and w; by their posterior means where necessary for the D(0) calculation, the resulting
deviance summaries are shown in Table 2 (note that the mean parameterisation and the canonical
parameterisation are equivalent here, since the mean p; is a linear function of the canonical 3
parameters). Beginning with a comparison of the first four models, the estimates of pp are all just
over 5, the correct number of parameters for this example. The DIC values imply that Model 2
(double exponential) is best, followed by the ¢4, the logistic, and finally the normal. Clearly this
order is consistent with the models’ respective abilities to accommodate outliers.

Turning to the normal scale mixture representation for the t4 likelihood (Model 5), the pp value is
7.6, suggesting that the w; random effects contribute only an extra 2 to 2.5 parameters. However,
the model’s smaller DIC value implies that the extra mixing parameters are “worth it” in an overall
quality of fit sense. We emphasize that the results from Models 4 and 5 need not be equal since,
while they lead to the same marginal likelihood for the y;, they correspond to different prediction
problems.

Finally, plots of deviance residuals versus leverages (not shown) clearly identify the observations
determined to be ‘outlying’ by several previous authors analysing this dataset.
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Canonical parameterisation Mean parameterisation
Model ‘ D | D) pp DIC | D)) pp DIC
1 logit 1166.4 | 917.7 248.7 1415.1 997.5 168.9 1335.3
2 probit | 1148.6 | 885.9 262.7 1411.3 989.9 158.7 1307.3
3 cloglog | 1180.9 | 956.5 224.4 1405.3 1013.7 167.2 1348.1

Table 3: Results for both parameterisations of Bernoulli panel data

8.3 Longitudinal binary observations: the Six Cities study

To illustrate how the mean and canonical parameterisations (introduced in Section 5 and further
discussed in Section 9) can sometimes lead to different conclusions, our next example considers a
subset of data from the Six Cities study, a longitudinal study of the health effects of air pollution:
see Fitzmaurice and Laird (1993) for the data and a likelihood-based analysis. The data consist
of repeated binary measurements y;; of the wheezing status (1=yes, 0=no) of child ¢ at time j,
1 =1,...,1, j = 1,...J, for each of I = 537 children living in Stuebenville, Ohio at J = 4
timepoints. We are given two predictor variables: a;;, the age of child ¢ in years at measurement
point j (7, 8,9, or 10 years), and s;, the smoking status of child i’s mother (1=yes, 0=no). Following
the Bayesian analysis of Chib and Greenberg (1998), we adopt the conditional response model

Yi; ~ Bernoulli(p;;)
pij = Pr(Yiy=1) = g~ (uy)
i = PBo+ Przij1 + Pazije + Bazijz + bi

where Zijk = ('Tijk - :ﬁ“k), k= 1,2, 3, and Tij1 = Q45, Tj52 = Sq, and L33 = QjjSiy & smoking—age
interaction term. The b; are individual-specific random effects, initially given an exchangeable
N (0, A1) specification, which allow for dependence among the longitudinal responses for child i.
The model choice issue here is to determine the most appropriate link function g(.) among three
candidates, namely the logit, the probit, and the complementary log-log. More formally, our three
models are

Model 1:  g(pi;) = logit(pi;) = log[pi; /(1 — pi;)]

Model 2:  g(pi;) = probit(p;;) = <I>_1(pij)

Model 3:  g(pi;) = cloglog(pi;) = log[—log(1 — p;;)]
Since the Bernoulli likelihood is unaffected by this choice, in all cases the deviance takes the simple
form

D = -2 [yijlog(pi;) + (1 — yij) log(1 — pi)] -
i,

Placing flat priors on the 8, a Gamma(0.001, 0.001) prior on A, and running the Gibbs sampler for
5000 iterations following a burn-in period of 1000 iterations produces the deviance summaries in
Table 3 for the canonical and mean parameterisations, respectively: the canonical parameterisation
constructs @ as the mean of the linear predictors 3 and b;, and then uses the appropriate linking
transformation (logit, probit, or cloglog) to obtain the imputed means for the p;;. The mean
parameterisation simply uses the means of the p;; themselves when computing D(0). Natarajan
and Kass (2000) have pointed out potential problems with the Gamma(0.001, 0.001) prior on A,
but in this context the 537 random effects ensure that these findings are robust to the choice of

prior for A.
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The standard deviation of the random effects VA~T is estimated to be 2.2 (standard deviation
.2), which indicates extremely high unexplained overdispersion and hence considerable prior/data
conflict: this should warn us of a potential lack of robustness in our procedure. We have a sample
size of 4 for each of I = 537 individuals, and an average pp, for the canonical parameterisation
of around .4 to .5. This indicates a prior sample size of around 4 to 6. Referring to the evidence
in Figure 1 concerning low sample sizes, we would expect the mean parameterisation to display
decreased complexity compared with the canonical, and this is borne out in the results. DIC
prefers the cloglog link under the canonical parameterisation, but the probit link under the mean
parameterisation. We repeat that we prefer the canonical results due to the improved normality of
the likelihoods and their lack of dependence on observed data: however none of the models appear
to explain the data very well, and the lack of consensus suggests caution in using any of the models.

9 Discussion

Here we briefly discuss relationships to other suggestions, and give some guidance as to practical
use of the techniques described in this paper.

9.1 Relationship of pp and DIC to other suggestions

1. Cross-validation: Stone (1977) shows the asymptotic equivalence of model comparison
based on cross-validation and AIC, while Wahba (1990)[p 52| shows how a generalised cross-
validation criteria leads to the use of n — tr(H) as a denominator in estimation of residual
mean-squared error. We would expect our measure of model complexity pp to be strongly
related to cross-validatory assessment, but this requires further investigation.

2. Other predictive loss functions: Kass and Raftery (1995) criticise Akaike (1973) for
using a plug-in predictive distribution as we have done in Section 7.3, rather than the full
predictive distribution obtained by integrating out the unknown parameters. Criteria based
on this predictive distribution is also invariant to re-parameterisations. Laud and Ibrahim
(1995) and Gelfand and Ghosh (1998) suggest minimising a predictive “discrepancy measure”
E[d(Ynew; y)|y], where Ye is a draw from the posterior predictive distribution p(Yyew|y),
and we might for instance take d(Ynew,¥) = (Ynew — ¥)7 (Ynew — ). These authors show
their measures also have attractive interpretations as weighted sums of “goodness of fit”
and “predictive variability penalty” terms. However, proper choice of the criterion requires
fairly involved analytic work, as well as several subjective choices about the utility function
appropriate for the problem at hand. Furthermore, the one-way ANOVA model in Section 2.5
gives rise to a fit term equivalent to D(f), and a predictive variability term equal to pp + p.
Thus their suggestion is equivalent in this context to comparison by D which, although
invariant to parameterisation, does not seem to sufficiently penalize complexity.

In general the use of a ‘plug-in’ estimate appears to ‘cost’ an extra penalty of pp.

3. Bayes factors: These are criteria based on comparison of the marginal likelihoods (0.1)
(Kass and Raftery, 1995), and a common approximation is the Bayes (or Schwarz) information
criterion(Schwarz, 1978) , which for a model with p parameters and n observations is given
by BIC = —2logp(y|f) + plogn. Bernardo and Smith (1994)[Chapter 6] argue that this
formulation may only be appropriate in circumstances where it was really believed one and
only one of the competing models were in fact ‘true’, and the crucial issue was to choose this
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correct model, and that in other circumstances criteria based on short-term prediction, such
as cross-validation, may be more appropriate. We support this view, and refer to Han and
Carlin (2001) for a review of some of the computational and conceptual difficulties in using
Bayes factors to compare complex hierarchical models.

9.2 Practical issues in using DIC

1. Invariance. pp may be only approximately invariant to the chosen parameterisation, since
different fitted deviances D(#) may arise from substituting posterior means of alternative
choices of 8. The example in Section 8.3 shows this choice could be important with Bernoulli
data.

In Section 5 we explored the use of the posterior median as an estimator leading to an invariant
pp- This has two possible disadvantages: we do not have a proof that pp will be positive, and
computational difficulty. In addition the approximate properties based on Taylor expansions
in Section 3 may not hold, although this may be only of theoretical interest. Currently we
recommend calculation of DIC based on a number of different estimators, with a preference
for posterior means based on parameterisations obeying approximate likelihood normality.

2. Focus of analyis. As we see in the stacks example of Section 8.2, there may be sensitivity to
apparent innocuous re-structuring of the model: this is to be expected since by making such
changes one is altering the definition of a replicate dataset, and hence one would expect DIC
to change. For example, consider a model comprising a mixture of normal distributions. If
this assumption was solely to obtain a flexible functional form, then the appropriate likelihood
would comprise the mixture. If, however, one were interested in the membership of individual
observations, then the likelihoods would be normal and the membership variables would
contribute to the complexity of the model. Thus the focus of a model should ideally depend
on the purpose of the investigation, although in practice it is likely that the focus may be
chosen on computational grounds as providing likelihoods available in closed form.

3. Nuisance parameters. Strictly speaking, nuisance parameters should first be integrated
out to leave a likelihood depending solely on parameters in focus. In practice, however,
parameters such as variances are likely to be included in the focus and add to the estimated
complexity: we would recommend posterior means of log-variances as estimators.

4. What is an important difference in DIC? Burnham and Anderson (1998) suggest models
receiving AIC within 1-2 of the ‘best’ deserve consideration, and 3-7 have considerably less
support: these rules of thumb appear to work reasonably well for DIC. Certainly one would
like to ensure that differences are not due to Monte Carlo error: while this is straightforward
for D, Zhu and Carlin (2000) explore the difficulty of assessing the Monte Carlo error on DIC.

5. Asymptotic consistency As with AIC, DIC will not consistently select the ‘true’ model
from a fixed set with increasing sample sizes. We are not greatly concerned about this: we
neither believe in a ‘true model’ nor would expect the list of models being considered to
remain static as the sample size increased.

In conclusion, our suggestions have a similar ‘information-theoretic’ background to frequentist
measures of model complexity and criteria for model comparison, but are based on expectations
with respect to parameters in place of sampling expectations. DIC can thus be viewed as a Bayesian
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analogue to AIC, with a similar justification but wider applicability. It is also applicable to any
class of model, involves negligible additional analytic work or Monte Carlo sampling, and appears
to perform reasonably across a range of examples. We feel that pp and DIC deserve further
investigation as tools for model comparison.
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