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Preface

The earliest version of this book was a set of lecture notes for a block course in
Survival Analysis in the program, Nachdiplomkurs in angewandter Statistik
(post graduate course in applied statistics), at the Swiss Federal Institute of
Technology (ETH), Ziirich, Summer 1999. This particular block is allotted five
half-day sessions delivered on three consecutive Mondays. Each half-day ses-
sion consists of two 45 minutes lectures followed by an hour and half computer
lab where first S, but now R is the required statistical computing language.

This course’s diverse audience has minimally two attributes in common, a
university diploma (equivalent to Master’s degree) and a desire to learn data
analytic tools and statistical methodologies to be applied in their work places
and in research areas such as plant science, biological science, engineering and
computer sciences, medical science, epidemiology and other health sciences,
statistical science, and applied mathematics.

This book is written with two main goals in mind: to serve the diverse audience
described above and to teach how to use and program in S/R to carry out sur-
vival analyses. However, the pedagogic style can serve as a self-learning text
and lends itself to be used for a WebCT course as S/R code and output are
woven into the text. Throughout the book, we emphasize exploratory data an-
alytic tools. The S functions written by the authors and the data sets analyzed
are available for download at the publisher’s website, www.crcpress. com. The
R language is the “free” S and is available to the public for download at
Wwww.r-project.org.

This book attempts to introduce the field of survival analysis in a coherent
manner which captures the spirit of the methods without getting too embroiled
in theoretical technicalities. Hence, the minimum prerequisites are a standard
pre-calculus first course in probability and statistics and a course in applied
linear regression models. No background in S/R is required.

The book offers two types of exercises: A and B. Type A, titled Applications,
is designed for students with minimum prerequisites in mind. Type B, titled
Theory and WHY! is designed for graduate students with a first course in
mathematical statistics; for example, Hogg and Craig (1995). Students who
had a course in applied probability models, for example Ross (2000), have an
opportunity to apply knowledge of stochastic integrals and Gaussian processes.

xiii
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The WHY! is our trademark and we use it throughout. These exercises also
help students to practice their skills in mathematical proofs.

For an overview of chapter by chapter material, read our table of contents.
We purposely designed it to highlight the key methods and features contained
in each chapter. We devote a good portion of the text to resurrect the impor-
tance of using parametric models, as they can be very useful for prediction and
in small sample settings. The newer, very flexible nonparametric procedures
along with model building and data diagnostics are carefully detailed. Further-
more, we discuss cut point analysis so often desired by medical researchers. We
introduce bootstrap validation of cut point analysis, which shows its robust-
ness. This also provides a useful guide to decide whether or not to discretize a
continuous prognostic factor. We compare a Cox PH model and an extended
Cox model and provide an S program that incorporates time-dependent co-
variates based on a counting process formulation. Competing risks and the
necessity of the cumulative incidence estimator are succinctly discussed. Al-
though our emphasis is analyzing right-censored data, we provide an analysis
of left-truncated and right-censored data with researchers in the public health
arena in mind. Finally, a nonparametric regression approach is introduced for
the first time. This methodology is called Censored Regression Quantiles and
is developed to identify important forms of population heterogeneity and to
detect departures from traditional Cox models. Developed by Stephen Port-
noy (2003), it provides a valuable complement to traditional Cox proportional
hazards approaches by generalizing the Kaplan-Meier estimator (Chapter 2)
to regression models for conditional quantiles. That is, the idea of univariate
quantiles for right-censored data is extended to the linear regression setting
in Chapter 8.

The level of this book is pitched between Kleinbaum (1995) and Klein and
Moeschberger (1997). Its level is comparable to Hosmer and Lemeshow (1999).
Readers of our text will find that exercises in Kleinbaum can be easily han-
dled by our S/R examples. Although Klein and Moeschberger target a more
mathematically sophisticated audience than our book does, a reader can tran-
sition with comfort from our book to theirs as these two books have much in
common. Many of our S/R examples can be directly applied to solve problems
in Klein and Moeschberger. We recommend the first six chapters for univer-
sities with a ten-week quarter system, and seven chapters for universities on
an approximate fifteen-week semester system. Chapters 7 and 8 can serve as
supplemental material for a faster paced course or as special topics in more
advanced courses.

We were influenced by Kleinbaum’s pedagogic style, which includes objectives
and a summary of results for each analysis. We are students of earlier books
written by Kalbfleisch and Prentice (1980), Miller (1981), Lawless (1982), Cox
and Oakes (1984), Kleinbaum (1995), and Klein and Moeschberger (1997).

The authors wish to thank the graduate students at the ETH, Portland State
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University, and Oregon Health & Science University, whose feedback greatly
improved the presentation of the material. The authors greatly appreciate
Stephen Portnoy for contributing not only his beautiful Chapter 8 but also
his wisdom, good humor, kindness, enthusiasm for this project, and friendship.
The authors together with Stephen Portnoy extend their gratitude to Roger
Koenker for his careful and critical reading of the material in Chapter 8.
Stephen Portnoy also wishes to acknowledge his guidance and inspiration over
the past quarter century. Further, the authors wish to thank the Series Editor
Jim Zidek for the opportunity to join the family of authors in the Chapman &
Hall/CRC statistical science series. We thank Kirsty Stroud, our editor, and
her staff for their professional support throughout the entire process. Finally,
we thank the external reviewers whose in-depth critique of a crude version
provided a path for us to follow.

The author, Jong Sung Kim, wishes to thank Dongseok Choi, Marc Feldesman,
and Dan Streeter for their help with a number of computational issues. I also
extend thanks to Mara Tableman for having invited me to be involved in
this project. This opportunity has enriched my academic and personal life.
I thank my advisor, Professor Jian Huang, for his continued support. Most
importantly, without boundless support from my wife Seokju, my son Thomas,
and my daughter Jennifer, I could not have made this achievement so early
in my academic career.

The author, Mara Tableman, wishes to thank Michael Lasarev for assistance
with some computational issues and Brad Crain for assuming one course from
my two-course teaching load. This enabled me to meet the publisher’s pre-
ferred deadline for the completed manuscript. I wish to thank my young, very
talented colleague, Jong Sung Kim, for joining this project as a coauthor.
Our discussions and his insight enhanced the material and quality of this
manuscript. His passion for statistics and life brought much to this project. I
also extend my deepest gratitude to the Seminar fiir Statistik, ETH, for invit-
ing me to be a lecturer in the Nachdiplomkurs in angewandter Statistik and
for having provided me a nurturing home for my sabbatical year and a sum-
mertime residence. I'm blessed to have their continued support and interest in
my academic career. Finally, as always, I so appreciate the continued support
of my “Doktorvater” Tom Hettmansperger, whose wisdom and kindness are
a continued source of inspiration.






CHAPTER 1

Introduction

The primary purpose of a survival analysis is to model and analyze time-
to-event data; that is, data that have as a principal endpoint the time when
an event occurs. Such events are generally referred to as “failures.” Some
examples are time until an electrical component fails, time to first recurrence
of a tumor (i.e., length of remission) after initial treatment, time to death,
time to the learning of a skill, and promotion times for employees.

In these examples we can see that it is possible that a “failure” time will not
be observed either by deliberate design or due to random censoring. This
occurs, for example, if a patient is still alive at the end of a clinical trial period
or has moved away. The necessity of obtaining methods of analysis that accom-
modate censoring is the primary reason for developing specialized models and
procedures for failure time data. Survival analysis is the modern name
given to the collection of statistical procedures which accommodate
time-to-event censored data. Prior to these new procedures, incomplete
data were treated as missing data and omitted from the analysis. This resulted
in the loss of the partial information obtained and in introducing serious sys-
tematic error (bias) in estimated quantities. This, of course, lowers the efficacy
of the study. The procedures discussed here avoid bias and are more powerful
as they utilize the partial information available on a subject or item.

This book attempts to introduce the field of survival analysis in a coherent
manner which captures the spirit of the methods without getting too em-
broiled in the theoretical technicalities. Presented here are some frequently
used parametric models and methods; and the newer, very fashionable, due
to their flexibility and power, nonparametric procedures. The statistical tools
treated are applicable to data from medical clinical trials, public health, epi-
demiology, engineering, economics, psychology, and demography as well.

Objectives of this chapter:

After studying Chapter 1, the student should be able to:

1. Recognize and describe the type of problem addressed by a survival anal-
ysis.
2. Define, recognize, and interpret a survivor function.

1
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Define, recognize, and interpret a hazard function.

Describe the relationship between a survivor function and hazard function.
Interpret or compare examples of survivor or hazard curves.

Define what is meant by censored data.

Define or recognize six censoring models and two truncation models.

Derive the likelihood functions of these models.

© %N oot RN

Give three reasons why data may be randomly censored.

H
&

State the three goals of a survival analysis.

1.1 Motivation - two examples

Example 1. AML study

The data presented in Table 1.1 are preliminary results from a clinical trial
to evaluate the efficacy of maintenance chemotherapy for acute myelogenous
leukemia (AML). The study was conducted by Embury et al. (1977) at Stan-
ford University. After reaching a status of remission through treatment by
chemotherapy, the patients who entered the study were assigned randomly to
two groups. The first group received maintenance chemotherapy; the second,
or control, group did not. The objective of the trial was to see if maintenance
chemotherapy prolonged the time until relapse.

Table 1.1:  Data for the AML maintenance study. A + indicates a
censored value

Group Length of complete remission (in weeks)

Maintained 9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+
Nonmaintained 5, 5, 8, 8, 12, 16+, 23, 27, 30, 33, 43, 45

Example 2. CNS lymphoma data

The data result from an observational clinical study conducted at Oregon
Health Sciences University (OHSU). The findings from this study are sum-
marized in Dahlborg et al. (1996). Fifty-eight non-AIDS patients with cen-
tral nervous system (CNS) lymphoma were treated at OHSU from January
1982 through March of 1992. Group 1 patients (n=19) received cranial radi-
ation prior to referral for blood-brain barrier disruption (BBBD) chemother-
apy treatment; Group 0 (n=39) received, as their initial treatment, the BBBD
chemotherapy treatment. Radiographic tumor response and survival were eval-
uated. Table 1.2 describes the variables obtained for each patient.

Of primary interest was to compare survival time between the two groups. On
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Table 1.2:  The variables in the CNS lymphoma example

1. PT.NUMBER: patient number

2. Group: 1=prior radiation; 0=no prior radiation with respect
to 1st blood brain-barrier disruption(BBBD) procedure to

3. Sex: 1=female; 0=male

4. Age: at time of 1st BBBD, recorded in years

5. Status: 1=dead; O=alive

6. DxtoB3: time from diagnosis to 1st BBBD in years

7

8

9

DxtoDeath: time from diagnosis to death in years
B3toDeath: time from 1st BBBD to death in years
KPS.PRE.: Karnofsky performance score before 1st BBBD,
numerical value 0 — 100

10. LESSING: Lesions; single=0; multiple=1

11. LESDEEP: Lesions: superficial=0; deep=1

12. LESSUP: Lesions; supra=0; infra=1; both=2

13. PROC: Procedure; subtotal resection=1; biopsy=2; other=3

14. RAD4000: Radiation > 4000; yes=1; no=0

15. CHEMOPRIOR: yes=1; no=0

16. RESPONSE: Tumor response to chemo — complete=1; partial=2;
blanks represent missing data

100
|

Primary CNS Lymphoma Patients

90
I

80

—— no radiation prior to BBBD (n=39)
--—radiation prior to BBBD (n=19)
+ = patient is censored

Percent Surviving
50
I

0 1 2 3 4 5 6 7 8 9 10 1 12
Survival Time in Years from First BBBD

Figure 1.1 Survival functions for CNS data.

the average, is Group 0 (no prior radiation) surviving as long or longer with
improved cognitive function? Figure 1.1 displays the two estimated survival
curves. This type of nonparametric curve is defined in Chapter 2. Group 0’s
curve is always above that of Group 1 suggesting a higher rate of survival
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and hence a longer average survival time for Group 0. (It has been well doc-
umented in prior studies as well as in this study that radiation profoundly
impairs cognitive functioning.) Further, is there a significant dependence of
survival time, and/or the difference in survival, on any subset of the available
covariates? That is, do any subset of the covariates help to explain survival
time? For example, does age at time of first treatment or gender increase or
decrease the relative risk of survival? Certainly we want to implement some
kind of regression procedure that accommodates censored data and addresses
the notions of relative risk and survival rates.

A naive descriptive analysis of AML study:

We consider a couple of descriptive measures to compare the two groups of
data given in Example 1. The first approach is to throw out censored observa-
tions, the second is to treat the censored observations as exact ones, and the
last is to use them all as they are. We at least expect to see different results
among the three approaches. Let’s see just how different they are.

e Analysis of AML data after throwing out censored observations

Measures Maintained Nonmaintained
Mean 25.1 21.7
Median 23.0 23.0

The mean for maintained group is slightly larger than that for nonmaintained
group while their medians are the same. That is, the distribution of maintained
group is slightly more skewed to the right than the nonmaintained group’s
distribution is. The difference between the two groups appears to be negligible.

e Analysis of AML data treating censored observations as exact

Measures Maintained Nonmaintained
Mean 38.5 21.3
Median 28.0 19.5

Both the mean and median for maintained group are larger than those for
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nonmaintained group. The difference between the two groups seems to be non-
negligible in terms of both mean and median. The skewness of the maintained
group is even more pronounced. We expect, however, that these estimates are
biased in that they underestimate the true mean and median. The censored
times are smaller than the true unknown failure times. The next analysis is
done using a method which accommodates the censored data.

e Analysis of AML data accounting for the censoring

Measures Maintained Nonmaintained
Mean 52.6 22.7
Median 31.0 23.0

Both the mean and median for maintained group are larger than those for non-
maintained group. Further, the mean of the maintained group is much larger
than that of the nonmaintained group. Here we notice that the distribution of
maintained group is much more skewed to the right than the nonmaintained
group’s distribution is. Consequently, the difference between the two groups
seems to be huge. From this small example, we have learned that appropriate
methods should be applied in order to deal with censored data. The method
used here to estimate the mean and median is discussed in Chapter 2.1.

1.2 Basic definitions

Let T denote a nonnegative random variable representing the lifetimes of
individuals in some population. (“Nonnegative” means T' > 0.) We treat the
case where T is continuous. For a treatment of discrete models see Lawless
(1982, page 10). Let F(-) denote the (cumulative) distribution function
(d.f.) of T with corresponding probability density function (p.d.f.) f(-).
Note f(t) =0 for ¢t < 0. Then

F(t)=P(T <t) :/0 F(z)dz. (1.1)

The probability that an individual survives to time ¢ is given by the survivor
function

S() = P(T> 1) =1— F(t) = /too f@)da. (1.2)

This function is also referred to as the reliability function. Note that S(¢) is
a monotone decreasing function with S(0) =1 and S(c0) = lims—,o S(¢) = 0.
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Conversely, we can express the p.d.f. as

Pt<T<t+At) dF({t)  dS(t)

t)y= 1 = = — . 1.3
f) = Jm, At dt dt (1.3)
The pth-quantile of the distribution of T" is the value ¢, such that

F(t,) = P(T <t,) = p. (1.4)

That is, t, = F~!(p). The pth-quantile is also referred to as the 100 X pth
percentile of the distribution. The hazard function specifies the instanta-
neous rate of failure at T' =t given that the individual survived up to time ¢
and is defined as

L PU<T<t+ AT >t f(t)
ht) = Jim, At ~ S0y

(1.5)

We see here that h(t)At is approximately the probability of a death in [t, ¢ +
At), given survival up to time ¢. The hazard function is also referred to as the
risk or mortality rate. We can view this as a measure of intensity at time ¢
or a measure of the potential of failure at time ¢. The hazard is a rate, rather
than a probability. It can assume values in [0, 00).

To understand why the hazard is a rate rather than a probability, in its def-
inition consider the expression to the right of the limit sign which gives the
ratio of two quantities. The numerator is a conditional probability and the
denominator is At, which denotes a small time interval. By this division, we
obtain a probability per unit time, which is no longer a probability but a
rate. This ratio ranges between 0 and co. It depends on whether time is mea-
sured in days, weeks, months, or years, etc. The resulting value will give a
different number depending on the units of time used. To illustrate this let
P=Pt<T<t+AlT >t) =1/4 and see the following table:

P At % rate
1 lday 13 =0.75/day
1 5rweek # = 5.25/week

It is easily verified that h(t) specifies the distribution of T', since
h(t) = dS(t)/dt _dlog (S(t))
St dt '

Integrating h(u) over (0,t) gives the cumulative hazard function H(t):

Ht) = | h(w)du = —log(S(t)). (1.6)

0
In this book, unless otherwise specified, log denotes the natural logarithm, the
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inverse function of the exponential function exp = e. Thus,
t
S(t) = exp ( - H(t)) = exp <—/ h(u)du> . (1.7)
0
Hence, the p.d.f. of T can be expressed as
t
(1) = h(D)exp (- / h(u)du) .
0

Note that H(co) = [, h(t)dt = co.

t-

For a nonnegative random variable 7' the mean value, written E(T") = fooo
f(t)dt, can be shown to be

E(T) = /O S (1.8)

WHY! Thus, mean survival time is the total area under the survivor curve
S(t). It follows from expression (1.7), for a given time ¢, the greater the risk,
the smaller S(t), and hence the shorter mean survival time E(T'), and vice
versa. The following picture should help you to remember this relationship.

T h(t)
S(t) i

Another basic parameter of interest is the mean residual life at time u,
denoted by mrl(u). For individuals of age u, this parameter measures their
expected remaining lifetime. It is defined as

mrl(u) = E(T —u | T > u).

For a continuous random variable it can be verified that
[T S(t)dt

S(u)
WHY! The mrl(u) is hence the area under the survival curve to the right of u

divided by S(u). Lastly, note the mean life, E(T") = mrl(0), is the total area
under the survivor curve. The graph in Figure 1.2 illustrates this definition.

mrl(u) (1.9)

To end this section we discuss hazard functions and p.d.f.’s for three continu-
ous distributions displayed in Figure 1.3. Model (a) has an increasing hazard
rate. This may arise when there is a natural aging or wear. Model (b) has
a decreasing hazard rate. Decreasing functions are less common but find oc-
casional use when there is an elevated likelihood of early failure, such as in
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0.8 1.0
L L

0.6
L

0.4
L

0.2
;!

0.0

Figure 1.2 Mean residual life at time u.

S (a)
f(t) j | \
S ®.
0 1 2 3 4
time t
(c
h(t
(a)
(b)
0
time t

Figure 1.3 Types of hazard rates and respective densities.

certain types of electronic devices or in patients experiencing certain types of
organ transplants. Model (c) has a bathtub-shaped hazard. Most often these
are appropriate for populations followed from birth. Similarly, some manufac-
tured equipment may experience early failure due to defective parts, followed
by a constant hazard rate which, in later stages of equipment life, increases.
Most population mortality data follow this type of hazard function where, dur-
ing an early period, deaths result, primarily from infant diseases, after which
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the death rate stabilizes, followed by an increasing hazard rate due to the nat-
ural aging process. Not represented in these plots is the hump-shaped hazard;
i.e., the hazard is increasing early and then eventually begins declining. This
type of hazard rate is often used to model survival after successful surgery
where there is an initial increase in risk due to infection, hemorrhaging, or
other complications just after the procedure, followed by a steady decline in
risk as the patient recovers.

Remark:

Although different survivor functions can have the same basic shape, their
hazard functions can differ dramatically, as is the case with the previous three
models. The hazard function is usually more informative about the underlying
mechanism of failure than the survivor function. For this reason, modelling
the hazard function is an important method for summarizing survival data.

1.3 Censoring and truncation models

We now present six types of censoring models and two truncation models. Let
Ty, Ts,...,T, be independent and identically distributed (iid) with distribu-
tion function (d.f.) F.

Type I censoring

This type arises in engineering applications. In such situations there are tran-
sistors, tubes, chips, etc.; we put them all on test at time ¢ = 0 and record
their times to failure. Some items may take a long time to “burn out” and we
will not want to wait that long to terminate the experiment. Therefore, we
terminate the experiment at a prespecified time t.. The number of observed
failure times is random. If n is the number of items put on test, then we could

observe 0, 1,2, ..., n failure times. The following illustrates a possible trial:
| |
[ |
O tc
| Py
l e
O T,
I s
I T
O
Tov= 1.

We call t. the fixed censoring time. Instead of observing the T;, we observe
Y1,Y5,...,Y, where

T, ifT, <t,

}/7; = min(TZ,tc) = { tc it t( < E.
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Notice that the d.f. of Y has positive mass P(T > t.) > 0 at y = ¢, since the
P(Y =t.) =P(t.<T)=1-F(t.) > 0. That is, Y is a mixed random variable
with a continuous and discrete component. The (cumulative) d.f. M(y) of YV
is shown in Figure 1.4. It is useful to introduce a binary random variable §
which indicates if a failure time is observed or censored,

s 1 i T<t
10 if t.<T.

Note that (6 = 0 and T < ¢.) implies that the failure time was precisely
T = t., which occurs with zero probability if 7" is a continuous variable. (Note
that for discrete distributions, we can set t. equal to the last attainable time
a failure may be observed. Hence, the probability P({6 = 0} N {T < t.}) is
not equal to zero.) We then observe the iid random pairs (Y3, d;).

M(y)

Figure 1.4 Cumulative d.f. of the mized random variable Y.

For maximum likelihood estimation (detailed in Chapter 3.2) of any parame-
ters of the distribution of T', we need to calculate the joint likelihood of the
pair (Y, 6). By likelihood we mean the rubric which regards the density as a
function of the parameter for a given (fixed) value (y,d). For y < ¢., P(Y <
y)=P(T <y)=F(y)and P(0 = 1|Y < y) = 1. Therefore, the likelihood for
Y =y < t.and § = 1 is the density f(y). For y = t. and § = 0, the likelihood
for this event is the probability P(§ = 0,Y =t.) = P(T > t.) = S(t.).

We can combine these two expressions into one single expression f(y)%x

S(t.)'=°. As usual, we define the likelihood function of a random sample
to be the product of the densities of the individual observations. That is, the
likelihood function for the n iid random pairs (Y3, ;) is given by

L=T] fy)S(t)' (1.10)

i=1
Type II censoring

In similar engineering applications as above, the censoring time may be left
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open at the beginning. Instead, the experiment is run until a prespecified
fraction r/n of the n items has failed. Let Ty, T{2), - . . , T(») denote the ordered
values of the random sample 71, ..., T,. By plan, observations terminate after
the rth failure occurs. So we only observe the r smallest observations in a
random sample of n items. For example, let n = 25 and take » = 15. Hence,
when we observe 15 burn out times, we terminate the experiment. Notice that
we could wait an arbitrarily long time to observe the 15th failure time as 715
is random. The following illustrates a possible trial:

O T(W) T(Z) T(3) T(157

In this trial the last 10 observations are assigned the value of T{;5y. Hence we
have 10 censored observations. More formally, we observe the following full
sample.

Yoo = Ty

Yoo = T

Yoo = Ty

Yoty = T

Yoy = Ty
Formally, the data consist of the r smallest lifetimes 7(y), ..., T(,) out of the n
iid lifetimes T, ..., T, with continuous p.d.f f(¢) and survivor function S(t).
Then the likelihood function (joint p.d.f) of T{y),...,T(, is given

n! n—r
L= ) -t (Str) . 1.11
(n_r)!f( ) ) (Sta) (1.11)

WHY!
Remarks:

1. In Type I censoring, the endpoint ¢. is a fixed value and the number of
observed failure times is a random variable which assumes a value in the
set {0,1,2,...,n}.

2. In Type II censoring, the number of failure times r is a fixed value whereas
the endpoint 7). is a random observation. Hence we could wait possibly a
very long time to observe the r failures or, vice versa, see all r relatively
early on.

3. Although Type I and Type II censoring are very different designs, the form
of the observed likelihood function is the same in both cases. To
see this it is only necessary to note that the individual items whose lifetimes
are observed contribute a term f(y(;)) to the observed likelihood function,
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whereas items whose lifetimes are censored contribute a term S(y;y). The
factor n!/(n —r)! in the last equation reflects the fact that we consider the
ordered observations. For maximum likelihood estimation the factor will be
irrelevant since it does not depend on any parameters of the distribution
function.

Random censoring

Right censoring is presented here. Left censoring is analogous. Random cen-
soring occurs frequently in medical studies. In clinical trials, patients typically
enter a study at different times. Then each is treated with one of several possi-
ble therapies. We want to observe their “failure” time but censoring can occur
in one of the following ways:

1. Loss to Follow-up. Patient moves away. We never see him again. We only
know he has survived from entry date until he left. So his survival time is
> the observed value.

2. Drop Out. Bad side effects forces termination of treatment. Or patient
refuses to continue treatment for whatever reasons.

3. Termination of Study. Patient is still “alive” at end of study.

The following illustrates a possible trial:

Study Study
start end

Here, patient 1 entered the study at ¢ = 0 and died at time T; to give an
uncensored observation; patient 2 entered the study, and by the end of the
study he was still alive resulting in a censored observation T}'; and patient
3 entered the study and was lost to follow-up before the end of the study to
give another censored observation T3 . The AML and CNS lymphoma studies
in Examples 1 and 2 contain randomly right-censored data.
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Let T' denote a lifetime with d.f. F' and survivor function Sy and C denote
a random censor time with d.f. G, p.d.f. g, and survivor function S,. Each
individual has a lifetime T; and a censor time C;. On each of n individuals we
observe the pair (Y;, d;) where

1 if T, <C;

Y; =min(7;,C;) and §; = { 0 if C;<T;.

Hence we observe n iid random pairs (Y7, d;). The times T; and C; are usually
assumed to be independent. This is a strong assumption. If a patient drops out
because of complications with the treatment (case 2 above), it is clearly of-
fended. However, under the independence assumption, the likelihood function
has a simple form (1.12), and even simpler in expression (1.13). Otherwise,
we lose the simplicity. The likelihood function becomes very complicated and,
hence, the analysis is more difficult to carry out.

Let M and S, denote the distribution and survivor functions of ¥ = min(7, C')
respectively. Then by the independence assumption it easily follows that the
survivor function is

Sm(y) =P(Y >y) =PI >y,C>y) =PI >y)P(C>y)=5¢(y)Sy)
The d.f. of Y is M(y) =1 — Sy (y)Sq(y).
The likelihood function of the n iid pairs (Y;,0;) is given by

L = ﬁ(f(yi)sg(yz-))&-(g(yi)Sf(yi))l_&

i=1

= (HS yi) g(yi)* ) <nyz 1Syt “) (1.12)

=1

Note: If the distribution of C' does not involve any parameters of interest,
then the first factor plays no role in the maximization process. Hence, the
likelihood function can be taken to be

L= Hf %Sy (yi)' 0, (1.13)

which has the same form as the likelihood derived for both Type I (1.10)
and Type II (1.11) censoring. Thus, regardless of which of the three types
of censoring is present, the maximization process yields the same estimated
quantities.

The derivation of the likelihood is as follows:

PY=y,d=0 = PC=y,C<T)=PC=y,y<T)
= P(C=y)P(y<T) by independence
= 9()Ss ().

PY=yd=1) = PIT=yT<C)=PT=y,y<C)=f(y)Sy(y) .



14 INTRODUCTION

Hence, the joint p.d.f. of the pair (Y, J) (a mixed distribution as Y is continuous
and J is discrete) is given by the single expression

)

Pw.5) = (o)) (Fws,w)

The likelihood of the n iid pairs (Y;,d;) given above follows.

Case 1 interval censored data: current status data

Consider the following two examples which illustrate how this type of censor-
ing arises.

Example 3.

Tumor free laboratory mice are injected with a tumor inducing agent. The
mouse must be killed in order to see if a lung tumor was induced. So after
a random period of time U for each mouse, it is killed and the experimenter
checks to see whether or not a tumor developed. The endpoint of interest is
T, “time to tumor.”

Example 4.

An ophthalmologist developed a new treatment for a particular eye disease. To
test its effectiveness he must conduct a clinical trial on people. His endpoint
of interest is “time to cure the disease.” We see this trial could produce right-
censored data. During the course of this study he notices an adverse side effect
which impairs vision in some of the patients. So now he wants to study “time to
side effect” where he has a control group to compare to the treatment group
to determine if this impairment is indeed due to the new treatment. Let’s
focus on the treatment group. All these patients received the new treatment.
In order to determine “time to side effect” T', he takes a snapshot view. At
a random point in time he checks all patients to see if they developed the
side effect. The records ministry keeps very precise data on when each patient
received the new treatment for the disease. So the doctor can look back in
time from where he takes his snapshot to the time of first treatment. Hence,
for each patient we have an observed time U, which equals time from receiving
new treatment to the time of the snapshot. If the patient has the side effect,
then his T < U. If the patient is still free of the side effect, then his T' > U.

In both examples the only available observed time is the U, the censoring time.
The following illustrates a possible trial of Example 3.
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-
%

mouse 1 I %

0 / T tumor found;

hence T <u,.

tumor onset kill at time u,
mouse 2 I I
0 no tumor found; \
tumor onset
hence T, > u,. $
kill at time u,
More formally, we observe only the iid times U;,i = 1,...,n and §; = I{T; <

U;}. That is, 6 = 1 if the event T < U has occurred, and 6 = 0 if the
event has not occurred. We assume the support (the interval over which the
distribution has positive probability) of U is contained in the support of T.
As before, the T' ~ F' and the censor time U ~ G and again we assume T and

U are independent random times. The derivation of the joint p.d.f. of the pair
of (U, 6) follows:

PU=u 5—0):P(6—0|U—u) (U =u)

= P(T'>u)P(U = u) = S (u)g(w).
PU=u,0=1)=P(0= 1|U—u)P(U: u)

= P(T' <u)P(U = u) = F(u)g(u).

We can write this joint p.d.f. of the pair (U, §) (again a mixed distribution) in
a single expression

1-5 5
P(u,6) = (S;()  (F(w) g(w).
The likelihood of the n iid pairs (U;, d;) easily follows.

Left-censored and doubly-censored data

The following two examples illustrate studies where left-censored, uncensored,
and right-censored observations could occur. When all these can occur, this is
often referred to as doubly-censored data.

Example 5.

A child psychiatrist visits a Peruvian village to study the age at which children
first learn to perform a particular task. Let T denote the age a child learns
to perform a specified task. The following picture illustrates the possible out-
comes:
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- +
T T T
- [ ® - . ................... [
l l
1 1
study patient study
start enters ends

We read the recorded values as follows: T': exact age is observed (uncensored),
T~ : age is left-censored as the child already knew the task when s/he was
initially tested in the study, and 77 age is right-censored since the child did
not learn the task during the study period.

Example 6.

Extracted from Klein & Moeschberger (1997): High school boys are inter-
viewed to determine the distribution of the age of boys when they first used
marijuana. The question stated was “When did you first use marijuana?” The
three possible answers and respective recorded values are given in the follow-
ing table:

Possible answer: Recorded value:

a. I used it but I cannot recall a. T7: age at interview as exact

just when the first time was. age was earlier but unknown
b. I first used it when I was . b. T: exact age since it is known
(uncensored)
c. I never used it. c. TT: age at interview since ex-
act age occurs sometime in the
future

Interval censoring

The time-to-event T is known only to occur within an interval. Such censoring
occurs when patients in clinical trial or longitudinal study have periodic follow-
up. For example, women in a study are required to have yearly PAP smear
exams. Each patient’s event time T} is only known to fall in an interval (L;, R;]
which represents the time interval between the visit prior to the visit when the
event of interest is detected. The L; and R; denote respectively the left and
right endpoints of the censoring interval. For example, if the ith patient shows
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the sign of the symptom at her first follow-up time, then L; is zero; in other
words, the origin of the study and R; is her first follow-up time. Further, if
she showed no sign of the symptom until her ¢ — 1th follow-up times but shows
the sign of the symptom at her ith follow-up, then L; is her ¢ — 1th follow-up
and R; is her ith follow-up. If she doesn’t exhibit the symptom at her last
follow-up, L; is her last follow-up and R; is co. Note that any combination
of left, right, or interval censoring may occur in a study. Furthermore, we see
that left censoring, right censoring, and current status data are special cases
of interval censoring.

Truncation

Here we summarize Klein & Moeschberger’s (1997, Sections 1.16, 1.19, and
3.4) discussion of truncation. Truncation is a procedure where a condition
other than the main event of interest is used to screen patients; that is, only
if the patient has the truncation condition prior to the event of interest will
s/he be observed by the investigator. Hence, there will be subjects “rejected”
from the study so that the investigator will never be aware of their existence.
This truncation condition may be exposure to a certain disease, entry into a
retirement home, or an occurrence of an intermediate event prior to death.
In this case, the main event of interest is said to be left-truncated. Let U
denote the time at which the truncation event occurs and let 7' denote the
time of the main event of interest to occur. Then for left-truncated samples,
only individuals with 7' > U are observed. The most common type of left
truncation occurs when subjects enter the study at a random age and are
followed from this delayed entry time until the event of interest occurs or the
subject is right-censored. In this situation, all subjects who experience the
event of interest prior to the delayed entry time will not be known to the
experimenter. The following example of left-truncated and right-censored data
is described in Klein & Moeschberger (1997, pages 15—17, and Example 3.8,
page 65). In Chapter 7.3 we treat the analysis of left-truncated and right-
censored data.

Example 7. Death times of elderly residents of a retirement com-
munity

Age in months when members of a retirement community died or left the
center (right-censored) and age when the members entered the community
(the truncation event) are recorded. Individuals must survive to a sufficient
age to enter the retirement community. Individuals who die at an early age
are excluded from the study. Hence, the life lengths in this data set are left-
truncated. Ignoring this truncation leads to problem of length-biased sampling.
We want a survival analysis to account for this type of bias.

Right truncation occurs when only individuals who have experienced the main
event of interest are included in the sample. All others are excluded. A mor-
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tality study based on death records is a good example of this. The following
example of right-truncated data is described in Klein & Moeschberger (1997,
page 19, and Example 3.9, page 65).

Example 8. Time to AIDS

Measurement of interest is the waiting time in years from HIV infection to
development of AIDS. In the sampling scheme, only individuals who have
developed AIDS prior to the end of the study are included in the study.
Infected individuals who have yet to develop AIDS are excluded from the
sample; hence, unknown to the investigator. This is a case of right truncation.

1.4 Course objectives

The objectives here are to learn methods to model and analyze the data like
those presented in the two examples in Section 1.1. We want these statistical
procedures to accommodate censored data and to help us attain the three
basic goals of survival analysis as so succinctly delineated by Kleinbaum
(1995, page 15).

In Table 1.3, the graph for Goal 1 illustrates the survivor functions give
very different interpretations. The left one shows a quick drop in survival
probabilities early in follow-up. Then the rate of decrease levels off later on.
The right function, in contrast, shows a very slow decrease for quite a long
while, then a sharp decrease much later on.

In Table 1.3, the plot for Goal 2 shows that up to 13 weeks, the graph for the
new method lies above that for the old. Thereafter the graph for old method
is above the new. Hence, this dual graph reveals that up to 13 weeks the new
method is more effective than the old; however, after 13 weeks, it becomes less
effective.

In Table 1.3, the graph for Goal 3 displays that, for any fixed point in time,
up to about 10 years of age, women are at greater risk to get the disease than
men are. From 10 to about 40 years of age, men now have a slightly greater
risk. For both genders the hazard function decreases as the person ages.

Remark:

As usual, the emphasis is on modelling and inference. Modelling the haz-
ard function or failure time in turn provides us with estimates of population
features such as the mean, the mean residual life, quantiles, and survival prob-
abilities.
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Table 1.3:

Goals of survival analysis

19

Goal 1. To estimate and interpret survivor and/or hazard
functions from survival data.

S(t s

o 13 weeks

Goal 3. To assess the relationship of explanatory vari-
ables to survival time, especially through the use of formal
mathematical modelling.

hazard

00 01 02 03 04 05 06 07 08 09 10
L

a0 0 50 o0
age at diagnosis (years)
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1.5 Data entry and import/export of data files

The layout is a typical spreadsheet format which is virtually the same for all
data analytic software packages. Some examples are EXCEL, SPSS, MINITAB,
SAS. The spreadsheet in S-PLUS is the data object called a data.frame. On
the standard toolbar menu click sequentially on the white blank page at up-
per far left, File — New — Data Set — 0Ok. A new (empty) data.frame will
appear. This likens an EXCEL spreadsheet. Double right click on the cell just
below the column number to enter the variable name. Below is a table which
displays our S-PLUS data set “aml.data” along with a key. This data.frame
object contains the AML data first given in Table 1.1 under Example 1, page 2.
Note that status variable = the indicator variable §. This data set is
saved as, e.g., “aml.sdd.” You can also save this data set as an Excel file. Just
click on File — ExportData — ToFile. Go to Save as and click Type —
MicrosoftExcelFiles (*.xls).

1 2 3

weeks group status

1 9 1 1

2 13 1 1

3 13 1 0 group = 1 for maintained,

4 18 1 1 group = 0 for nonmaintained.
status = 1 if uncensored
(relapse occurred),

11 161 1 0 status = 0 if censored (still in

12 S 0 1 remission; recorded with + sign).

13 5 0 1

14 8 0 1

23 45 0 1
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It seems that EXCEL has spread itself worldwide. All the mainstream statis-
tical packages can accept an EXCEL file. Feel free to first enter your data in
an EXCEL spreadsheet. To import into S-PLUS do the following sequentially:
in S-PLUS, click on File — ImportData — FromFile — FilesofType — Mi-
crosoftExcelFiles (*.x1*). In Look In, find your way to the directory where
your desired *.xls data file is. Then right-click on it and click on Open. It’s
now in an S-PLUS data sheet. You can save it in S-PLUS as an S-PLUS data
file (data.frame object). Click on File, then on Save. It should be clear from
this point. Your file will be saved as a *.sdd file.

To import your data file into S or R, first save your EXCEL file, or any other
file, as a *.txt file. Be sure to open this file first to see what the delimiter is;
that is, what is used to separate the data values entered on each row. Suppose
your data file, called your.txt, is in the C: directory. The S and R function
read.table imports your.txt file and creates a data.frame object. When a
comma is the delimiter, use the following S line command:

> your <- read.table("C://your.txt",header = T,sep = ",")

If the delimiter is "~", use sep = "~". If blank space separates the data values,
use sep = " ". In R, to perform a survival analysis it is necessary to install
the survival analysis library. The R command is

> library(survival)

The R function require(survival) accomplishes the same.

1.6 Exercises

A. Applications

Identify the data types of the following cases:

1.1 Suppose that six rats have been exposed to carcinogens by injecting tumor
cells into their foot-pads. The times to develop a tumor of a given size
are observed. The investigator decides to terminate the experiment after
30 weeks. Rats A, B, and D develop tumors after 10, 15, and 25 weeks,
respectively. Rats C and E do not develop by the end of the study. Rat F
died accidentally without any tumors after 19 weeks of observation. (Source:
Lee, E.T. (1992, page 2). Statistical Methods for Survival Data Analysis,
2nd ed., New York: John Wiley & Sons.)

1.2 In Exercise 1.1, the investigator may decide to terminate the study after
four of the six rats have developed tumors. Rats A, B, and D develop tumors
after 10, 15, and 25 weeks, respectively. Rat F died accidentally without
any tumors after 19 weeks of observation. Rat E develops tumor after 35
weeks but Rats C does not develop by that time. How would the data set
in Exercise 1.1 change? (Source: Lee, E.T. (1992, pages 2—3). Statistical
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1.3
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1.5

1.6

1.7
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Methods for Survival Data Analysis, 2nd ed., New York: John Wiley &
Sons.)

Suppose that six patients with acute leukemia enter a clinical study dur-
ing a total study period of one year. Suppose also that all six respond to
treatment and achieve remission. Patients A, C, and E achieve remission
at the beginning of the second, fourth, and ninth months and relapse af-
ter four, six, and three months, respectively. Patient B achieves remission
at the beginning of the third month but is lost to follow-up four months
later. Patients D and F achieve remission at the beginning of the fifth and
tenth month, respectively, and are still in remission at the end of the study.
Find out the remission times of the six patients. (Source: Lee, E.T. (1992,
pages 3—4). Statistical Methods for Survival Data Analysis, 2nd ed., New
York: John Wiley & Sons.)

Survival/sacrifice experiments are designed to determine whether a sus-
pected agent accelerates the time until tumor onset in experimental ani-
mals. For such studies, each animal is assigned to a prespecified dose of a
suspected carcinogen, and examined at sacrifice or death, for the presence
or absence of a tumor. Since a lung tumor is occult, the time until tumor
onset is not directly observable. Instead, we observe only a time of sacrifice
or death. (Source: Hoel, D.G. and Walburg, H.E., Jr. (1972). Statistical
analysis of survival experiments. J. Natl. Cancer Inst., 49, 361 — 372.)

An annual survey on 196 girls recorded whether or not, at the time of
the survey, sexual maturity had developed. Development was complete in
some girls before the first survey, some girls were lost before the last survey
and before development was complete, and some girls had not completed
development at the last survey. (Source: Peto, R. (1973). Empirical survival
curves for interval censored data. Appl. Statist., 22, 86 — 91.)

Woolson (1981) has reported survival data on 26 psychiatric inpatients
admitted to the University of lowa hospitals during the years 1935 — 1948.
This sample is part of a larger study of psychiatric inpatients discussed
by Tsuang and Woolson (1977). Data for each patient consists of age at
first admission to the hospital, sex, number of years of follow-up (years
from admission to death or censoring), and patient status at the follow-
up time. The main goal is to compare the survival experience of these
26 patients to the standard mortality of residents of Iowa to determine
if psychiatric patients tend to have shorter lifetimes. (Source: Klein, J.P.
and Moeschberger, M.L. (1997, page 15). Survival Analysis: Techniques for
Censored and Truncated Data. New York: Springer.)

The US Centers for Disease Control maintains a database of reported AIDS
cases. We consider the 1,927 cases who were infected by contaminated blood
transfusions and developed AIDS by November 1989. For our data, the
earliest reported infection date was January 1975. For our analysis, we give
a code of 0 for young children (ages 0 — 12) and 1 for older children and
adults (ages 13 and up). We wish to test whether the induction periods
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1.8

1.9

1.10

1.11

for the two groups have the same latency distribution. (Source: Finkelstein,
D.M., Moore, D.F., and Schoenfeld, D.A. (1993). A proportional hazards
model for truncated AIDS data. Biometrics, 49, 731 — 740.)

Leiderman et al. wanted to establish norms for infant development for a
community in Kenya in order to make comparisons with known standards
in the United States and the United Kingdom. The sample consisted of 65
children born between July 1 and December 31, 1969. Starting in January
1970, each child was tested monthly to see if he had learned to accomplish
certain standard tasks. Here the variable of interest T" would represent the
time from birth to first learn to perform a particular task. Late entries
occurred when it was found that, at the very first test, some children could
already perform the task, whereas losses occurred when some infants were
still unsuccessful by the end of the study. (Source: Leiderman, P.H., Babu,
D., Kagia, J., Kraemer, H.C., and Leiderman, G.F. (1973). African infant
precocity and some social influences during the first year. Nature, 242,
247 — 249.)

Theory and WHY!

Show expression (1.8).

Hint: Use B(T) = [;° ( IS d:c) F(t)dt.
Verify expression (1.9).

Hint: Examine expressions (1.3) and (1.5).

Derive expression (1.11).
Hint: Refer to the Remark in Hogg and Craig (1995, pages 199 — 200).






CHAPTER 2

Nonparametric Methods

We begin with nonparametric methods of inference concerning the survivor
function S(t) = P(T > t) and, hence, functions of it.

Objectives of this chapter:

After studying Chapter 2, the student should:

1.

S e w

Know how to compute the Kaplan-Meier (K-M) estimate of survival and
Greenwood’s estimate of asymptotic variance of K-M at time ¢.

Know how to use the redistribute-to-the-right algorithm to compute
the K-M estimate.

Know how to estimate the hazard and cumulative hazard functions.
Know how to estimate the pth-quantile.
Know how to plot the K-M curve over time ¢ in S.

Know how to implement the S function survfit to conduct nonparamtric
analyses.

Know how to plot two K-M curves to compare survival between two (treat-
ment) groups.

8. Be familiar with Fisher’s exact test.

9. Know how to compute the log-rank test statistic.

10.

11.

12.

Know how to implement the S function survdiff to conduct the log-rank
test.

Understand why we might stratify and how this affects the comparison of
two survival curves.

Understand how the log-rank test statistic is computed when we stratify
on a covariate.

2.1 Kaplan-Meier estimator of survival

We consider the AML data again introduced in Table 1.1, Chapter 1.1. The
ordered data is included here in Table 2.1 for ease of discussion.

25
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Table 2.1:  Data for the AML maintenance study
Group Length of complete remission(in weeks)
Maintained 9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+
Nonmaintained 5, 5, 8, 8, 12, 16+, 23, 27, 30, 33, 43, 45

A + indicates a censored value.

We first treat this data as if there were NO censored observations. Let t;
denote an ordered observed value. The empirical survivor function (esf),
denoted by S, (1), is defined to be

_ # of observations >t  #{t; >t}
n n

Sy (t) (2.1)

The S,,(t) is the proportion of patients still in remission after ¢ weeks.
Let’s consider the AML maintained group data (AML1) on a time line:

| R A [~ [—
0 9 13 18 232831 34 45 48 161

The values of the esf on the maintained group are:

t 0 9 13 18 23 28 31 34 45 48 161
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The plot of this esf function in Figure 2.1 can be obtained by the following S
commands. Here status is an 11 x 1 vector of 1’s since we are ignoring that
four points are censored. We store the AML data in a data frame called aml.
The S function survfit calculates the S, (t) values.

amll <- aml[aml$group==1]

status <- rep(1,11)

esf.fit <- survfit(Surv(amlil,status)~1)

plot(esf.fit,conf.int=F,xlab="time until relapse (in weeks)",

ylab="proportion without relapse",lab=c(10,10,7))

mtext ("The Empirical Survivor Function of the AML Data",3,-3)

> legend(75,.80,c("maintained group","assuming no censored
data"))

> abline(h=0)

vV V V V

\4

The estimated median is the first value ¢; where the S, (¢t) < 0.5. Here the
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e}
35 —
s | maintained group
3 © assuming no censored data
33
£ |
Zv
o0
t
o
go |
5o
]
© T T T T T T T T

o

20 40 120 140 160

60 80 100
time until relapse (in weeks)

Figure 2.1 Empirical survivor function (esf).

med = 28 weeks. The estimated mean (expected value) is
o0
mean = Sy (t) dt = area under S, (t) = t.
0

Sp(t) is a right continuous step function which steps down at each ¢;. The
estimated mean then is just the sum of the areas of the ten rectangles on the
plot. This sum is simply the sample mean. Here the mean = t = 423/11 =
38.45 weeks.

Note: The esf is a consistent estimator of the true survivor function S(t).
The exact distribution of nS,(t), for each fixed ¢, is binomial (n,p), where
n = the number of observations and p = P(T > t). Further, it follows from
the central limit theorem that for each fixed ¢,

Sn(t) ~ normal(p,p(l - p)/n)a

where ~ is read “approximately distributed as.”

We now present the product-limit estimator of survival. This is commonly
called the Kaplan-Meier (K-M) estimator as it appeared in a seminal
1958 paper.

The Product-limit (PL) estimator of S(t) = P(T > t):

K-M adjusts the esf to reflect the presence of right-censored obser-
vations.

Recall the random right censoring model in Chapter 1.3. On each of n indi-
viduals we observe the pair (Y;, d;) where

Y; = min(T;,C;)  and i{l %fT’iSCZi

On a time line we have
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I I R FEET A
| | | | | |
0 Y1) Y(2) Yi-1) Y@

where y(;) denotes the ith distinct ordered censored or uncensored observation
and is the right endpoint of the interval I, i = 1,2,...,n' < n.

e death is the generic word for the event of interest.
In the AML study, a “relapse” (end of remission period) = “death”

e A cohort is a group of people who are followed throughout the course of
the study.

e The people at risk at the beginning of the interval I; are those people who
survived (not dead, lost, or withdrawn) the previous interval I;_; .
Let R(t) denote the risk set just before time t and let

n; = #inR(yu))

= # alive (and not censored) just before y;

d; = # died at time y(;

p; = P(surviving through I; | alive at beginning I;)
= P(T'>yu|T>yu-1)

¢i = 1—p; = P(diein I; | alive at beginning I;).

Recall the general multiplication rule for joint events A; and As:
P(A1 N Ay) = P(As | A1)P(A4,).

From repeated application of this product rule the survivor function can be
expressed as

St)=P(T>t)= ][] »-

Yy <t

The estimates of p; and g; are

. d; ~ ~ d; i —d;
= — and pizl—Qizl——Z(n )

) (2.2)

Let’s consider the AML1 data on a time line where a “+” denotes a right-
censored observed value. The censored time 13+ we place to the right of the

The K-M estimator of the survivor function is

7= I1 (%) ~11(5

Yy <t Yy <t 1=1

where Y(k) <t< Y(k+1)-
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observed relapse time 13 since the censored patient at 13 weeks was still in
remission. Hence, his relapse time (if it occurs) is greater than 13 weeks.

0 9 1313418 2328+ 31 34 45+ 48 161+

5(0) 1

5(9) = 5(0) x 17t 91

5(13) = SO x 1=l — 8

S(13+) = SA3)x %0 = S(13) = .82
S(18) = SA3)x &L = 72

5(23) = S(18)x Tt = 61

S(28+) = S(23)x %0 = §(23) = .61
531 = S(@23)x 31 = 49

S(34) = SBIxiE = 37

S@5+) = SB4)x35° = S@34) = 37
S@8) = SB4)xE = 18

5(161+) 5(48) x 170 S(48) = .18

The K-M curve is a right continuous step function which steps down only
at an uncensored observation. A plot of this together with the esf curve is
displayed in Figure 2.2. The “4” on the K-M curve represents the survival
probability at a censored time. Note the difference in the two curves. K-M is

Qo |
o 7 Estimated Survivor Functions of the AML Data
0]
8o
K I esf
8@ — KM
30 |
2° | :
S< |
00O
£
o | i
ou |
go
Q
© T T

T T T T T T
0 20 40 60 80 100 120 140 160
time until relapse (in weeks)

Figure 2.2 Kaplan-Meier and esf estimates of survival.

always greater than or equal to esf. When there are no censored data values
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K-M reduces to the esf. Note the K-M curve does not jump down to zero as
the largest survival time (1617) is censored. We cannot estimate S(t) beyond
t = 48. Some refer to S(t) as a defective survival function. Alternatively,

F (t) =1—5(t) is called a subdistribution function as the total probability is
less than one.

We now describe an alternate, but equivalent, way to compute the K-M
estimate of survival beyond time point ¢. Efron (1967) called this method
“redistribute-to-the-right algorithm.” This algorithm allows us to calculate
K-M in a similar manner to esf. We adopt the interpretation provided by
Gooley et al. (1999, 2000).

Redistribute-to-the-right algorithm:

We assume all patients are equally likely to fail. Hence, if all patients have
either failed or been followed to a specified time point ¢, then each patient
contributes a prescribed and equal amount to the estimate of the probability

of failure: )

N(t)’
where N (t) = total # of patients under study at or before ¢.

Each patient under study has a potential contribution to the estimate of the
probability of failure. At the onset, each patient has

. 0 1
potential contribution = —,
n

where n = total # of patients under study. Each time a patient fails, the
estimate is increased by the amount of contribution of the failed patient.
Equivalently, the estimate of survival is decreased by this amount. At a cen-
sored time, no death occurred. Hence, the estimate of failure or survival is
unchanged at that point in time; that is, the curve neither steps up nor down.

Now, patients who are censored due to lack of follow-up through a speci-
fied time still remain capable of failure by this specified time. The potential
contribution of these patients cannot be discounted.

The redistribute-to-the-right algorithm considers a censored patient’s
potential contribution as being equally redistributed among all patients
at risk of failure after the censored time.

As a result of this redistribution, any failure that takes place after the censored
time contributes slightly more to the estimate of failure than do failures prior
to the censored time. That is, the potential contribution of each patient to
the estimate increases after the occurrence of a censored patient. Equivalently,
K-M, the estimate of survival, decreases (steps down) by this increased equal
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potential contribution of failures that occur after the censored time. Equiv-
alently, the estimate of survival beyond an observed death time y(;) equals
the most recent computed potential contribution times the number of data
values to the right of y(;). Table 2.2 implements the redistribute-to-the-right
algorithm.

Example with AML1 data:

Let ny = # at risk just after time y(;), d; = # of deaths at time y(;), and
¢; = # of censored observations at time y;).

Table 2.2:  Redistribute-to-the-right algorithm on AML1 data

Y@ n; di c¢; Individual’s potential mass at y; S(t)
0 11 0 0 & 1
1 10
9 10 1 0 ? 19—1 91
13 9 1 0 T 7 = -82
13 8 0 1 No patient failed; no decrease in

K-M. Redistribute equally to the
right ﬁ Each of the 8 remaining
patients now has potential mass

1+ (5 §) =11 % §

1.9 9 7
8 7 1 0 1—11><§ gxg_.m
23 6 1 0 i1 X35 i1 X g =61
28 5 0 1 Redistribute ﬁ X % equally to the
right. Each of the 5 remaining
patients now has potential mass
19 1,9 1
(f1%8) + (51 x§x3)
_ 1 .,9,6
=11 X§%5
1,96 9 3 _
31 4 1 0 T X5 X3 i X5 =49
1,96 9 9 _
3 3 1 0 i X g X% 17 X 55 = 37
45 2 0 1 Redistribute ﬁ X % X g equally to
the right. Each of the 2 remaining
patients now has potential mass
1,96 1,961
(frx3gx8)+(frxgx5x3)
_ 1,963
=11 X §%X5%32
1,96, 3 81 _
48 1 1 0 3T X g X e X3 240 = -18

161 0 O

—_
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We revisit this algorithm in the context of competing risks discussed in Chap-
ter 7.2 and of regression quantiles discussed in Chapter 8. With some modifi-
cation this idea permits generalization to the more general regression quantile
models for survival time 7. In Chapter 8 we introduce these models and
present examples of survival analyses using these models.

Estimate of variance of §(t):

Greenwood’s formula (1926):

ar (§(t)) 0D ﬁ S0 ﬁ (2.3)

Yy <t =1

where yi) <t < Y1)

Example with the AML1 data:

o a ) 1 1
var (S(l3>) (82) <11(11 SRR TITETI )

s.e. (§(13)) = 1166

) = .0136

The theory tells us that for each fixed value ¢
S(t) 2 normal (S(t), ar (§(t))) .

Thus, at time ¢, an approximate (1 — ) x 100% confidence interval for the
probability of survival, S(¢) = P(T > t), is given by

S(t) £ 25 xse. <§(t)> , (2.4)

where s.e. (§ (t)) is the square root of Greenwood’s formula for the estimated

variance.

Smith (2002), among many authors, discusses the following estimates of haz-
ard and cumulative hazard. Let ¢; denote a distinct ordered death time,
1=1,...,7r<n.

Estimates of hazard (risk):

1. Estimate at an observed death time t;:
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This is referred to as the K-M type estimate. It estimates the rate of death
per unit time in the interval [t;,t;41).

3. Examples with the AML1 data:

1
h(23) = - = 143

h(26) = h(23) = ﬁ = .018

Estimates of H(-) cumulative hazard to time t:

1. Constructed with K-M:

H(t)=—log S(t) = —log [] "i;d’) , (2.7)
Yy <t ¢
(5 d;
Y <t
2. Nelson-Aalen estimate (1972, 1978):
_ d;
=3y o (2.9
Y(i) <t
(= d;
ar (H(t)) -y . (2.10)
Yy <t b

The Nelson-Aalen estimate is the cumulative sum of estimated conditional
probabilities of death from I; through Iy, where t;, < ¢ < ty1. This estimate
is the first order Taylor approximation to the first estimate. To see this let
x = d;/n; and expand log(1 — x) about z = 0.
3. Examples with the AML1 data:
H(26) = —log §(26) = —log(.614) = .488
~ 1 1 1 1

H26) = — 4+ —4+-4+==4
(26) 11+10+8+7 588

Estimate of quantiles:

Recall the definition:

the pth-quantile ¢, is such that F(t,) = p or S(t,) = 1 — p. As usual, when S
is continuous, t, < S7!(1 — p).

As the K-M curve is a step function, the inverse is not uniquely defined. We
define the estimated quantile to be

~

t, = min{t; : S(t;) <1 —p}. (2.11)
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By applying the delta method (Chapter 3.2, page 66) to var (S\(fp)>, Collett
(1994, pages 33 and 34) provides the following estimate of variance of tAp:

war (S(G,))
(7))

where var (§ (75;,)) is Greenwood’s formula for the estimate of the variance of

o~

var(t,) = , (2.12)

~ o~

the K-M estimator, and f(t,) is the estimated probability density at tAp. It is
defined as follows:

~ 8, - 8@,
i) = 256 (2.13)
lp = Up
where U, = max{t;|S(t;) > 1 —p + €}, and 2; = min{t;|S(t;) < 1—p— €},
fori=1,...,r < n with r being the number of distinct death times, and € a

small value. An e = 0.05 would be satisfactory in general, but a larger value
of e will be needed if @, and [, turn out to be equal. In the following example,
we take € = 0.05.

Example with the AML1 data:

The median 7.5 = 31 weeks. We find 45 = max{ti|§(t¢) > 0.55} = 23, lA.s =

min{t;|S(t;) < 0.45} = 34, and f(31) = SEI=5GD _ 0.614-0.368 _ () 994,
Therefore, its variance and s.e. are

.1642

2

o=
An approximate 95% C.I. for the median is given by
814196x733 = (166 to 45.4) weeks.
The truncated mean survival time:

The estimated mean is taken to be
Yn)
e — / () at, (2.14)
0

where y(,) = max(y;). If y(,) is uncensored, then this truncated integral is

~

the same as the integral over [0, 00) since over [y(,),00), S(t) = 0. But if the

~

maximum data value is censored, the lim; .o, S(¢) # 0. Thus, the integral
over [0,00) is undefined. That is, mean = co. To avoid this we truncate the
integral. By taking the upper limit of integration to be the y,), we redefined
the K-M estimate to be zero beyond the largest observation. Another way to
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look at this is that we have forced the largest observed time to be uncensored.
This does give, however, an estimate biased towards zero. This estimate is the
total area under the K-M curve. As S(¢) is a step function, we compute this
area as the following sum:

’
n

mean = Z (i) — Yi-1) §(y(i71))> (2.15)
i=1
where n' = # of distinct observed y;’s, n’ < n, y) = 0, §(y(0)) =1, and

~

S(y(i—1)) is the height of the function at y(;_1).

In the AML1 data, y(,) = 161 and, from the following S output, the estimated
expected survival time mean = 52.6 weeks. The variance formula for this
estimator is given in Remark 5. An estimate of the truncated mean residual
life, mrl(t), along with a variance estimate is given in Remark 6.

Note: As survival data are right skewed, the median is the preferred descrip-
tive measure of the typical survival time.

survfit:

This is the main S nonparametric survival analysis function. Its main ar-
gument takes a Surv(time,status) object. We have modified some of the
output. Data for both groups in the AML study are in a data frame called
aml. The “group” variable = 1 for maintained group, = 0 for nonmaintained.

> amll <- aml[aml$group == 1, ] # Creates a data frame with
# maintained group data only.
> Surv(amll$weeks,amli$status) # Surv object
[1] 9 13 13+ 18 23 28+ 31 34 45+ 48 161+
> km.fit <- survfit(Surv(weeks,status),type="kaplan-meier",
data = amll)
> plot(km.fit,conf.int=F,xlab="time until relapse (in weeks)",
ylab="proportion in remission",lab=c(10, 10, 7))

> mtext ("K-M survival curve for the AML data",3,line=-1,cex=2)
> mtext("maintained group",3,line = -3)
> abline(h=0) # Figure 2.3 is now complete.
> km.fit
n events mean se(mean) median 0.95LCL 0.95UCL
11 7 52.6 19.8 31 18 NA

> summary(km.fit) # survival is the estimated S(t).
time n.risk n.event survival std.err 95% LCL 95% UCL

9 11 1 0.909 0.0867 0.7541 1.000
13 10 1 0.818 0.1163 0.6192 1.000
18 8 1 0.716 0.1397 0.4884 1.000
23 7 1 0.614 0.1526 0.3769 0.999
31 5 1 0.491 0.1642 0.2549 0.946
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34 4 1 0.368 0.1627 0.1549 0.875
48 2 1 0.184 0.1535 0.0359 0.944
> attributes(km.fit) # Displays the names of objects we can
# access.
$names:

[1] "time" "n.risk" "n.event" "surv" "std.err
[7] "lower" "conf.type" "conf.int" "call"
$class: [1] "survEfit"
# Example: to access "time" and "surv"
> t.u <- summary(km.fit)$time # t.u is a vector with the
# seven uncensored times.
> surv.u <- summary(km.fit)$surv # Contains the estimated
# S(t.u).

upper"

|

K-M survival curve for the AML data
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Figure 2.3 Kaplan-Meier survival curve. A + indicates a censored value.

Remarks:

1. Notice the effect of accommodating the censored data points. The median
time in complete remission is increased from 28 weeks to 31 weeks. The
expected time is increased from 38.45 weeks to 52.6 weeks. This explains
the third method alluded to in the A naive descriptive analysis of
AML study presented in Chapter 1.1, page 4.

2. survfit uses a simple graphical method of finding a confidence interval for
the median. Upper and lower confidence limits for the median are defined
in terms of the confidence intervals for S(¢): the upper confidence limit is
the smallest time at which the upper confidence limit for S(¢) is < 0.5.
Likewise, the lower confidence limit is the smallest time at which the lower
confidence limit for S(¢) is < 0.5. That is, draw a horizontal line at 0.5 on
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the graph of the survival curve, and use intersections of this line with the
curve and its upper and lower confidence bands. If, for example, the UCL
for S(t) never reaches 0.5, then the corresponding confidence limit for the
median is unknown and it is represented as an NA. See pages 242 and 243,
S-PLUS 2000, Guide to Statistics, Vol.Il.

3. Confidence intervals for pth-quantile without using an estimate of the den-
sity (2.13) at t, are also available. See Chapter 4.5, Klein & Moesch-
berger (1997).

4. The default confidence intervals for S(t) produced by survfit are not con-
structed solely with the Greenwood’s standard errors (std.err) provided
in the output. To obtain confidence intervals which use the Greenwood’s
s.e. directly, you must specify conf.type="plain" in the survfit func-
tion. These correspond to the formula (2.4).

The default intervals in survfit are called "log" and the formula is:
exp <log S(t) + 1.96 s.c. (?I(t))) , (2.16)

where H (t) is the estimated cumulative hazard function (2.7) with s.e. ~ the
square root of the variance (2.8). These "log" intervals are derived using
the delta method defined in Chapter 3.2, page 66. The log-transform on S (t)
produces more efficient intervals as we remove the source of variation due
to using S(t) in the variance estimate. Hence, this approach is preferred.

Sometimes, both of these intervals give limits outside the interval [0, 1]. This
is not so appealing as S(t) is a probability! Kalbfleisch & Prentice (1980)
suggest using the transformation W = log(—log(S(t))) to estimate the
log cumulative hazard parameter log(—log(S(¢))), and to then transform
back. Using the delta method, an estimate of the asymptotic variance of

this estimator is given by

. ~ 1 P ~ _ 1 d;
var(W) ~ (log 5(t))? at(—log 5(¢)) (log S(t))? yg;t ni(n; —d;)’

(2.17)
An approximate (1 — «) x 100% C.I. for the quantity S(¢) is given by

(g(t)>exp{2%3-e~(w)} (2.18)

< S(t) < (§(t)>ex"{‘z%5-e<<wn |

To get these intervals specify conf.type="log-log" in the survfit func-
tion. These intervals will always have limits within the interval [0, 1].

5. The variance of the estimated truncated mean survival time (2.14) is

/ 2
n Yn) .
ot (iean) = 3 < / S(u)du> ﬁ . (2.19)
Y() i\Tg i

i=1
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The quantity se(mean) reported in the survfit output is the square root
of this estimated variance.

6. An estimate of the truncated mean residual life at time ¢ (1.9), denoted by

E?l(t), is taken to be
Y
/ S(u)du
mrl Jeo

mrl(t) = 50 (2.20)

with estimated variance

2
dr (mil() = §21(t) 3 ( / ”§(u>du> ﬁ

t<Y(i)<Y(n) O]

+ ( /t o §(u)du)2
(2.21)

To derive this estimate of variance one needs to use the bivariate delta
method in Chapter 3.6 as mrl(t) is a quotient of two estimators.

d;
Z m(m - di)

Yy <t

7. This remark is for the more advanced reader who is interested in large
sample theory. Breslow and Crowley (1974) proved, for ¢ in the interval
[0, A] with F(A) < 1,

Zn(t) = /n (g(t) - S(t)) converges weakly to Z(t)

where Z(t) is a Gaussian process.

Hence, Z(t1), ..., Z(tx) has a multivariate normal distribution for ¢y, ...t
and this distribution is completely determined by the marginal means and
the covariance values. As a consequence, S(t¢) has asymptotic mean S(t)
and asymptotic covariance structure

1 ) |4 (u)
—Sr(t1)Se(t x/ _—
TR S M)

where Sy = 1 — F and S,, is the survivor function of ¥ = min(T,C)
discussed in Chapter 1.3, page 13. Further, for any function g continuous
in the sup norm, g(Z,(t)) converges in distribution to g(Z(t)). With these
facts established, the derivation of the variance formulae in Remarks 5
and 6 are easily verified. We assume expectation E can be passed through
the integral fab For a gentle introduction to stochastic integrals (which

the estimators of the mean and mrl are) and Gaussian processes, see Ross
(2000).

The hazard.km and quantile.km functions:

The function hazard.km takes a survfit object for its argument. It outputs

~ ~ ~

h(t), h(t;), ﬁ(t), se(H(t)), H(t), and se(H(t)). The function quantile.km
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computes an estimated pth-quantile along with its standard error and an
approximate (1 — «) x 100% confidence interval. It has four arguments:
(data,p,eps,z), where data is a survfit object, p is a scalar between 0 and
1, eps () is .05 or a little larger, and z is the standard normal z-score needed
for the desired confidence level.

> hazard.km(km.fit)
time ni di hihat hitilde Hhat se.Hhat Htilde se.Htilde

1 911 1 0.0227 0.0909 0.0953 0.0953 0.0909 0.0909
2 1310 1 0.0200 0.1000 0.2007 0.1421 0.1909 0.1351
3 18 8 1 0.0250 0.1250 0.3342 0.1951 0.3159 0.1841
4 23 7 10.0179 0.1429 0.4884 0.2487 0.4588 0.2330
5 31 5 10.0667 0.2000 0.7115 0.3345 0.6588 0.3071
6 34 4 10.0179 0.2500 0.9992 0.4418 0.9088 0.3960
7T 48 2 1 NA 0.5000 1.6923 0.8338 1.4088 0.6378

> quantile.km(km.fit,.25,.05,1.96) # the .25th-quantile
[1] "summary"
gqp se.S.qp  f.qp se.qp LCL UCL
1 18 0.1397 0.0205 6.8281 4.617 31.383 # in weeks

Remarks:

1. In the case of no censoring, quantile. km differs from the S function quantile.
Try quantile(1:10,c(.25,.5,.75)) and compare
quantile.km after using survfit(Surv(1:10,rep(1,10))).

2. If we extend the survfit graphical method to find the confidence limits for
a median to the .25th quantile, we get 13 and NA as the lower and upper
limits, respectively. WHY! See Remark 2, page 36.

2.2 Comparison of survivor curves: two-sample problem

For the AML data the variable “weeks” contains all 23 observations from both
groups.
There is now the variable group:

1 for maintained

group = { 0 for nonmaintained.

A plot of the K-M curves for both groups is displayed in Figure 2.4. A summary
of the survival estimation using the survfit function follows:

> km.fit <- survfit(Surv(weeks,status) group,data=aml)
> plot(km.fit,conf.int=F,xlab="time until relapse (in weeks)",
ylab="proportion without relapse",
lab=c(10,10,7) ,cex=2,1ty=1:2)
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> summary (km.fit) # This displays the survival probability
# table for each group. The output is omitted.

> km.fit

n events mean se(mean) median 0.95LCL 0.95UCL
group=0 12 11 22.7 4.18 23 8 NA
group=1 11 7 52.6 19.83 31 18 NA

1.0

The AML Maintenance Study

0.8

—— maintained
,,,,,,,,,,, non-maintained

0.6

proportion without relapse
0.4

0.2

0.0

0 20 40 60 80 100 120 140 160
time until relapse (in weeks)

Figure 2.4 A comparison of two K-M curves.

e Notice the estimated mean, median, and survivor curve of “maintained”
group are higher than those of the other group.

e Is there a significant difference between the two survivor curves?
Does maintenance chemotherapy statistically prolong time until relapse?

To test Hy : Fy = Fy, we present the Mantel-Haenszel (1959) test, also called
the log-rank test. Another well known test is the Gehan (1965) test, which
is an extension of the Wilcoxon test to accommodate right-censored data.
See Miller (1981, Chapter 4.1) for a presentation of this test. To motivate
the construction of the Mantel-Haenszel test statistic, we first briefly study
Fisher’s exact test.

Comparing two binomial populations:

Suppose we have two populations, and an individual in either population can
have one of two characteristics. For example, Population 1 might be cancer
patients under a certain treatment and Population 2 cancer patients under a
different treatment. The patients in either group may either die within a year
or survive beyond a year. The data are summarized in a 2 X 2 contingency
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table. Our interest here is to compare the two binomial populations, which is
common in medical studies.

‘ Dead ‘ Alive ’
Population 1 ‘ a | b | ny
Population 2 ‘ c | d ’ Mo
| | e [
Denote
p1 = P{Dead|Population 1},
p2 = P{Dead|Population 2}.

Want to test
Hy : p1 = po.

Fisher’s exact test:

The random variable A, which is the entry in the (1,1) cell of the 2 x 2 table,
has the following exact discrete conditional distribution under Hy:
Given n1, ny, my, meo fixed quantities, it has a hypergeometric distribution

where . .
1 2
( a ) (77L1—a)
()
my
The test based on this exact distribution is called the Fisher’s exact test.

The S function fisher.test computes an exact p-value. The mean and vari-
ance of the hypergeometric distribution are

P{A=a}=

EO(A) = %a
N1NoMIMm
Varg(A) = 4;2 (2 _1 1)2 )

We can also conduct an approximate chi-square test when samples are large

as )
2_(e—Eo(4) ) a
X ( Varg(A) X
where (1) denotes a chi-square random variable with 1 degree of freedom.

Mantel-Haenszel /log-rank test:

Now suppose we have a sequence of 2 x 2 tables. For example, we might have k
hospitals; at each hospital, patients receive either Treatment 1 or Treatment 2
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and their responses are observed. Because there may be differences among
hospitals, we do not want to combine all k tables into a single 2 x 2 table. We
want to test

Hp : p11 = p12, and..., and pr1 = ppa,

where
pi1 = P{Dead|Treatment 1, Hospital i},
piz = P{Dead|Treatment 2, Hospital i}.
Dead | Alive
Treatment 1 ai n11
Treatment 2 n12
mir | Mi2 | N1

Hospital 1
Dead | Alive
Treatment 1 ak Nkl
Treatment 2 Nk
mg1 mg2 N

Hospital &
Use the Mantel-Haenszel (1959) statistic
k
Zle V(IT‘Q (Az)

If the tables are independent, then MH ~ N(0,1) either when k is fixed and
n; — oo or when k — oo and the tables are also identically distributed.

(2.22)

In survival analysis the MH statistic is applied as follows: Combine the two
samples, order them, and call them z(;). Construct a 2 x 2 table for each
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uncensored time point z;). Compute the MH statistic for this sequence of
tables to test Hy: Fy = F5. The theory tells us that asymptotic normality
still holds even though these tables are clearly not independent.

We illustrate how to compute the MH with the following fictitious data:

Treatment Old 3, 5, 7, 9+, 18
Treatment New 12, 19, 20, 20+, 33+

Computations for the MH are given in the following table. Denote the com-
bined ordered values by z. Note that n is the total number of patients at risk
in both groups; m; the number of patients who died at the point z; n; the
number at risk in treatment Old at time z; a equals 1 if death in Old or O if
death in New. Remember that

By ) = "M and Varg(a) = M) Mg,
n—1 n n
oz onomomoa By(d) r mimmlom(1on)
Old 3 10 1 5 1 .50 .50 1 .2500
Old 5 9 1 4 1 44 .56 1 .2469
Old T8 1 3 1 38 .62 1 2344
Old 9+ 0 0
New 12 6 1 1 0 A7 =17 1 1389
Od 18 5 1 1 1 20 .80 1 .1600
New 19 4 1 0 0 0 0 1 0
New 20 3 1 0 0 0 0 1 0
New 20+
New 33+
Total 4 1.69 2.31 1.0302

where r = (a — Eg(A)). Then
sum of (a — Ey(A))

MH =
\/sum of (77"1(::{"1) X (1 — %))
2.31
= — =22
1.02 0
p-value = 0.012 (one-tailed Z test).

The S function survdiff provides the log-rank (= MH) test by default. Its
first argument takes a Surv object. It gives the square of the MH statistic
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which is then an approximate chi-square statistic with 1 degree of freedom.
This is a two-tailed test. Hence, the p-value is twice that of the MH above.
Except for round-off error, everything matches.

> grouph <- c¢(1,1,1,1,1,2,2,2,2,2) # groups: 1=old; 2=new
> hypdata <- ¢(3,5,7,9,18,12,19,20,20,33) # the data
> cen <- ¢(1,1,1,0,1,1,1,1,0,0) # censor status:

# 1=uncensored; O=censored

> survdiff (Surv(hypdata,cen) “grouph)
N Observed Expected (0-E)"2/E (0-E)~2/V
grouph=1 5 4 1.69 3.18 5.2
grouph=2 5 3 5.31 1.01 5.2

Chisqg = 5.2 on 1 degrees of freedom, p = 0.0226

# This p-value corresponds to a two-tailed Z-test

# conducted with MH.

> sqrt(5.2) # square root of log-rank test statistic.

[1] 2.280351 # MH.

# .0226 = (1 - pnorm(2.280351))*2: p-value for two-sided test
> .0226/2

[1] 0.0113 # p-value for one-sided test.

The log-rank test on the AML data is:

> survdiff (Surv(week,status) “group,data=aml)

N Observed Expected (0-E)"2/E (0-E)~2/V
group=1 11 7 10.69 1.27 3.4
group=2 12 11 7.31 1.86 3.4

Chisq= 3.4 on 1 degrees of freedom, p= 0.0653

There is mild evidence to suggest that maintenance chemotherapy prolongs
the remission period since the one-sided test is appropriate and its p-value is
.0653/2 = .033.

Remarks:

1. The proofs of asymptotic normality of the K-M and MH statistics are not
easy. They involve familiarity with Gaussian processes and the notion of
weak convergence in addition to other probability results applied to stochas-
tic processes. Here the stochastic processes are referred to as empirical pro-
cesses. For the interested reader, these proofs of normality are outlined in
Miller (1981), Chapters 3.2.5, 3.3, 4.2.4. For the even more advanced reader,
see Fleming and Harrington (1991).
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2. One might ask why the MH test is also called the log-rank test. One ex-

planation is to consider the accelerated failure time model presented in
Chapter 4.4. Suppose there is only one covariate x so that the model is
Y = 0§ + 8%z + oZ. Miller (1981), Chapter 6.2.1, derives the locally most
powerful rank statistic for testing Hp : 8* = 0 against Hs : 8* # 0 when
evaluated at the extreme value distribution for error. He says that Peto and
Peto (1972) first derived this test and named it the log-rank test. When
x is binary, that is, z = 1 if in group 1 and = 0 if in group 2, this statis-
tic simplifies to a quantity that is precisely a rescaled version of the MH
statistic when there are no ties. The locally most powerful rank statistic
involves a log, hence the name log-rank test.

. The survdiff function contains a “rho” parameter. The default value, rho

= 0, gives the log-rank test. When rho = 1, this gives the Peto test. This
test was suggested as an alternative to the log-rank test by Prentice and
Marek (1979). The Peto test emphasizes the beginning of the survival curve
in that earlier failures receive larger weights. The log-rank test emphasizes
the tail of the survival curve in that it gives equal weight to each failure
time. Thus, choose between the two according to the interests of the study.
The choice of emphasizing earlier failure times may rest on clinical features
of one’s study.

Hazard ratio as a measure of effect:

The hazard ratio is a descriptive measure of the treatment (group) effect on

survival. Here we use the two types of empirical hazard functions, h; and h(t),

defined on page 32, to form ratios and then interpret them in the context of
the AML study. The function emphazplot contains an abridged form of the
hazard.km function (page 38) and produces two plots, one for each of the two
types of hazard estimates. Modified output and plots follow.

>

vV V V V

© 00 N O WN -

attach(aml)

Surv0 <- Surv(weeks[group==0],status[group==0])

Survl <- Surv(weeks[group==1],status[group==1])

data <- 1list(SurvO,Survl)

emphazplot (data,text="solid line is maintained group")

nonmaintained maintained
time hitilde hihat time hitilde hihat
5 0.167 0.056 1 9 0.091 0.023
8 0.200 0.050 2 13 0.100 0.020
12 0.125 0.011 3 18 0.125 0.025
23 0.167 0.042 4 23 0.143 0.018
27 0.200 0.067 5 31 0.200 0.067
30 0.250 0.083 6 34 0.250 0.018
33 0.333 0.033 7 48 0.500 0.018
43 0.500 0.250
45 1.000 0.250
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> detach()

solid line is maintained group solid line is maintained group

hazard at time i

hazard over each observed interval

5 9123 18 23 27 31334 45 48 5 9123 18 23 27 31334 45 48
time to relapse (in weeks) time to relapse (in weeks)
Figure 2.5 A comparison of empirical hazards. Left plot displays %(tz) Right plot
displays h(t).

Consider the following two hazard ratios of nonmaintained to maintained:

~ ~

M:ﬂ:.% and M:%: .33,
hw(15) 020 hm(25) 018

The nonmaintained group has 55% of the risk of those maintained of relapsing
at 15 weeks. However, on the average, those nonmaintained have 2.33 times
the risk of those maintained of relapsing at 25 weeks.

Neither of the two plots in Figure 2.5 displays roughly parallel curves over
time. In the second plot, the hazard curves cross over time, which implies
one group’s risk is not always lower than the other’s with respect to time.
Both plots indicate the hazard ratio is not constant with respect to
time, which says the hazard functions of the two groups are not proportional.
The notion of proportional hazards is a central theme threaded throughout
survival analyses. It is discussed in detail in Chapters 4, 5, 6, 7, and 8.
Note these plots in Figure 2.5 are only an illustration of how to visualize and
interpret HR’s. Of course, statistical accuracy (confidence bands) should be
incorporated as these comments may not be statistically significant.

Stratifying on a covariate:

e Stratifying on a particular covariate is one method that can account for
(adjust for) its possible confounding and/or interaction effects with the
treatment of interest on the response.

e Confounding and/or interaction effects of other known factors with the
treatment variable can mask the “true” effects of the treatment
of interest. Thus, stratification can provide us with stronger (or weaker)
evidence, or more importantly, reverse the sign of the effect. That is, it is
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possible for the aggregated data to suggest treatment is favorable when in
fact, in every subgroup, it is highly unfavorable; and vice versa. This is
known as Simpson’s paradox (Simpson, 1951).

Let’s consider the fictitious data again and see

1. What happens when we stratify by sex?

2. How is the log-rank statistic computed?

Recall:

grouph <- ¢(1,1,1,1,1,2,2,2,2,2) # groups: 1 = old 2 = new
hypdata <- ¢(3,5,7,9,18,12,19,20,20,33) # the data
cen <- ¢(1,1,1,0,1,1,1,1,0,0) # censor status:

1 = uncensored; 0 = censored

How to:

Separate the data by sex. Then, within each sex stratum, construct a sequence
of tables as we did above. Then combine over the two sexes to form (MH)?2.
According to the sex vector

old new

——
sex <- ¢(1,1,1,2,2,2,2,2,1,1), where 1 = male 2 = female.

Within each stratum, n is the total number at risk, m; the number who die
at point z, n; the number at risk in treatment Old at time z, and a equals 1
if death in Old or 0 if death in New.

MALE: Old 3,5 7
New 20+, 33+

trt z n m; N a Eq(A) % mo(1—m)
Old 3 5 1 3 1 .60 1 .24
Old 5 4 1 2 1 .50 1 .25
Old 7 3 1 1 1 333333 1 .222222

New 20+ 2

New 33+ 1

Total 3 1.433333 712222

Note: Fy(A) = ™™ and Varg(A) = mi(n—mi) oony (1 _ m) )

n—1 n n
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FEMALE: Old 9+, 18
New 12, 19, 20

trt 2z n omy n a  E(A) mi(n=mi)  ny (1—m)

n—1 n

Old 9+ 5
New 12 4 1 1 0 .25 1 1875
Od 18 3 1 1 1 .333333 1 .222222
New 19 2 1 0 O 0 0
New 20 1 1 0 O 0 0
Total 1 .583333 409722

Then pooling by summing over the two tables, we have a = 4, Ey(A) =
1.433333+.583333 = 2.016666, and Varg(A) = .712222+.409722 = 1.121944.
The log-rank statistic is

2 (4— 2.016666)>
1121944
which matches the following S output from survdiff. Note the strata(sex)

term that has been included in the model statement within the survdiff
function.

(MH) = 3.506,

# sex = 1 for male, sex = 2 for female
# group = 1 for old, group = 2 for new treatment

> survdiff (Surv(hypdata,cen) “grouph+strata(sex))

N Observed Expected (0-E)~2/E (0-E)~2/V
grouph=1 5 4 2.02 1.9561 3.51
grouph=2 5 3 4.98 0.789 3.51

Chisq= 3.5 on 1 degrees of freedom, p= 0.0611

Note that the p-value of a one-sided alternative is 0.0611/2 = .031. Although
there is still significant evidence at the .05 level that the new treatment is
better, it is not as strong as before we stratified. That is, after taking into
account the variation due to sex, the difference between treatments is not as
strong.
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The next example shows that stratification can even reverse the association.

Example of Simpson’s paradox:

This example is extracted from an article written by Morrell (1999). He dis-
cusses data collected in a South African longitudinal study of growth of chil-
dren, referred to as the Birth to Ten study (BTT).

Extract: This study commenced in the greater Johannesburg/Soweto metropoli-
tan area of South Africa during 1990. A birth cohort was formed from all
singleton births during a seven-week period between April and June 1990
to women with permanent addresses within a defined area. Identification of
children born during this seven-week period and living in the defined areas
took place throughout the first year of the study, by the end of which 4029
births had been enrolled. The BTT study collected prenatal, birth, and early
development information on these children. The aim of the study was to iden-
tify factors related to the emergence of cardiovascular disease risk factors
in children living in an urban environment in South Africa. In 1995, when
the children were five years old, the children and care-givers were invited to
attend interviews. Detailed questionnaires were completed that included ques-
tions about living conditions within the child’s home, the child’s exposure to
tobacco smoke, and additional health-related issues. The five-year sample con-
sisted of 964 children. Unfortunately, there was a great deal of missing data
in the baseline group, especially on the variables reported below.

If the five-year sample is to be used to draw conclusions about the entire
birth cohort, the five-year group should have characteristics similar to those
who were not traced from the initial group. Thus, the five-year group was
compared to those who did not participate in the five-year interview on a
number of factors. One of the factors was a variable that determined whether
the mother had medical aid (which is similar to health insurance) at the time
of the birth of the child.

Table 2.3 shows that 11.1% of those in the five-year cohort had medical aid,
whereas 16.6% of those who were not traced had medical. This difference is
statistically significant (p-value = 0.007). The subjects in the BTT study were
also classified by their racial group. In this article we consider only white and
black participants. Tables 2.4 and 2.5 show the distribution of the medical aid
variable broken down by race (two strata). For whites, 83.3% of those in the
five-year cohort had medical aid, whereas 82.5% of those who did not par-
ticipate in the five-year tests had medical aid. For blacks, the corresponding
percentages are 8.9% and 8.7%. This shows that even though overall a signif-
icantly smaller percentage of the five-year cohort had medical aid, when the
race of the subjects is taken into account, the association is reversed. Further-
more, there is negligible evidence of any difference between the percentages
when stratified by race; p-value = 0.945 and 0.891 for whites and blacks, re-
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spectively. The (MH)? statistic (page 42), which pools effects across the two
race tables, has a value of 0.0025 with p-value = 0.9599.

Table 2.3:  Number and percentages of mothers with medical aid
Children Not Traced Five-Year Group Total

Had Medical Aid 195 (16.61%) 46 (11.06%) 241
No Medical Aid 979 (83.39%) 370 (88.94%) 1349
Total 1174 (100%) 416 (100%) 1590

Table 2.4:  Number and percentages of mothers with medical aid

(white)
Children Not Traced Five-Year Group Total
Had Medical Aid 104 (82.54%) 10 (83.33%) 114
No Medical Aid 22 (17.46%) 2 (16.67%) 24
Total 126 (100%) 12 (100%) 138

Table 2.5:  Number and percentages of mothers with medical aid

(black)
Children Not Traced Five-Year Group Total
Had Medical Aid 91 (8.68%) 36 (8.91%) 127
No Medical Aid 957 (91.32%) 368 (91.09%) 1325
Total 1048 (100%) 404 (100%) 1452

This reversal, and elimination, of association is easily explained. Whites tend
to have more access to medical aid than do black South Africans (83% and
8.7%, respectively). In addition, many more blacks were originally included
in the BTT study than whites (1452 blacks, 138 whites). Consequently, when
the race groups were combined, a relatively small percentage (241/1590 =
15.16%) of the subjects have access to medical aid. At the five-year follow-
up, very few whites agree to attend the interviews (12/138 = 8.67% of those
with data on the medical aid variable). Possibly whites felt they had little
to gain from participating in the study, while a larger proportion of blacks
(404/1452 = 27.82% of those with data on the medical aid variable) continue
into the five-year study. The blacks may have valued the medical checkup and
screening provided to children in the study as a replacement for (or in addition
to) a regular medical screening.
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The data contained in the above tables are found in the S data frame Birth-
toTen and in BirthtoTen.xls.

Key to variables in BirthtoTen data:

Medical.Aid 0 = No, 1 = Yes
Traced 0 = No, 1 = Five-Year Cohort
Race 1 = White, 2 = Black

The S function crosstabs produces contingency tables. The S function
mantelhae.test conducts the (MH)? test when pooling 2 x 2 tables. The
following S code produces the foregoing results:

> crosstabs(” Medical.Aid + Traced,data=BirthtoTen)

> crosstabs(~ Medical.Aid + Traced,data=BirthtoTen,
subset=Race==1)

> crosstabs (™ Medical.Aid+Traced,data=BirthtoTen,
subset=Race==2)

> mantelhaen.test (BirthtoTen$Medical.Aid,BirthtoTen$Traced,

BirthtoTen$Race)

2.3 Exercises
A. Applications

2.1 Use only hand-held calculator. No need for computer.

(a) Calculate the following table and sketch the Kaplan-Meier (K-M)
estimate of survival for the data set y: 1, 11, 2, 4, 4, 47, 6, 9.

~

(“4” denotes censored observation.) The s.e.(S(t)) is computed using
Greenwood’s formula (2.3) for the estimated (asymptotic) variance of
the K-M curve at time ¢.

Yoy di oy Di S(ay) = P(T > yauy) se(S(ya))
0

1
1t
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(b) Calculate a 95% confidence interval for S(t) at ¢ = 3. Use the default
interval given in Remark 4, expression (2.16). Is is necessary to use the
C.I. in expression (2.18)7 If yes, use it to report a 95% C.I.

(¢) Compute the estimated hazard (2.5) h(t;) at ¢; = 2. Then compute a
95% C.I. for H(t) at t = 3 using the Nelson-Aalen estimate (2.9).

(d) Provide a point and 95% C.I. estimate of the median survival time. See
page 34.

2.2 For AMLI1 data, compute by hand point and 95% C.I. estimates of the .25th

quantile using formulae (2.11), (2.12), and (2.13). Check your answers with
the results given by the function quantile.km on page 39.

2.3 Use S or R for this exercise.
In this study the survival times (in days) of 66 patients after a particu-

lar operation were observed. The data frame diabetes contains for each
patient the following variables:

Variable Key

sex gender (m=0, f=1)

diab diabetic (1=yes, 0=no)

alter age in years

altgr age group in years = 0 if age < 64, or 1 if age > 64

lzeit survival times in days (number of days to death)
after operation

tod 0 = censored, 1 = uncensored (dead)

(a) Following the S code on page 35 of the text, obtain a summary of the
K-M survival curve for the diabetic group only. survfit is the main
function.

(b) Report the mean and median survival times.

(c) Plot the K-M curve for this group.

(d) Use the function hazard.km (page 38) to give a summary of the various
estimates of hazard and cumulative hazard.

(e) Use the function quantile.km (page 38) to provide point and 95% con-
fidence interval estimates for the .25th and .80th quantiles.

2.4 We continue with the diabetes data.

(a) Plot the K-M curves for the data of the diabetic group and the nondia-
betic. Comment briefly! Be sure to give a legend so we know which line
corresponds to which group. See page 39.

(b) Is there a statistically significant difference in survival between the two
groups — diabetic and nondiabetic? What weaknesses (shortcomings) does
this global analysis have? See page 46 for example.

(c) Stratifying on known prognostic factor(s) can improve an analysis.
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i. Stratify by sex. Judge now the difference in survival between the
diabetic and nondiabetic groups.
Tips:
> table(diabetes$sex,diabetes$diab) # This counts the
# subjects in each gender (stratum) for each group.
> survdiff (Surv(lzeit,tod) “diab+strata(sex),
data=diabetes)
> fit.sex <- survfit(Surv(lzeit,tod) “diab+strata(sex))
> fit.sex
> plot(fit.sex,lty=1:4)

ii. Stratify by altgr (age group). Judge now the difference in survival
between the diabetic and nondiabetic groups.

(d) Refer to the Hazard ratio as a measure of effect discussion starting
on page 45. Does it appear that the hazard ratio between the two groups,
diabetic and nondiabetic, is constant over time? That is, are the two
empirical hazard functions proportional?

Tip:

Use the function emphazplot.
B. Theory and WHY!

2.5 Answer the WHY! on page 39.

2.6 Show the K-M estimator (2.2) reduces to the esf (2.1) when there are no
censored observations.

2.7 On the data given in Exercise 2.1, compute by hand the truncated mean
survival time (2.15) and its estimated variance (2.19). Check your answer
using the appropriate S function.

2.8 Derive the approximate (1 — a) x 100% confidence interval for S(t), the
probability of survival beyond time t, given in expression (2.18).

2.9 Derive expression (2.9) by applying the first order Taylor approximation to
expression (2.7).

2.10 Derive expression (2.21).






CHAPTER 3

Parametric Methods

Objectives of this chapter:

After studying Chapter 3, the student should:

1.
2.
3.

© ®° N o o

10.

11.

12.

Be familiar with six distributional models.
Be able to describe the behavior of their hazard functions.

Know that the log-transform of three of these lifetime distributions trans-
forms into a familiar location and scale family; and know the relation-
ships between the parameters of the transformed model and those in the
original model.

Know how to construct a Q-Q plot for each of these log(time) distribu-
tions.

Know the definition of a likelihood function.

Understand the method of maximum likelihood estimation (MLE).
Know how to apply the delta method.

Understand the concept of likelihood ratio test (LRT).

Know the general form of the likelihood function for randomly censored
data.

Understand how to apply the above estimation and testing methods under
the exponential model to one sample of data containing censored values.
Hence, be familiar with the example of fitting the AML data to an expo-
nential model.

Be familiar with the S function survReg used to provide a parametric
description and analysis of censored data; in particular, how to fit data to
the Weibull, log-logistic, and log-normal models.

Know how to apply survReg to the one-sample and two-sample problems.
Be familiar with the additional S functions anova, predict, and the func-
tions qq.weibull, qq.loglogistic, qq.weibreg, qq.loglogisreg, and
qq.lognormreg, which produce Q-Q plots for one or several samples.

55
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3.1 Frequently used (continuous) models

The exponential distribution

p.d.f. f(t) survivor S(t) hazard h(t)
Aexp(—At) exp(—At) A A>0

mean F(T) variance Var(T)  pth-quantile ¢,

32 —A"tlog(1 —p)

>l

The outstanding simplicity of this model is its constant hazard rate. We dis-
play some p.d.f.’s and survivor functions for three different values of A in
Figure 3.1. The relationship between the cumulative hazard and the survivor

f(ty

0 8 0 t
Figure 3.1 FExponential density and survivor curves.
function (1.6) is
log (H(t)) = log ( —log(5(t))) = log()) + log(t)

or, equivalently expressed with log(t) on the vertical axis,

log(t) = —log(\) + log ( —log(S(2))). (3.1)

Hence, the plot of log(t) versus log ( — log(S(t))) is a straight line with slope
1 and y-intercept —log(A). At the end of this section we exploit this linear
relationship to construct a Q-Q plot for a graphical check of the goodness of
fit of the exponential model to the data. Since the hazard function, h(t) = A,
is constant, plots of both empirical hazards, h(t;) and }\L(t) (page 32), against
time provide a quick graphical check. For a good fit, the plot patterns should
resemble horizontal lines. Otherwise, look for another survival model. The
parametric approach to estimating quantities of interest is presented in Sec-
tion 3.4. There we first illustrate this with an uncensored sample. Then the
same approach is applied to a censored sample. The exponential is a special
case of both the Weibull and gamma models, each with their shape parameter
equal to 1.
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The Weibull distribution

p.d.f. f(¢) survivor S(t) hazard h(t)
Aa( M) x exp (—(At)%) Aa( M)t
exp (—(At)%)

mean E(T) variance Var(T) pth-quantile ¢,

AT+ L) A1+ 2) A1 (= log(1 - p))*

[e3%

“ATH0(1+1)2 A>0anda>0

The I'(k) denotes the gamma function and is defined as fooo ubF~le~tdu, k > 0.
Figure 3.2 displays p.d.f.’s and hazard functions, respectively.

=30 fi)

0.0

time t time t

Figure 3.2 Weibull density and hazard functions with A = 1.

Note that the Weibull hazard function is monotone increasing when o > 1,
decreasing when a < 1, and constant for « = 1. The parameter « is called
the shape parameter as the shape of the p.d.f., and hence the other functions,
depends on the value of a. This is clearly seen in Figures 3.2. The ) is a scale
parameter in that the effect of different values of X is just to change the scale
on the horizontal (t) axis, not the basic shape of the graph.

This model is very flexible and has been found to provide a good description
of many types of time-to-event data. We might expect an increasing Weibull
hazard to be useful for modelling survival times of leukemia patients not re-
sponding to treatment, where the event of interest is death. As survival time
increases for such a patient, and as the prognosis accordingly worsens, the
patient’s potential for dying of the disease also increases. We might expect
some decreasing Weibull hazard to well model the death times of patients re-
covering from surgery. The potential for dying after surgery usually decreases
as the time after surgery increases, at least for a while.
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The relationship between the cumulative hazard H(¢) and the survivor S(¢)
(1.6) is seen to be

log (H(t)) = log ( —log(S5(t))) = a(log(A) + log(t)) (3.2)
or equivalently expressed as
log(t) = —log(\) + o log (— log(S(t))) |, (3.3)

where o = 1/a. The plot of log(t) versus log ( —log(S(t))) is a straight line
with slope ¢ = 1/« and y-intercept — log()). Again, we can exploit this linear
relationship to construct a Q-Q plot.

An example of fitting data to the Weibull model using S, along with its Q-Q
plot, is presented in Section 3.4. This distribution is intrinsically related to the
extreme value distribution which is the next distribution to be discussed. The
natural log transform of a Weibull random variable produces an extreme value
random variable. This relationship is exploited quite frequently, particularly
in the statistical computing packages and in diagnostic plots.

The extreme (minimum) value distribution

The interest in this distribution is not for its direct use as a lifetime distri-
bution, but rather because of its relationship to the Weibull distribution. Let
1, where —oo < p < oo, and o > 0 denote location and scale parameters,
respectively. The standard extreme value distribution has gy =0 and ¢ = 1.

p.d.f. f(y) survivor S(y)

o texp (L4 —exp (55£))  exp (—exp (52))

mean E(Y) variance Var(Y) pth - quantile y,
2
= 5o’ Up

=p
+olog (—log(1 — p))

Here ~y denotes Euler’s constant, v = 0.5772..., the location parameter p is the
0.632th quantile, and y can also be negative so that —oco < y < oo. Further,
the following relationship can be easily shown:

Fact: If T is a Weibull random variable with parameters o and A, then
Y = log(T) follows an extreme value distribution with g = —log(\) and
0 = a~'. The r.v. Y can be represented as Y = u + 0Z, where Z is a
standard extreme value r.v., as the extreme value distribution is a location
and scale family of distributions.

As values of p and o different from 0 and 1 do not effect the shape of the p.d.f.,
but only location and scale, displaying only plots of the standard extreme value
p-d.f. and survivor function in Figure 3.3 suffices.
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s
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Figure 3.3 Standard extreme value density and survivor functions.

The log-normal distribution

This distribution is most easily characterized by saying the lifetime 7T is log-
normally distributed if Y = log(T’) is normally distributed with mean and vari-
ance specified by p and o2, respectively. Hence, Y is of the form Y = y+ 02
where Z is a standard normal r.v. We have the following table for T with
a >0 and A > 0 and where ®(-) denotes the standard normal d.f.:

p.d.f. f(¢) survivor S(t) hazard h(t)
(271')*%00571 exp (—7042(10;(”))2) 11— (a log()\t)) %
mean E(T) variance Var(T') Note:
exp(u+ %) (exp(0?) = 1)x = —log(\)

exp(2u + o?) and 0 =a" !

The hazard function has value 0 at t = 0, increases to a maximum, and then
decreases, approaching zero as t becomes large. Since the hazard decreases for
large values of t, it seems implausible as a lifetime model in most situations.
But, it can still be suitable for representing lifetimes, particularly when large
values of ¢ are not of interest. We might also expect this hazard to describe
tuberculosis patients well. Their potential for dying increases early in the
disease and decreases later. Lastly, the log-logistic distribution, to be presented
next, is known to be a good approximation to the log-normal and is often a
preferred survival time model. Some p.d.f’s and hazard functions are displayed
in Figure 3.4.

The log-logistic distribution

The lifetime T is log-logistically distributed if Y = log(T') is logistically dis-
tributed with location parameter o and scale parameter o. Hence, Y is also
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2.0

1.0 1.5

0.5

0.0

0.0 0.5 1.0 1.5 2.0 25 3.0 0 1 2 3 4

Figure 3.4 Log-normal densities and hazards with p = 0 and o = .25,.5,1.5, and 3.

of the form Y = y + 0Z where Z is a standard logistic r.v. with density
exp(2)
—
(1 + exp(z))
This is a symmetric density with mean 0 and variance 72/3, and with slightly

heavier tails than the standard normal, the excess in kurtosis being 1.2. We
have the following table for T with a > 0 and A > 0:

—0 < Z < 0.

p.d.f. f(¢) survivor S(t)  hazard h(t)
-2 a—1
M) (14 () — e
Note: pth-quantile £,
poo= —log(}) 1
e | -1(_p \~
and 0 =« A (1_p)

This model has become popular, for like the Weibull, it has simple algebraic
expressions for the survivor and hazard functions. Hence, handling censored
data is easier than with the log-normal while providing a good approximation
to it except in the extreme tails. The hazard function is identical to the Weibull
hazard aside from the denominator factor 1 + (A\t)®. For a < 1 (o0 > 1) it is
monotone decreasing from oo and is monotone decreasing from A if & = 1
(c =1). If @« > 1 (0 < 1), the hazard resembles the log-normal hazard as it
increases from zero to a maximum at t = (o — 1)*/® /X and decreases toward
zero thereafter. In Section 3.4 an example of fitting data to this distribution
using S along with its Q-Q plot is presented. Some p.d.f.’s and hazards are
displayed in Figure 3.5.

We exploit the simple expression for the survivor function to obtain a rela-
tionship which is used for checking the goodness of fit of the log-logistic model
to the data. The odds of survival beyond time ¢ are

S(t)

Tos@ =~ (34)
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Figure 3.5 Log-logistic densities and hazards with p =0 and o = .25,.5,1.5, and 3.

It easily follows that log(t) is a linear function of the log-odds of survival
beyond t. The precise linear relationship is

log(t) = p+ U( — log (ES&)) )

where p = —log(\) and 0 = 1/a. The plot of the log(t) against — log{S(¢)/(1—
S(t))} is a straight line with slope o and y-intercept p. At the end of this sec-
tion, the Q-Q plot is constructed using this linear relationship.

(3.5)

The gamma distribution

Like the Weibull, this distribution has a scale parameter A > 0 and shape
parameter £ > 0 and contains the exponential distribution as a special case;
i.e., when shape k = 1. As a result, this model is also more flexible than the
exponential. We have the following table for this distribution:

p.d.f. f(¢) survivor S(t) hazard h(t)

A;t(—gl exp(—At) no simple form no simple form

mean F(T) variance Var(T)

k
22

>z

The hazard function is monotone increasing from 0 when k > 1, monotone
decreasing from oo if £ < 1, and in either case approaches A as t increases.

The model for Y = log(T') can be written Y = p + Z, where Z has density
exp (kz — exp(2))

I'(k)
The r.v. Y is called a log-gamma r.v. with parameters k and u = —log(\).
The quantity Z has a negatively skewed distribution with skewness decreasing

with k increasing. When k = 1, this is the exponential model and, hence, Z
has the standard extreme value distribution. With the exception of k = 1, the

(3.6)
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log-gamma is not a member of the location and scale family of distributions.
It is, however, a member of the location family. Figure 3.6 shows some gamma
p.d.f.’s and hazards. We display some log-gamma p.d.f.’s in Figure 3.7. See
Klein & Moeschberger (1997, page 44) and Kalbfleisch & Prentice (1980, page
27) for a discussion of the generalized gamma and corresponding generalized
log-gamma distributions.

2.0

k=0.5 f(t)

1.5

k=1

1.0

k=2 k=2
-3 1 k=3

05

00 02 04 06 08 1.0 12

0.0

Figure 3.6 Gamma densities and hazards with A =1 and k = 0.5,1,2, and 3.

° f(y) k=2
<
S k=1
° 1 k=05
4 2 0 2
y

Figure 3.7 Log-gamma density with k = 0.5,1,2, and A = 1.

A note on discrete lifetimes

When T is discrete r.v., different techniques are required. Discrete random
variables in survival analyses arise due to rounding off measurements, grouping
of failure times into intervals, or when lifetimes refer to an integral number
of units. When effectively continuous data have been grouped into intervals,
the multinomial distribution is used. Methods for multinomial models are
discussed in Lawless (1982, Chapter 2). Agresti (1990, Chapter 6.6) presents
methods to analyze mortality rates and survival times using log-linear models
when explanatory variables are categorical.

Summary

Except for the gamma distribution, all distributions of lifetime T we work
with have the property that the distribution of the log-transform log(7T) is a
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member of the location and scale family of distributions. The common features
are:

e The time T distributions have two parameters —
scale= A and shape=«.

e In log-time, Y = log(T), the distributions have two parameters —

1
location = p = —log(\) and scale=oc=—.
a

e Each can be expressed in the form
Y=log(T)=p+oZ2, (3.7)
where Z is the standard member; that is,
p=0MA=1) and o=1 (a=1).
e They are log-linear models.

The three distributions considered in our examples are summarized as follows:

T — Y =log(T)

Weibull <= extreme minimum value
log-normal <= normal

log-logistic <= logistic

If the true distribution of Y = log(T) is one of the above, then the pth-quantile
Yp is a linear function of z,, the pth-quantile of the standard member of the
specified distribution. The straight line has slope o and y-intercept u. Let
t, denote an arbitrary pth-quantile. In light of the foregoing discussion, the
linear relationships for y, = log(t,) reported in expressions (3.3), (3.5), (3.7)
take on new meaning. This is summarized in Table 3.1.

Construction of the quantile-quantile (Q-Q) plot

Let S (t) denote the K-M estimator of survival probability beyond time ¢. Let
ti,i=1,...,7r <n, denote the ordered uncensored observed failure times. For
each uncensored sample quantile y; = log(¢;), the estimated failure probability
isp, =1-— S (t;). The parametric standard quantile z; is obtained by using
the p; to evaluate the expression for the standard quantile given in Table 3.1.
Thus, Fy1(z) = P(Z < z;) = p;, where Fy; is the d.f. of the standard
parametric model (¢ = 0,0 = 1) under consideration. As the K-M estimator
is distribution free and consistently estimates the “true” survival function, for
large sample sizes n, the z; should reflect the “true” standard quantiles, if F’
is indeed the “true” lifetime d.f.. Hence, if the proposed model fits the data
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Table 3.1:  Relationships to exploit to construct a graphical check for
model adequacy

tp quantile y, =log(¢,) quantile form of standard quantile z,

Weibull extreme value log(—1log(S(tp))) = log(H(t,))
= log(—log(1 - p))

log-normal normal ®~1(p), where ® denotes the
standard normal d.f.

S(t
log-logistic logistic —log <1<7Sp(35)) = —log(odds)
—ollp

= —log 1%”

adequately, the points (z;,y;) should lie close to a straight line with slope o
and y-intercept . The plot of the points (z;,y;) is called a quantile-
quantile (Q-Q) plot. An appropriate line to compare the plot pattern to is
one with the maximum likelihood estimates & and i to be discussed in the
next section. Plot patterns grossly different from this straight line indicate
the proposed model is inadequate. The more closely the plot pattern follows
this line, the more evidence there is in support of the proposed model. If the
model is deemed appropriate, the slope and y-intercept of an “empirical” line,
obtained from least squares or some robust procedure, provide rough estimates
of 0 = 1/a and p = —log(\), respectively. The Q-Q plot is a major diagnostic
tool for checking model adequacy.

A cautionary note: Fitting the uncensored points (z;,y;) to a least squares
line alone can be very misleading in deeming model adequacy. Our first exam-
ple of this is discussed in Section 3.4, where we first construct Q-Q plots to
check and compare the adequacy of fitting the AML data to the exponential,
Weibull, and log-logistic distributions.

3.2 Maximum likelihood estimation (MLE)

Our assumptions here are that the 71, ..., T, are iid from a continuous distri-
bution with p.d.f. f(¢|f), where 6 belongs to some parameter space 2. Here,
0 could be either a real-valued or vector-valued parameter. The likelihood
function is the joint p.d.f. of the sample when regarded as a function of
for a given value (t1,...,t,). To emphasize this we denote it by L(6). For
a random sample, this is the product of the p.d.f.’s. That is, the likelihood
function is given by

n

() = [ £(t:l6).

i=1
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The maximum likelihood estimator (MLE), denoted by 5, is the value of
6 in Q that maximizes L(0) or, equivalently, maximizes the log-likelihood

logL(0) = Z log f(t:]6).
i=1

MLE’s possess the invariance property; that is, the MLE of a function of 0, say
7(9), is 7(#). For a gentle introduction to these foregoing notions, see DeGroot
(1986). Under the random censoring model, we see from expression (1.13) that
if we assume that the censoring time has no connection to the survival time,
then the log-likelihood for the maximization process can be taken to be

logL(6) 1ong‘s (4:10) S~ (1il6) = Zlogf vil0) +Zlogsf vil0),
=1
(3.8)
where v and ¢ mean sums over the uncensored and censored observations,
respectively. Let I(0) denote the Fisher information matrix. Then its ele-

ments are 10) = <( (aea;Hk logL(O))>> ’

where E denotes expectation. As we are working with random samples (iid)
we point out that 1(#) can be expressed as

1(0) = n1(0),

where I (0) = ((—E(%‘?—:)eklogf(yl |9)))) is the Fisher information matrix of

any one of the observations.

The MLE @ has the following large sample distribution:

6 L MVN(,I7'(0)), (3.9)

where MVN denotes multivariate normal and ~ is read “is asymptotically
distributed.” The asymptotic covariance matrix I=1(f) is a d x d matrix,
where d is the dimension of #. The ith diagonal element of I-1() is the
asymptotic variance of the ith component of 6. The off-diagonal elements are
the asymptotic covariances of the corresponding components of 6. If 0 is a
scalar (real valued), then the asymptotic variance, denoted var,, of 0 is
A 1
varg(0) = 0)

where 1(0) = —E(8210gL(0)/892). For censored data, this expectation is

a function of the censoring distribution G as well as the survival time dis-
tribution F. Hence, it is necessary to approximate I() by the observed
information matrix i(f) evaluated at the MLE 6, where

T (" 10
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For the univariate case,
i(0) = — —02 (3.11)

. -1
Hence, var,(0) is approximated by (1(9)) .

The delta method is useful for obtaining limiting distributions of smooth
functions of an MLE. When variance of an estimator includes the parameter
of interest, the delta method can be used to remove the parameter in the vari-
ance. This is called the variance-stabilization. We describe it for the univariate
case.

Delta method:

Suppose a random variable Z has a mean p and variance o2 and suppose we
want to approximate the distribution of some function ¢g(Z). Take a first order
Taylor expansion of g(Z) about u and ignore the higher order terms to get

9(Z) = g(p) + (Z — p)g' (w)-

Then the mean(g(Z)) ~ g(x) and the var(g(Z)) ~ (¢'(1))> 2. Furthermore,
if
Z & normal(u,o?),

then

9(Z) % mormal(g(u), (¢' (1))’ o). (3.12)
Example: Let Xi,..., X, be iid from a Poisson distribution with mean A.
Then the MLE of A is A = X. We know that the mean and variance of Z = X
are X and \/n, respectively. Take g(Z) = X 2. Then g(\) = A7 and

1

5 a . 1 . 1

X? ~ normal with mean ~ A2 and variance ~ e
n

There are multivariate versions of the delta method. One is stated in Sec-
tion 3.6.

3.3 Confidence intervals and tests

For some estimators we can compute their small sample exact distributions.
However, for most, in particular when censoring is involved, we must rely
on the large sample properties of the MLE’s. For confidence intervals or for
testing Hy : 8 = 0y, where 6 is a scalar or a scalar component of a vector, we
can construct the asymptotic z-intervals with the standard errors (s.e.) taken
from the diagonal of the asymptotic covariance matrix which is the inverse of
the information matrix I(f) evaluated at the MLE 6 if necessary. The s.e.’s
are, of course, the square roots of these diagonal values. In summary:
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An approximate (1 — «) x 100% confidence interval for the parameter 6 is
given by . .
0+ zas.e.(0), (3.13)

where zg is the upper § quantile of the standard normal distribution and, by

(3.11), s.e. is the square root of varg(f) ~ — (azlogL(H)/892)_1 = (z(é\))7

However, if we are performing joint estimation or testing a vector-valued 6,
we have three well known procedures: Assume 6y has d-components, d > 1.
Unless otherwise declared, # denotes the MLE.

e The Wald statistic:

(5—90)/1(90)(5—90) ~ X%d) under H().

e The Rao statistic:

0 _ 0 a

%logL(Qo)/I 1(90)%log[/(90) ~ X%d) under Hy.

Note that Rao’s method does not use the MLE. Hence, no iterative calcu-
lation is necessary.

e The Neyman-Pearson/Wilks likelihood ratio test (LRT):
Let the vector t represent the n observed values; that is, t' = (t1,...,t,).
The LRT statistic is given by

* L(GO) a 2
r*(t) = -2 lo — ~ under Hj. 3.14
(t) g < L) ) X(d) 0 ( )

To test Hy : 8 = 0y against Hy : 6 # 6y, we reject for small values of

~

L(0p)/L(0) (as this ratio is less than or equal to 1). Equivalently, we reject
for large values of r*(t).

For joint confidence regions we simply take the region of values that satisfy
the elliptical region formed with either the Wald or Rao statistic with I(6) or
i(0) evaluated at the MLE 6. For example, an approximate (1 — a) x 100%
joint confidence region for 6 is given by

{6; Wald < X2},

where x? is the chi-square upper ath-quantile with d degrees of freedom. The
following picture explains:
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Chi-square

3.4 One-sample problem

3.4.1 Fitting data to the exponential model

Case 1: No censoring.
All “failures” are observed. The T7,...,T, are iid.
e Likelihood:
L(A) = [ Nexp(—At;) = A" exp (—A > ti>
i=1 i=1

e Log-likelihood:

log L(\) = nlogh—A) ¢
i=1
0log L(\) N
e ENY S 0 2 t;
¢ MLE:
Set
dlog L(\) 0
oA N
and solve for A. Therefore,
~ n 1
A - ==n ., - =-
Zi:l ti T

The MLE of the mean 6 = 1/ is 9=T.
e Exact distribution theory:

Since the T; are iid exponential()), the sum > ", T; has a gamma distri-
bution with parameters k = n and A. From basic theory, we know

- A
2>\ZTi:2n§ ~ Xian)- (3.15)
i=1



ONE-SAMPLE PROBLEM 69

WHY! This can be used as a pivotal quantity to construct both test and
confidence interval.

e A (1 —a) x 100% confidence interval (C.L.) for A follows from the
next picture:

Chi-square

1—o

2 2
X—az X ar

With probability 1-«,

9 2n\ 9
Xi-aj2 < T < Xay2 -

It then follows from simple algebra that: A (1 — a) x 100% C. L. for A is
given by

o~ o~

A o A o
%M—a/z <A< %Xa/z .

Let # = 1/X. Then 6 is the mean of the distribution. It follows:

A (1 — a) X 100% C.I. for the mean survival time 0 is given by

onT onT
<0<
X(x/2

3 .
X1—a/2
Or, simply invert the endpoints of the C.I. for A and reverse the inequalities.

e The pth-quantile is the ¢, such that F(t,|\) = p. Thus ¢, is such that
1 — exp(—At,) = p. Therefore, t, = —log(l — p)/A. By the invariance
property of MLE’s, the MLE of ¢, is

t, = . log(1 —p) = —Tlog(l —p).
Then the MLE of the median is
med = —T log(0.5) .

We pretend there are no censored points and use the AML data to illustrate
the various calculations. We work with the maintained group’s data values.

n =11, Z t; =423 degrees of freedom = 2-11 = 22
i=1
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MLE’s : 0 =17=238.4545,  \=0.026.
For a 95% confidence interval, X6.025.22 = 36.78, X6.975.22 = 10.98.

e A 95% C.I. for X is given by
0.026 0.026

—— 1098 < A < —— - 36. 01298 < X < 0.04347.
7 11 098_)\_2.11 36.78 <<= 0.01298 < )\ <0.04347

e A 95% C.I. for 6, the mean survival (in weeks), is given by
2423 2423
— <0<

36.78 — — 10.98

Or, simply invert the endpoints of the previous interval and reverse the
inequalities.

e The MLE of median:
med = —T log(0.5) = —38.4545 - 1og(0.5) = 26.6546 weeks < T .

23<0<77.05.

e To test
Hy : mean 6 = 30 weeks = (A =1/30=0.033)

against

Hy:0#30 = (X # 0.033)
at the 5% level of significance, we can use the exact confidence interval
for 6 obtained above. We reject Hy if the 95% confidence interval does
not contain 30. Therefore, we do not reject Hy. The mean survival is not
significantly different from 30 weeks. For a one-sided test, the significance-
level would be 2.5%. We can base a test on the test-statistic

T =2\ ZTi ~ X?Qn) under Hy: A= MXp.

i=1
To test against Ha : A # Ao, construct a two-tailed size « critical region.
Here

t*=12-0.033-423 = 28.2.

At o = .05, df = 22, x5 = 10.98, and x%,5 = 36.78, we fail to reject Ho.
This is a flexible test as you can test one-sided alternatives. For example,
to test Ha : A < Ag (6 > 6p), compute the p-value. Thus,

p-value = P(T* > 28.2) =0.17.

Again, we fail to reject Hy. The p-value for the two-sided alternative is
then 0.34.
e The likelihood ratio test (LRT) (3.14)

The LRT can be shown to be equivalent to the two-sided test based on
the test statistic T just above. Therefore, here we will use the asymptotic
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distribution and then compare. The test statistic

* L(A a 2
0= (149) < 3,

We reject Hp : 6 = 30 weeks when r*(¢) is large.

~

r*(t) = —2logL(\g)+ 2log L()\)
= —2nlog(A\g) + 2Xgnt + 2nlog(1/t) — 2n
2
= —2-11-log(1/30) + o= - 423 +2- 11-log(11/423) — 211
= 0.7378

The p-value = P(r*(t) > 0.7378) ~ 0.39. Therefore, we fail to reject Hy.
This p-value is very close to the exact p-value 0.34 computed above.

Case 2: Random censoring.

Let u, ¢, and n, denote uncensored, censored, and number of uncensored
observations, respectively. The n observed values are now represented by the
vectors y and §, where y' = (y1,...,yn) and 8’ = (61,...,0,). Then

e Likelihood: See expressions (1.13), (3.8).
L) = [1r@d-TISrwiln

= [ rexp(—xy:) [ exp(—2p:)
= \™ exp(— )\Zyi) exp ( - )\Zyi)

n

= A'exp ( — )\Zyi)

<
—_

e Log-likelihood:

log L(A) = nylog(N) — )\Zyi
i=1
dlogL(N)  n,
ox A ; v
2log L
3(5g7)\2(/\) = —% = —i(\), the negative of the observed information.
e MLE:
~ N, —~ Ny —1 )\2
N = d N =(-p (-2 - :
2?21 yl an var ( ) ( ( )\2 )) E(nu)
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where E(n,) =n - P(T < C). From expression (3.9),

A=\ u
22 A N(0,1).
A2/E(n,) ®.1)

We replace E(n,) by n, since we don’t usually know the censoring dis-
tribution G(-). Notice the dependence of the asymptotic variance on the
unknown parameter A. We substitute in A and obtain

where i()\) is just above. The MLE for the mean § = 1/X is simply 6 =
On the AML data, n, =7,

~ T ~ A2 0.0165°
A= 3= 0.0165, and var, (A) ~ =
e A 95% C.I. for A (3.13) is given by
~ ~ 0.0165
X £ 20,025 - se(N) =: 0.0165 £ 1.96 - =: [0.004277 , 0.0287].

VT

e A 95% C.I. for 0, the mean survival, can be obtained by inverting the
previous interval for A. This interval is: [34 8, 233.808] weeks. Both intervals
are very skewed. However, as b =1 /)\ = 60.42856 weeks, we have 0 =
g(A) = 1/X and we can use the delta method to obtain the asymptotic
variance of 6. As ¢’'(\) = —A~2, the asymptotic variance is

1 1 62

~ = = (3.16)

varg () = X2E(ny) Y ny | T

Hence, a second 95% C.I. for 6, the mean survival, is given by

_ - 1
B2, 0255¢(0) =: 60.42856:£1.96- ————— = [15.66246, 105.1947] weeks.
oozsse(f) 00165 v7 | |

Notice this is still skewed, but much less so; and it is much narrower. Here
we use the asymptotic variance of 6 directly, and hence, eliminate one source
of variation. However, the asymptotic variance still depends on .

e The MLE of the pth-quantile:

N 1 Vi
tp = — ilog(l —p)=- Z;llog(l —p)
Thus, the MLE of the median is
— 423
med = — ~— log(0.5) = 41.88 weeks.

~

Notice how much smaller the median is compared to the estimate 6 =
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60.43. The median reflects a more typical survival time. The mean is greatly
influenced by the one large value 161+. Note that

var, (t,) = (1og(1 - ))2 - varg (X‘l) s (log(l —p))

2 1

A2 ny,

The var, (3\\‘1) is given in expression (3.16). Thus, a 95% C.I. for the
median is given by
—log(0.5)

—1og (0.
ax1.06. 809 _ 4y eg 9. —108(05) _

———— =: [10.76,73] weeks.
X/l 0.0165 - /7 | ]

e With the delta method (3.12) we can construct intervals that are less
skewed and possibly narrower by finding transformations which eliminate
the dependence of the asymptotic variance on the unknown parameter of
interest. For example, the natural log-transform of h) accomplishes this.
This is because for g(A\) = log(}), ¢'(A) = 1/X and, thus, Vara(log(/\))
A"2{\?/E(n,)} = 1/E(n,). Again we replace E(nu) by n.,. Therefore, we
have

o a 1
log(A) ~ N <log(/\), n—) . (3.17)
A 95% C.I. for log()\) is given by
1
N
1

7
1 +1.96- —
o (5) Vi
[—4.84, —3.36].
Transform back by taking exp(endpoints). This second 95% C.I. for A is

[.0079,.0347),

log(A) £ 1.96 -

which is slightly wider than the previous interval for A. Invert and re-
verse endpoints to obtain a third 95% C.I. for the mean 6. This yields
[28.81, 126.76] weeks, which is also slightly wider than the second interval
for 6.

Analogously, since var, (6 ) ~ 0%/n, (3. 16) the delta method provides large

sample distributions for log(ﬁ) and log(%,) with the same variance, which
is free of the parameter . They are

log(d) < N(log(@),n—lu> (3.18)
log(B,) N(log( )nlu) (3.19)

Analogously, we first construct C.1.’s for the log(parameter), then take
exp(endpoints) to obtain C.I.’s for the parameter. Most statisticians prefer
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this approach. Using the AML data, we summarize 95% C.I.’s in Table 3.2.

Table 3.2:  Preferred 95% confidence intervals for mean and median
(or any quantile) of an exponential survival model based on the
log-transform

parameter point estimate log(parameter) parameter

mean 60.43 weeks [3.361, 4.84] [28.82,126.76] weeks

median 41.88 weeks [2.994, 4.4756]  [19.965,87.85] weeks

e The MLE of the survivor function S(t) = exp(—At):
S(t) = exp(—At) = exp(—0.01651).

For any fixed t, S (t) is a function of . We can get its approximate dis-
tribution by using the delta method. Alternatively, we can take a log-log
transformation that usually improves the convergence to normality. This
is because the var, is free of the unknown parameter A. This follows from
(3.17) and the relationship

log (— 1og(§(t))) = log(A) + log(t) .
Hence,

Vara{ log (—10g(§(t))> } = var, (log(X)) ~ ni .

u

It follows from the delta method that for each fixed t,

log (—10g(§(t))> X N (log()\t), %) .

u

It then follows, with some algebraic manipulation, a (1 — a) x 100% C.I.
for the true probability of survival beyond time ¢, S(t), is given by

exp {log <§(t)) exp <f/“—%> } < S(t) < exp {log (§(t)) exp (%) } .
Wiy (3.20)

e The likelihood ratio test (3.14):

-~

r"(y) = —2logL(Xo) +2log L(A)

= —2nylog(Xo) +2Xo Z yi + 2ny log (237“) —2n,
i=1

i=1Yi

1.2 7
- —2-7-1og(—)+—-423+2-7-1og(@)—2-7

30 30
= 4.396.
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The p-value = P(r*(y) > 4.396) =~ 0.036. Therefore, here we reject
Hp: 0 =1/X =30 and conclude that mean survival is > 30 weeks.

A computer application:

We use the S function survReg to fit parametric models (with the MLE ap-
proach) for censored data. The following S program is intended to duplicate
some of the previous hand calculations. It fits an exponential model to the
AML data, yields point and 95% C.I. estimates for both the mean and the
median, and provides a Q-Q plot for diagnostic purposes. Recall that the ex-
ponential model is just a Weibull with shape o = 1 or, in log(time), is an
extreme value model with scale o = 1. The function survReg fits log(time)

and outputs the coefficient 1 = —log(X), the MLE of u, the location pa-

o~

rameter of the extreme value distribution. Hence, the MLE(X)=\ = exp(—p)
and the MLE(0)= 9= exp(ft). Unnecessary output has been deleted. The S
function predict is a companion function to survReg. It provides estimates
of quantiles along with their s.e.’s. One of the arguments of the predict
function is type. Set type="uquantile" to produce estimates based on the
log-transform as in Table 3.2. The default produces intervals based on the
variance for quantiles derived on page 73. The function qq.weibull produces
a Q-Q plot. The pound sign # denotes our inserted annotation. We store the
data for the maintained group in a data.frame object called amll. The two
variables are weeks and status.

# Exponential fit

> attach(amll)
> exp.fit <- survReg(Surv(weeks,status)”1,dist="weib",scale=1)
> exp.fit
Coefficients:
(Intercept)
4.101457
Scale fixed at 1 Loglik(model)= -35.7 n= 11

~ o~

# The Intercept = 4.1014, which equals i = —log(\) = log(#). The next
five line commands produce a 95% C.I. for the mean 6.

coeff <- exp.fit$coeff # muhat

var <- exp.fit$var

thetahat <- exp(coeff) # exp(muhat)

thetahat

60.42828

> C.I.meanl <- c(thetahat,exp(coeff-1.96*sqrt(var)),
exp(coeff+1.96*sqrt(var)))

> names(C.I.meanl) <- c("meanl","LCL","UCL")

C.I.meanl

vV V V V

Vv
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meanl LCL UCL
60.42828 28.80787 126.7562

# Estimated median along with a 95% C.I. (in weeks) using the predict
function.

> medhat <- predict(exp.fit,type="uquantile",p=0.5,se.fit=T)
> medhatl <- medhat$fit[1]

> medhatl.se <- medhat$se.fit[1]

> exp(medhat1)

[1] 41.88569

> C.I.medianl <- c(exp(medhatl),exp(medhatl-1.96+*medhatl.se),
exp(medhat1+1.96+*medhatl.se))
> names(C.I.medianl) <- c("mediani","LCL","UCL")
> C.I.median
medianl LCL UCL
41.88569 19.96809 87.86072

# Point and 95% C.I. estimates for S(t), the probability of survival beyond
time ¢, at the uncensored maintained group’s survival times.

muhat <- exp.fit$coeff

weeks.u <- weeks[status == 1]

nu <- length(weeks.u)

scalehat <- rep(exp(muhat),nu)

Shat <- 1 - pweibull(weeks.u,1,scalehat)

# In S, Weibull’s scale argument is exp(muhat) = 1/lambdahat,
# which we call scalehat.

vV V V Vv VvV

> LCL <- exp(log(Shat)*exp(1.96/sqrt(nu)))#See expression (3.20)
> UCL <- exp(log(Shat)*exp(-1.96/sqrt(nu)))
> C.I.Shat <- data.frame(weeks.u,Shat,LCL,UCL)
> round(C.I.Shat,5)
weeks.u Shat LCL UCL # 95 C.I.’s

1 9 0.86162 0.73168 0.93146

2 13 0.80644 0.63682 0.90253

4 18 0.74240 0.53535 0.86762

5 23 0.68344 0.45005 0.83406

7 31 0.59869 0.34092 0.78305

8 34 0.56970 0.30721 0.76473

10 48 0.45188 0.18896 0.68477

# The next line command produces the Q-Q plot in Figure 3.8 using the
qq.weibull function. The scale=1 argument forces an exponential to be fit.

> qq.weibull (Surv(weeks,status),scale=1)
[1] "qq.weibull:done"
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The following table summarizes the estimates of the mean and the median.

Exponential fit with MLE to AML1 data
Point Estimate 95% C.I.

medianl  41.88569  [19.968, 87.86] weeks
meanl 60.42828 [28.81, 126.76] weeks

This table’s results match those in Table 3.2. In Figure 3.8 a Q-Q plot is
displayed. The following S program performs a likelihood ratio test (LRT) of

Exponential Fit

Q-Q plot for the AML (maintained) data

ordered log data
3.0 35
i
o

25
I

-2 -1
standard extreme value
quantiles

Figure 3.8 Exponential Q-Q plot. The line has MLE intercept i and slope 1.

the null hypothesis Hy : 8 = 1/A = 30 weeks. To compute the value of the log
likelihood function L(#) at 6 = 30, we use the function weib.loglik.theta.
It has four arguments: time, status, shape, theta. A shape value («) of 1
forces it to fit an exponential and theta is set to 1/A = 30. The results match
those hand-calculated back on page 74.

> weib.loglik.theta(weeks,status,1,30)

[1] -37.90838

> rstar <- - 2x(weib.loglik.theta(weeks,status,1,30) -
exp.fit$loglik[1])

> rstar

[1] 4.396295

> pvalue <- 1 - pchisq(rstar,1)

> pvalue

[1] 0.0360171

3.4.2 Fitting data to the Weibull and log-logistic models

The following S program fits the AML data to the Weibull and log-logistic
models both using the MLE approach via the survReg function. The survReg
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function uses by default a log link function which transforms the problem
into estimating location p = —log(\) and scale 0 = 1/a. In the output from
> summary (weib.fit),

it (= Intercept) <- weib.fit$coeff, and 7 (= Scale) <-weib.fit$scale.

This holds for any summary(fit) resulting from survReg evaluated at the
"Weibull", "loglogistic", and "lognormal" distributions. The S output
has been modified in that the extraneous output has been deleted.

Once the parameters are estimated via survReg, we can use S functions to
compute estimated survival probabilities and quantiles. These functions are
given in Table 3.3 for the reader’s convenience.

Table 3.3: S distribution functions

Weibull logistic (Y=1og(T')) mnormal (Y= log(T))
F(t) pweibull(q, a, A™!)  plogis(q, s, 0) pnorm(q, 41, o)
tp qweibull(p, a, A™') qlogis(p, u, o) gnorm(p, p, o)

# Weibull fit

> weib.fit <- survReg(Surv(weeks,status)”1,dist="weib")
> summary (weib.fit)

Value Std. Error z P
(Intercept) 4.0997 0.366 11.187 4.74e-029
Log(scale) -0.0314 0.277 -0.113 9.10e-001

Scale= 0.969
# Estimated median along with a 95% C.I. (in weeks).

medhat <- predict(weib.fit,type="uquantile",p=0.5,se.fit=T)
medhatl <- medhat$fit[1]
medhatl.se <- medhat$se.fit[1]
exp (medhat1)
[1] 42.28842
> C.I.medianl <- c(exp(medhatl),exp(medhatl-1.96+*medhatl.se),
exp (medhat1+1.96+*medhatl.se))
> names(C.I.medianl) <- c("mediani","LCL","UCL")
> C.I.medianl
medianl LCL UCL
42.28842 20.22064 88.43986
> qq.weibull(Surv(weeks,status)) # Produces a Q-Q plot
[1] "qq.weibull:done"

vV V V V



ONE-SAMPLE PROBLEM 79
# Log-logistic fit

> loglogis.fit<-survReg(Surv(weeks,status)~1,dist="loglogistic")
> summary (loglogis.fit)

Value Std. Error z P
(Intercept) 3.515 0.306 11.48 1.65e-030
Log(scale) -0.612 0.318 -1.93 5.39e-002

Scale= 0.542

# Estimated median along with a 95% C.I. (in weeks).

medhat <- predict(loglogis.fit,type="uquantile",p=0.5,se.fit=T)
medhatl <- medhat$fit[1]
medhatl.se <- medhat$se.fit[1]
exp (medhat1)
[1] 33.60127
> C.I.medianl <- c(exp(medhatl),exp(medhatl-1.96+*medhatl.se),
exp(medhatl+1.96+*medhatl.se))
> names(C.I.medianl) <- c("medianil",6"LCL","UCL")
> C.I.medianl
medianl LCL UCL
33.60127 18.44077 61.22549
> qq.loglogistic(Surv(weeks,status)) # Produces a Q-Q plot.
[1] "qq.loglogistic:done"
> detach()

vV V V V

Discussion

In order to compare some of the output readily, we provide a summary in the
following table:

MLE’s fit to AML1 data at the models:

model 7 medianl 95% C.L o
exponential 4.1 41.88  [19.97, 87.86] weeks 1
Weibull 41 4229  [20.22, 88.44] weeks .969

log-logistic  3.52  33.60  [18.44, 61.23] weeks .542

The log-logistic gives the narrowest C.I. among the three. Further, its es-
timated median of 33.60 weeks is the smallest and very close to the K-M
estimated median of 31 weeks on page 35. The Q-Q plots in Figure 3.10 are
useful for distributional assessment. It “appears” that a log-logistic model
fits adequately and is the best among the three distributions discussed. The
estimated log-logistic survival curve is overlayed on the K-M curve for the
AML1 data in Figure 3.9. We could also consider a log-normal model here.
The cautionary note, page 64, warns that we must compare the plot pattern
to the MLE line with slope & and y-intercept . For without this comparison,
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the least squares line alone fitted only to uncensored times would lead us to
judge the Weibull survival model adequate. But, as we see in Figure 3.10,
this is wrong. We do see that the least squares line in the Q-Q plot for the
log-logistic fit is much closer to the MLE line with slope ¢ and y-intercept fi.

Survival curves for AML data

<
- maintained group
o
)
@
H : —— Kaplan-Meier
@ o + censored value
2o ———log-logistic
£ s
pato}
£ o
§ =
£ S
S ™
g o N
IS .
o ~—
e
o
IS)
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0 20 40 60 80 100 120 140 160

time until relapse (weeks)

Figure 3.9 K-M and log-logistic survival curves for AML data.

3.5 Two-sample problem

In this section we compare two survival curves from the same parametric
family. We focus on comparing the two scale (\) parameters. In the log-
transformed problem, this compares the two location, u = —log()), parame-
ters. We picture this in Figure 3.11. We continue to work with the AML data.
The nonparametric log-rank test (page 44) detected a significant difference
(p-value= 0.03265) between the two K-M survival curves for the two groups,
maintained and nonmaintained. We concluded maintenance chemotherapy
prolongs remission period. We now explore if any of the log-transform dis-
tributions, which belong to the location and scale family (3.7), fit this data
adequately. The full model can be expressed as a log-linear model as follows:

Y = log(T)
= [+ error
= 0+ B*group + error
[ 0+ p* +error if group = 1 (maintained)
o { 0 + error if group = 0 (nonmaintained).

The p1 is called the linear predictor. In this two groups model, it has two
values p; = 0 + * and pe = 0. Further, we know g = —log()), where A
denotes the scale parameter values of the distribution of the target variable
T. Then A = exp(—6 — S*group). The two values are A; = exp(—0 — 5*) and
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Exponential Fit Weibull Fit

Q-Q plot for the AML data
Q-Q plot for the AML (maintained) data (maintained group) e
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Log-logistic Fit

Q-Q plot for AML data
(maintained group) 7

30
L

ordered log data

1
standard logistic
quantiles

Figure 3.10 Q-Q plots for the exponential, the Weibull, and the log-logistic. Fach
solid line is constructed with MLE’s [t and o. The dashed lines are least squares
lines.

A2 = exp(—0). The null hypothesis is:
Ho: M=)y ifandonly if p; =pe if and only if £* =0.

Recall that the scale parameter in the log-transform model is the reciprocal
of the shape parameter in the original model; that is, o = 1/a. We test Hy
under each of the following cases:

Case 1: Assume equal shapes («); that is, we assume equal scales 01 = 09 =
o. Hence, error = 07, where the random variable Z has either the standard
extreme value, standard logistic, or the standard normal distribution. Recall
by standard, we mean ¢ =0 and o = 1.

Case 2: Assume different shapes; that is, o1 # 0.

Fitting data to the Weibull, log-logistic, and log-normal models

In the following S program we first fit the AML data to the Weibull model and
conduct formal tests. Then we fit the AML data to the log-logistic and log-
normal models. Quantiles in the log-linear model setting are discussed. Lastly,
we compare Q-Q plots. The S function anova conducts LRT’s for hierarchical
models; that is, each reduced model under consideration is a subset of the full
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My —B'—H,
Extreme Value Densities

Figure 3.11 Comparison of two locations.

model under consideration. Extraneous output has been deleted. The AML
data is stored in the data frame aml.

Model 1: Data come from same distribution. The Null Model is ¥ =
log(T) = 0 + 0Z, where Z is a standard extreme value random variable.

> attach(aml)
> weib.fit0 <- survReg(Surv(weeks,status) ~ 1,dist="weib")
> summary(weib.fit0)
Value Std. Error z P
(Intercept) 3.6425 0.217 16.780 3.43e-063 Scale= 0.912
Loglik(model)= -83.2 Loglik(intercept only)= -83.2

Model 2: Case 1: With different locations and equal scales o, we express
this model by

Y =log(T) =60 + f*group + o Z. (3.21)

> weib.fitl <- survReg(Surv(weeks,status) ~ group,dist="weib")
> summary (weib.fitl)

Value Std. Error z P
(Intercept) 3.180 0.241 13.22 6.89e-040
group 0.929 0.383 2.43 1.51e-002

Scale= 0.791 Loglik(model)= -80.5 Loglik(intercept only)= -83.2
Chisq= 5.31 on 1 degrees of freedom, p= 0.021

> weib.fit1$linear.predictors # Extracts the estimated mutildes.

4.1091 4.1091 4.1091 4.1091 4.1091 4.1091 4.1091 4.1091

4.1091 4.1091 4.1091 3.1797 3.1797 3.1797 3.1797 3.1797

3.1797 3.1797 3.1797 3.1797 3.1797 3.1797 3.1797

# muhatl1=4.109 and muhat2=3.18 for maintained and

# nonmaintained groups respectively.
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Model 3: Case 2: Y = log(T) = 0 + [*group + error, different locations,
different scales.

Fit each group separately. On each group run a survReg to fit the data. This
gives the MLE’s of the two locations p1 and ps, and the two scales o1 and os.

> weib.fit20 <- survReg(Surv(weeks,status) ~ 1,
data=aml [am1$group==0,] ,dist="weib")
> weib.fit21 <- survReg(Surv(weeks,status) ~ 1,
data=aml [aml$group==1,] ,dist="weib")
> summary (weib.fit20)

Value Std.Error z P
(Intercept) 3.222 0.198 16.25 2.31e-059 Scale=0.635
> summary(weib.fit21)

Value Std.Error z p
(Intercept) 4.1 0.366 11.19 4.74e-029 Scale=0.969

To test the reduced model against the full model we use the LRT. The anova
function is appropriate for hierarchical models.

> anova(weib.fitO,weib.fitl,test="Chisq")
Analysis of Deviance Table Response: Surv(weeks, status)

Terms Resid. Df -2*LL Test Df Deviance Pr(Chi)
1 1 21 166.3573
2 group 20 161.0433 1 5.314048 0.02115415

# Model 2 is a significant improvement over the null
# model (Model 1).

To construct the appropriate likelihood function for Model 3 to be used in the
LRT:

> loglik3 <- weib.fit20$loglik[2]+weib.fit21$loglik[2]
> loglik3

[1] -79.84817

> 1rt23 <- -2 (weib.fit1$loglik[2]-loglik3)

> 1rt23

[1] 1.346954

> 1 - pchisq(1rt23,1)

[1] 0.2458114 # Retain Model 2.

The following table summarizes the three models weib.fit0, 1, and 2:

Model Calculated Parameters The Picture

1(0) 6,0 same location, same scale
2(1) 6,08 0=u, p20 different locations, same scale
3(2) w1, pe, 01, 02 different locations, different scales
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We now use the log-logistic and log-normal distribution to estimate Model 2.
The form of the log-linear model is the same. The distribution of error terms
is what changes.

Y =1log(T) = 0 + f*group + ¢ Z,

where Z ~ standard logistic or standard normal.
> loglogis.fitl <- survReg(Surv(weeks,status) ~ group,

dist="loglogistic")
> summary (loglogis.fitl)

Value Std. Error z p
(Intercept) 2.899 0.267 10.84 2.11e-027
group 0.604 0.393 1.54 1.24e-001

Scale= 0.513 Loglik(model)= -79.4 Loglik(intercept only)= -80.6
Chisq= 2.41 on 1 degrees of freedom, p= 0.12 # p-value of LRT.
# The LRT is test for overall model adequacy. It is not
# significant.

> lognorm.fitl <- survReg(Surv(weeks,status) ~ group,
dist="lognormal")
> summary (lognorm.fit1)

Value Std. Error z P
(Intercept) 2.854 0.254 11.242 2.55e-029
group 0.724 0.380 1.905 5.68e-002

Scale= 0.865 Loglik(model)= -78.9 Loglik(intercept only)= -80.7
Chisq= 3.49 on 1 degrees of freedom, p= 0.062 # p-value of LRT.
# Here there is mild evidence of the model adequacy.

Quantiles

Let 3, = log(t,) denote the estimated pth-quantile. For Model 2 (3.21) the
quantile lines are given by

Up = 0+ B*group +0zp, (3.22)

where z), is the pth-quantile from either the standard normal, standard logistic,
or standard extreme value tables. As p changes from 0 to 1, the standard
quantiles z, increase and ¥, is linearly related to z,. The slope of the line is .
There are two intercepts, 0+ B* and 5, one for each group. Hence, we obtain
two parallel quantile lines. Let us take z, to be a standard normal quantile.
Then if p = .5, z5 = 0. Hence, y5 = 0+ B\*group represents the estimated
median, and the mean as well, for each group. We see that if T is log-normal,
then the estimated linear model 55 = log(t 5) = 0+ B*group resembles the
least squares line where we regress y to the group; that is, y = 0+ 6*group is
the estimated mean response for a given group. In Table 3.4 we provide the
estimated .10, .25, .50, .75, .90 quantiles for the three error distributions under
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consideration. Plot any two points (z,,7,) for a given group and distribution.
Then draw a line through them. This is the MLE line drawn on the Q-Q plots
in Figure 3.12.

The following S code computes point and C.I. estimates for the medians and
draws Q-Q plots for the three different estimates of Model 2 (3.22). This recipe
works for any desired estimated quantile. Just set p=desired quantile in the
predict function.

Table 3.4:  Five quantiles for the AML data under Model 2 (3.22)

extreme value logistic normal

g p Zp Up tp Zp Yp tp Zp Up tp
10 -2.25 1.40 4.05 -220 1.77 588 -1.28 1.75 5.73
25 -1.25 219 898 -1.10 2.34 10.33 -.67 227 9.68

0 .50 -.37 2.89 18 0 2.9 18.16 0 2.85 17.36
75 .33 344 31.14 1.10 346 319 .67 344 31.12
90 .83 3.84 46.51 220 4.03 56.05 1.28 3.96 52.6

10 -2.25 233 10.27  -2.20 238 10.76 -1.28 247 11.82
25 -1.256 312 2273 -1.10 294 1891 -67 299 20
1 .50 -37 3.82 45.56 0 3.50  33.22 0 3.58 35.8
75 .33 437 7884 1.10 4.07 5836 .67 4.16 64.16
90 83 477 11777 22 463 10253 1.28 4.69 108.5

g denotes group.

> medhat <- predict(weib.fitl,newdata=list(group=0:1),
type="uquantile",se.fit=T,p=0.5)
> medhat
$fit:
1 2
2.889819 3.81916
$se.fit:
0.2525755 0.3083033
medhat0 <- medhat$fit[1]
medhatO.se <- medhat$se.fit[1]
medhatl <- medhat$fit[2]
medhatl.se <- medhat$se.fit[2]

vV V V V

> C.I.median0 <- c(exp(medhatO),exp(medhatO-1.96+*medhat0.se),
exp (medhatO+1.96+*medhat0.se))

> names(C.I.median0) <- c("medianO","LCL","UCL")

> C.I.medianl <- c(exp(medhatl),exp(medhatl-1.96+*medhatl.se),
exp (medhatl+1.96+*medhatl.se))

> names(C.I.medianl) <- c("medianl","LCL","UCL")

# Weibull 95% C.I.’s follow.
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> C.I.median0O
medianO LCL
17.99005 10.96568

> C.I.medianl
mediani LCL
45.56593 24.90045

PARAMETRIC METHODS

UCL

29.51406

UCL

83.38218

# Similarly, log-logistic 95% C.I.’s follow.

> C.I.median0O
medianO LCL
18.14708 10.74736

> C.I.medianl
mediani LCL
33.21488 18.90175

UCL

30.64165

UCL

58.36648

# Log-normal 95% C.I.’s follow.

> C.I.median0O
medianO LCL
17.36382 10.55622

> C.I.medianl
medianl LCL
35.83274 20.50927

V V V V V V V #®%

detach()

Results:

UCL

28.56158

UCL

62.60512
The Q-Q plots are next.
t.s0 <- Surv(weeks[group==0],status[group==0])
t.sl <~ Surv(weeks[group==1],status[group==1])
qq.weibull (Surv(weeks,status))
qq.weibreg(list(t.s0,t.s1) ,weib.fitl)
qq.loglogisreg(list(t.s0,t.s1),loglogis.fitl)
qq.lognormreg(list(t.s0,t.s1),lognorm.fit1)

e The LRT per the anova function provides evidence that Model 2 (3.21),

weib.fitl, which assumes equal scales, is adequate.

e We summarize the distributional fits to Model 2 (3.21) in the following

table:
distribution max. likeli p-value for p-value for
L(9,06%) model 0 group effect
adequacy
Weibull —80.5 0.021 3.180 0.929 0.0151
log-logistic ~ —79.4 0.12 2.899 0.604 0.124
log-normal  —78.9 0.062 2.854 0.724 0.0568

e For the Weibull fit we conclude that there is a significant “group” effect (p-
value= 0.0151). The maintained group tends to stay in remission longer,
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Figure 3.12 Q-Q plots for the Weibull, the log-logistic, and the log-normal fit to
Model 2: y = 0 + B*group + 0Z. Each line constructed with the MLE’s 0, 3*, /o\md,\ff.
In each plot, the lines have same slope & and different intercepts, either 6 or 6+ 3*.

with estimated extreme value location parameters 7 = 4.109 and piy =
3.18.

e The median of the maintained group is 45.6 weeks whereas the median
of the nonmaintained group is only about 18 weeks. Corresponding 95%
confidence intervals are (24.9, 83.38) weeks, and (10.96, 29.51) weeks, re-
spectively.

e The log-normal has largest maximized likelihood, whereas the Weibull has
the smallest. But the LRT for overall model fit is significant only for the
Weibull; i.e., its p-value is the only one less than 0.05.

e The estimated linear predictor ﬁ = 0 + B*group. As ﬁ = flog(X),X =
exp(—p) = exp(—0 — f*group). @ = 1/0. We summarize the estimated
parameters for each group and distributional model in the following table:
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Weibull log-logistic ~ log-normal

~ ~ ~
~ ~ ~

group A o A o A o

0 0.042 1.264 0.055 1.95 0.058 1.16
1 0.0164 1.264 0.030 1.95 0.028 1.16

e The Q-Q plots in Figure 3.12 suggest that the log-logistic or log-normal
models fit the maintained group data better than the Weibull model. How-
ever, they do not improve the fit for the nonmaintained.

e The nonparametric approach based on K-M, presented in Chapter 2, may
give the better description of this data set.

Prelude to parametric regression models

As a prelude to parametric regression models presented in the next chapter,
we continue to explore Model 2 (3.21) under the assumption that T' ~ Weibull.
That is, we explore
Y = log(T)
= 0+ fB*group + oZ
= pt+oZ,
where Z is a standard extreme minimum value random variable. Let the linear

predictor pt = —log(\) and 0 = 1/a. It follows from page 57 that the hazard
function for the Weibull in this context is expressed as

h(t|lgroup) = aX*t* !
aX*t*~ ! exp(Bgroup)
= ho(t) exp(Bgroup), (3.23)
when we set A\ = exp(—0) and 8 = —(*/o. WHY! The h(t) denotes the

baseline hazard; that is, when group = 0 or 8 = 0. Thus, hg(t) is the hazard
function for the Weibull with scale parameter A\, which is free of any covariate.

The hazard ratio (HR) of group 1 to group 0 is

h(t]1) _ exp(p)
R=—=<= = .
w(l0) ~ explo) P
If we believe the Weibull model is appropriate, the HR is constant over time
t. The graph of h(t|1) and h(¢]0) is a set of parallel lines over time. We say the
Weibull enjoys the proportional hazards property to be formally introduced in

Chapter 4.3. On the AML data,
S =B —0.929

= = —1.1745 .
b o 0.791
Therefore, the estimated HR is
—  h(t1
HR = h(tll) = exp(—1.1745) ~ 0.31 .

~ h(t]0)
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The maintained group has 31% of the risk of the control group’s risk of relapse.
Or, the control group has (1/0.31)=3.23 times the risk of the maintained group
of relapse at any given time ¢. The HR is a measure of effect that describes
the relationship between time to relapse and group.

If we consider the ratio of the estimated survival probabilities, say at t = 31

weeks, since A = exp(—/i), we obtain

S(31]1)  0.652 _ )

S(31/0)  0.252

The maintained group is 2.59 times more likely to stay in remission at least
31 weeks. The Weibull survivor function S(t) is given in a table on page 57.

3.6 A bivariate version of the delta method

2
G = ()2 )
Yy My Oxzy Oy

and suppose we want the asymptotic distribution of g(x,y). Then the 15¢ order
Taylor approximation for scalar fields is

B) B
9(x,y) = g(pa, py) + (. — ux)%g(ux, Hy) + (Y — uy)a—yg(um Hhy)-

Note that we expand about (z,y) = (ttz, tby). The g(-, -) is a bivariate function
that yields a scalar, i.e., a univariate. Then

g(z,y) ~  normal with

mean & g(fy, Hy)
asymptotic variance ~

o2(Zg)? + 022 g)? + 200, (Za)(2g).  (324)
WHY!

3.7 The delta method for a bivariate vector field

Let ¥ denote the asymptotic covariance matrix of the random vector (z,y)’
given in Section 3.6. Suppose now we want the asymptotic distribution of the

random vector
_ g1 (ZL', y)
o) = (200). (3.25)

We need to employ a 1%t order Taylor approximation for vector fields. This
is summarized as follows: Expand g about pu = (i, p1y)’. Let A denote the
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Jacobian matrix of g evaluated at p. That is,

891(&) 991 (l_l)

— Oz oy
A= dg2(p)  Bg2(p) | ° (3.26)
ox oy

Then the 1°¢ order Taylor approximation is

(B ea () e

The delta method now yields the following asymptotic distribution:
glz,y) ~ MVN with

mean vector ~ (

gl(ux,uy)>
92tz fiy)

covariance matrix ~ A’SA . (3.28)
Example: The covariance matrix of (X, &)’

As noted in the Summary in Section 3.1, the log-transform of the Weibull, log-
normal, and log-logistic models is a member of the location and scale family
where p = —log()\) and o = 1/a. The S function survReg only provides the
estimated covariance matrix for (fi,1og())’. Exercises 3.12 and 3.13 challenge
the reader to derive C.I.’s for S(t) under the Weibull and log-logistic models,
respectively. Then to actually compute the confidence bands for S(t), we need

to determine the asymptotic covariance matrix for (X, a).

In these problems, z = i and y = ¢* where 7* = log(d). So X=aq (n) =
exp(—p) and @ = go(0*) = exp(—a*). Expression (3.26) reduces to

I o4 —exp(—u) 0
A=A= < 0 —exp(—o*)
and expression (3.28) yields the covariance matrix
i 2 xp(—2 o exp(p— 0"
COV(A) R~ ( 73 P (=21) * o 2 ey *J ) > . (3.29)
Q 0,5+ exp(—p — o) 05. exp(—20™)
The survReg function computes the estimated X, the covariance matrix of i
and 0* = log(). Use the following commands:

> fit <- survReg(....)
> summary(fit) # Outputs the estimates of mu and sigma star
> fit$var # Outputs the computed estimated covariance

# matrix of these estimates.

Substitute the appropriate estimates into expression (3.29) to obtain the es-
timated covariance matrix of (A, @)’.
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3.8 General version of the likelihood ratio test

Let X1, X5,...,X, denote a random sample from a population with p.d.f.
f(x]0), (6 may be a vector), where 6 € Q, its parameter space. The likelihood
function is given by

L(#) = L(O|x) = H f(x;]0), where x = (21, 23,...,2,).

i=1

Let Qg denote the null space. Then Q2 = QU Q.

Definition 3.8.1 The likelihood ratio test statistic

for testing Hy : 0 € Qo (reduced model) against Ha : 0 € Qf (full model) is
given by
Lo
iy S0, 1O)
supg L(6)

Note that r(x) < 1. Furthermore, this handles hypotheses with nuisance pa-
rameters. Suppose 6 = (61, 02, 03). We can test for example Hy : (61 = 0, 62, 03)
against Ha : (61 # 0,05,03). Here 05 and 63 are nuisance parameters. Most
often, finding the sup amounts to finding the MLE’s and then evaluating L(6)
at the MLE. Thus, for the denominator, obtain the MLE over the whole pa-
rameter space ). We refer to this as the full model. For the numerator, we
maximize L(6) over the reduced (restricted) space Q. Find the MLE in Qg
and put into L(+). As r(x) < 1, we reject Hy for small values. Or, equivalently,
we reject Hy for large values of

r*(x) = —2logr(x).

Theorem 3.8.1 Asymptotic distribution of the r*(x) test statistic.

Under Hy : 0 € Qq, the distribution of r*(x) converges to a X%df) as n — oo.
The degrees of freedom (df) = (# of free parameters in Q) — (# of free
parameters € € ).

That is,
r(x) S X%df)'
Proof: See Bickel €& Doksum (2001, Chapter 6.3, Theorem 6.3.2).
Thus, an approximate size—a test is: reject Hy iff r*(x) = —2logr(x) > x2.
To compute approximate p-value: if 7*(x) = r*, then
p-value =~ P(r*(x) >r"),

the area under the Chi-square curve to the right of r*; that is, the upper tail
area.
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3.9 Exercises

A. Applications

3.1 Let T denote survival time of an experimental unit with survivor function
S(t) = exp(—t/0) for t > 0 and 6 > 0. In this experiment n experimental
units were observed and their lengths of life (in hours) were recorded. Let

t,..

., t denote the completely observed (uncensored) lifetimes, and let

Ck+41,Ck+2,-- -, Cn denote the n — k censored times. That is, this data set
contains randomly right-censored data points.

(a)
(b)

Derive the maximum likelihood estimate (MLE) @\M 1, for 6. Describe this
in words. Refer to expression (3.8) and pages 70— 71.

Referring to the observed information matrix #(6) (3.11), we derive the
following expression for the (estimated) asymptotic variance of 0/r.:
(Orr)?

k )
where k is the number of uncensored data points n,,.

vary,(Oar) =

i. Calculate for tl, ce 7t5 :}74, 7, 9, 12 angl\ Ce,C7y...,C1l0 = 3, 3,4, 6, 6
the value of the estimate 6,7, and var,(6pr).
ii. Provide an asymptotic 95% confidence interval for 6, the true mean

lifetime of the experimental units. Refer to expression (3.18) and Ta-
ble 3.2.

Refer to expression (3.14). Give the expression for Neyman-Pearson/
Wilks Likelihood Ratio Test (LRT) statistic 7*(¢) to test the hypothesis
Hy : 6 = 6g. Then calculate its value on the data in part (b) with
6o = 10. Use the asymptotic distribution of r*(¢) to test the hypothesis
Hy: 0 =10 against Hy : 6 # 10. Also see page 75.

Suppose now that all n lifetimes are completely observed; that is, no cen-
sored times. Then #y,...,t5 = 1,4,7,9,12 and tg,...,t10 = 3,3,4,6,6.
Compute 0y/r, and var,(0arr). See page 68 and expression (3.11).

For the complete data case in part (d), calculate the LRT statistic to
test Hy : 6 = 0y. Denote the LRT statistic by T;". Use the asymptotic
distribution of T} to test Hy : 6 = 10 against H4 : 0 # 10 with data
from part (d). See page 71. Note that T} = r*(¢).

In the complete data case there exists a test statistic T, equivalent to
the LRT statistic 17, to test Hyo : 6 = p:

2.0t
r-2Tht

The exact distribution of 75 under Hy is X%Zn)'

i. Conduct an analogous test to part (e) and compare results.
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ii.

Construct an exact 95% confidence interval for the true mean lifetime

0

Hint: Refer to page 70.
3.2 We return to the diabetes data introduced in Exercise 2.3. We consider
only the diabetic group. Refer to Section 3.4.2. In the output from
> summary(weib.fit), recall that [i (= Intercept) <- weib.fit$coeff,
and ¢ (= Scale) <- weib.fit$scale.

(a) Fit the data to the Weibull model. Then:

i.
ii.

iii.

iv.

Obtain point and 95% C.I. estimates for the three quartiles.
Compute point estimates for S(t) at the uncensored survival times
1zeit.

Tips:
> alphahat <- 1/weib.fit$scale

> lzeit.u <- sort(lzeit.u)
> Shat <- 1 - pweibull(lzeit.u,alphahat,scalehat)

Plot the Kaplan-Meier curve and the estimated Weibull survivor func-
tion (Sw (t)) Shat on the same plot.

Tips: Read the online help for par. Here it describes how to specify
line types, etc.
> plot(....)
> lines(...., type="1", 1lty=2) # overlays the second
# graph on the same plot.
Produce a Q-Q plot.

(b) Fit the data to the log-normal model. Repeat all of part (a).

Tips:

> lognorm.fit<-survReg(Surv(lzeit,tod)~1,dist="lognormal",

data=diabetesl)

> Shat <- 1 - pnorm(log(lzeit.u),lognorm.fit$coeff,

lognorm.fit$scale)

Plot Shat against 1zeit.u (on the time axis). You must create your own
qq.lognormal function. This is easy. Just read qq.loglogistic. Make
minor changes.

(c¢) Compare your plots and comment as to how these models fit the data.

3.3 We continue to analyze the diabetes data.

(a) Investigate with the help of Q-Q plots which of the following Weibull
models fit the 1zeit data best: See summary table on page 83.

i.

Model 1: Fit the diabetic and nondiabetic together without consider-
ation of other variables.
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ii. Model 2: Fit the data with diab as a covariate in the model.
iii. Model 3: In log(time), different locations and different scales.

Tips
For Models 1 and 3, use the function qq.weibull. For Model 2 use the
function qq.weibreg. To plot all three on the same page, use

> par (mfrow=c(2,2))
> qq.weibull(....)

(b) Compare the log-likelihood values of these three models via the LRT

statistics. The hierarchy is: Model 1 C Model 2 C Model 3.

Hint: See pages 82 and 83.

(¢) Consider the fitted Model 2.

i. Provide point estimates for the quartiles of the survival time (# days
to death after operation) distribution of each diab group.

ii. Provide point estimates of the two scale parameters and common
shape parameter for the two Weibull survivor functions corresponding
to the two diab groups.

iii. Estimate the probability of surviving more than 1000 days.

B. Theory and WHY!

3.4 Derive the (estimated) asymptotic variance of the MLE 01

BN OriL)?
an, (Byr) = DS
which was stated back in Exercise 3.1(b).

3.5 Show that the LRT based on the statistic T} in Exercise 3.1(e) is equivalent
to the test based on the test statistic Ty presented in Exercise 3.1(f).
Hint: Show 77, which is 7*(¢), is some convex function of T3

3.6 Prove the Fact stated on page 58. That is, if T' ~ Weibull, then YV =
log(T") ~ extreme value distribution.

3.7 Derive the p.d.f. given in the table on page 59 of the log-normal r.v. T.

3.8 Show expression (3.15).
Hint: Refer to the Example 6 in Hogg and Craig (1995, page 136).

3.9 Use expressions (3.18) and (3.19) to verify Table 3.2.
3.10 Derive expression (3.20).
3.11 Verify expression (3.23).

3.12 Attempt to derive a (1 — a)% C.I. for S(¢) under the Weibull model.
Hint: See Sections 3.6 and 3.7.

3.13 Attempt to derive a (1 — a)% C.I. for S(¢) under the log-logistic model.

3.14 Derive expression (3.24).
Hint: Use the first order Taylor approximation given above this expression.
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Regression Models

Let T denote failure time and z = (2", ..., 2(™))’ represent a vector of avail-
able covariates. We are interested in modelling and determining the relation-
ship between T and z. Often this is referred to as prognostic factor analysis.
These z are also called regression variables, regressors, factors, or explana-
tory variables. The primary question is: Do any subsets of the m covariates
help to explain survival time? For example, does age at first treatment and/or
gender increase or decrease (relative) risk of survival? If so, how and by what
estimated quantity?

Example 1. Let
)

;=1 for males and xz(-l) = 0 for females),

e (1 denote the sex (z
e () = Age at diagnosis,
e 20 =z . () (interaction),

e T survival time.

We introduce four models: the exponential, the Weibull, the Cox proportional
hazards, and the accelerated failure time model, and a variable selection pro-
cedure.

Objectives of this chapter:
After studying Chapter 4, the student should:

1. Understand that the hazard function is modelled as a function of available
covariates z = (z(), ..., z(™).

2. Know that the preferred link function for n = 2'3 is k(n) = exp(n)

and why.

Recognize the exponential and Weibull regression models.

Know the definition of the Cox proportional hazards model.

Know the definition of an accelerated failure time model.

Know how to compute the AIC statistic.

o gk

Know how to implement the S functions survReg and predict to estimate
and analyze a parametric regression model and obtain estimated quantities
of interest.

95
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8. Know how to interpret the effects of a covariate on the risk and survivor
functions.

4.1 Exponential regression model

We first generalize the exponential distribution. Recall that for the exponen-
tial distribution the hazard function, h(t) = A, is constant with respect to
time and that E(T) = ;. We model the hazard rate A as a function of the
covariate vector x.

We assume the hazard function at time ¢ for an individual has the form

where 8 = [51, 02, ..., 0m] is a vector of regression parameters (coefficients),
A > 0 is a constant, and k is a specified link function. The function ho(t)
is called the baseline hazard. It’s the value of the hazard function when the
covariate vector z = 0 or 3 = 0. Note that this hazard function is constant
with respect to time ¢, but depends on z.

The most natural choice for & is k(x) = exp(z), which implies
h(tlz) = A-exp(z'B)
= X-exp (Biz® 4+ fra™)
= \-exp (6137(1)) X exp (ﬂgx(2)) X +++ X exXp (ﬂmx(m)) .

This says that the covariates act multiplicatively on the hazard rate. Equiva-
lently, this specifies

log(h(t|z)) = log(\) + 1 = log(\) + (2'B) = log(\) + iz + -+ + Bat™ .

That is, the covariates act additively on the log failure rate — a log-linear model
for the failure rate. The quantity n = 2’03 is called the linear predictor of the
log-hazard. We may consider a couple of other k functions that may appear
natural, k(n) = 14+n and k(n) = 1/(14n). The first one has a hazard function
h(t|z) = XA x (1 + 2’/3) which is a linear function of z and the second has the
mean E(T|z) = 1/h(t|z) = (1 + 2’B)/\ which is a linear function of z. Note
that both proposals could produce negative values for the hazard (which is
a violation) unless the set of 8 values is restricted to guarantee k(z’8) > 0
for all possible . Therefore, k(n) = exp(n) is the most natural since it
will always be positive no matter what the 8 and x are.

The survivor function of T given z is
S(t|r) = exp ( - h(t|§)t) = exp ( - )\exp(g’g)t).

Thus, the p.d.f. of T given z is
f(t|z) = h(t|lz)S(tlz) = Aexp(z'B) exp (—Aexp(z/B)t) .
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Recall from Fact, Chapter 3.1, page 58, that if T" is distributed exponentially,
Y = log(T) is distributed as the extreme (minimum) value distribution with
scale parameter o = 1. Here, given z, we have

i = —log(h(tlz)) = —log (Aexp(2'B)) = —log(A\) — 2’3 and o= 1.
Therefore, given z,
Y=log(T)=p+0Z=05+20"+72,

where (5 = —log(}), f° = =3, and Z ~ f(z) = exp(z — €*), —00 < z < 00,

the standard extreme (minimum) value distribution.

In summary, h(t|z) = Aexp(z’f3) is a log-linear model for the failure rate and
transforms into a linear model for Y = log(T) in that the covariates act
additively on Y.

Example 1 continued: The exponential distribution is usually a poor model
for human survival times. We use it anyway for illustration. We obtain

hazard function:  h(t|lz) = Aexp(z'3)
log(hazard): log(h(t|z)) = log(\) + Biz™) + Boz@ + 332
survivor function: S(t[z) = exp(—Aexp(z'F)t)

Male Female
hazard Aexp (81 + (B2 + B3)age) Aexp(B2 age)
log(hazard) (log(A) + B1) + (B2 + B3)age log(\) + B2 age

survivor exp (—Aexp(fB1 + (B2 + F3)age)t) exp (—Aexp(Brage)t)

Take A=1,0; = —1,0: = —0.2, 83 = 0.1. Then

Male Female
hazard exp(—1—.1- age) exp(—0.2 age)
log(hazard) —1—-0.1- age —0.2- age

survivor exp (—exp(—1—0.1-age)t) exp(—exp(—0.2-age)t)

Plots for this example are displayed in Figure 4.1.
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Figure 4.1 Plots for Example 1.

4.2 Weibull regression model

We generalize the Weibull distribution to regression in a similar fashion. Recall
that its hazard function is h(t) = et~ L.
To include the covariate vector x we now write the hazard for a given z as
Wtls) = ho(t) - exp(z'd) (4.1)
= axto ! exp(g’é) =« ()\ (exp( ﬂ))é)a o1
= a)r
where A = \ - (exp(z B))%
Again notice that

loa(h(flz)) = log(a) +aloa(3) + (o — 1) log(t)
= log() + alog(X) + 2’ + (o — 1) log(t) .

From Fact, Chapter 3.1, page 58, if ' ~ Weibull, then given z, ¥ = log(T)
= [l + oZ, where

Q=

fi = —log(A) = —log(X - (exp(2'f)) =) = —log(\) — —2'B, (4.2)

SEES
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o= é, and Z ~ standard extreme value distribution. Therefore,

Y =p;+a'8 +0Z, (4.3)
———

I
where 35 = —log(\) and §* = —of3. It then follows from the table on page 57

that the survivor function of T given z is

S(t|z) = exp (—(Xt)a) . (4.4)

It follows from the relationship between the cumulative hazard and survivor
functions given in expression (1.6) that, for a given z, H(¢|x) = — log(S(¢|x)).
An expression for the log-cumulative hazard function follows from expres-
sion (4.2) for log(\).

log (H(t]a))

alog(N) + alog(t)
alog(X) + alog(t) + 'S (4.5)
log (Ho(t)) +2'8.

where Hy(t) = —log (So(t)) = (At)®. The log of the cumulative hazard func-
tion is linear in log(t) and in the g coefficients. Thus, for a fixed z value,
the plot of H(t|z) against ¢ on a log-log scale is a straight line with slope «
and intercept 2’ + alog(A). Expression (4.5) can also be derived by noting
expression (4.1) and definition (1.6) give

H(t|z) = Ho(t) exp(z'f) = (At)* exp(z'3) . (4.6)

In summary, for both the exponential and Weibull regression model, the effects
of the covariates z act multiplicatively on the hazard function h(t|z) which is
clear from the form

h(tlz) = ho(t) - exp(z/B) = ho(t) - exp (b1 + - - + Bpzl™)
= ho(t) - exp (ﬁlx(l)) X exp (ﬁgx(z)) X+ v+ X exp (ﬁmx(m)) )

This suggests the more general Cox proportional hazards model, pre-
sented in the next section. Further, both are log-linear models for 7" in that
these models transform into a linear model for Y = log(T"). That is, the co-
variates z act additively on log(7T") (multiplicatively on T'), which is clear from
the form

Y =log(T)=ji+0Z=0;+2p" +0Z.

This suggests a more general class of log-linear models called accelerated
failure time models discussed in Section 4.4 of this chapter.



100 REGRESSION MODELS

The difference from an ordinary linear regression model for the log-
transformed target variable T, Y= log(T), is the distribution of the errors
Z, which here is an extreme value distribution rather than a normal one.
Therefore, least-squares methods are not adequate. Furthermore, there will
be methods to deal with censored values, which is rarely discussed for or-
dinary linear regression.

4.3 Cox proportional hazards (PH) model

For the Cox PH model, the hazard function is
h(tlz) = ho(t) - exp(z’p), (4.7)

where ho(t) is an unspecified baseline hazard function free of the covariates
x. The covariates act multiplicatively on the hazard. Clearly, the exponential
and Weibull are special cases. At two different points z,,z,, the proportion

hitlz,) _ exp(z1f)
h(tlzy) — exp(z5p)

called the hazards ratio (HR), is constant with respect to time ¢. This
defines the proportional hazards property.

= exp ((2’1 - z’g)@, (4.8)

Remark:

As with linear and logistic regression modelling, a statistical goal of a sur-
vival analysis is to obtain some measure of effect that will describe
the relationship between a predictor variable of interest and time to
failure, after adjusting for the other variables we have identified in
the study and included in the model. In linear regression modelling, the
measure of effect is usually the regression coefficient (. In logistic regression,
the measure of effect is an odds ratio, the log of which is 3 for a change of
1 unit in z. In survival analysis, the measure of effect is the hazards
ratio (HR). As is seen above, this ratio is also expressed in terms of an
exponential of the regression coefficient in the model.

For example, let (3; denote the coefficient of the group covariate with group
= 1 if received treatment and group = 0 if received placebo. Put treatment
group in the numerator of HR. A HR of 1 means that there is no effect. A
hazards ratio of 10, on the other hand, means that the treatment group has
ten times the hazard of the placebo group. Similarly, a HR of 1/10 implies that
the treatment group has one-tenth the hazard or risk of the placebo group.

Recall the relationship between hazard and survival is
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T h(t)
If the HR is less than one, then the ratio of corresponding survival probabil-

ities is larger than one. Hence, the treatment group has larger probability of
survival at any given time ¢, after adjusting for the other covariates.

For any PH model, which includes the Weibull model as well as the Cox model,
the survivor function of T" given zx is

st0] = ew (- [ t buleyiu ) = exp (~expla's) [ t ho(u)du )

_ (exp <_ /0 t ho(u)du))exp@@ = (So(t)) =D |,

where Sp(t) denotes the baseline survivor function.

The p.d.f. of T given z is
F(tlz) = ho(t) exp(z'8) (So ()" .

There are two important generalizations:

(1) The baseline hazard ho(t) can be allowed to vary in specified subsets of the
data.

(2) The regression variables z can be allowed to depend on time; that is, =
z(2).

We devote Chapter 5 of this book to an example of a Cox PH prognostic
factor analysis. Using S functions we analyze the CNS data. In Chapter 7.1 we
present an example which violates the PH assumption. The example explores
an epidemiologic study on the treatment of heroin addicts. To model and
compare the retention times of two clinics that differ strongly in their overall
treatment policies were the primary goals of the study. The PH assumption
is violated for the primary exposure variable of interest, clinic. An extended
Cox model is implemented to accommodate this kind of time dependency.
The Cox model is compared with an alternative regression quantile analysis
in Chapter 8.

4.4 Accelerated failure time model

This model is a log-linear regression model for 7" in that we model Y = log(T')
as a linear function of the covariate xz. Suppose

nglﬁ*_i_z*,
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where Z* has a certain distribution. Then
T =exp(Y) = exp(z/") - exp(Z*) = exp(a'3") - T,

where T = exp(Z*). Here the covariate z acts multiplicatively on the survival
time T'. Suppose further that 7™ has hazard function hf(t*) which is indepen-
dent of 8*; that is, free of the covariate vector z. The hazard function of T for
a given z can be written in terms of the baseline function h(-) according to

h(t|z) = hg(exp(—z'B7)t) - exp(—z'B"). (4.9)

We prove this at the end of this section. We see here that the covariates z
act multiplicatively on both t and the hazard function. The log-logistic and
log-normal regression models are examples of accelerated failure time models
as well as the exponential and Weibull regression models.

To illustrate this, let’s consider the log-logistic model. As is customary, we
first write this as a log-linear model

Y:ﬂg—i—g/g*ﬁ-O’Z,

where Z ~ standard logistic. Let Z* = 8§ + 0Z. Then this log-linear model
is now expressed as

Y — @lﬁ* + Z*,
where Z* ~ logistic with mean being ; and scale parameter o. According to
the table on page 60, the baseline hazard function for the log-logistic time T
is

e Q)
M) = ey
where 35 = —log(\) and 0 = a~!. This baseline hazard is free of 5*. Hence,

this log-linear model is indeed an accelerated failure time model. It follows
directly from expression (4.9) that the hazard function for the target random
variable T is given by
S\ata—l
h(tle) = e
1+ Aot
where A = X - (exp(—2/8")). WHY! Now, starting from here, as the hazard

function uniquely defines a distribution, it follows from page 60 that for a
given z, T ~ log-logistic with parameters A and «. Thus,

Y=log(T)=p+0Z, (4.11)

(4.10)

where

i = —log(A\) = —log(\) + B =gy +2'67,
and Z ~ standard logistic. It is important to note that the form of the above
hazard function shows us the log-logistic model, although it is a log-linear
model, is not a PH model defined in the previous section of this chapter.

It follows from expressions (1.6) and (4.9) that the survivor function of T
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given z is

S(tlz) = exp < exp(—z'") /Ot hg (exp(—2'3")u) du) : (4.12)

Change the integration variable to v = exp(—z’'(")u. Then dv = exp(—z'3")du
and 0 < v < exp(—2'f")t. Then for the accelerated failure time model,

exp(—a’ )t
S(tlz) | = exp <_/0 hg(v)dv> = 58<6Xp(—§'ﬁ*)t) = S5(t"),

(4.13)
where S§(t) denotes the baseline survivor function. Here we notice that the
role of the covariate x changes the scale of the horizontal (¢) axis. For example,
if /3" increases, then the last term in expression (4.13) increases. In this case
it has decelerated the time to failure. This is why the log-linear model defined
here is called the accelerated (decelerated) failure time model.

Remarks:

1. We have seen that the Weibull regression model, which includes the expo-
nential, is a special case of both the Cox PH model and the accelerated
failure time model. It is shown on pages 34 and 35 of Kalbfleisch and Pren-
tice (1980) that the only log-linear models that are also PH models are the
Weibull regression models.

2. Through the partial likelihood (Cox, 1975) we obtain estimates of the
coefficients 3 that require no restriction on the baseline hazard hg(t). The
S function coxph implements this. This partial likelihood is heuristically
derived in Chapter 6.

3. For the accelerated failure time models we specify the baseline hazard func-
tion hg(t) by specifying the distribution function of Z*.

4. Proof of (4.9): Recall a general result treated in an introductory mathe-
matical statistics course. Let T* have a p.d.f. f*(-). Suppose we define a
new random variable T = g(T™*). Let f(¢) denote the p.d.f. of T. Then

f = £ (g7 m) - 120

Let S(t) denote the survivor function of T'. Then it follows that
S(t)y=5"(g7'(1)) , (4.14)

where S*(-) is the survivor function of T*. WHY! Let T* have a haz-
ard function h{(-). This implies that T* has survivor function S*(t) =

exp (— fg hg(u)du) and p.d.f. f*(t) = hg(t) exp (— fot hg(u)du). Now, t =
g(t*) = exp(z’f*)t* and so t* = g ) = exp(—z'(*)t and %(g_l(t)) =
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exp(—z/f#"). Then, in general, the hazard function for T' is given by

) ) 1
S(t) g (gfl(t))

by definition of h§(-). To show its dependence on the covariate x, we write
this as

h(tlz) = h{ (exp(—g’ﬁ*)t) -exp(—z'3") .

5. Hosmer and Lameshow (1999) well present the proportional odds and pro-
portional times properties of the log-logistic regression model. From expres-
sion (4.13) and page 60 we can express the log-logistic’s survivor function

as
1

S(tlz, 65, 8% a) = - o
Gl 55,87, ) 1+exp(a(y — f5 —2'07))
where y = log(t), 85 = —log(\), and @ = 1/0. WHY! The odds of survival
beyond time ¢ is given by
S(tlz, 65,8, a)
1- S(t|£aﬁ8aé*7()‘)

Note that —log(odds) is both a linear function of log(¢) and the covariates

(4.15)

= exp(—a(y — By — 2'6%)). (4.16)

z@’s, j =1,...,m. The odds-ratio of survival beyond time ¢ evaluated at
z; and z, is given by
OR(t]z = 25,2 = z,) = exp(a(zy — z,)'B). (4.17)

The odds-ratio is commonly used as a measure of the effects of covariates.
Note that the ratio is independent of time, which is referred to as the pro-
portional odds property. For example, if OR = 2, then the odds of survival
beyond time ¢ among subjects with x, is twice that of subjects with z,, and
this holds for all t. Alternatively, some researchers prefer to describe the
effects of covariates in terms of the survival time. The (p x 100)th percentile
of the survival distribution is given by

(e, 35,8, 0) = (p/(1=p)) exp(G; +2'87).  (418)
WHY! Then, for example, the times-ratio at the median is
TR(t 5|z = 25,2 = 2;) = exp((z5 — 21)'"). (4.19)

This holds for any p. The TR is constant with respect to time, which is
referred to as the proportional times property. Similarly, if TR = 2, then
the survival time among subjects with z, is twice that of subjects with
x,, and this holds for all ¢. The upshot is that OR = TR®. That is, the
odds-ratio is the power of the time ratio. Hence, the rate of change of
OR is controlled by «, the shape parameter of the log-logistic distribution.
For « =1, OR = TR. If « = 2 and TR = 2, then OR = 22 = 4. For

one unit increase in a single component, fixing the other components in z,
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OR — 400 or 0 as a — oo depending on the sign of the corresponding
component of 3%, and — 1 as a — 0. Finally, Cox and Oakes (1984, page
79) claim that the log-logistic model is the only accelerated failure time
model with the proportional odds property; equivalently, the only model
with the proportional times property.

4.5 Summary

Let Z denote either a standard extreme value, standard logistic, or standard
normal random variable. That is, each has location p = 0 and scale o = 1.

[ ]
Y=log(T)=p+0Z=0;+26"+0Z

accelerated failure time model
log-linear model

4 Tl AVAN
T T T
Weibull log-logistic log-normal
| !

PH property proportional
odds property

proportional
times property

The fi is called the linear predictor and o is the scale parameter. In the
target variable T' distribution, A = exp(—) and the shape a = 1/0. The S
function survReg estimates 33, 5%, and . The predict function provides
estimates of [i at specified values of the covariates. For example, returning
to the AML data, where we have one covariate “group” with two values
0 or 1, to estimate the linear predictor (1p) for the maintained group, use
> predict(fit,type="1p",newdata=list(group=1)).

e The Weibull regression model is the only log-linear model that has the
proportional hazards property. For both the Cox PH model and the Weibull
regression model, we model the hazard function

h(tlz) = ho(t) - exp(z'f),

where hg(t) is the baseline hazard function. For the Weibull model, the
baseline hazard hg(t) = aA*t*~ !, the baseline cumulative hazard Hy(t) =
(At)*, and the log-cumulative hazard

log (H(t@)) = alog(\) + alog(t) + 2'(.

For the Weibull model, the relationship between the coefficients in the log-
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linear model and coefficients in modelling the hazard function is
B=—-0""p" and \=exp(—f;) .
The S function survReg estimates 33, @*, and o. The hazard ratio is

=202 o -0)

Fitting data to a Cox PH model is presented in detail in Chapter 5. The
Cox procedure estimates the 3 coefficients directly.

e The log-logistic regression model is the only log-linear model that has the
proportional odds property. The survivor function is

s@m—%@memm)—< ( 1 7
exp(y — 55 — 2/ B*

where S§(t) is the baseline survivor function, y = log(t), 85 = —log(}),
and o = 1/o.

b

The odds of survival beyond time ¢ is given by
S(tlz)
- S(tl)

The (p x 100)th percentile of the survival distribution is given by
ty(@) = (p/(1 =) exp(B; +2'8°),

The odds-ratio of survival beyond time t evaluated at x; and z, is given
by

1
a

= (eXp(y -6y — g’é*)) )

OR(tlz = zy,z =2,) = (exp ((Ez - &)'ﬁ*)) = (TR) %,

where TR is the times-ratio. The reciprocal of the OR has the same func-
tional form as the HR in the Weibull model with respect to g* and o.

e The upshot is: to obtain the estimated measures of effect, HR and 6f\{, we
need only the estimates given by survReg.

4.6 AIC procedure for variable selection

Akaike’s information criterion (AIC):

Comparisons between a number of possible models, which need not necessarily
be nested nor have the same error distribution, can be made on the basis of
the statistic

AIC = -2 x log(maximum likelihood) + &k X p,

where p is the number of parameters in each model under consideration and k
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a predetermined constant. This statistic is called Akaike’s (1974) informa-
tion criterion (AIC); the smaller the value of this statistic, the better the
model. This statistic trades off goodness of fit (measured by the maximized
log likelihood) against model complexity (measured by p). Here we shall take
k as 2. For other choice of values for k, see the remarks at the end of this
section.

We can rewrite the AIC to address parametric regression models considered
in the text. For the parametric models discussed, the AIC is given by

AIC = -2 x log(maximum likelihood) + 2 x (a 4 b), (4.20)

where a is the number of parameters in the specific model and b the number
of one-dimensional covariates. For example, a = 1 for the exponential model,
a = 2 for the Weibull, log-logistic, and log-normal models.

Here we manually step through a sequence of models as there is only one one-
dimensional covariate. But in Chapter 5 we apply an automated model selec-
tion procedure via an S function stepAIC as there are many one-dimensional
covariates.

Motorette data example:

The data set given in Table 4.1 below was obtained by Nelson and Hahn (1972)
and discussed again in Kalbfleisch and Prentice (1980), on pages 4, 5, 58, and
59. Hours to failure of motorettes are given as a function of operating tem-
peratures 150°C, 170°C, 190°C, or 220°C. There is severe (Type I) censoring,
with only 17 out of 40 motorettes failing. Note that the stress (temperature) is
constant for any particular motorette over time. The primary purpose of the
experiment was to estimate certain percentiles of the failure time distribution
at a design temperature of 130°C. We see that this is an accelerated process.
The experiment is conducted at higher temperatures to speed up failure time.
Then they make predictions at a lower temperature that would have taken
them much longer to observe. The authors use the single regressor variable
x = 1000/(273.24+Temperature). They also omit all ten data points at tem-
perature level of 150°C. We also do this in order to compare our results with
Nelson and Hahn and Kalbfleisch and Prentice. We entered the data into a
data frame called motorette. It contains

time  status temp T

hours 1 if uncensored °C  1000/(273.2+°C)
0 if censored

We now fit the exponential, Weibull, log-logistic, and log-normal models. The
log likelihood and the AIC for each model are reported in Table 4.2. The S



108 REGRESSION MODELS
Table 4.1:  Hours to failure of Motorettes

Temperature Times

150°C All 10 motorettes without failure at 8064 hours
170°C 1764, 2772, 3444, 3542, 3780, 4860, 5196

3 motorettes without failure at 5448 hours
190°C 408, 408, 1344, 1344, 1440

5 motorettes without failure at 1680 hours
2200C 408, 408, 504, 504, 504

5 motorettes without failure at 528 hours

n = 40, n, = no. of uncensored times = 17

Table 4.2: Results of fitting parametric models to the Motorette data

Model log-likelihood AIC
exponential intercept only -155.875 311.750 + 2(1) = 313.750
both -151.803 303.606 + 2(1 + 1) = 307.606
Weibull intercept only -155.681 311.363 + 2(2) = 315.363
both -144.345 288.690 + 2(2 + 1) = 294.690
log-logistic  intercept only -155.732 311.464 + 2(2) = 315.464
both -144.838 289.676 + 2(2 + 1) = 295.676
log-normal intercept only -155.018 310.036 + 2(2) = 314.036
both -145.867 291.735 + 2(2 + 1) = 297.735

code for computing the AIC follows next. For each of these models the form
is the same:

intercept only: y = log(t) =065 +0Z
both: y = log(t) =5+ 6 +0Z,

where the distributions of Z are standard extreme (minimum) value, standard
logistic, and standard normal, respectively.

The S code for computing the AIC for a number of specified distri-
butions

> attach(motorette) # attach the data frame motorette to avoid
# continually referring to it.

# Weibull fit

> weib.fit <- survReg(Surv(time,status)“x,dist="weibull")

> weib.fit$loglik # the first component for intercept only and
# the second for both

[1] -155.6817 -144.3449

> -2%weib.fit$loglik # -2 times maximum log-likelihood
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[1] 311.3634 288.6898
# exponential fit
> exp.fit <- survReg(Surv(time,status)“x,dist="exp")
> -2%exp.fit$loglik
[1] 311.7501 303.6064
# log-normal fit
> lognormal.fit <- survReg(Surv(time,status)x,
dist="lognormal")
> -2xlognormal.fit$loglik
[1] 310.0359 291.7345
# log-logistic fit
> loglogistic.fit <- survReg(Surv(time,status) x,
dist="loglogistic")
> -2xloglogistic.fit$loglik
[1] 311.4636 289.6762
> detach() # Use this to detach the data frame when no
# longer in use.

Nelson and Hahn applied a log-normal model, and Kalbfleisch and Prentice ap-
plied a Weibull model. Kalbfleisch and Prentice state that the Weibull model
is to some extent preferable to the log-normal on account of the larger max-
imized log likelihood. From Table 4.2, we find that the Weibull distribution
provides the best fit to this data, the log-logistic distribution is a close second,
and the log-normal distribution is the third.

When there are no subject matter grounds for model choice, the model chosen
for initial consideration from a set of alternatives might be the one for which
the value of AIC is a minimum. It will then be important to confirm that
the model does fit the data using the methods for model checking described
in Chapter 6. We revisit AIC in the context of the PH regression model in
Chapter 5.

Remarks:

1. In his paper (1974), Akaike motivates the need to develop a new model iden-
tification procedure by showing the standard hypothesis testing procedure
is not adequately defined as a procedure for statistical model identification.
He then introduces AIC as an appropriate procedure of statistical model
identification.

2. Choice of k in the AIC seems to be flexible. Collett (1994) states that the
choice k = 3 in the AIC is roughly equivalent to using a 5% significance level
in judging the difference between the values of —2xlog(maximum likelihood)
for two nested models which differ by one to three parameters. He recom-
mends k = 3 for general use.

3. There are a variety of model selection indices similar in spirit to AIC.
These are, going by name, BIC, Mallow’s C,, adjusted R?, R2 = 1 —
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(1 — R?)(n —1)/(n — p), where p is the number of parameters in the least
squares regression, and some others. These all adjust the goodness of fit of
the model by penalizing for complexity of the model in terms of the number
of parameters.

4. Efron (1998) cautions that the validity of the selected model through cur-
rently available methods may be doubtful in certain situations. He illus-
trates an example where a bootstrap simulation study certainly discour-
ages confidence in the selected model. He and his student find that from
500 bootstrap sets of data there is only one match to the originally selected
model. Further, only one variable in the originally selected model appears
in more than half (295) of the bootstrap set based models.

5. Bottom line in model selection: Does it make sense!

Estimation and testing: fitting the Weibull model

The S function survReg fits the times T as log-failure times Y = log(T) to
model (4.3)
where Z has the standard extreme value distribution. Further, when we re-
express Y as

Y — £lé* + Z* ,
where Z* = 35 + 0Z, we see this model is an accelerated failure time model.
Here Z* ~ extreme value with location G and scale o. The linear predictor
given on page 99 is _

i = —log(\) = B; + 25" (4.21)
with g5 = —log(A) and % = —o3, where the vector 3 denotes the coefficients
in the Weibull hazard on page 98 and, o = 1/«, where « denotes the Weibull

-~ ~x/
shape parameter. Let §5, 8 , and ¢ denote the MLE’s of the parameters.
Recall that the theory tells us MLE’s are approximately normally distributed
when the sample size n is large. To test Ho : 57 = ;07 j=1,...,m, use

3* — 30
u < N(0,1) under H,.
s.e.(87)

An approximate (1 — a) x 100% confidence interval for 3} is given by

o~

B £zas.e.(B5),

where zg is taken from the N(0,1) table. Inferences concerning the intercept
B follow analogously.

Notes:

1. Tt is common practice to construct (1 — ) x 100% confidence intervals
for the coefficients in the Weibull model by multiplying both endpoints by
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—5~! and reversing their order. However, we suggest constructing confi-
dence intervals using the bivariate delta method stated in Chapter 3.6 to
obtain a more appropriate standard error for 8;. The reason is that the
bivariate delta method takes into account the variability due to & as well
as (7. The common approach does not, and hence, could seriously under-

estimate the standard error. The explicit expression for the variance of Bl
is as follows:

@i(Bh) = = (var(5) + Bivar(log()) — 2Bicov(Fr, og(@))) . (4:22)

WHY! We use this expression to compute a 95% confidence interval for (31
at the end of this chapter.

2. Tt is common practice to compute a (1—a) x100% confidence interval for the
true parameter value of A by multiplying LCL and UCL for the intercept 3
by —1, then taking the exp(-) of both endpoints, and then, reversing their
order. This may end up with too wide a confidence interval as we show at
the end of this chapter. Again we recommend the delta method to obtain
the variance estimate of \. By applylng the delta method to A = exp(— ﬁo)

we obtain Var()\) = exp(— 260)var(ﬁ0) WHY!

At the point z = z,, the MLE of the (p x 100)th percentile of the distribution
of Y =log(T) is

By
Y, = Bo +§6ﬁ + Ezp = (172672'17) E* )
el

where z, is the (p x 100)th percentile of the error distribution, which, in this
case, is standard extreme value. The estimated variance of Y}, is

1
var(V,) = (L zh, 2,)8 [ 2o |, (4.23)
Zp

where ¥ is the estimated variance-covariance matrix of BS: Bf, and . WHY!
Then an approximate (1 — a)) x 100% confidence interval for the (p x 100)th
percentile of the log-failure time distribution is given by

Y, + zZa s.e.(Y,),

where zg is taken from the N(0,1) table. These are referred to as the uquan-
tile type in the S function predict. The MLE of ¢, is exp(f/p). To obtain
confidence limits for t,, take the exponential of the endpoints of the above
confidence interval.

The function predict, a companion function to survReg, conveniently reports
both the quantiles in time and the uquantiles in log(time) along with their
respective s.e.’s. We often find the confidence intervals based on uquantiles
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are shorter than those based on quantiles. See, for example, the results at the
end of this section.

In S, we fit the model
Y = log(time) = 35 + Sz + 0 Z,

where Z ~ standard extreme value distribution. The (p x 100)th percentile of
the standard extreme (minimum) value distribution, Table 3.1, is

= log ( —log(1 — p))

The function survReg outputs the estimated variance-covariance matrix 1%
for the MLE’s BO, Bl, and T = logo. However, internally it computes $ to
estimate the var(Y ).

The following is an S program along with modified output. The function
survReg is used to fit a Weibull regression model. Then the 15th and 85th
percentiles as well as the median failure time are estimated with corresponding
standard errors. We also predict the failure time in hours at xy = 2.480159,
which corresponds to the design temperature of 130°C. Four plots of the esti-
mated hazard and survivor functions are displayed in Figure 4.2. Three Q-Q
plots are displayed in Figure 4.3, where intercept is 8§ + Sz and slope is 0.
Since there are three distinct values of =, we have three parallel lines. Lastly,
the results are summarized.

> attach(motorette)
> weib.fit <- survReg(Surv(time,status)“x,dist="weibull")
> summary (weib.fit)

Value Std. Error z P

(Intercept) -11.89 1.966 -6.05 1.45e-009
x 9.04 0.906 9.98 1.94e-023
Log(scale) -1.02 0.220 -4.63 3.72e-006

> weib.fit$var # The estimated covariance matrix of the
# coefficients and log(sigmahat).
(Intercept) x Log(scale)
(Intercept) 3.86321759 -1.77877653 0.09543695
x -1.77877653 0.82082391 -0.04119436
Log(scale) 0.09543695 -0.04119436 0.04842333

> predict(weib.fit,newdata=1list(x),se.fit=T,type="uquantile",
p=c(0.15,0.5,0.85)) # newdata is required whenever
# uquantile is used as a type whereas quantile uses the
regression variables as default. This returns the
estimated quantiles in log(t) along with standard
error as an option.

H B H
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# Estimated quantiles in log(hours) and standard errors in
# parentheses. The output is edited because of redundancy.

x=2.256318 7.845713 8.369733 8.733489
(0.1806513) (0.12339772) (0.1370423)
x=2.158895 6.965171 7.489190 7.852947
(0.1445048) (0.08763456) (0.1189669)
x=2.027575 5.778259 6.302279 6.666035

(0.1723232) (0.14887233) (0.1804767)

> predict(weib.fit,newdata=data.frame(x=2.480159),se.fit=T,
type="uquantile",p=c(0.15,0.5,0.85)) # Estimated
# quantiles in log(hours) at the new x value =
# 2.480159; i.e., the design temperature of 130
# degrees Celsius.

x=2.480159 9.868867 10.392887 10.756643
(0.3444804) (0.3026464) (0.2973887)

sigmahat <- weib.fit$scale
alphahat <- 1/sigmahat # estimate of shape
coef <- weib.fit$coef
lambdatildehat <- exp(- coef[1] - coef[2]%2.480159)

# estimate of scale
> pweibull(25000,alphahat,1/lambdatildehat) # Computes the
# estimated probability that a motorette failure time
# is less than or equal to 25,000 hours. pweibull is
# the Weibull distribution function in S.

vV V V V

[1] 0.2783054 # estimated probability

> Shatq <- 1 - 0.2783054 # survival probability at 25,000
# hours. About 72J, of motorettes are still working
# after 25,000 hours at x=2.480159; i.e., the design
# temperature of 130 degrees Celsius.

> x1 <- levels(factor(x)) # Creates levels out of the
# distinct x-values.
> ts.1 <- Surv(time[as.factor(x)==x1[1]],
status[as.factor(x)==x1[1]]) # The first
# group of data
> ts.2 <- Surv(timel[as.factor(x)==x1[2]],
status[as.factor(x)==x1[2]]) # The second
> ts.3 <- Surv(time[as.factor(x)==x1[3]],
status[as.factor(x)==x1[3]]) # The third
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> par(mfrow=c(2,2)) # divides a screen into 2 by 2 pieces.
> Svobj <- list(ts.1,ts.2,ts.3) # Surv object
> qq.weibreg(Svobj,weib.fit) # The first argument takes

# a Surv object and the second a survReg object.

# Produces a Weibull Q-Q plot.
> qq.loglogisreg(Svobj,loglogistic.fit) # log-logistic

# Q-Q plot

> qq.lognormreg(Svobj,lognormal.fit) # log-normal Q-Q plot
> detach()

Motorette Data

Risk at x=2.48 Survivr Function at x=2.48
o a ]
g . ©
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Figure 4.2 Weibull hazard and survival functions fit to motorette data.

Results:

e From summary(weib.fit), we learn that o = exp(—1.02) = .3605949, and
fi = —log(\) = B + Bra = —11.89 + 9.04x.
Thus, we obtain & = —goers = 2.773195 and A = exp(11.89 — 9.04 x
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Motorette data: Weibull with covariate x,
different intercept and same slope
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Figure 4.3 Weibull, log-logistic, and log-normal Q-Q plots of the motorette data.

Lines constructed with MLE’s.

2.480159) = 0.0000267056 at x = 2.480159. Note also that both the inter-
cept and covariate x are highly significant with p-values 1.45 x 10~ and

1.94 x 10723, respectively.

e It follows from Chapter 4.2 that the estimated hazard function is

h(t|z)

1

1_
:T't[’ 1

and the estimated survivor function is

=

- (exp(—71))

1

S(tlz) = exp{ - (exp(—ﬁ)t) g} .

e The point estimate of 1, 31, is —3_131*. A 95% C.I. for 81 based on the
delta method is given by [—37.84342, —12.29594]. Whereas the one based
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on the common approach is given by
[-671(10.82), —671(7.26)] = [—29.92, —20.09)],

where 6 = .3605949 and the 95% C.I. for 87 is [7.26,10.81] = [9.04 —1.96 x
.906, 9.04 4 1.96 x .906]. It is clear that the latter interval is much shorter
than the former as it ignores the variability of &.

e A 95% C.I. for A based on the delta method is given by [—416023.7, 707626.3].
We see this includes negative values, which is not appropriate because A
is restricted to be positive. Therefore, we report the truncated interval
[0,707626.3]. The one based on the common approach is given by

[exp(8.04), exp(15.74)] = [3102.61, 6851649.6],

where the 95% C.I. for g is [-11.89 — 1.96 x 1.966, -11.89 + 1.96 x
1.966] = [-15.74, -8.04]. Although the common approach ends up with an
unreasonably wide confidence interval compared to the one based on the
delta method, this approach always yields limits within the legal range of
A

o At x = 2.480159, the design temperature of 130°C, the estimated 15th,
50th, and 85th percentiles in log(hours) and hours, respectively based on
uquantile and quantile, along with their corresponding 90% C.I.’s in
hours are reported in the following table.

type percentile Estimate  Std.Err  90% LCL 90% UCL

uquantile 15 9.868867  0.3444804 10962.07  34048.36
50 10.392887 0.3026464 19831.64 53677.02
85 10.756643 0.2973887  28780.08  76561.33

quantile 15 19319.44  6655.168  9937.174  37560.17
50 32626.76  9874.361 19668.762 54121.65
85 46940.83 13959.673 28636.931 76944.21

The 90% C.I.’s based on uquantile, exp(estimate + 1.645 X std.err), are
shorter than those based on quantile at each x value. However, we also
suspect there is a minor bug in predict in that there appears to be a
discrepancy between the standard error estimate for the 15th percentile
resulting from uquantile and ours based on the delta method which fol-
lows. The other two standard error estimates are arbitrarily close to ours.
Our standard error estimates are .3174246, .2982668, and .3011561 for the
15th, 50th, and 85th percentiles, respectively. Applying the trivariate delta
method, we obtain the following expression:

var(y,) = Var(ég) + Var(éf)xg + z20%var(log 5) (4.24)
+ 2xocov(ﬁg, B%) + QZpa'\COV(BE, logo) + 2x0zp?icov(3%, log 7).

WHY!
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e At the design temperature 130°C, by 25,000 hours about 28% of the mo-
torettes have failed. That is, after 25,000 hours, about 72% are still working.

e As & = % = m = 2.773195, then for fixed x the hazard function
increases as time increases. The upper two graphs in Figure 4.2 display es-
timated hazard and survivor functions. The covariate z is fixed at 2.480159
which corresponds to the design temperature 130°C.

e The estimated coefficient ﬁl = — %ﬁ} = fW(Q.M) = —25.06968 < 0.
Thus, for time fixed, as = increases, the hazard decreases and survival in-
creases. The lower two graphs in Figure 4.2 display these estimated func-

tions when time is fixed at 32,626 hours.

e For 1 < o,

h(t|z2)
= — —25.06968)).
Tl = expl(aa = 1) )
For example, for z = 2.1 and 2.2,
h(t]2.2)
= 1(=25. = .08151502.
hE2D) exp(.1(—25.06968)) = .0815150

Thus, for .1 unit increase in z, the hazard becomes about 8.2% of the
hazard before the increase. In terms of Celsius temperature, for 21.645
degree decrease from 202.9905°C to 181.3455°C, the hazard becomes about
8.2% of the hazard before the decrease.

e The Q-Q plots in Figure 4.3 show that the Weibull fit looks slightly better
than the log-logistic fit at the temperature 170°C, but overall they are
the same. On the other hand, the Weibull fit looks noticeably better than
the log-normal fit at the temperature 170°C and is about the same at the
other two temperatures. This result coincides with our finding from AIC in
Table 4.2; that is, among these three accelerated failure time models, the
Weibull best describes the motorette data.

4.7 Exercises
A. Applications

4.1 We work with the diabetes data set again. Refer to Exercise 2.3. Consider
the Weibull regression model

Y =log(1zeit) = B + BizW + B3P + 2 4+ 02,
where Z ~ standard extreme value and
3?(1) _ { O man

1 woman

2@ _ 0 nondiabetic
11 diabetic
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(a)

REGRESSION MODELS

z®) = age in years

Estimate o and the coefficients 7. Which covariates are significant?
Tips:

> fit.a <- survReg(Surv(lzeit,tod) ~ sex+diab+alter,
dist="weibull",data=diabetes)
> summary(fit.a)

We now add two additional covariates which models in the possible de-
pendence of diabetic or not with age. That is, we replace 2® with the
following interaction variables:

(1) _ | age, if diabetic
70 otherwise

(5) _ | age, if nondiabetic
R otherwise

Describe the results of the analysis with the four covariates now. Which
covariates are significant?

Tips:

> diabetes$x4 <- diabetes$xb <- diabetes$alter

> diabetes$x4[diabetes$diab==0] <- 0O

> diabetes$xb[diabetes$diab==1] <- 0O

> fit.b <- survReg(Surv(lzet,tod) ~ sex+diab+x4+x5,

data=diabetes)
> summary(fit.b)

Simplify the model fit in part (b) as much as possible. Draw conclusions
(as much as possible as you are not diabetes specialists, etc.).

For the remaining parts, use the fitted additive model fit.a (part (a))
with just sex, diab, and alter in the model.

Report the estimated hazard function for those who are men and non-
diabetic.

Tip:

See the summary on page 105.

Report the estimated hazard ratio comparing diabetic men to nondia-
betic men all of whom have the same age. Interpret this ratio.

A 50-year-old nondiabetic man is operated on today. What is the esti-
mated probability that he is still alive in ten years?
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(g) With the help of the predict function, calculate the survival duration

(in days or years) after the operation within which half (50%) of the
50-year-old diabetic men have died and then, similarly, for nondiabetic
men. Report both point and interval estimates.

Tips:

Use the preferred C.I. approach (Table 3.2 on Chapter 3); that is, type=
"uquantile". Use the help routine in S or R to look up predict. Be
sure to study the example given there. See the S code to compute the
medhat for Model 2 on page 85.

4.2 In order to better understand the age dependence of survival “lzeit”, plot
now the survival times against “z(®)” and then against “x(4)”. Comment.
Is there something here that helps explain what it is you are observing?

Tips:

To investigate the age structure inherent in the raw data set, split the data
set in to two sets: one with data corresponding to diabetics, the other with
nondiabetics.

vV V. V V

>
>

nondiab <- diabetes[diab==0, ]

diab <- diabetes[diab==1, ]

par (mfrow=c(1,2))

plot(nondiab$alter,nondiab$lzeit,type="none",
ylim=range(diabetes$lzeit) ,ylab="Survival duration",
xlab="Alter")

text(jitter (nondiab$alter),jitter (nondiab$lzeit),
labels=nondiab$tod)

lines(smooth.spline(nondiab$alter,nondiab$lzeit))

plot(diab$alter,diab$lzeit,type="none",
ylim=range(diabetes$lzeit) ,ylab="Survival duration",
xlab="Alter")

text(jitter(diab$alter),jitter(diab$lzeit) ,labels=diab$tod)

lines(smooth.spline(diab$alter,diab$lzeit))

4.3 This problem parallels Exercise 4.1. We now consider fitting the log-logistic
regression model.

(a) Repeat part (a), (b), and (c).

For the remaining parts, use the fitted additive model with just sex,
diab, and alter in the model.

(b) Report the estimated odds-ratio OR for those who are men and nondi-

abetic.

(¢) Report the estimated odds of survival beyond time ¢.

(d) Report the estimated odds-ratio OR comparing diabetic men to nondi-

abetic men all of whom have the same age. Interpret this ratio.
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(e) Report the estimated times-ratio TR comparing diabetic men to nondi-
abetic men all of whom have the same age. Interpret this ratio.

(f) A 50-year-old nondiabetic man is operated on today. What is the esti-
mated probability that he is still alive in ten years?

(g) With the help of predict function, calculate the survival duration (in
days or years) after the operation within which half (50%) of the 50-
year-old diabetic men have died and then, similarly, for nondiabetic men.
Report both point and interval estimates.

Tips:

Use the preferred C.I. approach (Table 3.2 on Chapter 3); that is, type=
"uquantile". See the summary on page 105.

B. Theory and WHY!

4.4 Verify expression (4.10).

4.5 Prove expression (4.14).

4.6 Verify expression (4.15).

4.7 Derive expression (4.18).

4.8 Derive expression (4.22).

4.9 Answer the WHY! at the second item under Notes: on page 111.
4.10 Derive expression (4.23).
4.11 Verify expression (4.24).



CHAPTER 5

The Cox Proportional Hazards Model

In this chapter we discuss some features of a prognostic factor analysis based
on the Cox proportional hazards (PH) model. We present an analysis of
the CNS lymphoma data introduced in Example 2 in Chapter 1.1. The
primary endpoint of interest here is survival time (in years) from first blood
brain barrier disruption (BBBD) to death (BSTODEATH). Some questions
of interest are:

1.

Is there a difference in survival between the two groups (prior radiation, no
radiation prior to first BBBD)?

. Do any subsets of available covariates help explain this survival time? For

example, does age at time of first treatment and/or gender increase or
decrease the hazard of death; hence, decrease or increase the probability of
survival; and hence, decrease or increase mean or median survival time?

. Is there a dependence of the difference in survival between the groups on

any subset of the available covariates?

Objectives of this chapter:

After studying Chapter 5, the student should:

1.

Know and understand the definition of a Cox PH model including the
assumptions.

. Know how to use the S function coxph to fit data to a Cox PH model.

. Know how to use the S function stepAIC along with coxph to identify an

appropriate model.

Know how to use the stratified Cox PH model.

. Know how to interpret the estimated 3 coefficients with respect to hazard

and other features of the distribution.

. Understand how to interpret the estimated hazards ratio HR. That is, un-

derstand its usefulness as a measure of effect that describes the relationship
between the predictor variable(s) and time to failure. Further, the HR can
be used to examine the relative likelihood of survival.

121
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We first plot the two Kaplan-Meier (K-M) survivor curves using S. This plot
displays a difference in survival between the two groups. The higher K-M curve
for the no prior radiation group suggests that this group has a higher chance
of long term survival. The following S output confirms this. The S function
survdiff yields a log-rank test statistic value of 9.5 which confirms this
difference with an approximate p-value of .002. Further note the estimated
mean and median given in the output from the S function survfit. Much of
the output has been deleted where not needed for discussion. The CNS data
is stored in a data frame named cns2.

> cns2.fit0 <- survfit (Surv(B3TODEATH,STATUS) “GROUP,data=cns2,
type="kaplan-meier")
> plot(cns2.fit0,1lwd=3,col=1,type="1",1ty=c(1,3),cex=2,
lab=c(10,10,7) ,xlab="Survival Time in Years from
First BBBD",ylab="Percent Surviving",yscale=100)
> text(6,1,"Primary CNS Lymphoma Patients",lwd=3)
> legend(3,0.8,type="1",1ty=c(1,3,0),c("no radiation prior
to BBBD (n=39)","radiation prior to BBBD (n=19)",
"+ = patient is censored"),col=1)

100
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90

80

—— no radiation prior to BBBD (n=39)
--—-radiation prior to BBBD (n=19)
+ = patient is censored
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5
|
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0 1 2 3 4 5 6 7 8 9 10 11 12
Survival Time in Years from First BBBD

Figure 5.1 Kaplan-Meier survivor curves.

> survdiff (Surv(B3TODEATH,STATUS) “GROUP,data=cns2)
N Observed Expected (0-E)~2/E (0-E)~2/V
GROUP=0 39 19 26.91 2.32 9.52
GROUP=1 19 17 9.09 6.87 9.52
Chisq= 9.5 on 1 degrees of freedom, p= 0.00203
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> cns2.fit0

n events mean se(mean) median 0.95LCL 0.95UCL
GROUP=0 39 19 5.33 0.973 3.917 1.917 NA
GROUP=1 19 17 1.57 0.513 0.729 0.604 2.48

Since the two survival curves are significantly different, we assess the factors
that may play a role in survival and in this difference in survival duration.
Recall that the hazard (risk) function, h(t)At, is approximately the conditional
probability of failure in the (small) interval from ¢ to t+ At given survival until
time ¢. Here ¢ is the length of time a patient lives from the point of his/her
first BBBD. Assuming that the baseline hazard function is the same
for all patients in the study, a Cox PH model seems appropriate. That
is, we model the hazard rate as a function of the covariates x. Recall from
Chapter 4.3 that the hazard function has the form

hitla) = ho(t) - exp(@B) = ho®) -exp (Bral) + Baz® -+ Bual™)

= ho(t) - exp (ﬂlx(l)) X exp (ﬂgx(2)> <o+ X exp (ﬂmx(m)) ,

where ho(t) is an unspecified baseline hazard function free of the covariates
x. The covariates act multiplicatively on the hazard. At two different points
z; and z,, the proportion

htlz,) _ exp(a1f)
h(t|z,) exp(z503)

exp <ﬂ1$§1)> X exp <ﬂ2x52)> X e X exp (@rlxgm))
€Xp (ﬁlxél)) X exp (ﬁzxéz)) X o+ X exp (ﬁmxém))

is constant with respect to time ¢. As we are interested in estimating the
coefficients 3, the baseline hazard is really a nuisance parameter. Through
the partial likelihood (Cox, 1975) we obtain estimates of the coefficients
0 without regard to the baseline hazard ho(t). Note that in the parametric
regression setting of Chapter 4, we specify the form of this function since we
must specify a distribution for the target variable T. Chapter 8 presents a
method for analyzing T, or Y = log(T), directly without assuming a specific
distributional form. Remember that the hazard function completely specifies
the distribution of T'; but the power of the PH model is that it provides a
fairly wide family of distributions by allowing the baseline hazard ho(t) to be
arbitrary. The S function coxph implements Cox’s partial likelihood function.
In Chapter 6.3 we offer a heuristic derivation of Cox’s partial likelihood.
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5.1 AIC procedure for variable selection

Akaike’s information criterion (AIC) for the Cox PH model:

We revisit AIC in the context of the Cox PH regression model. Comparisons
between a number of possible models can be made on the basis of the statistic

AIC = —2 X log(maximum likelihood) + 2 x b, (5.1)

where b is the number of 3 coefficients in each model under consideration.
The maximum likelihood is replaced by the maximum partial likelihood. The
smaller the AIC value the better the model is.

We apply an automated model selection procedure via an S function stepAIC
included in MASS, a collection of functions and data sets from Modern Applied
Statistics with S by Venables and Ripley (2002). Otherwise, it would be too
tedious because of many steps involved.

The stepAIC function requires an object representing a model of an appro-
priate class. This is used as the initial model in the stepwise search. Useful
optional arguments include scope and direction. The scope defines the range
of models examined in the stepwise search. The direction can be one of “both,”
“backward,” or “forward,” with a default of “both.” If the scope argument
is missing, the default for direction is “backward.” We illustrate how to use
stepAIC together with LRT to select a best model. We consider an example
fitting CNS data to Cox PH model.

Example:

For ease of reading, we reprint variable code.

1. PT.NUMBER: patient number

2. GROUP: 0=no prior radiation with respect to 1st blood brain barrier disruption
(BBBD) procedure to deliver chemotherapy ; 1=prior radiation

. SEX: 0=male ; 1=female

. AGE: at time of 1st BBBD, recorded in years

. STATUS: 0=alive ; 1=dead

. DXTOBS3: time from diagnosis to 1st BBBD in years

. DXTODeath: time from diagnosis to death in years

. B3TODeath: time from 1st BBBD to death in years

. KPS.PRE.: Karnofsky performance score before 1st BBBD, numerical value 0 —
100

10. LESSING: Lesions: single=0 ; multiple=1

11. LESDEEP: Lesions: superficial=0 ; deep=1

12. LESSUP: Lesions: supra=0 ; infra=1 ; both=2

13. PROC: Procedure: subtotal resection=1 ; biopsy=2 ; other=3

14. RAD4000: Radiation > 4000: no=0 ; yes=1

15. CHEMOPRIOR: no=0 ; yes=1

16. RESPONSE: Tumor response to chemotherapy - complete=1; partial=2; blanks
represent missing data

© 00 O Ot = W



AIC PROCEDURE FOR VARIABLE SELECTION 125

In Chapter 1.2 we established the relationship that the smaller the risk, the
larger the probability of survival, and hence the greater mean survival.

The estimates from fitting a Cox PH model are interpreted as fol-
lows:

e A positive coefficient increases the risk and thus decreases the expected (av-
erage) survival time.

e A negative coefficient decreases the risk and thus increases the expected
survival time.

e The ratio of the estimated risk functions for the two groups can be used to
examine the likelihood of Group 0’s (no prior radiation) survival time being
longer than Group 1’s (with prior radiation).

The two covariates LESSUP and PROC are categorical. Each has three levels.
The S function factor creates indicator variables. Also, the variable AGE6G0
is defined as AGE60 = 1 if AGE > 60 and = 0 otherwise. We implement the
S functions stepAIC and coxph to select appropriate variables according to
the AIC criterion based on the proportional hazards model.

Let us consider the two-way interaction model, which can be easily incor-
porated in the stepAIC. Three-way or four-way interaction models can be
considered but the interpretation of an interaction effect, if any, is not easy.
The initial model contains all 11 variables without interactions. The scope is
up to two-way interaction models. These are listed in the S code under Step
I that follows. The direction is “both.” The AIC for each step is reported
in Table 5.1. The first AIC value is based on the initial model of 11 vari-
ables without interactions. “4” means that term was added at that step and
“” means that term was removed at that step. The final model retains the
following variables: KPS.PRE., GROUP, SEX, AGE60, LESSING, CHEMO-
PRIOR, SEX:AGE60, AGE60:LESSING, and GROUP:AGEG60.

Step I: stepAIC to select the best model according to AIC statistic

\'4

library(MASS) # Call in a collection of library functions
# provided by Venables and Ripley
> attach(cns2)
> cns2.coxint<-coxph (Surv(B3TODEATH, STATUS) “KPS.PRE. +GROUP+SEX+
AGE60+LESSING+LESDEEP+factor (LESSUP)+factor (PROC) +CHEMOPRIOR)
# Initial model
> cns2.coxintl <- stepAIC(cns2.coxint,”."2)
# Up to two-way interaction
> cns2.coxintl$anova # Shows stepwise model path with the
# initial and final models
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Table 5.1:  Stepwise model path for
two-way interaction model on the CNS
lymphoma data

Step Df AIC
246.0864
+ SEX:AGEG60 1 239.3337
- factor(PROC) 2 236.7472
- LESDEEP 1 234.7764
~ factor(LESSUP) 2 233.1464
+ AGEG0:LESSING 1  232.8460
+ GROUP:AGE60 1 232.6511

Step II: LRT to further reduce

The following output shows p-values corresponding to variables selected by
stepAIC. AGEG60 has a large p-value, .560, while its interaction terms with
SEX and LESSING have small p-values, .0019 and .0590, respectively.

> cns2.coxintl # Check which variable has a
# moderately large p-value

coef exp(coef) se(coef) z P

KPS.PRE. -0.0471 0.9540 0.014 -3.362 0.00077
GROUP 2.0139 7.4924 0.707 2.850 0.00440

SEX -3.3088 0.0366 0.886 -3.735 0.00019

AGE60 -0.4037 0.6679 0.686 -0.588 0.56000

LESSING 1.6470 5.1916 0.670 2.456 0.01400
CHEMOPRIOR 1.0101 2.7460 0.539 1.876 0.06100
SEX:AGE60 2.8667 17.5789 0.921 3.113 0.00190
AGE60:LESSING -1.5860 0.2048 0.838 -1.891 0.05900
GROUP:AGE60 -1.2575 0.2844 0.838 -1.500 0.13000

In statistical modelling, an important principle is that an interaction term
should only be included in a model when the corresponding main effects are
also present. We now see if we can eliminate the variable AGE60 and its
interaction terms with other variables. We use the LRT. Here the LRT is
constructed on the partial likelihood function rather than the full likelihood
function. Nonetheless the large sample distribution theory holds. The LRT
test shows strong evidence against the reduced model and so we retain the
model selected by stepAIC.

> cns2.coxint2 <- coxph(Surv(B3TODEATH,STATUS) "KPS.PRE.+GROUP
+SEX+LESSING+CHEMOPRIOR) # Without AGE60 and its
# interaction terms
> -2*xcns2.coxint2$loglik[2] + 2*cns2.coxint1$loglik[2]
[1] 13.42442
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> 1 - pchisq(13.42442,4)
[1] 0.009377846 # Retain the model selected by stepAIC

Now we begin the process of one variable at a time reduction. This can be
based on either the p-value method or the LRT. Asymptotically they are
equivalent. Since the variable GROUP:AGEG0 has a moderately large p-value,
.130, we delete it. The following LRT test shows no evidence against the
reduced model (p-value = .138) and so we adopt the reduced model.

> cns2.coxint3 <- coxph(Surv(B3TODEATH,STATUS) “KPS.PRE.+GROUP
+SEX+AGE60+LESSING+CHEMOPRIOR+SEX : AGE60+AGE60 : LESSING)
# Without GROUP:AGE60
> -2xcns2.coxint3$loglik[2] + 2*cns2.coxintl$loglik[2]
[1] 2.194949
> 1 - pchisq(2.194949,1)
[1] 0.1384638 # Selects the reduced model

> cns2.coxint3 # Check which variable has a
# moderately large p-value

coef exp(coef) se(coef) z )

KPS.PRE. -0.0436 0.9573 0.0134 -3.25 0.0011
GROUP 1.1276 3.0884 0.4351 2.59 0.0096

SEX -2.7520 0.0638 0.7613 -3.61 0.0003

AGE60 -0.9209 0.3982 0.5991 -1.54 0.1200

LESSING 1.3609 3.8998 0.6333 2.15 0.0320
CHEMOPRIOR 0.8670 2.3797 0.5260 1.65 0.0990
SEX:AGE60 2.4562 11.6607 0.8788 2.79 0.0052
AGE60:LESSING -1.2310 0.2920 0.8059 -1.53 0.1300

From this point on we use the p-value method to eliminate one term at a
time. As AGE60:LESSING has a moderately large p-value, .130, we remove
it.

> cns2.coxint4 # Check which variable has a
# moderately large p-value

coef exp(coef) se(coef) z P

KPS.PRE. -0.0371 0.9636 0.0124 -3.00 0.00270
GROUP 1.1524 3.1658 0.4331 2.66 0.00780

SEX -2.5965 0.0745 0.7648 -3.40 0.00069

AGE60 -1.3799 0.25616  0.5129 -2.69 0.00710
LESSING 0.5709 1.7699  0.4037 1.41 0.16000
CHEMOPRIOR 0.8555 2.3526 0.5179 1.65 0.09900
SEX:AGE60 2.3480 10.4643 0.8765 2.68 0.00740

We eliminate the term LESSING as it has a moderately large p-value, .160.
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> cns2.coxintb # Check which variable has a
# moderately large p-value

coef exp(coef) se(coef) z P

KPS.PRE. -0.0402 0.9606 0.0121 -3.31 0.00093
GROUP 0.9695 2.6366 0.4091 2.37 0.01800

SEX -2.4742 0.0842 0.7676 -3.22 0.00130

AGE60 -1.1109 0.3293 0.4729 -2.35 0.01900
CHEMOPRIOR 0.7953 2.2152  0.5105 1.56 0.12000
SEX:AGE60 2.1844 8.8856 0.8713 2.51 0.01200

We eliminate the variable CHEMOPRIOR, as it has a moderately large p-
value, .120. Since all the p-values in the reduced model fit below are small

enough at the .05 level, we finally stop here and retain these five variables:
KPS.PRE., GROUP, SEX, AGEG60, and SEX:AGEG0.

> cns2.coxint6 # Check which variable has a
# moderately large p-value

coef exp(coef) se(coef) z )

KPS.PRE. -0.0307 0.970 0.0102 -2.99 0.0028
GROUP 1.1592 3.187 0.3794 3.06 0.0022
SEX -2.1113 0.121 0.7011 -3.01 0.0026

AGE60 -1.0538 0.349 0.4572 -2.30 0.0210
SEX:AGE60 2.1400 8.500 0.8540 2.51 0.0120

However, it is important to compare this model to the model chosen by
stepAIC in Step I as we have not compared them. The p-value based on
LRT is between .05 and .1 and so we select the reduced model with caution.

> -2%cns2.coxint6$loglik[2] + 2*cns2.coxint1$loglik[2]
[1] 8.843838

> 1 - pchisq(8.843838,4)

[1] 0.06512354 # Selects the reduced model

The following output is based on the model with KPS.PRE., GROUP, SEX,
AGEG0, and SEX:AGEG0. It shows that the three tests — LRT, Wald, and
efficient score test — indicate there is an overall significant relationship be-
tween this set of covariates and survival time. That is, they are explaining a
significant portion of the variation.

> summary (cns2.coxint6)

Likelihood ratio test= 27.6 on 5 df, p=0.0000431
Wald test =24.6 on 5 df, p=0.000164
Score (logrank) test = 28.5 on 5 df, p=0.0000296
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This model is substantially different from that reported in Dahlborg et al.
(1996). We go through model diagnostics in Chapter 6 to confirm that the
model does fit the data.

Remarks:

1. The model selection procedure may well depend on the purpose of the
study. In some studies there may be a few variables of special interest. In
this case, we can still use Step I and Step II. In Step I we select the best
set of variables according to the smallest AIC statistic. If this set includes
all the variables of special interest, then in Step II we have only to see if
we can further reduce the model. Otherwise, add to the selected model the
unselected variables of special interest and go through Step II.

2. It is important to include interaction terms in model selection procedures
unless researchers have compelling reasons why they do not need them. As
the following illustrates, we could end up with a quite different model when
only main effects models are considered.

We reexamine the CNS Lymphoma data. The AIC for each model without
interaction terms is reported in Table 5.2. The first AIC is based on the
initial model including all the variables. The final model is selected by ap-
plying backward elimination procedure with the range from the full model
with all the variables to the smallest reduced model with intercept only.
It retains these four variables: KPS.PRE., GROUP, SEX, and CHEMO-
PRIOR.

Step I: stepAIC to select the best model according to AIC statistic

> cns2.cox <- coxph(Surv(B3TODEATH,STATUS) "KPS.PRE.+GROUP+SEX
+AGE60+LESSING+LESDEEP+factor (LESSUP) +factor (PROC)
+CHEMOPRIOR) # Initial model with all variables
> cns2.coxl <- stepAIC(cns2.cox,”.) # Backward elimination
# procedure from full model to intercept only
> cns2.coxl$anova # Shows stepwise model paths with the
# initial and final models

Table 5.2: Stepwise model path for
the main effects model

Step Df AIC
246.0864
- factor(PROC) 2 242.2766
- LESDEEP 1 240.2805
- AGEG60 1 238.7327
- factor(LESSUP) 2 238.0755
- LESSING 1 236.5548
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Step II: LRT to further reduce

The following output shows p-values corresponding to variables selected by
stepAIC. The p-values corresponding to GROUP and CHEMOPRIOR are
very close. This implies that their effects adjusted for the other variables
are about the same.

> cns2.coxl # Check which variable has a large p-value

coef exp(coef) se(coef) z )

KPS.PRE. -0.0432 0.958 0.0117 -3.71 0.00021
GROUP 0.5564 1.744 0.3882 1.43 0.15000

SEX -1.0721 0.342 0.4551 -2.36 0.01800
CHEMOPRIOR 0.7259 2.067 0.4772 1.52 0.13000

We first eliminate GROUP. Since all the p-values in the reduced model
are small enough at .05 level, we finally stop here and retain these three
variables: KPS.PRE., SEX, and CHEMOPRIOR.

> cns2.cox2 # Check which variable has a
# moderately large p-value

coef exp(coef) se(coef) z )
KPS.PRE. -0.0491 0.952 0.011 -4.46 8.2e-006
SEX -1.2002 0.301 0.446 -2.69 7.1e-003
CHEMOPRIOR 1.0092 2.743 0.440 2.30 2.2e-002

Now let us see what happens if we eliminate CHEMOPRIOR first instead
of GROUP. Since all the p-values in the reduced model are either smaller

or about the same as .05 level, we stop here and retain these three variables:
KPS.PRE., GROUP, and SEX.

> cns2.cox3 # Check which variable has large p-value

coef exp(coef) se(coef) z P

KPS.PRE. -0.0347 0.966 0.010 -3.45 0.00056
GROUP 0.7785 2.178 0.354 2.20 0.02800
SEX -0.7968 0.451 0.410 -1.94 0.05200

> detach()

In summary, depending on the order of elimination, we retain either SEX,
KPS.PRE., and CHEMOPRIOR, or KPS.PRE., GROUP, and SEX. These
two models are rather different in that one includes CHEMOPRIOR where
the other includes GROUP instead. More importantly, note that none of
these sets include the variable AGE60, which is a very important prognostic
factor in this study evidenced by its significant interaction effect with SEX
on the response (cns2.coxint6). In addition, the significance of the GROUP
effect based on the interaction model is more pronounced (p-value 0.0022
versus 0.028), which was the primary interest of the study. Therefore, we
choose the interaction model cns2.coxint6 on page 128 to discuss.
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Discussion

e KPS.PRE., GROUP, SEX, AGEG60, and SEX:AGEG60 appear to have a sig-
nificant effect on survival duration. Here it is confirmed again that there is a
significant difference between the two groups’ (0=no prior radiation,1=prior
radiation) survival curves.

e The estimated coefficient for KPS.PRE. is —.0307 with p-value 0.0028.
Hence, fixing other covariates, patients with high KPS.PRE. scores have
a decreased hazard, and, hence, have longer expected survival time than
those with low KPS.PRE. scores.

e The estimated coefficient for GROUP is 1.1592 with p-value 0.0022. Hence,
with other covariates fixed, patients with radiation prior to first BBBD have
an increased hazard, and, hence, have shorter expected survival time than
those in Group 0.

e Fixing other covariates, the hazard ratio between Group 1 and Group 0 is
exp(1.1592)
exp(0)

This means that, with other covariates fixed, patients with radiation prior
to first BBBD are 3.187 times more likely than those without to have shorter
survival.

= 3.187.

e Fixing other covariates, if a patient in Group 1 has 10 units larger KPS.PRE.
score than a patient in Group 0, the ratio of hazard functions is

exp(1.1592) exp(—0.0307 x (k +10))  exp(1.1592) exp(—0.0307 x 10)

exp(0) exp(—.0307 x k) exp(0)
= 3.187 x 0.7357 = 2.345,

where k is an arbitrary number. This means that fixing other covariates,
a patient in Group 1 with 10 units larger KPS.PRE. score than a patient
in Group 0 is 2.34 times more likely to have shorter survival. In summary,
fixing other covariates, whether a patient gets radiation therapy prior to
first BBBD is more important than how large his/her KPS.PRE. score is.

e There is significant interaction between AGE60 and SEX. The estimated
coefficient for SEX:AGEG0 is 2.1400 with p-value 0.0120. Fixing other co-
variates, a male patient who is older than 60 years old has 34.86% of the
risk a male younger than 60 years old has of succumbing to the disease,
where

exp(—2.113 x 0 — 1.0538 x 1 +2.14 x 0)
exp(—2.113 x 0 — 1.0538 x 0 + 2.14 x 0)

= exp(—1.0538) = .3486.

Whereas, fixing other covariates, a female patient who is older than 60
years old has 2.963 times the risk a female younger than 60 years old has
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of succumbing to the disease, where

exp(—2.113 x 1 —1.0538 x 1 +2.14 x 1)
exp(—2.113 x 1 — 1.0538 x 0 + 2.14 x 0)

In Figure 5.2, we plot the interaction between SEX and AGE60 based on the
means computed using the S function survfit for the response and AGE60,
fixing female and male separately. It shows a clear pattern of interaction,
which supports the prior numeric results using Cox model cns2.coxint6. In
Figure 5.3, we first fit the data to the model

= exp(1.0862) = 2.963.

> cox.fit <- coxph(Surv(B3TODEATH,STATUS)~ KPS.PRE.+GROUP+SEX
+strata(AGE60))

We then set GROUP=1, KPS.PRE.=80 for female and male separately
and obtain the summary of the quantiles using survfit as follows:

> cns.fitl.1 <- survfit(cox.fit,data.frame(GROUP=1,SEX=1,
KPS.PRE.=80)) # Female

> cns.fit0.1 <- survfit(cox.fit,data.frame(GROUP=1,SEX=0,
KPS.PRE.=80)) # Male

Figure 5.3 displays ordinal interaction between SEX and AGEG0 for the
three quartiles.

If one sets the covariate KPS.PRE. equal to different values, one can study
its relationship to the interaction as well as its effect on the various esti-
mated quantiles of the survival distribution. However, this is tedious. The
“censored regression quantiles” approach introduced by Portnoy (2002) en-
ables one to study each of the estimated quantiles as a function of the
targeted covariates. This nonparametric methodology is presented in Chap-
ter 8 of this book.

Yeax
do A3 28 3

Figure 5.2 Interaction between SEX and AGE60.
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Figure 5.3 Interaction between SEX and AGE60 adjusted for KPS.PRE., GROUP,
SEX wia coxph and then evaluated at GROUP = I and KPS.PRE. = 80.

5.2 Stratified Cox PH regression

We stratify on a categorical variable such as group, gender, and exposure still
fitting the other covariates. We do this to obtain nonparametric estimated sur-
vival curves for the different levels having adjusted for the other covariates.
We then plot the curves to view the estimate of the categorical effect, after
adjusting for the effects of the other covariates. If the curves cross or are non-
proportional, this implies the existence of the interaction effect unexplained
in the model. Then look for appropriate interaction term(s) to include in the
model, or stay with the stratified model. If the curves are proportional, this
indicates that the interaction effect is well explained by the model you have
identified and it supports the Cox PH model. Then use the Cox PH model
without the stratification. The disadvantage when we stratify, and the PH
assumption is satisfied, is that we cannot obtain an estimated coefficient of
the categorical variable effect.

We now apply this procedure to our final model for CNS data. In the following
S program we first stratify on the GROUP variable still fitting KPS.PRE.,
SEX, AGE60, and SEX:AGEG60 as covariates. Next, we repeat this procedure
for SEX. Again, the disadvantage here is that we cannot obtain an estimated
coefficient of the group and sex effects, respectively.

> attach(cns2)

> cns2.coxint7 <- coxph(Surv(B3TODEATH,STATUS) “strata(GROUP)
+KPS.PRE.+SEX+AGE60+SEX : AGE60)

> cns2.coxint7

coef exp(coef) se(coef) z P

KPS.PRE. -0.0326 0.968 0.0108 -3.03 0.0025
SEX -2.2028 0.110 0.7195 -3.06 0.0022
AGE60 -1.1278 0.324 0.4778 -2.36 0.0180

SEX:AGE60 2.2576 9.560 0.8785 2.57 0.0100
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Likelihood ratio test=20.3 on 4 df, p=0.000433 n= 58

> cns2.coxint8 <- coxph(Surv(B3TODEATH,STATUS) “strata(SEX)
+KPS.PRE.+GROUP+AGE60+SEX : AGE60)
> cns2.coxint8

coef exp(coef) se(coef) z )

KPS.PRE. -0.033 0.968 0.0104 -3.19 0.0014
GROUP 1.178 3.247 0.3829 3.08 0.0021
AGE60 -0.994 0.370  0.4552 -2.18 0.0290
SEX:AGE60 2.244 9.427 0.8791 2.55 0.0110

Likelihood ratio test=27 on 4 df, p=0.0000199 n= 58

# The following gives plots of survival curves resulting from
# stratified Cox PH models to detect any pattern.
# Figure 5.4: upper part.
> par (mfrow=c(2,2))
> survfit.int7 <- survfit(cns2.coxint7)
> plot(survfit.int7,col=1,1ty=3:4,1wd=2,cex=3,label=c(10,10,7),
xlab="Survival time in years from first BBBD",
ylab="Percent alive",yscale=100)
> legend(3.0,.92,c("group=0","group=1") ,1ty=3:4,1lwd=2)
survfit.int8 <- survfit(cns2.coxint8)
> plot(survfit.int8,col=1,1ty=3:4,1lwd=2,cex=3,label=c(10,10,7),
xlab="Survival time in years from first BBBD",
ylab="Percent alive",yscale=100)
> legend(3.8,.6,c("male","female"),1lty=3:4,1lwd=2)

Vv

For the Weibull regression model, recall (4.5) the log of the cumulative haz-
ard function is linear in log(¢). In general, when we look at the Cox PH
model as well as the Weibull model, the plot of H(t) against ¢ on a log-log
scale can be very informative. In the plot function, the optional function
“fun="cloglog"” takes the survfit object and plots H(t) against ¢ on a
log-log scale.

The following S code plots cumulative hazard functions against ¢, on a log-log
scale, resulting from stratified Cox PH models to detect a nonproportional
hazards trend for the SEX and GROUP variables.

# Figure 5.4: lower part.
> plot(survfit.int7,fun="cloglog",col=1,1ty=3:4,label=c(10,10,7),
lwd=2,xlab="time in years from first BBBD",
ylab="log-log cumulative hazard")
> legend(0.05,.8,c("group=0","group=1") ,1lwd=2,1ty=3:4)
> plot(survfit.int8,fun="cloglog",col=1,1ty=3:4,label=c(10,10,7),
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Figure 5.4 Stratified survivor and log-log cumulative hazards plots to check for PH
assumption.

lwd=2,xlab="time in years from first BBBD",
ylab="log-log cumulative hazard")
> legend(0.05,.8,c("male","female"),lwd=2,1ty=3:4)
> detach()
Discussion

e Figure 5.4 shows clear differences between the two groups and between the
males and females, respectively. Further, for both GROUP and SEX, the
two curves are proportional. This supports the Cox PH model.

e Stratification doesn’t change the p-values of the variables in the model
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cns2.coxint6. The estimated coefficients are very close as well. That is, the
model cns2.coxint6 explains all the interaction among the covariates.

Remarks: The Cox PH model formula says that the hazard at time ¢ is the
product of two quantities ho(t), an unspecified baseline hazard function, and
exp(Z:;.nZ1 ﬂjx(j)). The key features of the PH assumption are that

1. ho(t) is a function of ¢, but does not involve the covariates (/).

2. exp(zg-n:l B;29)) involves the covariates #(), but does not involve ¢.

These two key features imply the HR must then be constant with respect to
time t. We now provide an example of a situation where the PH assumption
is violated.

Example: Extracted from Kleinbaum (1996, pages 109 — 111).

A study in which cancer patients are randomized to either surgery or radiation
therapy without surgery is considered. We have a (0,1) exposure variable E
denoting surgery status, with 0 if a patient receives surgery and 1 if not (i.e.,
receives radiation). Suppose further that this exposure variable is the only
variable of interest.

Is the Cox PH model appropriate? To answer this note that when a
patient undergoes serious surgery, as when removing a cancerous tumor, there
is usually a high risk for complications from surgery or perhaps even death
early in the recovery process, and once the patient gets past this early critical
period, the benefits of surgery, if any, can be observed.

Thus, in a study that compares surgery to no surgery, we might expect to
see hazard functions for each group that appear in Figure 5.5. Notice that
these two functions cross at about three days, and that prior to three days
the hazard for the surgery group is higher than the hazard for the no surgery
group. Whereas, after three days, we have the reverse. For example, looking
at the graph more closely, we can see that at two days, when ¢ = 2, the HR of
no surgery (E = 1) to surgery (F = 0) patients yields a value less than one. In
contrast, at t = 5 days, the HR is greater than one. Thus, if the description of
the hazard function for each group is accurate, the hazard ratio is not constant
over time as HR is some number less than one before three days and greater
than one after three days. Hence, the PH assumption is violated as the HR
does vary with time. The general rule is that if the hazard functions
cross over time, the PH assumption is violated. If the Cox PH model
is inappropriate, there are several options available for the analysis:

e analyze by stratifying on the exposure variable; that is, do not fit any re-
gression model, and, instead obtain the Kaplan-Meier curve for each group
separately;
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| h(t|E)
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hazards cross
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b E=0 (surgery)
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0.2

E=1 (no surgery)

0.0

Figure 5.5 Hazards crossing over time.

e start the analysis at three days, and use a Cox PH model on three-day
survivors;

e fit a Cox PH model for less than three days and a different Cox PH model
for greater than three days to get two different hazard ratio estimates, one
for each of these two time periods;

o fit a Cox PH model that includes a time-dependent variable which measures
the interaction of exposure with time. This model is called an extended
Cox model and is presented in Chapter 7.1.

e use the censored regression quantile approach presented in Chapter 8
allowing crossover effects. This approach is nonparametric and is free of the
PH assumption for its validity.

The curious reader might jump ahead to Chapter 7.1 or Chapter 8. In Chap-
ter 7.1 we present an example that explores an epidemiologic study on the
treatment of heroin addicts. To model and compare the retention times of
two clinics which differ strongly in their overall treatment policies were the
primary goals of the study. The PH assumption is violated for the primary
exposure variable of interest, clinic. There an extended Cox model is imple-
mented to accommodate this kind of time dependency. In Chapter 8 the Cox
model is compared with the regression quantile approach allowing crossover
effects.

5.3 Exercises

A. Applications

5.1 We work with the diabetes data again. Refer to Exercise 2.3. Instead of a
stratified analysis, we will now fit a Cox proportional hazards model:

ht;a™, 2@, 2®)) = ho(t) - eh 001027 e
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(a)

THE COX PROPORTIONAL HAZARDS MODEL

.%‘(1) _ { 0 man
1 woman
2@ _ 0 nondiabetic
o diabetic

z®) = age in years

Describe the results of the analysis with all three covariates =), z(2),
and ). Which covariates are significant?

Tips:

> diab.cox <- coxph(Surv(lzeit,tod) ~ sex+diab+alter,
diabetes)
> summary(diab.cox)

Stay with estimated full model in part (a) regardless of whether or not
the coefficients of the covariates are statistically significantly different
from zero.

i. Use the hazard ratio to estimate the gender effect when the other
covariates are held constant. Put woman in the numerator. Interpret!

ii. Use the hazard ratio to estimate the effect of (2) and age together for
the same gender. Take () =1 and 23 = age + 1 in the numerator
and £(? = 0 and z(®) = age in the denominator. Interpret!

Simplify (reduce) the model in part (a) as far as possible. Comment!

We now add two additional covariates, which model in the possible de-
pendence of diabetic or not with age. That is, we replace z® with the
following interaction variables:

L@ — ) 8% if diabetic
10 otherwise

L) _ ] age, if nondiabetic
10 otherwise

Now do the analysis as in part (a).

Tips:

> diabetes$x4 <- diabetes$xb <- diabetes$alter
> diabetes$x4[diabetes$diab==0] <- 0O
> diabetes$x5[diabetes$diab==1] <- 0
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(e) Simplify the model in part (d) as much as possible. Draw conclusions (as
much as possible as you are not diabetes specialists, etc.) and compare
these results with those from your results in the stratified analysis you
performed in Exercise 2.4(c).

(f) Use stepAIC to select the best subset of variables from the four variables
in part (d). Consider only main effects models. Do “backward” elimina-
tion starting with all four variables in the model. Refer to Remark 2 on
page 129.

(g) Fit your selected model from stepAIC to a Cox regression model strati-
fied on the diab variable. See page 133.

(h) For the stratified fit in part (g), produce a plot of the survival curves and
produce a plot of the log-log cumulative hazards. See pages 134 and 135.

5.2 Replicate Figure 5.3 for GROUP=0 and KPS.PRE.=80. Compare your
panel plot to Figure 5.3 and comment.

Tip:
If you name your survfit object cns.fit1.0 and cns.fit0.0, then type

> summary(cns.fit1.0)
> summary(cns.fit0.0)

5.4 Review of first five chapters: self-evaluation

Evaluate your understanding of the basic concepts and methods covered in
Chapter 1 through Chapter 5.

1. The data given below are survival times T; (in months) after an operation:
8 11, 7, 7,47, 5 7", 5 67,3
Suppose that the T; are iid ~ exponential with p.d.f. f(z) = %exp(—x/&).

(a) Estimate the mean survival time. That is, compute the MLE of 6.

(b) Counstruct a 95% confidence interval for the true mean survival time 6.

(¢) Report the estimated probability that a patient survives at least half a
year.

2. Consider the data above in Problem 1.

(a) Calculate by hand the Kaplan-Meier estimate of survival S(t) (without
the standard errors).

~

(b) Calculate the standard errors s.e.(S(¢)) at the times t = 3, 47, and 5.
(c) Sketch the Kaplan-Meier curve and mark the censored data.

(d) According to the Kaplan-Meier estimate, how large is the probability
that a patient survives at least half a year?
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3. In this problem we use data from an ovarian cancer study. The data set is
found in the S data.frame ovarian. Use S code > attach(ovarian) to ac-
cess this data set. It is also found in R. Use R code > library(survival)
followed by > data(ovarian). But this is not necessary to answer the prob-
lems.

futime survival time in days after diagnosis of the cancer
fustat 0 = censored, 1 = dead
age age in years
residual.dz a measure of the health condition after chemotherapy
rx indicator variable for type of chemo treatment:

1 = treatment A, 2 = treatment B
ecog.ps a measure of functioning of the ovaries

Source: Edmunson, J. H., Fleming, T. R., Decker, D. G., Malkasian, G. D.,
Jefferies, J. A., Webb, M. J., and Kvols, L. K. (1979). Different chemother-
apeutic sensitivities and host factors affecting prognosis in advanced ovar-
ian carcinoma vs. minimal residual disease. Cancer Treatment Reports 63,
241—-47.

Do the two treatments have different effects on survival?
Justify your answer with the help of the following S output.

Call: survdiff (formula=Surv(futime,fustat) rx,data=ovarian)
N Observed Expected (0-E)~2/E (0-E)~2/V

rx=1 13 7 5.23 0.596 1.06

rx=2 13 5 6.77 0.461 1.06

Chisq= 1.1 on 1 degrees of freedom, p= 0.303

4. Consider the Cox proportional hazards model for the ovarian cancer data
in Problem 3.

Call: coxph(formula=Surv(futime,fustat)  agetresidual.dz+
rxt+ecog.ps,data=ovarian)

n= 26
coef exp(coef) se(coef) z P
age 0.125 1.133 0.0469 2.662 0.0078
residual.dz 0.826 2.285 0.7896 1.046 0.3000
rx -0.914 0.401 0.6533 -1.400 0.1600
ecog.ps 0.336 1.400 0.6439 0.522 0.6000

Rsquare= 0.481 (max possible= 0.932 )
Likelihood ratio test= 17 on 4 df, p=0.0019
Wald test = 14.2 on 4 df, p=0.00654

Efficient score test = 20.8 on 4 df, p=0.000345
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As always, justify your answers.

(a) Which variables are significant?

(b) The LRT value from just fitting age is 14.3 with 1 degree of freedom.
Perform a LRT type test to test if the full model with the four covariates
significantly improves the fit over the model with just age. No need to
access the data and use S. The information given here is enough to
calculate the value of the appropriate LRT statistic. Then compute the
p-value using S or EXCEL, etc.

(¢) Continue to work with the full model. How does age effect survival
time? Does survival increase or decrease with age? Justify by the hazard
function and the HR as a measure of effect.

(d) Suppose rx is significant.

Which treatment gives the larger survival probability? Again, be sure to
use the HR to quantify the effects.

5. We continue to work with the ovarian cancer data. Instead of fitting a Cox
PH model, we fit the data to a Weibull regression model:

survReg(Surv(futime,fustat) ~ age+residual.dz+rxtecog.ps,
data=ovarian, dist="weib")

# Model after backward elimination (stepwise back,
# one-variable at a time reduction):

Call: survReg(formula=Surv(futime,fustat) ~ age,
data=ovarian,distribution="weibull")

Coefficients:
Est. Std.Err. 95% LCL 95% UCL z-value p-value
(Intercept) 12.4  1.482 9.492 15.302 8.36 6.05e-017
age -0.1 0.024 -0.143 -0.05 -4.06 4.88e-005

Extreme value distribution: Dispersion (scale) = 0.6114563
Observations: 26 Total; 14 Censored -2*Log-Likelihood: 180

(a) Specify the estimated hazard function.

(b) How does age effect survival time? Does survival increase or decrease
with age?

(c) How many years after diagnosis will 50% of the patients with age 40
years die?






CHAPTER 6

Model Checking: Data Diagnostics

Objectives of this chapter:
After studying Chapter 6, the student should:

1. Know and understand the definition of model deviance:

(a) likelihood of fitted model
(b) likelihood of saturated model

(c) deviance residual.

2. Be familiar with the term hierarchical models.

3. Know the definition of partial deviance, its relationship to the likelihood
ratio test statistic, and how we use it to reduce models and test for overall
model adequacy.

4. Know how to interpret the measure dfbeta.

5. Know that the S function survReg along with companion function resid
provides the deviance residuals, dfbeta, and dfbetas.

6. Be familiar with Cox’s partial likelihood function.

7. Be familiar with and how to use the following residuals to assess the various
proportional hazards model assumptions:

(a

) Coz-Snell residuals
(b) Martingale residuals
(¢) Deviance residuals
(d) Schoenfeld residuals

) Scaled Schoenfeld residuals

)

dfbetas.

e

(

(f

8. Be familiar with the S functions coxph and cox.zph and which residuals
these functions provide.

9. Know the definition of profile likelihood function and be able to conduct
a cut point analysis with bootstrap validation.

143
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6.1 Basic graphical methods

When searching for a parametric model that fits the data well, we use graphical
displays to check the model’s appropriateness; that is, the goodness of fit.
Miller (1981, page 164) points out that “the human eye can distinguish well
between a straight line and a curve.” We quote Miller’s basic principle as it
should guide the method of plotting.

Basic principle:

Select the scales of the coordinate axes so that if the model holds, a plot of the
data resembles a straight line, and if the model fails, a plot resembles a curve.

The construction of the Q-Q plot (page 63) for those log-transformed distri-
butions, which are members of the location and scale family of distributions,
follows this basic principle. The linear relationships summarized in Table 3.1,
page 64, guided this construction. Some authors, including Miller, prefer to
plot the uncensored points (y;,2;), ¢ = 1,---,r < n. This plot is commonly
called a probability plot. We prefer the convention of placing the log data
y; on the vertical axis and the standard quantiles z; on the horizontal axis;
hence, the Q-Q plot.

The S function survReg only fits models for log-time distributions belonging
to the location and scale family. For this reason we have ignored the gamma
model until now. A Q-Q plot is still an effective graphical device for non-
members of the location and scale family. For these cases, we plot the ordered
uncensored times ¢; against the corresponding quantiles ¢; from the distribu-
tion of interest. If the model is appropriate, the points should lie very close
to the 45°-line through the origin (0,0). We compute and plot the quantiles
based on the K-M estimates against the quantiles based on the parametric as-
sumptions. That is, for each uncensored t;, compute p; = 1—S5(t;), where S(¢;)
denotes the K-M estimate of survival probability at time ¢;. Then, with this
set of probabilities, compute the corresponding quantiles ¢; from the assumed
distribution with MLE’s used for the parameter values. Finally, plot the pairs
(gi, t;). Note that p; = 1—5(t;) = 1—Smode1(g:)- To compute the MLE’s for the
unknown parameters in S, the two functions available are nlmin and nlminb.
As these functions find a local minimum, we use these functions to minimize
(—1)xthe log-likelihood function. For our example, we draw the Q-Q plot for
the AML data fit to a gamma model. In this problem, we must use nlminb
since the gamma has bound-constrained parameters; that is, kK > 0 and A > 0,
corresponding to shape and scale, respectively. The function qq.gamma gives
the Q-Q plot for data fit to a gamma. See Figure 6.1.

> attach(aml)

# Q-Q plot for maintained group
> weeks.1 <- weeks[group==1]

> status.l <- status[group==1]
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> weeksl <- list(weeks.1)
> statusl <- list(status.1)
> qq.gamma(Surv(weeks.1,status.1) ,weeksl,statusl)
# The 2nd and 3rd arguments must be list objects.
shape rate

1.268666 0.0223737 #MLE’s

# Q-Q plot for nonmaintained group
> weeks.0 <- weeks[group == 0]
> status.0 <- status[group == 0]
> weeks0 <- list(weeks.O0)
> statusO <- list(status.0)
> qq.gamma (Surv(weeks.0,status.0) ,weeks0, status0)

shape rate
1.987217 0.08799075 # MLE’S
> detach()
45° ° o
e)
g o ° b o or
8 8 o — 45°line
3 maintained 3 °
S S nonmaintained
[s] o
o
o
gamma quantiles gamma quantiles
based on MLE’s based on MLE’s

Figure 6.1 Q-Q plot for AML data fit to gamma model. MLE’s used for parameter
values. Points are fit to least squares line.

It’s important to draw the 45°-line. For without the comparison, the least
squares line fitted only to uncensored times would have led us to believe the
gamma model fit the maintained group well. But this is quite the contrary.
The fit is very poor in the upper tail. The estimated gamma quantiles ¢; are
markedly larger than their corresponding sample quantiles ¢;. One reason for
this over-fit is the MLE’s are greatly influenced by the presence of the one
extreme value 161+. It is clear from the previous Weibull, log-logistic, and
log-normal Q-Q plots (Figure 3.12, page 87), the log-logistic is a much better
choice to model the AML maintained group. Notice the gamma Q-Q plot
for this group has a similar pattern to the Weibull Q-Q plot. In contrast, the
gamma seems to fit the nonmaintained group quite well. There are no extreme
values in this group.

For the two sample problem, let x = 1 and x = 0 represent the two groups.
To check the validity of the Cox PH model, recall from Chapter 4.3 that
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h(t|1) = exp(B)h(t]0), where exp(8) is constant with respect to time. This
implies S(t[1) = (S(¢|0))*P®) or log S(t|1) = exp(B)log S(t|0). Hence, the
plots of the ratios are horizonal lines. These graphs are displayed in Figure 6.2.
The plots of the empirical quantities constructed with the K-M estimate for

S(H1)

g § log S(t1)
- £ log S(t|0)
log S(t0) linear t

Figure 6.2 Graph of cumulative hazards ratio.

each group should reflect the foregoing relationships if the PH assumption is
satisfied.

Equivalently, we can plot the empirical hazards for each group on the same
plot. The curves should be approximately parallel over time to validate the
PH assumption. See Figure 2.5, page 46. It is clear the AML data violate the
PH assumption.

To check for a shift by translation, calculate the K-M estimate of survival for
each group separately and plot. The curves should be vertically parallel. For
example, as the log-gamma is a location family, this plot is useful. An example
is displayed in Figure 6.3.

S{log(t)}

log t

Figure 6.3 A graph to check for a shift by translation.
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6.2 Weibull regression model

In this section we continue to work with the Motorette data first presented
and analyzed in Chapter 4.6, page 107. There AIC selects the Weibull model
as the best model and the Q-Q plot supports this. We now consider model di-
agnostics. We delay the S code until all relevant new definitions are presented.

Recall from expressions (4.1) and (4.4) the Weibull regression model has haz-
ard and survivor functions

h(tlz) = ho(t) - exp(a’B) = a- (\)* 1%, where X=X (exp(2/B)) ",

Q=

and
S(tlz) = exp (—(3¢)°) .
The log of the cumulative hazard (4.5) is
log (H (t|z)) = log ( —log (S(t|z))) = alog(A) 4+ z'B + alog(t).
Expression (4.3) tells us
Y =log(t)=2'f"+ 65 +0-Z,

where Z ~ standard extreme value distribution.

Graphical checks of overall model adequacy

We see that log(t) is not only linear in z, but also in each (), j = 1,... m.
For exploring whether or not the Weibull distribution is a suitable model for

the data at the (ordered) uncensored times ¢;, we draw a Q-Q plot (page 63) of

the points (z;, y;), and we draw m plots of the points (335]), yi),i=1,---;r<n

and j = 1,---,m. To support the Weibull regression model, all plots should
display straight lines. See Figures 6.4 and 6.5. If not, perhaps transforming
those particular z()’s and/or t; could improve the fit. If not, try another
model.

The Q-Q plot is also very useful for detecting overall adequacy of the final
reduced regression model; that is, goodness-of-fit. As the single covariate x
in the Motorette data has three distinct levels, we draw two Q-Q plots. In
Figure 6.8, each group is fit to its own Weibull. The lines have different slopes
and intercepts. In Figure 6.9, we fit a regression model with covariate x.
The lines have same slope, but different intercepts. These plots can reveal
additional information masked in Figures 6.4 and 6.5.

The survReg procedure in S gives the MLE’s
B, B, 5, and i=p;+2'5 . (6.1)
For the Weibull parameters we have

o~ ~

)\:exp(—ﬁa‘), Ez—&gj a=1/, and X = exp(—/). (6.2)
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Note that survReg provides the fitted times ﬁ So,
Y; =log(T)) = [i; - (6.3)

Also recall (page 58) the p.d.f. of Y; = log(T;) and the corresponding survivor
function evaluated at these estimates are

=~ 1 Yi — ﬁ Yi — /:L
flyilp;,0) = =exp <T’ — exp (TZ) (6.4)

g g

Syl o) = exp (—exp (%)) . (6.5)
Deviance, deviance residual, and graphical checks for outliers

We now consider a measure useful in detecting outliers. Define the model
deviance as

D = -2 x (log-likelihood of the fitted model — log-likelihood of
the saturated model)

—2 (Z (10(L2) —log(fsi))> : (6:6)

=1

where El denotes the ith individual’s likelihood evaluated at the MLE’s, and
Lg; denotes the ith factor in the saturated likelihood evaluated at the MLE
of 6;. A saturated model is one with n parameters that fit the n observations
perfectly. Let 61,...,60, denote the n parameters. This also entails that we
obtain these MLE’s with no constraints. According to Klein & Moeschberger
(1997, page 359), in computing the deviance the nuisance parameters are held
fixed between the fitted and the saturated model. In the Weibull regression
model, the only nuisance parameter is the ¢ and is held fixed at the MLE
value obtained in the fitted model. The measure D can be used as a goodness
of fit criterion. The larger the model deviance, the poorer the fit and vice
versa. For an approximate size-a test, compare the calculated D value to the
X2 critical value with n —m — 1 degrees of freedom.

Under the random (right) censoring model and under the assumption that
censoring time has no connection with the survival time, recall the likelihood
function of the sample (1.13) is

L= L(B3:8%0) = L(p;0) = [ [ Lifiss o),
where

m ~ b ~ 1-4;
Li(fiso) = (f(uilii, o))" (S(yilfis, o)) and
5 = 1 if y; is uncensored

v 0 if y; is censored.
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In preparation to define the deviance residual, we first define two types of
residuals which are the parametric analogues to those defined and discussed
in some detail in Section 6.3.

Cox-Snell residual
The ith Cox-Snell residual is defined as
re: = Ho(t;) x exp(g;@, (6.7)

where H, (t;) and 3 are the MLE’s of the baseline cumulative hazard function
and coefficient vector, respectively. As these residuals are always nonnegative,
their plot is difficult to interpret. These are not residuals in the sense of linear
models because they are not the difference between the observed and fitted
values. Their interpretation is discussed in Section 6.3.

Martingale residual

The ith martingale residual is defined as

Mi = (51 —Tci- (68)
The M, take values in (—00,1] and are always negative for censored obser-
vations. In large samples, the martingale residuals are uncorrelated and have
expected value equal to zero. But they are not symmetrically distributed about
zero.

Deviance residual

The ith deviance residual, denoted by D;, is the square root of the ith term
of the deviance, augmented by the sign of the M;:

D; = sign(M;) x \/—2 X (10g (Li(fi;,3)) — 10g(fsi))- (6.9)

These residuals are expected to be symmetrically distributed about zero.
Hence, their plot is easier to interpret. But we caution these do not neces-
sarily sum to zero. The model deviance then is

n
D= Z D;% = the sum of the squared deviance residuals.
i=1
When there is light to moderate censoring, the D; should look like an iid
normal sample. Therefore, the deviance residuals are useful in detecting out-
liers. To obtain the D;, use > resid(fit,type="deviance") where fit is

a survReg object. A plot of the D; against the fitted log-times is given in
Figure 6.6.

There are three plots constructed with D; that are very useful in helping
to detect outliers. One is the normal probability plot. Here we plot the kth
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ordered D; against its normal score Z((k—.375)/(n+.25)) where Z(A) denotes
the Ath quantile of the standard normal distribution. Outliers will be points
that fall substantially away from a straight line. The second graph plots the
D; against the estimated risk scores Z:"zl * (] ). This plot should look like a
scatter of random noise about zero. Outliers w111 have large absolute deviations
and will sit apart from the point cloud. The third graph plots D; against its
observation (index) number. Again, we look for points that are set apart with
large absolute value. See Figure 6.10.

For the interested reader, we give the expressions for the 1th deviance resid-
ual (6.9) under the extreme value model. The ith factor in the saturated
likelihood is

~ . o1\ %
Lsi(yi;ai,a)(A) . (6.10)

WHY! Then for an uncensored observation (d; = 1), the ith deviance residual
is

D, = sign(]\/ii) X \/—2 X (1og (Ei(ﬁi,a)) — log(zsi))

— sign(M)) x 2><(—(yi:'ui>—|—exp<yi:'ui)—1>. (6.11)
ag g

For a censored observation (6; = 0), as the Z\Z are always negative in this
case,

Di=— |wix2x (exp (yz a“’)) : (6.12)

where the weight w; equals the number of observations of same censored time
value and same values for the covariates. Data are often recorded in spread-
sheets with a column of such weights. The weight is equal to 1 for uncensored
points.

For the Weibull case, the sign of J\Z in the D; is motivated as follows:

1. Tt follows from expressions (6.1) and (6.2)
i~ = vi = I = log(At:)® + 2. (6.13)
Therefore, it follows from expressions (6.13) and (4.6)

exp (M5 Ml) = (M) x exp(a}f) = 7o (6.14)

WHY!

2. When §; = 0,
D? = -2 x (—r¢;) > 0. (6.15)
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When 6; =1,
Di2 =-2X (1 —ro; + IOg(TCi)) > 0. (6'16)
WHY!

Collett (1994, page 154) views the deviance residuals as martingale residuals
that have been transformed to produce values that are symmetric about zero
when the fitted model is appropriate. Hence, we match the sign of deviance
residuals with the sign of corresponding martingale residuals. In light of ex-
pressions (6.15) and (6.16), we can express the deviance residual for Weibull
regression as

D; = sign(]\/ji) X \/—2 X {]\Z + 4; log(d; — Z\Z)} (6.17)

This now matches the definition of deviance residual to be presented in Sec-
tion 6.3.3.

We note that the definition stated in Klein & Moeschberger (page 396) al-
ways assigns a “negative” sign to the deviance residuals corresponding to
censored times. S does just the opposite. A “plus” is always assigned. Klein
& Moeschberger are correct. The following should explain what S does:
When §; = 1, it is easy to show that

sign(]\/I\i) =sign(l — r¢;) = — sign(log(re4)) = — sign(y; — ﬁl) (6.18)
WHY! Hence, for graphical purposes, if no censoring were present, it would

be equivalent to using the sign(y; — fll) as we only look for random scatter
about zero.

—~

When ¢§; = 0, the sign(M;) equals the sign(—r¢;), which is always negative.
To be consistent with the definition of deviance residual in the nonlinear
regression model with no censoring, S uses the sign(y; — f1;). Thus, they assign
a “plus” to D; corresponding to censored observations and the opposite sign
to D; corresponding to uncensored observations.

Partial deviance

We now consider hierarchical (nested) models. Let R denote the reduced model
and F denote the full model which consists of additional covariates added to
the reduced model. Partial deviance is a measure useful for model building.
We define partial deviance as

PD = Deviance (additional covariates | covariates in the reduced model)

D(R) — D(F) = —2log (E(R)) +2log (E(F)) (6.19)

C gleg [ EB)
= 21g<E(F)>.

We see that the partial deviance is equivalent to the LRT statistic. Hence, the
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LRT checks to see if there is significant partial deviance. We reject when PD
is “large.” If the partial deviance is large, this indicates that the additional co-
variates improve the fit. If the partial deviance is small, it indicates they don’t
improve the fit and the smaller model (the reduced one) is just as adequate.
Hence, drop the additional covariates and continue with the reduced model.
Partial deviance is analogous to the extra sum of squares, SSR(additional
covariates|covariates in reduced model), for ordinary linear regression mod-
els. In fact, when the log(¢;)’s are normal and no censoring is present, partial
deviance simplifies to the corresponding extra sum of squares. WHY!

dfbeta

dfbeta is a useful measure to assess the influence of each point on the es-
timated coefficients 3;’s. This measure is analogous to that used in regular
linear regression. Large values suggest we inspect corresponding data points.
The measure dfbetas is dfbeta divided by the s.e.(8;). We obtain these quan-
tities via the companion function resid where fit is a survReg object.

> resid(fit, type="dfbeta").

See Figure 6.7 for a plot of the dfbeta for each observation’s influence on the
coefficient of the x variable. See Section 6.3.6 for a more detailed discussion
of the dfbeta measure.

Motorette example:
Is the Weibull regression model appropriate?

Figure 6.4:

> attach(motorette)
> qq.weibull(Surv(time,status))

Figure 6.5:
> plot.logt.x(time,status,x) # Plot of log(t) against x.

# Now the Weibull regression fit:

> motor.fit <- survReg(Surv(time,status) ~ x,dist="weibull")
> dresid <- resid(motor.fit,type="deviance")

> riskscore <- log(fitted(motor.fit)) - coef (motor.fit) [1]

Figure 6.6:

> plot(log(fitted(motor.fit)) ,dresid)

> mtext("Deviance Residuals vs log Fitted Values (muhat)",
3,-1.5)

> abline(h=0)

Figure 6.10:
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> index <- seq(1:30)

> par (mfrow=c(2,2))

> plot(riskscore,dresid,ylab="deviance residuals")

> abline(h=0)

> gqnorm.default(dresid,datax=F,plot=T,
ylab="deviance residuals")

> gqline(dresid)

> plot(index,dresid,ylab="deviance residual")

> abline(h=0)
Figure 6.7:

# We plot dfbeta to assess influence of each point on the

# estimated coefficient.

> dfbeta <- resid(motor.fit,type="dfbeta")

> plot(index,dfbetal,1],type="h",ylab="Scaled change in
coefficient",xlab="0bservation")

Figure 6.8:

> x1ln <- levels(factor(x))

> ts.1 <- Surv(time[as.factor(x)==x1n[1]],
status[as.factor (x)==x1n[1]])

> ts.2 <- Surv(time[as.factor(x)==x1n[2]],
status[as.factor (x)==x1n[2]])

> ts.3 <- Surv(timelas.factor(x)==x1n[3]],
status[as.factor(x)==x1n[3]])

> gqq.weibull(list(ts.1,ts.2,ts.3))

Figure 6.9:

\4

xln <- levels(factor(x))
ts.1 <- Surv(time[as.factor(x)==x1n[1]],
status[as.factor (x)==x1n[1]])

> ts.2 <- Surv(time[as.factor(x)==x1n[2]],
status[as.factor (x)==x1n[2]])

> ts.3 <- Surv(time[as.factor(x)==x1n[3]],
status[as.factor(x)==x1n[3]])

> qq.weibreg(list(ts.1,ts.2,ts.3) ,motor.fit)

Vv

We compute the log-likelihood of saturated model, partial deviance, and then
compare to the output from the anova function.
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> summary (motor.fit)

Value Std. Error z P

(Intercept) -11.89 1.966 -6.05 1.45e-009
x 9.04 0.906 9.98 1.94e-023
Log(scale) -1.02 0.220 -4.63 3.72e-006

Scale= 0.361

Loglik(model)= -144.3 Loglik(intercept only)= -155.7
Chisg= 22.67 on 1 degrees of freedom, p= 1.9e-006
# Chisq=22.67 is the LRT value for testing the
# significance of the x variable.
> loglikR <- motor.fit$loglik[1]
> loglikR # Model has only intercept.
[1] -155.6817
> loglikF <- motor.fit$loglik[2]
> loglikF # Model includes the covariate x.
[1] -144.3449
> ModelDev <- sum(resid(motor.fit,type="deviance")"2)
> ModelDev
[1] 46.5183 # Full model deviance
> loglikSat <- loglikF + ModelDeviance/2
> loglikSat
[1] -121.0858
> nullDev <- - 2x(loglikR - loglikSat)
> nullDev # Reduced Model (only intercept)
[1] 69.19193
> PartialDev <- nullDev - ModelDev
> PartialDev
[1] 22.67363 # which equals the LRT value.
# The following ANOVA output provides Deviance
# which is really the partial deviance. This is
# easily seen.
> anova(motor.fit)
Analysis of Deviance Table Response: Surv(time,status)
Terms added sequentially (first to last)

Df Deviance Resid. Df -2%LL Pr(Chi)
NULL 2 311.3634
x -1 22.67363 3 288.6898 1.919847e-006

> detach()
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Figure 6.10 Motorette data: deviance residuals against risk scores, normal quantiles,
and index.

Results:

e In Figure 6.8, each group is fit separately. The graphs suggest the Weibull
model gives an adequate description of each group.

e Figure 6.9 supports the Weibull regression model describes well the role
temperature plays in the acceleration of failure of the motorettes.

e Figures 6.4 and 6.5 display straight lines. Figure 6.6 displays a random
scatter around zero except for a possible outlier whose residual value is
—2.634. Figure 6.7 shows there are no influential points. In Figure 6.10, the
deviance vs. index plot displays two possible outliers whereas each of the
other two plots reveal only one possible outlier.

e The LRT per the anova function, with a p-value of 1.9 x 107, provides
strong evidence the Weibull model with the predictor variable x is adequate.
Equivalently, the p-value of 1.94 x 10723 for the estimated coefficient of x
provides this strong evidence.
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6.3 Cox proportional hazards model

Recall from Chapter 4.3 that this model has hazard function
h(tlz) = ho(t) - exp(z'B) = ho(t) - exp(Brz') + - + Bpa™)
= ho(t)-exp(BrzM) x exp(B2z?) x - -+ x exp(Bpz™),
where at two different points z;, 5, the proportion

htlzy) _ exp(ei )
h(tlza) ~ exp(zd)

called the hazards ratio (HR), is constant with respect to time ¢.

=exp ((z) — 25)8) ,

As the baseline hazard function is not specified in the Cox model, the likeli-
hood function cannot be fully specified. To see this, recall that
fG)=h(-) x5().

The hazard function h(-) depends on the baseline hazard ho(-). Hence, so does
the p.d.f. Cox (1975) defines a likelihood based on conditional probabilities
which are free of the baseline hazard. His estimate is obtained from maximiz-
ing this likelihood. In this way he avoids having to specify ho(:) at all. We
derive this likelihood heuristically. Let ¢* denote a time at which a death has

occurred. Let R(t*) be the risk set at time ¢*; that is, the indices of individuals
who are alive and not censored just before ¢*. First,

P{one death in [t*, " + At™) | R(t")}
= Y PTiel v+ At | T >t}

IER(t*)

~ Z h(t*|z,) At
IER(t*)

= Z ho(t*) - exp(z)3) At
IER(t*)

Thus, if we let P{one death at t* | R(¢*)} denote the
Y PT=tT >t

LER(t*)
then we have
P{one death at t* Z ho(t*) - exp(z15).
lER(t)
Now, let ¢(1),...,t) denote the r < n distinct ordered (uncensored) death

times, so that ¢(;) is the jth ordered death time. Let z;) denote the vector
of covariates associated with the individual who dies at ¢(;y. Then, for each j,
we have

L;j(B) = P{individual with z;) dies at ¢(;) | one death in R(t(;)) at ¢}
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P{individual with z;) dies at t;) | individual in R(¢(;))}
P{one death at t¢;) | R(t¢;))}
ho(t(j)) - exp(z{ ;)
2ieR 1)) Mo(t) - exp(if)
exp(g’(j)é) _
ZleR(t(j)) exp(z3)

The product of these over the r uncensored death times yields what Cox refers
to as the partial likelihood. The partial likelihood function, denoted by
L.(B), is thus defined to be

T

Le(B) = H L) =] exp(a(;)5)

=1 ZleR(t(j>) exp(z; )

(6.20)

Recall that in the random censoring model we observe the times yi,...,yn
along with the associated d1,...,d, where §; = 1 if the y; is uncensored (i.e.,
the actual death time was observed) and ¢; = 0 if y; is censored. We can now
give an equivalent expression for the partial likelihood function in terms of all
n observed times:

04
= . 6.21
zlen(%)exp@;@)) (621

Remarks:

1. Cox’s estimates maximize the log-partial likelihood.

2. To analyze the effect of covariates, there is no need to estimate the nuisance
parameter hg(t), the baseline hazard function.

3. Cox argues that most of the relevant information about the coefficients 3
for regression with censored data is contained in this partial likelihood.

4. This partial likelihood is not a true likelihood in that it does not integrate
out to 1 over {0,1}" x ™.

5. Censored individuals do not contribute to the numerator of each factor.
But they do enter into the summation over the risk sets at death times
that occur before a censored time.

6. Furthermore, this partial likelihood depends only on the ranking of the
death times, since this determines the risk set at each death time. Con-
sequently, inference about the effect of the explanatory variables on the
hazard function depends only on the rank order of the death times! Here
we see why this is often referred to as nonparametric. It only depends on
the rank order! Look at the partial likelihood. There is no visible #(;) in the
estimate for (. It is a function of the z(;)’s which are determined by the
rank order of the death times. So, the estimates are a function of the rank
order of the death times.
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We now present data diagnostic methods. We delay the examples and all S
code until all relevant definitions and methods are presented.

6.3.1 Coz-Snell residuals for assessing the overall fit of a PH model

Recall from (1.6) the relationship
H(t) = —log (5(1)) = —log (1 = F(1)),

where F' denotes the true d.f. of the survival time 7" and H denotes the
true cumulative hazard rate. Also recall that regardless of the form of F|
the random variable F'(T) is distributed uniformly on the unit interval (0,1).
Hence, the random variable H(T) is distributed exponentially with hazard rate
A = 1. WHY! Let z; denote the i-th individual’s covariate vector. Then for
a given z;, H(t|z;) denotes the true cumulative hazard rate for an individual
with covariate vector ;. It then follows

H(Tila;) ~ exp(A = 1).

Hence, if the Cox PH model is correct, then for a given z;, it follows

H(Ti|z;) = Ho(T;) x exp [ Y Bzl | ~exp(r =1). (6.22)

Jj=1

The Coz-Snell residuals (Cox and Snell, 1968) are defined as
~ m ~ .
roi = Ho(Y;) X exp Zﬁsz@ J=1,....n, (6.23)
j=1

where Y; = min(7;, C;). The Bj’s are the mazimum partial likelihood estimates,
the estimates obtained from maximizing Cox’s partial likelihood (6.21). The
flo(t) is an empirical estimate of the cumulative hazard at time ¢t. Typically
this is either the Breslow or Nelson-Aalen estimate (page 33). S offers both
with Nelson-Aalen as the default. For the definition of Breslow estimator, see
Klein & Moeschberger (1997, page 237). If the final PH model is correct and
the ﬁj’s are close to the true values of the §;’s, the r¢;’s should resemble
a censored sample from a unit exponential distribution. Let Hg(t) denote
the cumulative hazard rate of the unit exponential. Then Hg(t) = ¢. Let
I;Trc (t) denote a consistent estimator of the cumulative hazard rate of the
rco;’s. Then FAITC (t) should be close to Hg(t) = t. Thus, for each uncensored
rCi, }AI,.C (rc ) = reoq. To check whether the r¢;’s resemble a censored sample
from a unit exponential, the plot of I;T,«C (rc¢;) against ro,; should be a 45°-
line through the origin. See Figure 6.11.

Remarks:

1. The Cox-Snell residuals are most useful for examining the overall fit of a
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model. A shortcoming is they do not indicate the type of departure from the
model detected when the estimated cumulative hazard plot is not linear.

2. Ideally, the plot of f[rc (rc ) against r¢; should include a confidence band
so that significance can be addressed. Unfortunately, the r¢c; are not exactly
a censored sample from a distribution. So this plot is generally used only
as a rough diagnostic. A formal test of adequacy of the Cox PH model is
given in Section 6.3.5.

3. The closeness of the distribution of the r¢;’s to the unit exponential de-
pends heavily on the assumption that, when 8 and H, are replaced by
their estimates, the probability integral transform F(T) still yields uni-
form (0,1) distributed variates. This approximation is somewhat suspect
for small samples. Furthermore, departures from the unit exponential dis-
tribution may be partly due to the uncertainty in estimating the parameters
B and Hy. This uncertainty is largest in the right-hand tail of the distribu-
tion and for small samples.

6.3.2 Martingale residuals for identifying the best functional form of a
covariate

The martingale residual is a slight modification of the Cox-Snell residual.
When the data are subject to right censoring and all covariates are time-
independent (fixed at the start of the study), then the martingale residuals,

denoted by J\/{Ti, are defined to be

M; =06 — Ho(Y:) x exp | Y Bjat?) | =6 —rcii=1,....n,  (6.24)

j=1
where r¢; is the Cox-Snell residual.

These residuals are used to examine the best functional form for a given
covariate using the assumed Cox PH model for the remaining covariates. Let
the covariate vector x be partitioned into a z, for which we know the functional
form, and a single continuous covariate z(!) for which we are unsure of what
functional form to use. We assume z(!) is independent of z,. Let g(-) denote
the best function of (1) to explain its effect on survival. The Cox PH model
is then,

H(tle,,oM) = Ho(t) x exp (2.8, ) x exp (9 ™)) . (6.25)

where 3 is an m — 1 dimensional coefficient vector. To find g(-), we fit a Cox
PH model to the data based on z, and compute the martingale residuals,
]\Z, i = 1,...,n. These residuals are plotted against the values :UZ(-l), i =
1,...,n. A smoothed fit of the scatter plot is typically used. The smooth-
fitted curve gives some indication of the function g(-). If the plot is linear,

then no transformation of (1) is needed. If there appears to be a threshold,
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then a discretized version of the covariate is indicated. The S function coxph
provides martingale residuals as default and the S function scatter.smooth
displays a smoothed fit of the scatter plot of the martingale residuals versus
the covariate (1. See Figure 6.12.

Remarks:

1. Cox-Snell residuals can be easily obtained from martingale residuals.

2. It is common practice in many medical studies to discretize continuous
covariates. The martingale residuals are useful for determining possible cut
points for such variables. In Subsection 6.3.8 we present a cut point analysis
with bootstrap validation conducted for the variable KPS.PRE. in the CNS
data.

3. The martingale residual for a subject is the difference between the observed
and the expected number of deaths for the individual. This is so because
we assume that no subjects can have more than one death and the second
factor in expression (6.24) is the estimated cumulative hazard of death for
the individual over the interval (0,y;).

4. The martingale residuals sum to zero; that is, ., ]\/4\z = 0. For “large”

n, the ]\Z’s are an uncorrelated sample from a population with mean zero.
However, they are not symmetric around zero because the martingale resid-
uals take values between —oo and 1.

5. For the more general definition of the martingale residuals which includes
time-dependent covariates, see Klein & Moeschberger (1997, pages 333 and
334). On page 337 under Theoretical Notes these authors further explain
why a smoothed plot of the martingale residuals versus a covariate should
reveal the correct functional form for including (! in a Cox PH model.

6.3.3 Deviance residuals to detect possible outliers

These residuals were defined and discussed in great detail in the previous sec-
tion on diagnostic methods for parametric models. Except for a slight modi-
fication in the definition of deviance, all plots and interpretations carry over.
What’s different here is that we no longer have a likelihood. We are working
with a partial likelihood. However, we may still define deviance analogously,
using the partial likelihood. All tests and their large sample distributions still
apply. The deviance residual is used to obtain a residual that is more sym-
metrically shaped than a martingale residual as the martingale residual can
be highly skewed. The deviance residual (Therneau, Grambsch, and Fleming,
1990) is defined by

D; = sign(M;) x \/—2 X (J\? + 6; log(8; — J\Z)) , (6.26)
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where ]\//.71 is the martingale residual defined in Subsection 6.3.2. The log func-
tion inflates martingale residuals close to one, while the square root contracts
the large negative martingale residuals. In all plots, potential outliers corre-
spond to large absolute valued deviance residuals. See Figure 6.13.

Remarks:

1. Therneau, Grambsch, and Fleming (1990) note “When censoring is mini-
mal, less than 25% or so, these residuals are symmetric around zero. For
censoring greater than 40%, a large bolus of points with residuals near
zero distorts the normal approximation but the transform is still helpful
in symmetrizing the set of residuals.” Obviously, deviance residuals do not
necessarily sum to zero.

2. Type resid(fit,type="deviance"), where fit is the coxph object, to
obtain these residuals.

6.3.4 Schoenfeld residuals to examine fit and detect outlying covariate values

The kth Schoenfeld residual (Schoenfeld, 1982) defined for the kth subject on
the jth explanatory variable z() is given by
Ts;p = 5k{x,(€j) - a,&j)}, (6.27)

where J, is the kth subject’s censoring indicator, :z:,(cj ) is the value of the Jjth
explanatory variable on the kth individual in the study,

a9 — 2o meR(y) EP(Z0, ﬁ)x%)
k= —
YomeRr(y,) P21, 5)
and R(ys) is the risk set at time y;. The MLE 3 is obtained from maximizing

the Cox’s partial likelihood function L.(8) (6.21). Note that nonzero residuals
only arise from uncensored observations.

We see this residual is just the difference between :cfcj ) and a weighted average
of the values of explanatory variables over individuals at risk at time y;. The
weight used for the mth individual in the risk set at y; is

exp(a), 3)
ZmGR(yk exp(z; @

which is the contribution from this individual to the maximized partial likeli-
hood (6.21). Further, since the MLE of 3, 3, is such that

0log (L((g)) ~
0p; 8

:0’
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the Schoenfeld residuals for each predictor z(7) must sum to zero. These resid-
uals also have the property that in large samples the expected value of rg,,
is zero and they are uncorrelated with each other. Furthermore, suppose yx
is a small failure time relative to the others. Then its risk set is huge. Hence,
in general not only do subjects in the risk set have a wide range of covariate
values, but also the weight assigned to each covariate value associated with
the risk set is small. Therefore, individuals with large covariate values who
die at early failure times would have large positive Schoenfeld residuals. This
can be most easily seen if we rewrite r,, (6.27) as

-~ -~

20 (1 B exp(z}, ) Z (zz(j) exp(z;5)

ZmeR(yk) eXp(ggné) 1eR(yx); I#£k EmGR(yk) eXp(Q;né)>
(6.28)
Tt is clear from expression (6.28) that the first term is large and the second term
is small relative to the first term. Similarly, the individuals with small covariate
values who die at early failure times would have large negative Schoenfeld
residuals. WHY! Therefore, a few relatively large absolute valued residuals at
early failure times may not cause specific concern. Thus, these residuals are
helpful in detecting outlying covariate values for early failure times. However,
if the PH assumption is satisfied, large Schoenfeld residuals are not expected
to appear at late failure times. WHY! Therefore, we should check the residuals
at late failure times. See Figure 6.14.

Remarks:

1. Schoenfeld calls these residuals the partial residuals as these residuals are
obtained from maximizing the partial likelihood function. Collett (1994,
page 155), among others, calls these residuals the score residuals as the
first derivative of the partial likelihood can be considered as the efficient
score.

2. Use coxph.detail to obtain the detailed coxph object. This includes ranked
observed times along with a corresponding censoring status vector and co-
variate information.

3. Type resid(fit,type="schoenfeld"), where fit is the coxph object,
to obtain these residuals. coxph does not output the value of Schoenfeld
residual for subjects whose observed survival time is censored as these are
Zeros.

4. If the assumption of proportional hazards holds, a plot of these residuals
against ordered death times should look like a tied down random walk.
Otherwise, the plot will show too large residuals at some times.
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6.3.5 Grambsch and Therneau’s test for PH assumption

As an alternative to proportional hazards, Grambsch and Therneau (1994)
consider time-varying coefficients 5(t) = 8+ 0g(t), where g(¢) is a predictable
process (a postulated smooth function). Given g(t), they develop a score
test for Hy : 8 = 0 based on a generalized least squares estimator of 6.
Defining scaled Schoenfeld residuals by the product of the inverse of the es-
timated variance-covariance matrix of the kth Schoenfeld residual and the
kth Schoenfeld residual, they show the kth scaled Schoenfeld residual has
approximately mean 6g(¢x) and the kth Schoenfeld residual has an easily
computable variance-covariance matrix. Motivated by these results, they also
develop a graphical method. They show by Monte Carlo simulation studies
that a smoothed scatter plot of 3(tx), the kth scaled Schoenfeld residual plus

o~

B (the maximum partial likelihood estimate of 3), versus tj reveals the func-
tional form of 3(t). Under Hy, we expect to see a constant function over time.
Both of these can be easily done with the S functions cox.zph and plot. See
Figure 6.15.

Remarks:

1. The function g(t) has to be specified. The default in the S function cox.zph
is K-M(t). The options are g(t) =t and g(t) = log(t) as well as a function
of one’s own choice.

2. plot(out), where out is the cox.zph object, gives a plot for each covariate.
Each plot is of a component of ﬁ(t) versus t together with a spline smooth
and £2 s.e. pointwise confidence bands for the spline smooth.

3. A couple of useful plots for detecting violations of the PH assumption are
recommended:

(a) A plot of log-cumulative hazard rates against time is useful when z is a
group variable. For example, if there are two treatment groups, plot both
curves on the same graph and compare them. If the curves are parallel
over time, it supports the PH assumption. If they cross, this is a blatant
violation.

(b) A plot of differences in log-cumulative hazard rates against time is also
useful. This plot displays the differences between the two curves in the
previous graph. If the PH assumption is met, this plot is roughly constant
over time. Otherwise, the violation will be glaring. This plot follows
Miller’s basic principle discussed here on page 144.

6.3.6 dfbetas to assess influence of each observation

Here we want to check the influence of each observation on the estimate E of

the (. Let @ denote the estimated vector of coefficients computed on the

(k)
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sample with the kth observation deleted. Then we check which components of
the vector 3 — 8 ) have unduly large absolute values. Do this for each of the

n observations. One might find this measure similar to dfbetas in the linear
regression. This involves fitting n+ 1 Cox regression models. Obviously, this is
computationally expensive unless the sample size is small. Fortunately, there
exists an approximation based on the Cox PH model fit obtained from the
whole data that can be used to circumvent this computational expense. The
kth dfbeta is defined as

dfbetay = I(3) ' (rk,,.-..r ), (6.29)
where [ (@*1 is the inverse of the observed Fisher information matrix, and
forj=1,...,m,

(9) (9
s )0 ) 7 {zp” —a;}
ry =0z’ —a)’} —exp(z,f) g —.
" T ti<un ZleR(ti)eXp(@gﬁ)

Note that the first component is the kth Schoenfeld residual and the second
component measures the combined effect over all the risk sets that include
the kth subject. This expression, proposed by Cain and Lange (1984), well
approximates the difference E — E k) for k = 1,...,n. The authors note that the
above two components in general have opposite signs. The second component
increases in absolute magnitude with ¢;, as it is the sum of an increasing
number of terms. Thus, for early death times, the first component dominates,
while for later death times, the second is usually of greater magnitude. This
means that for patients who die late, the fact that the patient lived a long time,
and thus was included in many risk sets, has more effect upon  than does the
fact that the patient died rather than was censored. Plots of these quantities
against the case number (index) or against their respective covariate x,(f ) are
used to gauge the influence of the kth observation on the jth coefficient. See
Figure 6.16.

Remarks:

1. The S function resid(fit,type="dfbetas") computes dfbeta divided by
the s.e.’s for the components of 3, where fit is the coxph object.

2. Collett (1994) calls these standardized delta-beta’s.

3. There are a number of alternate expressions to expression (6.29). For ex-
ample, see pages 359 through 365 in Klein & Moeschberger (1997).

4. This measure is analogous to the measures of influence for ordinary linear
regression developed by Belsley et al. (1980) and Cook and Weisberg (1982).
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6.3.7 CNS lymphoma example: checking the adequacy of the PH model

We apply some model checking techniques on the final reduced model
cns2.coxint6.

# Cox-Snell residuals for overall fit of a model are not
# provided directly by coxph object. You can derive them
# from the martingale residuals which are the default

# residuals.

Figure 6.11:

> attach(cns?2)
> rc <- abs(STATUS - cns2.coxint6$residuals) # Cox-Snell

# residuals!
> km.rc <- survfit(Surv(rc,STATUS) ~ 1)
> summary.km.rc <- summary(km.rc)
> rcu <- summary.km.rc$time # Cox-Snell residuals of

# uncensored points.

> surv.rc <- summary.km.rc$surv
> plot(rcu,-log(surv.rc),type="p",pch=".",
xlab="Cox-Snell residual rc",ylab="Cumulative hazard on rc")
> abline(a=0,b=1); abline(v=0); abline(h=0)

# The martingale residual plots to check functional form of
# covariate follow.

Figure 6.12:

> fit <- coxph(Surv(B3TODEATH,STATUS) ~ GROUP+SEX+AGE60+
SEX: AGE60)
> scatter.smooth(cns2$KPS.PRE. ,resid(fit) ,type="p",pch=".",
xlab="KPS.PRE.",ylab="Martingale residual")

# The deviance residual plots to detect outliers follow:

Figure 6.13:

> dresid <- resid(cns2.coxint6,type="deviance") # deviance
# residual

plot(dresid,type="p",pch=".")

abline (h=0)

plot (B3TODEATH,dresid,type="p",pch=".")

abline (h=0)

plot (GROUP,dresid, type="p",pch=".")

abline (h=0)

plot (SEX,dresid,type="p",pch=".")

V V V V V V VvV
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abline (h=0)

plot (AGE60,dresid,type="p",pch=".")
abline (h=0)

plot (KPS.PRE.,dresid,type="p",pch=".")
abline (h=0)

V V V Vv V

# Schoenfeld residuals to examine fit and detect outlying
# covariate values

Figure 6.14:

detail <- coxph.detail(cns2.coxint6) # detailed coxph object
time <- detail$y[,2] # ordered times including censored ones
status <- detail$y[,3] # censoring status
sch <- resid(cns2.coxint6,type="schoenfeld") # Schoenfeld
# residuals
plot(time[status==1],sch[,1],xlab="0rdered survival time",
ylab="Schoenfeld residual for KPS.PRE.") # time[status==1]
# is the ordered uncensored times and sch[,1] is the
# resid for KPS.PRE.

vV V V V

\4

# The scaled Schoenfeld residuals and the Grambsch and
# Therneau’s test for time-varying coefficients to assess
# PH assumption follow:

Figure 6.15:
> PH.test <- cox.zph(cns2.coxint6)
> PH.test
rho chisq P
KPS.PRE. 0.0301 0.025 0.874
GROUP 0.1662 1.080 0.299
SEX 0.0608 0.103 0.748
AGE60O -0.0548 0.114 0.736
SEX:AGE60 0.0872 0.260 0.610
GLOBAL NA 2.942 0.709

> par(mfrow=c(3,2)); plot(PH.test)

# The dfbetas is approximately the change in the

# coefficients scaled by their standard error. This
# assists in detecting influential observations on
# the estimated beta coefficients.
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Figure 6.16:

par (mfrow=c(3,2))

bresid <- resid(cns2.coxint6,type="dfbetas")

index <- seq(1:58)

plot(index,bresid[,1],type="h",ylab="scaled change in coef",

xlab="observation")

> plot(index,bresid[,2],type="h",ylab="scaled change in coef",
xlab="observation")

> plot(index,bresid[,3],type="h",ylab="scaled change in coef",
xlab="observation")

> plot(index,bresid[,4],type="h",ylab="scaled change in coef",
xlab="observation")

> plot(index,bresid[,5],type="h",ylab="scaled change in coef",

xlab="observation")

vV V V V

# For the sake of comparison, we consider the scaled
# Schoenfeld residuals and the test for time-varying
# coefficients for the main effects model cns2.cox3.

Figure 6.17:

> PHmain.test <- cox.zph(cns2.cox3)
> PHmain.test
rho chisq P
KPS.PRE. 0.0479 0.0671 0.796
GROUP 0.1694 1.1484 0.284
SEX 0.2390 1.9500 0.163
GLOBAL NA 3.1882 0.364

> par(mfrow=c(2,2)); plot(PHmain.test)
> detach()

Results:

o We see from the Cox-Snell residual plot, Figure 6.11, that the final model
gives a reasonable fit to the data. Overall the residuals fall on a straight
line with an intercept zero and a slope one. Further, there are no large
departures from the straight line and no large variation at the right-hand
tail.

e In the plot of the Martingale residuals, Figure 6.12, there appears to be a
bump for KPS.PRE. between 80 and 90. However, the lines before and after
the bump nearly coincide. Therefore, a linear form seems appropriate for
KPS.PRE. There are occasions where a discretized, perhaps dichotomized,
version of a continuous variable is more appropriate and informative. See
an extensive cut point analysis conducted in the next subsection.
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Figure 6.11 Coz-Snell residuals to assess overall model fit.

Martingale residual
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KPS.PRE.

Figure 6.12 Martingale residuals to look for best functional form of the continuous
covariate KPS.PRE.

e The deviance residual plot, Figure 6.13, shows a slight tendency for larger
survival times to have negative residuals. This suggests that the model
overestimates the chance of dying at large times. However, there is only
one possible outlier at the earliest time and this may not cause concern
about the adequacy of the model. All the other plots in the same figure
show that the residuals are symmetric around zero and there is at most
one possible outlier.

e The subjects with the largest absolute valued Schoenfeld residuals for
KPS.PRE. are 40, 8, 35, and 11. These subjects have very early failure times
125, .604, .979, and 1.375 years and are the patients who have either the
largest or the smallest KPS.PRE. values. Thus, these residuals do not cause
specific concern. The plots for the other covariates are not shown here. But
all of them show no large residuals. Therefore, the PH assumption seems
to be appropriate.

e The results from the test for constancy of the coefficients based on scaled
Schoenfeld residuals indicate the PH assumption is satisfied by all five co-
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Figure 6.13 Deviance residuals to check for outliers.

variates in the model with all p-values being at least 0.299. Figure 6.15
also supports that the PH assumption is satisfied for all the covariates in
the model.

e For the sake of comparison, we consider the main effects model, cns2.cox3,
as well. Although the results from the test for constancy of the coefficients
indicate that the PH assumption is satisfied by all three covariates in the
model with all p-values being at least 0.16, Figure 6.17 gives some mild
evidence that the PH assumption may be violated for the GROUP and
SEX variables. This results from the fact that in this model there are no
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Figure 6.14 Schoenfeld residuals for KPS.PRE. against ordered survival times.
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Figure 6.15 Diagnostic plots of the constancy of the coefficients in cns2.coxint6.
Each plot is of a component of B(t) against ordered time. A spline smoother is
shown, together with £2 standard deviation bands.

interaction effect terms when there is a significant interaction effect between
SEX and AGE60 as evidenced by the model cns2.coxint6. This again tells

us how important it is to consider interaction effects in modelling.

e The plot of the dfbetas, Figure 6.16, shows that most of the changes in the
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Figure 6.16 The dfbetas to detect influential observations on the five estimated coef-
ficients corresponding to the predictors.

regression coefficients are less than .3 s.e.’s of the coefficients and all others
are less than .4 s.e.’s. Therefore, we conclude that there are no influential
subjects.

6.3.8 Cut point analysis with bootstrap validation

We perform cut point analysis by dichotomizing the continuous covariate
KPS.PRE. We define the indicator variable K by

-]

0

if KPS.PRE. <6

1 if KPS.PRE. > 4.

Before we proceed, we introduce the profile likelihood function. Suppose
that the parameter in a model may be partitioned as (6,7) where 6 is the
parameter of interest and 7 is the nuisance parameter. Given a likelihood
L(0,n|x1,...,x,), the profile likelihood for 6 is defined as the function

(6.30)

0 — supL(0,n|z1,...,z,),
n

where the supremum is taken over all possible values of n and z1,...,z,
are the realizations of the iid random variables X1,..., X,. This definition
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Figure 6.17 Diagnostic plots of the constancy of the coefficients in cns2.cox3. Each
plot is of a component of B(t) against ordered time. A spline smoother is shown,
together with +2 standard deviation bands.

is quoted from van der Vaart (1998) where he also illustrates examples in
semiparametric survival models.

In the following, we treat the values of KPS.PRE. as the values of § and the
B in the Cox PH model as n in the above usual setting. For various values
of # we fit a Cox PH model with the five covariates GROUP, SEX, AGE60,
SEX:AGEG60, and K. For each 0 value, a profile log-likelihood value is obtained.
The value of # which maximizes the profile likelihood function is the desired
cut point (threshold). The maximum must occur at one of the 58 KPS.PRE.
scores.

The function cutpt.coxph computes profile log-likelihoods for various quan-
tiles. Before using this function, put the variable to be dichotomized in the first
column of the data frame (use move. col). Then generate an additional column
of Bernoulli values as many as the number of rows. This creates a place holder
for the variable K. Run coxph on the model specified above. The output from
coxph provides the necessary formula within the function cutpt.coxph auto-
matically. cutpt.coxph has three arguments: (object,data,q), where object
is a coxph object, data is a data frame, and q is a vector of various quantiles.
If q is not provided, the default quantiles, seq(.1,.9,.1), are used. We see from
Figure 6.18 that the best choice of 8 is 90.

> move.col(cns2,1,cns2,9) # Moves KPS.PRE. in col. 9 to
# col. 1.
> attach(cns2)
> temp <- coxph(Surv(B3TODEATH,STATUS) ~ GROUP+SEX+AGE60+
SEX:AGE60+K) # provides the necessary
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# formula within cutpt.coxph automatically.
> cns2cutpt <- cutpt.coxph(object=temp,data=cns2,
q=seq(0.05,0.95,0.05))
# output of cutpt.coxph
> plot(cns2cutpt$out,type="1",1lwd=2,col=1,x1ab="KPS.PRE.",
ylab="Profile log-likelihood") # plot of quantiles
# versus corresponding profile likelihoods

12

-13

Profile log-likelihood
114

115
L

T T
50 60 70 80 90 100
KPS.PRE.

Figure 6.18 Profile log-likelihoods at quantiles of KPS.PRE.

Now we fit the Cox PH model with GROUP, SEX, AGE60, SEX:AGEG60, and
K where
K‘—{ 0 if KPS.PRE. <90
1 if KPS.PRE. > 90.

A plot of the two estimated survival curves for K =1 and 0, each evaluated
at GROUP = 0, SEX = 0 (male), AGE60 = 1, and SEX:AGEG60 = 0, is
presented in Figure 6.19.

> cns2$K <- as.integer(cns2$KPS.PRE.>=90) # creates the
# indicator variable K
> cns2cutptl <- coxph(Surv(B3TODEATH,STATUS) ~ GROUP+SEX+
AGE60+SEX : AGE60+K)
> summary (cns2cutptl)

n= 58
coef exp(coef) se(coef) z )
GROUP 1.285 3.616 0.373 3.45 0.00056
SEX -1.602 0.202 0.676 -2.37 0.01800
AGE60 -0.713 0.490 0.481 -1.48 0.14000
K -1.162 0.313 0.420 -2.77 0.00560
SEX:AGE60 1.582 4.864 0.864 1.83 0.06700

Rsquare=0.374  (max possible=0.987)
Likelihood ratio test = 27.2 on 5 df, p=0.0000524
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Wald test = 23.6 on 5 df, p=0.000261

Score (logrank) test =

> surv.cutptl?2 <- survfit(cns2cutptl,data.frame(GROUP=0,

27 on 5 df, p=0.0000576
> surv.cutptll <- survfit(cns2cutptl,data.frame(GROUP=0,

SEX=0,AGE60=1,K=0))

SEX=0,AGE60=1,K=1))

> plot(surv.cutptll,type="1",1lwd=2,col=1,1lty=1,
conf.int=F,lab=c(10,7,7),yscale=100,

xlab="Survival Time in Years from First BBBD",

ylab="Percent Alive")

> lines(surv.cutptl2$time, surv.cutpti2$surv,type="s",

lty=4,col=1,1lwd=2)

> detach()

Percent Alive

Primary CNS Lymphoma Patients

Survival Time in Years from First BBBD

175

Figure 6.19 FEstimated Coz survival curves for K with cut point = 90.

We summarize the output from the final model and the dichotomized model

in Table 6.

Table 6.1:

1.

Summary of fits with continuous versus dichotomized KPS.PRE.

Continuous KPS.PRE. Dichotomized KPS.PRE.=K

coefficient p-value coefficient p-value
GROUP 1.1592 0.0022 GROUP 1.285 0.00056
SEX —2.1113 0.0026 SEX —1.602 0.01800
AGEG60 —1.0538 0.0210 AGE60 —0.713 0.14000
SEX:AGEG0 2.1400 0.0120 SEX:AGEGO 1.582 0.06700
KPS.PRE. —0.0307 0.0028 K —1.162 0.00560
LRT = 27.6 .00004 LRT = 27.2 0.00005

Results:

e According to the LRT criterion in Table 6.1, the overall fit is not improved
by using K.
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e The variable K improves the effect of GROUP variable, whereas it makes
the effects of all others weaker. In particular, AGE60 and SEX:AGEG0 have
p-values .140 and .067. This is contradictory to the clear interaction effect
shown in Figures 5.2 and 5.3. Therefore, dichotomizing KPS.PRE. is not
recommended.

Bootstrap validation to check robustness

The bootstrap method was introduced by Efron (1979). For censored survival
data, see Davison and Hinkley (1999). For general introduction, see either
Lunneborg (2000) or Efron and Tibshirani (1993). The former is appropriate
for scientific researchers without a mathematical background, while the latter
is appropriate for researchers with a mathematical background. Here we apply
so called nonparametric bootstrap sampling. Suppose we have n subjects in
the study. Then select n subjects from the original data with replacement with
equal probability. The data values corresponding to these selected individuals
make a bootstrap sample. Run your model with this bootstrap sample and
keep the statistics of interest. Repeat this process B times where B = 1000 is
used most often but the larger the better in general.

Often, as the case in the CNS study, the continuous variable under cut point
analysis has many repeated values. Furthermore, when at the extreme (mini-
mum or maximum) values this sets either all ones or zeros. This causes many
singularities. A remedy for this is not to use all 58 values but to use the sample
quantiles of each bootstrap sample. In this study we use the .05, .10, ..., .95
quantiles. The bootstrap density histogram, Figure 6.20, shows a very similar
shape to the profile likelihood in Figure 6.18. This demonstrates the cut point
analysis is robust.

We use the S-PLUS function bootstrap. This function is not available in
R. Venables and Ripley (2002, page 464) provides useful S library sources in-
cluding boot library. One can download boot library prepackaged for Windows
users (boot.zip) from “http://www.stats.ox.ac.uk/pub/MASS4/Winlibs”. The
equivalent R packages are available from http://lib.stat.cmu.edu/R/CRAN/

> templ <- bootstrap(cns2,cutpt.coxph(object=cns2cutptl,
data=cns2,q=seq(.05,.95,.05))$cutpt,B=1000)
# Bootstrap output
> plot(templ,xlab="cut points",ylab="density",
main="Bootstrap Density Histogram of Cut Points")
# Density histogram of bootstrap profile
# log-likelihoods at 19 quantiles

There are two peaks on this graph. So we tried 70 and 90 as possible cut
points in the final model, cns2.coxint6. But the fit was even worse than that
of the model with dichotomized KPS.PRE. This suggests that there has to be
a dominant peak in the profile likelihood.
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Figure 6.20 Bootstrap density histogram of the mazimum profile log-likelihood esti-

mates of 0.

For the sake of comparison, we consider the martingale residual plot and cut
point analysis based on the main effects model, cns2.cox3. Here we only report
the results because the commands needed are similar to those used for the in-
teraction model. The bootstrap density histogram, Figure 6.23, shows a very

Martingale residual

T T T T T
40 50 60 70 80 90 100
KPS.PRE.

Figure 6.21 Martingale residuals to look for best functional form of the continuous

covariate KPS.PRE. in main effects model cns2.coz3.

Table 6.2:  Summary of fits with continuous versus dichotomized KPS.PRE.

Continuous KPS.PRE. Dichotomized KPS.PRE.=K
coefficient p-value coefficient p-value
GROUP 7785 .028 GROUP 1.089 .00031
SEX —.7968 .052 SEX —.665 .086
KPS.PRE. —.0347 .0056 K —1.396 .00024

LRT = 20.3 .000146 LRT = 23.5

.000032
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Figure 6.22 Profile log-likelihoods at quantiles of KPS.PRE. in main effects model
cns2.coxs.
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Figure 6.23 Bootstrap density histogram of the mazimum profile likelihood estimates
of 0 in main effects model cns2.cox3.

similar shape to the profile log-likelihood in Figure 6.22. This again demon-
strates the robustness of the cut point analysis. More importantly, it shows a
dominant peak, which suggests that the cut point should be significant. That
is, the cut point must improve the model.

Results:

e The martingale residual plot in Figure 6.21 shows a clear drop after about
KPS.PRE. = 80 and the drop is maintained unlike that in Figure 6.12.

e According to the LRT criterion in Table 6.2, the overall fit is improved using
the variable K, the dichotomized version of KPS.PRE. This supports our
conjecture that a dominant peak in the profile log-likelihood guarantees the
existence of a significant cut point.

e GROUP becomes stronger, whereas SEX becomes a bit weaker. SEX was
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originally marginally significant (p-value = .052) in the main effects model
and so this does not cause specific concern.

The variable K has a very small p-value, .00024. Furthermore, a more
pronounced effect on survival is noticed although the plot is not shown
here.

Discussion

The martingale residual plot in Figure 6.21 based on the main effects model
cns2.cox3 shows two parallel lines, whereas the plot in Figure 6.12 for the
two-way interaction model cns2.coxint6 shows only a single line with a
little bump. Unlike the bump, the parallel lines indicate that the cut point
exists between the end of one line and the start of the other line. From
this CNS data, we find that as long as there are parallel lines, the vertical
distance between the lines doesn’t matter. Furthermore, if there is no room
for improvement, there will be a little bump on the martingale residual
plot. Therefore, the martingale residual plot is highly informative in finding
possible cut points.

Cut point analysis may be useful when we are still trying to improve our
current model. This is illustrated in the CNS example. In the main effects
model there is room for improvement. By adding the dichotomized variable
K, the new model improves not only the strength of the variable GROUP
but the overall model fit. The interaction model only displays a less drastic
bump since it has no room for improvement.

Bootstrap validation demonstrates the robustness of the cut point analysis.
See Figures 6.20 and 6.23.

6.4 Exercises

A.

6.1

6.2

6.3
6.4
6.5
6.6

Applications

Refer to Exercise 5.1(a). Using the same model, generate versions of Fig-
ures 6.11 to 6.16. Comment on each of your plots.

(Continued from Exercise 6.1) Do the cut point analysis for the covariate
alter. Compare the results of this analysis with those in Exercise 5.1(a).

Hint: See the code on pages 173 to 176.
Theory and WHY!

Verify expression (6.10).
Verify expression (6.14).
Verify expression (6.16).

Prove expression (6.18).
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6.7 Answer the WHY! on page 152.
6.8 Prove the WHY! on page 159.
6.9 Answer the WHY!’s on page 163.



CHAPTER 7

Additional Topics

7.1 Extended Cox model

This section describes how the Cox PH model can be extended to allow time-
dependent variables as predictors. The bulk of the material presented here
is an abridged version of Kleinbaum (1996, pages 216—235). In addition, we
lightly touch on the usefulness of the counting process formulation of the PH
model. We describe how to reformulate, and reenter, a data set to match the
counting process formulation needed to implement an extended Cox model
properly using the S function coxph.

Objectives of this section:

After studying Section 7.1, the student should:

Know how to construct extended Cox model form.
Know characteristics of this model.
Know the formula and interpretation of the hazard ratio (HR).

Be able to identify several types of time-dependent predictor variables.

A

Know how to implement the extended Cox model using S.

Three types of time-dependent predictor variables:

1. “defined”
2. “internal”

3. “ancillary” (also referred to as “external”)

A time-dependent variable is defined as any variable whose value for a given
subject may vary over time t¢. This is in contrast to a time-independent
variable (assumed in the PH model) whose value remains constant over time.
One simple example of a time-independent variable is RACE. T'wo examples
of “defined” time-dependent variables follow. Most “defined” variables
are of the form of the product of a time-independent variable multiplied by
time or some function of time g(t).

181
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1. E x (logt — 3), where E denotes, say, a (0,1) exposure status variable
determined at one’s entry into the study and g¢(¢) = log(t) — 3.

2. E x g(t) where
(1 it >t
g(t){o if ¢ < to.

The function g(t) is called a “heavyside” function. We illustrate later how
these types of functions may be used as one method for the analysis when
a time-independent variable like ' does not satisfy the PH assumption.

Another type of time-dependent variable is called an “internal” variable. The
values change over time for any subject under study. The reason for a change
depends on‘“internal” characteristics or behavior specific to the individual.
Some examples are:

exposure level E at time ¢; E(t),

employment status (EM P) at time t; EMP(t),
smoking status (SMK) at time ¢; SMK(t), and
obesity level (OBS) at time t; OBS(t).

=W o=

In contrast, a variable is called an “ancillary” variable if its values change
primarily because of “external” characteristics of the environment that may
affect several individuals simultaneously. Two such examples of this type are:

1. air pollution index at time ¢ for a particular geographical area, and

2. EMP at time t, if the primary reason for the status depends more on
general economic circumstances than on individual characteristics.

We give one more example which may be part internal and part external.
Consider “heart transplant status” HT at time t for a person identified to
have a serious heart condition, making him or her eligible for a transplant.
The variable HT is defined as:

HT(t) = 1 if person already received a transplant at some time tg <t
“ 1 0 if person did not receive a transplant by time ¢; i.e., tq > t.

Note that once a person receives a transplant, at time tg, the value of HT
remains at 1 for all time points thereafter. In contrast, a person who never
receives a transplant has HT equal to 0 for all times during the period he
or she is in the study. HT'(t) can be considered essentially an internal vari-
able because individual traits of an eligible transplant recipient are important
determinants of the decision to carry out transplant surgery. Nevertheless,
availability of a donor heart prior to tissue and other matching with an eli-
gible recipient can be considered as an “ancillary” characteristic external to
the recipient.

Note: Computer commands differ for defined versus internal versus ancillary.
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But, the form of the extended Cox model and the procedures for analysis are
the same regardless of the variable type.

The extended Cox model:

We write the extended Cox model that incorporates both time-independent
and time-dependent variables as follows:

At () = ho(t)exp (02, Bia® + 3202, ;20 (1))

z(t) = | 2W, 2@ .. 2P 2D (g) 2@ (1), .. 2P (1)

time—independent time—dependent

where ; and -y; are regression coefficients corresponding to covariates, ho(t) is
a baseline hazard function, and z(¢) denotes the entire collection of covariates
at time ¢. A simple example with one time-independent variable and one time-
dependent variable is given by

h(tla(t)) = ho(t) exp (BE +7(E x 1)),

b1 = 17 b2 = 17
z(t) = (2 =E, 2V@t)=E xt).

The estimates are obtained by maximizing a partial likelihood function L. The
computations are more complicated than for the Cox PH model, because the
risk sets used to form L are more complicated with time-dependent variables.

Methods for making statistical inference are essentially the same as for the PH
model. One can use Wald and/or LRT’s and large sample confidence interval
methods.

An important assumption of the extended Cox model is that the effect of a
time-dependent variable X ) (¢) on the survival probability at time ¢ depends
on the value of this variable at the same time t, and not on the value at
an earlier or later time. However, it is possible to modify the definition of
the time-dependent variable to allow for a “lag-time” effect. For example,
suppose that EM P(t), measured weekly, is the time-dependent variable being
considered. An extended Cox model that does not allow for a lag-time assumes
that the effect of EM P on the probability of survival at week ¢ depends on
the observed value of this variable at the same week ¢, and not, for example, at
an earlier week. However, to allow for, say, a time-lag of one week, the EM P
variable can be modified so that the hazard model at time ¢ is predicted by
EMP at week t — 1. Thus, the variable EM P(t) is replaced in the model by
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the variable EM P(t — 1). We picture the difference in models as follows:
EMP(t) = employment status at week ¢.
Model without lag-time:
h(t|z(t)) = ho(t) exp('yEMP(z,f)\).

same week
Model with 1-week lag-time:
B(tla(t)) = ho(t) exp(y* EMP(t - 1)).
/

one-week earlier

Let L; denote the lag-time specified for the time-dependent variable X @),
Then we can write the general lag-time extended model as:

B(tl() = ho(t)exp (72, Gia? + 02, 32 (¢ — L))
/

xU)(t — L;) replaces 2\ (t)

The estimated general hazard ratio (HR) formula for the extended Cox model
is shown below. The most important feature of this formula is that the PH
assumption is no longer satisfied. This formula describes the ratio of hazards
at a particular time t, and requires the specification of two sets of predictors
at time t. Denote these two sets by 2* and z.

HR _ M)
h(tlz (1))

= exp Zﬁ( *(3) _ ) pz (*(a) 7x<j>(t))

Examples:
Example 1:

Consider the model with one time-independent exposure status variable E and
one time-dependent predictor z(t) = E x t. The extended Cox model is

h(tlz(t)) = ho(t) exp (BE +v(E x 1)) .

The reduced model under Hy : v = 0 contains only the E variable and hence
PH is satisfied. However, when v # 0, it is not. To compare exposed persons
(E = 1) with unexposed persons (F = 0), we have

z'(t) = (E=1LExt=t),

z(t) = (E=0,Ext=0),
and ﬁﬁ(t) = {l(t‘E =LExt=1
h(t|E=0,E xt=0)
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= oxp (B(1-0)+4(t-0))
= exp (B + fAyt) .

If 4 > 0, the ﬁf\{(t) increases exponentially with time. The PH assumption is
certainly not satisfied.

Note that the 4; in the general formula is itself not time-dependent. Thus,
this coefficient represents the “overall” effect of the corresponding time-
dependent variable X ) (t), considering all times at which this variable has
been measured in the study.

Example 2:

Again we consider a one variable model. Let E(t) denote a weekly measure
of chemical exposure status at time ¢. That is, F(t) = 1 if exposed, and =
0 if unexposed, at a weekly measurement. As defined, the variable E(t) can
take on different patterns of values for different subjects. For example, for a
five-week period, subject A’s values may be 01011, whereas subject B’s values
may be 11010. In this model, the values of E(t) may change over time for
different subjects, but there is only one coefficient - corresponding to the one
variable in the model. The 7 coeflicient represents the overall effect on survival
of the time-dependent variable E(t). We picture this as:

E(t) = chemical exposure status at time ¢ (weekly)
_ 0 if unexposed at time ¢t

o 1 if exposed at time t.

E

A (t) 01011
t 12345
B: E(t) 11010
t 12345

h(tlz(t)) = ho(t)exp(vE(t)).
AN

one coeflicient ~y
which represents the overall effect of E().

The hazard ratio formula, which first compares an exposed person to an un-
exposed person at time t; and then compares the same two people at a later
time t5 where they are now both exposed, yields estimated HR’s
hta|E(t) = 1)

h(t1|E(t1) = 0)

= exp(y(1-0))

= ¢, aconstant, and

OR(t;) =
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_ h(ty|E(ty) = 1
HR(tQ) — A( 2| ( 2) )
h(t2|E(t2) = 1)
= exp(§(1-1))
= ¢" =1, a different constant.

This example illustrates that the hazard ratio ﬁf\{(t) is time-dependent. Thus,
the PH assumption is not satisfied.

Example 3:

Let us again consider a model with the exposure variable F in Example 1
along with the variable x(t) = E x the “heavyside” function g(t) where

1 >t
g(t) = { 0 if t < to. (7.1)
The extended Cox model is
B(tla(t) = ho(t) exp (BE +(E x g(1)))

and the hazard ratio is

h(t|lE=1) [ exp(B+7) if t>tg
h(t|E=0) P (ﬁ X g(t)) B { exp(f) if ¢t <tp.

This hazard ratio has two distinct values. It differs over the two fixed intervals,
but is constant over each individual interval.

HR =

An alternate form of this model is:

Bltlz(®)) = ho(t) exp (11 (B x 1) +72 (B x ga(1)))

where
1 if t<t 1 if t>¢
9(t) :{ 0 if t>t8 and g (t) :{ 0 if tztﬁ. (7.2)
The hazard ratio is now expressed as
_h(tlE=1) | exp(ye) if t>tg
HR = h(t|E=0) P (% X g1(8) + 72 x gQ(t)) | exp(n) if t < to.

(7.3)
For v < 0, the graph of this HR is displayed in Figure 7.1.

Treatment of heroin addicts example:

The case study here explores an epidemiologic study on the treatment of
heroin addicts. The data comes from a 1991 Australian study conducted by
J. Caplehorn, et al. (1991). Kleinbaum (1996, pages 229—235) discusses this
data. We present a shortened version of his analysis. The primary purpose of
the Australian study was to compare the retention time in two methadone
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HR

exp(y,)=exp(B)

exp(Y,)=exp(B+y)

—_—

0 t

Figure 7.1 The hazard ratio when the heavyside function is used.

treatment clinics for heroin addicts. A patient’s survival time T' was deter-
mined as the time in days until s/he dropped out of the clinic or was censored
at the end of the study. The two clinics differed according to their overall
treatment policies. Did these two overall treatment policies significantly affect
survival and was there a significant difference between the two effects? The
primary exposure variable of interest is the clinic variable, which is coded as 1
or 2. The data frame is called ADDICTS. A summary of this data set follows.

Australian study of heroin addicts, Caplehorn, et al. (1991)

e two methadone treatment clinics

e T = days remaining in treatment
(= days until drop out of clinic)

e clinics differ in overall treatment policies
e 238 patients in the study

Table 7.1:  Description of ADDICTS data set
Data set: ADDICTS

Column 1:  Subject ID
Column 2: Clinic (1 or 2) « exposure variable
Column 3: Survival status
0 = censored
1 = departed clinic
Column 4: Survival time in days
Column 5: Prison record <+ covariate
0 = none, 1 = any
Column 6: Maximum methadone dose (mg/day)« covariate

Part I:
The following is S code, along with modified output, that fits two K-M curves
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Table 7.2: A compressed ADDICTS data set
ID Clinic Status Days.survival Prison Dose

1 1 1 428 0 50
2 1 1 275 1 55
3 1 1 262 0 55
263 2 0 951 0 65
264 1 1 90 0 40
266 1 1 47 0 45

not adjusted for any covariates to the survival data, conducts a log-rank test
for significant differences between the two clinics’ survival curves, and then
plots the two curves.

> addict.fit <- survfit(Surv(Days.survival,Status)~Clinic,
data = ADDICTS)
> addict.fit
n events mean se(mean) median 0.95LCL 0.95UCL

Clinic=1 163 122 432 22.4 428 348 514

Clinic=2 75 28 732 50.5 NA 661 NA

> survdiff (Surv(Days.survival,Status)“Clinic,data = ADDICTS)
N Observed Expected (0-E)~2/E (0-E)~2/V

Clinic=1 163 122 90.9 10.6 27.9

Clinic=2 75 28 59.1 16.4 27.9

Chisq= 27.9 on 1 degrees of freedom, p= 1.28e-007

> plot(addict.fit, 1lwd = 3,col = 1,type = "1",1lty=c(1, 3),
cex=2,1lab=c(10,10,7) ,x1lab ="Retention time (days) in
methadone treatment",ylab="Percent Retained",yscale=100)

Results:

e The log-rank test is highly significant with p-value= 1.28 x 10~".
e The graph in Figure 7.2 glaringly confirms this difference.
e This graph shows curve for clinic 2 is always above curve for clinic 1.

e Curves diverge, with clinic 2 being dramatically better after about one year
in retention of patients in its treatment program.

e Lastly, this suggests the PH assumption is not satisfied.

Part II:

We now fit a Cox PH model which adjusts for the three predictor variables.
This hazard model is

h(t|z) = hg exp(£1Clinic + S2Prison + S3Dose).
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Retention of Heroin Addicts in Methadone Treatment Clinics
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Figure 7.2 K-M curves for ADDICTS not adjusted for covariates.

The Grambsch-Therneau test of the PH assumption based on the scaled
Schoenfeld residuals discussed in Chapter 6.3.5 is conducted. Recall the S
function coxph.zph provides this test along with a plot of each component of
B(t) against ordered time. A summary of the S output is:

> fitl <- coxph(Surv(Days.survival,Status) ~ Clinic+Prisont+
Dose,data = ADDICTS,x = T) # Fits a Cox PH model

> fitl

coef exp(coef)  se(coef) z )
Clinic -1.0098 0.364 0.21488 -4.70 2.6e-006
Prison  0.3265 1.386 0.16722 1.95 5.1e-002
Dose -0.0354 0.965 0.00638 -5.54 2.9e-008

Likelihood ratio test=64.6

> testph <- cox.zph(fitl) #
#
> print(testph) # Prints the
rho chisq
Clinic -0.2578 11.19 0
Prison -0.0382 0.22 0
Dose 0.0724 0.70 0
GLOBAL NA 12.62 0
> par(mfrow = c(2, 2))
> plot(testph) # Plots the

on 3 df, p=6.23e-014 n= 238
Tests the proportional
hazards assumption
results

p

.000824
.639324
.402755
.005546

scaled Schoenfeld residuals.
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Beta(t) for Clinic

Beta(t) for Dose
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Figure 7.3 Diagnostic plots of the constancy of the coefficients in the fit1 model.
Each plot is of a component of B(t) against ordered time. A spline smoother is
shown, together with £2 standard deviation bands.

Results:
e The GLOBAL test (a LRT) for non-PH is highly statistically significant with
p-value = 0.005546.

e The p-values for Prison and Dose are very large, supporting that these
variables are time-independent.

e The Grambsch-Therneau test has a p-value = 0.000824 for Clinic. This pro-
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vides strong evidence that the variable Clinic violates the PH assumption
and confirms what the graph in Figure 7.2 suggests.

e The plot of Bl (t), the coefficient for Clinic, against ordered time in Fig-
ure 7.3 provides further supporting evidence of this violation.

e We recommend finding a function g(t) to multiply Clinic by; that is, create
a defined time-dependent variable, and then fit an extended Cox model.

Part III: Stratified Cox model

We now stratify on the exposure variable Clinic and fit a Cox PH model to
adjust for the two time-independent covariates Prison and Dose. Modified S
output and a plot of the two adjusted K-M survival curves follow.

> fit2 <- coxph(Surv(Days.survival,Status) ~ strata(Clinic)+
Prison+Dose,data=ADDICTS)

> fit2
coef  exp(coef) se(coef) z P
Prison 0.3896 1.476 0.16893 2.31 2.1e-002
Dose -0.0351 0.965 0.00646 -5.43 5.6e-008

Likelihood ratio test=33.9 on 2 df, p=4.32e-008 n= 238
> survfit(£fit2)
n events mean se(mean) median .95LCL .95UCL

Clinic=1 162 122 434 22.0 434 358 517
Clinic=2 74 28 624 38.1 878 661 NA

# Note that each stratum has one less observation.

# This tells us that the shortest observed retention

# time in each clinic is censored.

> plot(survfit(fit2),lwd=3,col=1,type="1",1ty=c(1,3),
cex=2,lab=c(10,10,7) ,xlab="Retention time (days) in
methadone treatment",ylab="Percent Retained",yscale=100)

> abline(v = 366,1ty=3,1lwd=2)

Results:

e Figure 7.4 provides same pictorial evidence as Figure 7.2; that is, curve for
clinic 2 is always above clinic 1’s curve, with clinic 2 being dramatically
better in retention of patients in its treatment program after about one
year.

e The estimated coefficients for Prison and Dose do not change much. This
gives good evidence that the stratified model does satisfy the PH assumtion;
hence, this analysis is valid.

e Figure 7.4 provides a picture of the effect of Clinic on retention of pa-
tients. But by stratifying on Clinic, we get no estimate of its effect; i.e., no
estimated [3; coeflicient. Hence, we cannot obtain a hazard ratio for Clinic.
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Figure 7.4 K-M curves adjusted for covariates Prison and Dose, stratified by Clinic.

e The exposure variable Clinic must be in the model in order to obtain a
hazard for it. For this reason, we look now to the extended Cox model.

Part IV: An extended Cox model analysis

Here we use a model that contains two heavyside functions (7.2), ¢1(t) and
g2(t), where to = 365 days. Here the hazard model is

h(tlz(t)) = ho(t)exp (ﬁlPrison + B2Dose + v (Clinic X gl(t)>

+ 72 (Clinic X gg(t)))

where
(0 = 1 if t < 365 (t) = 1 if t> 365
G =9 0 if > 365 92 =90 0 if t <365
and
.. 1 if Clinic=1
Chmc_{ 0 if Clinic=2. (7-4)

The hazard ratio for the exposure variable Clinic now varies with time. It
assumes two distinct values depending whether time < 365 days or time >
365 days. The form of the HR (7.3) is

t < 365: HR = exp(m)

t>365: HR = exp(7y2).

Time-dependent covariates effect the rate for upcoming events. In order to
implement an extended Cox model properly in S using the coxph function,
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one must use the Anderson-Gill (1982) formulation of the proportional haz-
ards model as a counting process. They treat each subject as a very slow
Poisson process. A censored subject is not viewed as incomplete, but as one
whose event count is still zero. For a brief introduction to the counting pro-
cess approach, see Appendix 2 of Hosmer & Lemeshow (1999) and the on-
line manual S-PLUS 2000, Guide to Statistics, Vol 2, Chapter 10. Klein &
Moeschberger (1997, pages 70—79) discuss this counting process formulation.
They devote their Chapter 9 to the topic of modelling time-dependent covari-
ates. For a more advanced and thorough treatment of counting processes in
survival analysis, see Fleming and Harrington (1991).

The ADDICTS data set must be reformulated to match the Anderson-Gill
notation. To illustrate this, consider the following cases: In both cases the ¢
denotes the patient’s recorded survival time, whether censored or not.

Case 1: For t < 365, ¢g1(t) = 1 and g¢2(t) = 0. Here a patient’s data record is
just one row and looks like this:

Start Stop Status Dose Prison Clinicglt Clinicg2t

0 t same same same Clinic 0

Case 2: For t > 365, ¢g1(t) = 0 and g¢2(t) = 1. Here a patient’s data record is
formulated into two rows and looks like this:

Start Stop Status Dose Prison Clinicglt Clinicg2t

0 365 0 same  same Clinic 0
365 t same same same 0 Clinic

The following S program puts the ADDICTS data set into the counting process
form and then fits the extended Cox model stated above. We employ the
function extcox.1Et (DATA,t(). The arguments are: DATA: a data frame; tg:
specified time for the heavyside functions g1 (t) and go(t). One must put the
exposure variable and the time variable into columns 2 and 4, respectively.
Although this is designed for one exposure variable, it can be easily extended
to more than one. The output from coxph has been modified. From expression
(7.4), to is set to 365.

> out <- extcox.1Et (ADDICTS,365)

# The fitted extended Cox model is:

> Clinicglt <- out$ET1 # Exposure x gl(t)

> Clinicg2t <- out$ET2 # Exposure x g2(t)

> fit3 <- coxph(Surv(Start,Stop,Status) ~ Prisont+Dose+
Clinicglt+Clinicg2t,data=out)
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Table 7.3:  Summary of the fitted extended Cox model
HR
coef  exp(coef) se(coef) =z p

Prison  0.3779 1.459 0.16841 2.24  2.5e-002
Dose -0.0355 0.965 0.00643 -5.51 3.5e-008
Clinicglt 0.4594 1.583 0.25529 1.80 7.2e-002
Clinicg2t 1.8284 6.224 0.38567 4.74 2.1e-006

Likelihood ratio test=74.2 on 4 df, p=2.89e-015 n=360

Table 7.4: 95% Confidence
intervals for Clinic’s HR’s

95% C.I.’s for the Clinic’s HR’s

t < 365: 0.960,2.611]
t > 365: 2.922,13.254]

Results:

e Table 7.3 shows a borderline nonsignificant HR = 1.583 with p-value =
0.072 for the effect of Clinic when time < 365 days. But for ¢ > 365, the
HR = 6.224 is highly significant with p-value = 2.1 x 1076,

e Table 7.4 reports confidence intervals for the two HR’s. The general form
of these 95% C.1.’s is exp(coef £ 1.96 X se(coef)). The 95% C.I. for the HR
when t precedes 365 covers 1 and is narrow. This supports a chance effect
due to clinic during the first year. The 95% C.I. for the HR when ¢ > 365
lies above 1 and is very wide showing a lack of precision.

e These findings support what was displayed in Figure 7.4. There is strong
statistical evidence of a large difference in clinic survival times after one year
in contrast to a small and probably insignificant difference in clinic survival
times prior to one year, with clinic 2 always doing better in retention of
patients than clinic 1. After one year, clinic 2 is 6.224 times more likely to
retain a patient longer than clinic 1. Also, clinic 2 has ﬁ ~ 16% the risk
of clinic 1 of a patient leaving its methadone treatment program.

e See Kleinbaum (1996, Chapter 6) for further analysis of this data.

e An alternative regression quantile analysis as presented in Chapter 8 may
be appropriate when the PH assumption seems to be violated.
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7.2 Competing risks: cumulative incidence estimator

Objectives of this section:

After studying Section 7.2, the student should:

1. Know the definition of a competing risk and give examples.

o

A

Understand why 1—-KM fails as an estimate of failure probabilities when a
competing risk is present.

Understand what the observable quantities are.
Know the quantity referred to as the cumulative incidence function.
Know the definition of the cause-specific hazard function.

Know the definition of the cumulative incidence (CI) estimator and
how to compute it in S.

Understand why the CI estimator is the appropriate quantity to use in the
presence of a competing risk when estimation of failure probabilities from
the event of interest by time t is the goal.

The material presented here is an adaptation of Gooley et al. (1999, 2000) and
of material found in Kalbfleisch & Prentice (1980), Chapter 7, pages 163—169.
Here we use KM to denote the K-M estimator of survival.

A competing risk is defined as an event whose occurrence either precludes
the occurrence of the event under examination or fundamentally alters the
probability of occurrence of this event of interest.

Examples:

1.

The cohort under study is a group of patients all diagnosed with insulin
dependent diabetes mellitus (IDDM). The outcome of interest is the occur-
rence of end-stage renal failure. Let T = time from diagnosis of IDDM to
end-stage renal failure. We wish to estimate the probability of developing
end-stage renal failure by time ¢; i.e., P(T < t). A competing risk could be
death without end-stage renal failure. If a patient with IDDM dies without
renal failure, it is impossible for the patient to experience the outcome of
interest — time to end-stage renal failure.

A potential complication among patients who receive a bone marrow trans-
plant is known as chronic graft-versus-host disease (CGVHD), and the
probability of this complication is often an outcome of interest in clini-
cal trials. For this example we take the occurrence of CGVHD to be the
failure of interest. Competing risks for the occurrence of CGVHD are death
without CGVHD and relapse without CGVHD. Relapse is considered to be
a competing risk because patients who experience a relapse of their disease
are often withdrawn from the immunosuppressive therapy, where this ther-
apy is given primarily as prophylaxis for development of CGVHD. Relapse
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therefore fundamentally alters the probability of occurrence of CGVHD
and for this reason is regarded as a competing risk.

When all deaths can be attributed to a single “cause of interest,” the KM
method gives a consistent estimate of the survival function in the presence
of right censoring. However, when patients leave the study (die or are with-
drawn) for other causes, the KM estimate becomes biased. That is, it fails to
handle competing-risk deaths appropriately. In this section we introduce the
cumulative incidence (CI) estimator, which continues to be consistent when
competing risks as well as random censoring occurs.

In the presence of competing risks three mutually exclusive outcomes are
possible for each patient under study:

1. fail from event of interest,
2. fail from competing risk, or

3. survive without failure to last contact (censored).

1—KM does not handle failures from a competing risk in its calculation as
it treats competing-risk failures as censored. But this is wrong. What’s the
difference?

e Censored patients (not failed by last contact) still have the potential to fail.

e Patients who fail from a competing risk no longer have the potential to fail
from the event of interest.

As 1—KM treats competing-risk failures as censored, we learn from the redistri-
bute-to-the-right algorithm detailed in Table 2.2 of Chapter 2.1 that failures
occurring after a competing-risk failure contribute more than is appropriate.
This overestimates the probability of failure from the event of interest at all
times after the competing-risk time. This is a result of redistributing to the
right a potential amount that does not exist.

Let’s consider the following hypothetical data where z;, i = 1,...,5 denotes
the distinct times, “+” denotes a censored time, and “-” denotes a death time
from cause of interest. There are a total of 7 observed values. On a time line
we have

Suppose the two censored times at z3 are now competing-risk failures. Follow-
ing the redistribute-to-the-right algorithm, the 1—KM estimate, for example
at zy4, is % But this is inappropriate. All 7 patients have complete follow-up
to time z4. This means each has either
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1. experienced the event of interest— there are 4,
2. failed from a competing risk— there are 2, or

3. is still alive (survived beyond z4)— there is 1.

Therefore, the estimate of probability of failure from the event of interest by
time 24 is %. The CI estimate does give this correct value %.

More formally, let T} denote the time for the event of interest (type 1 failure)
to occur. Let T5, which is assumed to be independent of T, denote the time
for a competing risk (type 2 failure) to occur. Although we are interested in
estimating the probability of type 1 failure by time ¢, we can only observe T;1,
a type 1 failure time for the ¢th patient, when T;; < Tj2.,7 =1,...,n. Hence,
the estimable quantity of interest is

P(T1 <tand T} < TQ) (75)

This quantity increases to P(Ty < T5) as t increases to oo. When there are no
censored values present, this quantity is directly estimated by the observed
proportion

# of observed type 1 failure times < ¢

n

Let Thy = min{Ty, T>} and let £ denote the cause-specific failure of either type
1 or type 2. Then £ = 1 or 2. The observable event {7} <t and T} < Tz}
is equivalently expressed by the event {Th; <t and £ = 1}. Let F(¢) denote
the probability of this event. Then

Fl(t) = P(T1 <tand T; < TQ) = P(TM <t and fi 1) (76)

Kalbfleisch and Prentice (1980, page 168) name F (t), a subdistribution func-
tion, the cumulative incidence function.

We now derive an expression for Fi(t) which lends itself to be easily esti-
mated by a function of known estimators that accommodate right-censored
observations. Following the definition of hazard function on page 6, the cause-
specific hazard function for a type 1 failure by time ¢ is defined to be

Pt<Ty <t+At,E=1|Ty >1t)

h(t) = Aligo At
. P<Tuy<t+At,E=1) 1
= lim X
At—0 At Sm (t)
_  _hQ@®
- S (t) ?

where Sj(t) denotes the survival function of Thy and f1(¢) is the subdensity
corresponding to Fi(t). Let Hy(t) denote the type 1 cause-specific cumulative
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hazard function. Then
Fi(t) = P(Tuy<t¢=1)

I
=
S
S~—
Y
S

Thus, when censored values are present, we use the Nelson-Aalen estimator
(2.9) for Hy(t) along with an appropriate empirical estimate of Sy (¢).

To construct this estimate we assume the n patients under study will experi-
ence one and only one of three distinct outcomes and the times at which these
outcomes occur are ordered t; < ... <t,. Let z; denote the distinct ordered
observed times, j = 1,...,m < n. The three potential outcomes for a patient
at time z; are

1. type 1: patient fails from event of interest at z;,
2. type 2: patient fails from a competing risk at z;, or
3. censored: patient has not failed from either cause, but has follow-up only

to Zj.

Let

n = total # of patients under study; # initially at risk,

ej = # of patients who have type 1 failure at z;,

r; = # of patients who have type 2 failure at z;,

c;j = # of patients who are censored at z;,

= # of patients who are at risk of failure beyond (to the right of) z;, and
n;_, = # of patients who are at risk just before z;.

Then n =n — Zizl(ek + 7 + k).
The KM estimate of survival without failure of type 1 is
ni_, —e;
KM (t) = H (ﬂj) :
k2 <t nj_l

Note that:

1. KM (¢) is calculated by censoring the patients who fail from a competing
risk.

2. . estimates the hazard of type 1 failure at time z;.
j—1

3. KM;(t) does not depend on hazard of type 2 failure.
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The KM estimate of survival without failure of type 2 is

KM (t) = [ <n3:7_”> .

z; <t

An overall KM survivor function, KMj»(t), is obtained by considering failures
of any type as events and represents the probability of surviving all causes of
failure beyond time t¢. Define KM(t)12 as

KMlg(t) = KMl(t) X KMg(t)

This estimates the quantity Sps(t) = P(min{Ty,T2} > t). The estimate
KM;5(t) does depend on the hazard of each failure type.

Replacing Sy (u) with the KMis(u) estimate along with the Nelson—Aalen es-
timate Hy(u) = —— vyields the CI estimator defined by Kalbfleisch

z;<u n*—1
= J

and Prentice (1980, page 169). More precisely, let CI(¢) denote the CI estima-
tor. Then

e
CI(t) = J . .
t)=> % KM (z;) (7.7)
zj <t Jj—1
Note that the CI estimator depends on estimates of the hazard of each failure

type.

Now, any appropriate estimator for the CI function should change when and
only when a patient fails from the event of interest (type 1). Each time a failure
occurs the estimate should increase (jump) by a specified amount. Otherwise,
there should be no jump. Hence, an appropriate estimate of the probability
of type 1 failure by time ¢ can be alternatively represented as

I(t) = > J(z)e;,

Zj St

where J(z;) represents a patient’s contribution to the “jump” in the estimate
at time z;. As will be seen, the “jump” sizes differ for 1-KM and CI because of
the way each is calculated. We exploit the redistribute-to-the-right algorithm
to give an equivalent representation for CI and KM which makes them easy to
compute and elucidates why the CI estimator provides an appropriate estimate
of the probability of failure from the event of interest by time ¢.

Let Jci(t) and Jy(t) denote the J(¢) for the CT and KM estimates, respec-
tively. Recall that the potential contribution to the estimate of probability of
failure by time ¢ from the event of interest for censored patients is equally
redistributed among all patients at risk of failure beyond time ¢. Initially, all
patients are equally likely; and hence, each has potential contribution 1/n to

the estimate. Therefore )
J = —.
01(21) n

If censored, redistribute to the right equally the amount (1/n) x ¢;. Now, let
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Jei(z;) equal an individual’s potential contribution to the estimate of proba-
bility of failure from the event of interest at time z;. If censored, this amount
is equally redistributed to all patients to the right. There are n} of them.
Hence,

Jei(z;
M x ¢; = additional contribution given to
" each to the right.

Therefore, each of the n} patients’ potential contribution at time point z;44
is
J "
Jor(zin) = Jor(z) + 22 i e
= Jai(z) (1 + ,C,—?) ;

J

where j = 0,...,m <n—1, and Jei(z0) = Jci(z1) = 1/n with zg = 0 and
co = 0. It can be shown the CI estimator defined by Kalbfleisch and Prentice
is precisely expressed as

CI(t) = Z JCI(Zj) (1 + %) €41,

z; <t

where j = 0...,m < n — 1. Note that if e; = 0, the patients at z; are either
censored or have failure type 2 and CI(¢) will not increase. If a patient dies
from a competing risk at z;, his contribution is not redistributed and his
contribution becomes zero beyond time z;.

Following from Table 2.2 of Chapter 2.1, the 1-KM estimate at time point
zj+1 calculates each of the n} individuals’ potential contribution to the jump
by

W

Jim(zj+1) = Jxm(25) (1 + w>

and thus the 1—KM estimate is reexpressed as

1-— KM(L‘) = Z JKM(Zj) (1 + (Cjn%rj)> €j+1-

z; <t J

Here we see precisely why 1—-KM fails to be an appropriate estimate of the
probability of failure from the event of interest by time ¢. It treats a competing-
risk failure as censored and, hence, redistributes its potential contribution to
the right. In the calculation of the CI, patients who die from a competing risk
are correctly assumed to be unable to fail from the event of interest beyond
the time of the competing-risk failure. They have no potential to redistribute-
to-the-right. If there are NO failures from a competing risk,

1—-KM = CI.

But if competing-risk failures in the observed times exist, 1-KM > CI at
and beyond the time of the first failure from event of interest that follows a
competing-risk failure.
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We illustrate the calculation of both estimators in Table 7.5. We consider
the following hypothetical data of eight observations where an “r” denotes
a competing-risk failure and “4” denotes a censored observation. There are
m = 6 distinct times, two censored times, and one competing-risk time.

On a time line we have

Table 7.5:  Comparison of CI(t) and 1-KM(t) in the presence of a
competing risk

ziomy e ¢y Jalze) o CIE) Jkm(z41)  1-KM(E)

0 8 0 0 0 i 0 1 0
a7 10 0 jaef=b b daeh=i 4
25 2 0 0 Ja+P=F 3 F0+P=f
53 0 2 0 =} I ja+H=i 1
22 2 0 0 1 f(1+23)=2 2 La+2)=2 3
51100 H0+9)=5% §F H0+dh=% &#
% 0 1 0 0 H0+9=5 B Fa+PH=F 1

Because of lack of book space we do not provide an example. However, Gray
(2002) provides a competing risks library which provides functions to compute
CI estimates along with estimated variances. The library is available on the
web to download. It is called cmprsk and is designed for S-PLUS 3.4 unix
platform, for S-PLUS 2000 with Windows 95 or later, and for R with Win-
dows 95 or later. The library contains functions for analysis of subdistribution
functions (7.5 or 7.6) in competing risks. The function cuminc() computes
the CI(¢) estimator (7.7), which estimates subdistributions and performs a
nonparametric test for equality of subdistributions across groups. Ancillary
functions print.cuminc() and plot.cuminc() are also included. For the
S user, go to http://biowww.dfci.harvard.edu/~gray. Scroll downward.
There you will find two versions of the cmprsk library. For the R user, go to
http://www.r-project.org/. Then click on CRAN on the left. Click any
site in the list; for example, ETH Ziirich. Then — Windows (95 or later)
— contrib — cmprsk.zip.
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7.3 Analysis of left-truncated and right-censored data

According to Cox and Oakes (1984, page 2),

The time origin need not always be at the point at which an individual enters
the study, but if it is not, special methods are needed.

In this section we consider left-truncated and right-censored (LTRC) data. We
describe how the K-M estimator (2.2) and its standard error (2.3) for right-
censored data are extended to analyze LTRC data. We also describe how to
extend the Cox PH model, discussed in Chapter 5, to analyze LTRC data.

Objectives of this section:
After studying Section 7.3, the student should:

1. Be able to identify LTRC data and know how to construct the likelihood
function.

2. Know how to compute the modified Kaplan-Meier (K-M) estimate
of survival and modified Greenwood’s estimate of asymptotic variance
of modified K-M at time t.

3. Know how to plot the modified K-M curve over time ¢ in S.

4. Know how to implement the S function survfit to conduct nonparametric
analysis.

5. Know how to plot two modified K-M curves to compare survival between
two (treatment) groups.

6. Know how to implement the S function coxph to run Cox PH model for
LTRC data.

Cox and Oakes (1984, pages 177—178) explain left truncation arises when
individuals come under observation only some known time after the natural
time origin of the phenomenon under study. That is, had the individual failed
before the truncation time in question, that individual would not have been
observed. Therefore, in particular, any contribution to the likelihood must
be conditional on the truncation limit having been exceeded. If for the ith
individual the left truncation time limit is x;, possibly zero, and the individ-
ual either fails at time ¢; or is right-censored at ¢;, the contribution to the
likelihood for a homogeneous sample of individuals is either

f(t:) or Silei)
Sp(w;) Sg(wi)

Examples:

1. In epidemiological studies of the effects on mortality of occupational expo-
sure to agents such as asbestos, the natural measure of time is age, since
this is such a strong determinant of mortality. However, observation on
each individual commences only when he/she starts work in a job which
involves exposure to asbestos (Cox and Oakes, 1984).



ANALYSIS OF LEFT-TRUNCATED AND RIGHT-CENSORED DATA 203

2. In industrial reliability studies, some components may already have been
in use for some period before observation begins (Cox and Oakes, 1984).

3. Left truncation occurs in astronomy often as one can only detect objects
which are brighter than some limiting flux during an observing session
with a given telescope and detector. The magnitude limit of the telescope
and detector can be considered as a left truncation variable. There is a
great need for statisticians to evaluate methods developed over decades by
astronomers to treat truncated data (Babu and Feigelson, 1996).

4. Woolson (1981) reported survival data on 26 psychiatric inpatients admit-
ted to the University of Iowa hospitals during the years 1935 — 1948. In
this study, the time of interest is the death time of each psychiatric inpa-
tient. To be included in the study, one must have experienced some sort of
psychiatric symptom. One’s age at admission to the hospital is one’s left
truncation time as anyone who has not experienced a psychiatric symptom
will not be included in this study. This data set is analyzed throughout this
section.

Each individual has a left truncation time (delayed entry time) X;, a lifetime
T;, and a censoring time C;. Denote k(-) a p.d.f. of X, f(-) and S¢(-) a p.d.f.
and a survivor function of T', respectively, and g(-) and Sy(-) a p.d.f. and
a survivor function of G, respectively. On each of n individuals we observe
(X;,Y:,6;) where

1 if X;<T;<C;

Yi =min(7;,C;)  and 6 = { 0 if X;<C<T;.

Hence we observe n iid random triples (X;,Y;,d;). The times X;, T;, and C;
are assumed to be independent.

The conditional likelihood function of the n iid triples (X;,Y;,d;) given T; >
X, is given by

T ((F@a) S () S (i) éil k(x:)g(yi) Sy (y:) 1-5;
- 11:[1( Sg(z) ) ( St (@) )

n N
<HHmmMy )(Hf% &% >.

The derivation of the conditional likelihood is as follows:

PX=2,Y=90=0T>z) = PX=2,C=y,C<T|T>x)
_ PX=2C=yy<T)
- Sg(z)
(by independence) = M@ﬂc;@f@<n
k(x)g(y)Ss(y)
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PX=2T=yT<C)

PX=z,Y=y6=1T>z) =

Sy(x)
_ k@P(T=yy<C) k@) f(y)S%Wy)
Sf(l‘) Sf(x) .

Hence, the conditional p.d.f. of the triple (X,Y,d) given T > X (a mixed
distribution as Y is continuous and ¢ is discrete) is given, up to a multiplicative
constant, by the single expression
6S 1-0 h 6S
Plz.y.6) = f)°Sely) ™" _ h(y) f(y)’ (7.8)
Sy() Sy(x)

where h(-) is the hazard function of T

Remarks:

1. When all the left truncation time limits z}s are zero, LTRC data become
right-censored (RC) data.

2. Left truncation is substantially different from left censoring. In left censor-
ing, we include in the study individuals who experience the event of interest
prior to their entry times whereas in left truncation we do not.

3. Tsai (1990) considers a test for the independence of truncation time and
failure time. He develops a statistic generalizing Kendall’s tau and pro-
vides asymptotic properties of the test statistic under the independence
assumption.

4. Efron and Petrosian (1992) also consider a test of independence for trun-
cated data. They develop a truncated permutation test for independence
and apply it to red shift surveys in astronomical studies.

5. Although we mainly focus on nonparametric methods of analysis, we briefly
consider the exponential model and leave the details as an exercise. With
f(t; A) = Aexp(—At), each individual’s contribution to the likelihood is

either
f(t;A)  Xexp(—At)

Si(w;\)  exp(—Az)
S¢(e;A)  exp(—AXc)
= = —Ac—x)).
Se(z;A)  exp(—Ax) exp(=A(e - 7))
Then for a sample of n iid triples (X;,Y;,d;) from exponential distribution
with the parameter A, the joint likelihood function is given

ﬁ ()\ exp(—A(t; — a:i)))di . (exp(—)\(ci — xz)))

i=1

= A\ eXp(—AZ:(yi —xi)), (7.9)

where n,, is the number of uncensored observations. WHY! One can easily

= Aexp(—=A(t — z))

or

1-9;
L(X)
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notice that this is almost identical to the joint likelihood for RC data from
the exponential distribution with the parameter A. The only difference is
that we now have y; — z; instead of y; in the likelihood.

7.83.1 Modified Kaplan-Meier (K-M) estimator of the survivor function for
LTRC data

Modified K-M estimator adjusts the K-M estimator to reflect the
presence of left truncation.

This estimator along with a modified estimator of its variance was proposed
by Tsai, Jewell, and Wang (1987). On each of n individuals we observe the
triple (X;,Y;,d;) where

Yi = min(T;, Cy) and 6; = { 0 if X;<Ci<T.

Let t(1),...,t( denote the r < n distinct ordered (uncensored) death times,
so that t(;) is the jth ordered death time. We now define the modified risk
set R(t(i)) at ;) by

where
n;, = Fin R(t(i))
= # left-truncated before ¢(;) and alive (but not censored) just

before ;)

d; = # left-truncated before ¢(;) but died at time £;

pi = P(surviving through (; | left-truncated before ¢(;) and alive just
before t;))

% = l—pi

Notice the size of the risk set may not decrease strictly monotonically as the
death time increases in contrast to the case of RC data. The estimates of p;
and ¢; are

o> dZ o ~ dz i_di
¢; = — and pizl—qizl__:<n—).
n; n;

%

The modified K-M estimator of the survivor function is

se=[Ir=1] (n;d) =ﬁ(n;d) (7.11)

ty <t t(,i)gt i=1

where t(k:) <t< t(k+1)~
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Psychiatric inpatients example:

ADDITIONAL TOPICS

Table 7.6 displays the psychiatric inpatients’ data introduced on page 203. We
use this data set to compute the modified K-M survival function estimate and
the modified Greenwood’s estimate of the variance of the survival function.
We first modify Table 7.6 into the form of LTRC data, Table 7.7. Here Y
equals Age at entry plus Yrs of follow-up. In the next section, we also use this
data set to show how to run the Cox PH model for LTRC data. We now

Table 7.6:  Survival and demographic data for 26 psychiatric patients

Sexx Age at entry Follow-upf Sexx

Age at entry Follow-upf

51
%)
21
25
47
31
25
33
30
43
35
35
36

HmHEmHZ-HZ2g™g™Z ™o

1
2
30+
32
14
31+
33+
35+
31+
26
35+
30+
40

SEEEmEEmEEE T

58
28
19
48
25
24
30
36
41
45
29
32
32

1
22
28
11
36

33+
37+
25
22
24
34+
35
39+

*xF = female, M = male; {Yrs from admission to death or censoring;
+ = censored (Source: Woolson (1981))

Table 7.7:  Survival data for psychiatric patients in LTRC

format
Sex entry futime status Sex entry futime status
F 51 52 1 F 58 59 1
F 55 57 1 F 28 50 1
M 21 51 0 M 19 47 1
F 25 57 1 F 48 59 1
F 47 61 1 F 25 61 1
F 31 62 0 M 24 57 0
M 25 58 0 F 30 67 0
F 33 68 0 M 36 61 1
M 30 61 0 M 41 63 1
F 43 69 1 F 45 69 1
F 35 70 0 M 29 63 0
M 35 65 0 M 32 67 1
F 36 76 1 M 32 71 0

consider the psychiatric inpatients’ data on a time line where an “x” denotes
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W

an entry time (age at entry), “o” a death time (age at entry plus years from
admission to death), and “” a right-censored time (age at entry plus years
from admission to censoring). Figure 7.5 graphically presents Table 7.7.

[
T
K 3 3 — 3 ri }
x 28 3031 33 3536 43 45 4748 505152 55 @58 @62 6768 ® 70 76
25 57 59 61 69

Figure 7.5 Graphical presentation of LTRC data.

We now compute the modified K-M estimate of the survivor function (7.11).

S0) = 1
5(0) = §(0) x 12151 = 917
S5(52) = 8(50) x 2-1_ s, (7.12)

Note that the one who entered at the age of 28 but died at 50 is not included
in the risk set R(52). The rest of the computation is left as Exercise 7.1.

Estimate of variance of §(t): modified Greenwood’s formula
a (50) = 80) Y eyt ()
ni(n; — d;) — ni(n; —d;)’
bt <t i=1
where t;) <t < {(.41). Example with the female group in the psychi data:

(& 1 1
var (5(52)> = (84 (12(12 "t eaoy

se. (5(52)) = .1034. (7.14)
(5(52))

) = .0107

The theory tells us that for each fixed value ¢
S(t) & normal (S(t), ar (§(t))) .

Thus, at time ¢, an approximate (1 — «) x 100% confidence interval for the
probability of survival, S(t)=P(T > t), is given by

S(t) + 70 x s.e. <§(t)) : (7.15)
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where s.e. (§ (t)) is the square root of the modified Greenwood’s formula for
the estimated variance.

We now plot the two modified Kaplan-Meier (K-M) survivor curves using S.
This plot displays a difference in survival between the two groups. Figure 7.6
displays the estimated survival curves for the psychiatric inpatients. The psy-
chiatric data is stored in a data frame named psychi. The S function Surv
needs three arguments; it calls the left truncation entry, the observed time
futime, and the censoring indicator status. This is very similar to the setup
needed for an extended Cox model on page 193 in S.

1.0

0.8
1

—— female (n=15)
=== male (n=11)

' |

ages

0.6
1

Survival Probability
0.4

0.2

0.0
1

Figure 7.6 The estimated survival curves for psychiatric inpatients under LTRC.

> attach(psychi)
psychi.fit0 <- survfit(Surv(entry,futime,status) ~ sex)
> plot(psychi.fit0,1lwd=2,col=1,type="1",1ty=c(1,3),
xlab="ages",ylab="Survival Probability")
> legend(20,0.7,type="1",1ty=c(1,3),
c("female (n=15)","male (n=11)"),col=1)
> summary (psychi.fitO) # Displays the survival probability
# table for each group. The output is omitted.
> psychi.fitO
n events mean se(mean) median 0.95LCL 0.95UCL
sex=F 15 11 63.7 2.39 61 57 NA
sex=M 11 4 65.0 2.26 67 63 NA
> detach()

\"



ANALYSIS OF LEFT-TRUNCATED AND RIGHT-CENSORED DATA 209
Results:

e Notice the estimated mean and median survival times of men are higher
than those of females.

e The crossing modified K-M curves suggest that there is no significant differ-
ence in the lengths of lives between males and females. However, we notice
that males have larger survival than females between early fifties and mid
sixties. This suggests that the PH assumption is not satisfied.

To see the effect of mistreating LTRC data as RC data, we plot the two
survival curves for each sex on the same graph.

> fem <- psychilpsychi[,1]=="F",] # Females only

> psychi.fitl <- survfit(Surv(futime,status) ~ 1,data=fem)

> psychi.fit2 <- survfit(Surv(entry,futime,status) ~ 1,data=fem)

> male <- psychi[psychi[,1]=="M",] # Males only

> psychi.fit3 <- survfit(Surv(futime,status) ~ 1,data=male)

> psychi.fit4 <- survfit(Surv(entry,futime,status)”1,data=male)

> par (mfrow=c(1,2))

> plot(psychi.fitl,mark.time=F,conf.int=F,xlab="ages",
ylab="Survival Probability",main="Female’s Survival")

> lines(psychi.fit2,mark.time=F,1ty=3)

> legend(locator(1),c("RC","LTRC"),1ty=c(1,3))

> plot(psychi.fit3,mark.time=F,conf.int=F,xlab="ages",
ylab="Survival Probability",main="Male’s Survival")

> lines(psychi.fit4,mark.time=F,1lty=3)

> legend(locator(1),c("RC","LTRC"),1ty=c(1,3))

Figure 7.7 displays the estimated survival curves for each sex under the RC
and LTRC data, respectively. It is clear that the estimated survival curve for
female under the RC data setup lies above the corresponding estimated sur-
vival curve under the LTRC data setup. On the other hand, the two estimated
survival curves for male coincide. WHY! This shows that mistreating the left
truncation leads to overestimation of the survival probabilities.

7.3.2 Cox PH model for LTRC data

Suppose we have n iid observations (X;,Y;,d;,Z,), ¢ = 1,...,n, where X; is
the left truncation time, Y; = min(7;, C;) the observed failure time, d; = 1
it X; <T;, <Y,ord =0if X; <Y, <1, and Z; is the covariate. To
estimate the regression coefficients with LTRC data, the partial likelihood for
RC data (6.21) is modified to account for delayed entry into the risk set. It
is easy to see that the modified partial likelihood for LTRC data in terms
of all n observed times is given as follows:

n ’ 9
L) =11 < p<_@(g;g>> | (7.16)

=1 \ 2R () P
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Figure 7.7 The estimated survival curves under RC and LTRC data setups.

where R(y;) is the risk set at y; defined in expression (7.10). With this modi-
fication, the methods discussed in Chapter 5 carry out. We shall illustrate the
methods in the following psychiatric inpatients example.

> psychi.cox <- coxph(Surv(entry,futime,status) ~ sex)
> psychi.cox # Check if sex has a moderately large p-value.
coef exp(coef) se(coef) z P
sex -0.26 0.771 0.3 -0.866 0.39

The following output shows the three tests — LRT, Wald, and efficient score
test — indicate there is no overall significant relationship between sex and
survival time. That is, it does not explain a significant portion of the variation.

> summary (psychi.cox)
Likelihood ratio test= 0.8 p=0.3
Wald test = 0.75 on 1 df, p=0.387
Score (logrank) test = 0.7 0.3

To see the effect of mistreating LTRC data as RC data, we run coxph by
treating the psychi data as merely RC data and compare the result with what
we obtained from LTRC.

> psychi.coxl <- coxph(Surv(futime,status) ~ sex)
> psychi.coxl # Check if sex has a moderately large p-value.
coef exp(coef) se(coef) z P
sex -0.222 0.801 0.299 -0.742 0.46
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> summary (psychi.coxl)

Likelihood ratio test= 0.58 on 1 df, p=0.445
Wald test = 0.55 on 1 df, p=0.458
Score (logrank) test = 0.56 on 1 df, p=0.454

> detach()

The output above shows that the regression parameter estimate from RC
setup, (-0.222), is not much different than that from LTRC setup, (-0.26). The
estimated standard errors are almost identical (0.299 versus 0.3). The three
tests — LRT, Wald, and efficient score test — also indicate there is no overall
significant relationship between sex and survival time. That is, it does not
explain a significant portion of the variation. In this small data set (n = 26),
mistreating the LTRC data as RC data doesn’t seem to have any significant
differences in terms of the regression parameter estimate and its standard
error estimate. However, in general it may lead to biased regression parameter
estimates and their standard error estimates.

Result:

e As we noticed in Figure 7.6, the Cox PH model is not a good choice as the
p-value is too big for each of the three tests.

Discussion

e Treating LTRC data as merely RC data may lead to a severe overestimation
of the survival probability.

e Treating LTRC data as merely RC data may also lead to biased regres-
sion parameter estimates and their standard error estimates from Cox PH
model.

e A key assumption for Cox PH model with LTRC data is that the left
truncation X and the failure time 7" are independent, given the covariates

Z. If this assumption is violated, other methods are needed. See Keiding
(1992) for more details.

e Depending on the interest of study, the left truncation variable can be used
as a covariate. For example, if the time of interest had been the time to
death since the admission to the Iowa hospital for psychiatric inpatients
considered in Tsuang and Woolson (1977), one could have used the entry
time as a covariate. Let’s see what happens under this setup. We leave the
details as Exercise 7.3.

e The psychiatric data we reanalyzed here is only a part of a much larger
sample of 525 psychiatric inpatients in Tsuang and Woolson (1977). It
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seems that analyzing the original data would be worthwhile as the data set
at hand is only one-twentieth of the original. The survival curves between
males and females might be substantially different from what we have.
Depending on the estimated survival curves, the Cox PH model may need
to be considered again.

The S function survdiff and survReg do not work for LTRC data. As far
as we know, there is no commercial statistical software that performs log-
rank test and parametric regression modelling for LTRC data. This needs
to be done somewhere else.

However, for the Cox PH model, the methods used for the RC data such as
variable selection method by stepAIC, stratification, and diagnostic check-
ing methods carry over well to LTRC data.

7.4 Exercises

A.

7.1

7.2

7.3

B.

7.4

7.5

Applications

Complete by hand the survivor estimate in expression (7.12) on page 207.
Now use survfit to obtain the survivor estimate. Does your computation
match the survfit output?

Complete by hand the variance estimate in expression (7.14) on page 207.
Now use survfit to obtain the survivor estimate. Does your computation
match the survfit output?

Run coxph assuming the entry time as a covariate. That is, run coxph with
covariates, age at entry and sex. Start with two-way interaction model and
find the best model. Draw a martingale residual plot. Is a cut point analysis
necessary? If so, find a cut point and compare your results.

Theory and WHY!

This problem requires a closer look at expression (7.9).

(a) Prove expression (7.9).

(b) Find by hand the MLE of A.

Hint: To find the MLE by hand, take the derivative of the log of the
likelihood function (7.9) with respect to A and set it equal to zero. The
solution is the MLE.

(c¢) Find the MLE of X\ by treating as if the data were RC data. How large
is the difference between the two MLE’s, one under LTRC data and the
other under RC data?

Hint: See page 71.

Answer the WHY! on page 209.
Hint: See expression (7.10) and figure out the modified risk set.



CHAPTER 8

Censored Regression Quantiles
by Stephen Portnoy

An alternative to the Cox PH model

When the Cox PH model fails to hold, an alternative methodology called
censored regression quantiles can find general departures from the PH
model and important forms of heterogeneity. This chapter suggests censored
regression quantiles as a useful complement to the usual Cox PH approach.

Objectives of this chapter:
After studying Chapter 8, the student should:

1. Understand the definition of conditional quantiles.

2. Become familiar with the regression quantile model and how to interpret
it, especially in terms of population heterogeneity.

3. Know the basic properties of regression quantiles.

4. Understand the censored regression quantile model and how to use it to
analyze censored survival data.

5. Know the difference between the censored regression quantile model and
the Cox PH model. Especially, know what censored regression quantiles
can provide for data interpretation that is lacking in an analysis based on
a Cox PH model.

8.1 Introduction

The Cox PH model imposes structure on the hazard function. In a fundamen-
tal way, it considers survival as a stochastic process, and models the rate
of change from one state to another. However, in many situations, both the
basic data and the questions of interest involve survival times. Thus, it is often
valuable to have flexible models that pertain directly to the survival times.
In fact, one such approach is called the accelerated failure time model
presented in Chapter 4.4 and posits a linear regression relationship between
the logarithm of the survival times and the covariates. Emphasizing the fact
that this is often more natural, Sir David Cox has written:

213
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Of course, another issue is the physical or substantive basis for the proportional
hazards model. I think that’s one of its weaknesses, that accelerated life models
are in many ways more appealing because of the quite direct physical interpreta-
tion the accelerated failure time model offers. See Reid (1994).

Although accelerated failure time models have been extended to allow for
censoring, the major shortcoming with this approach has been that the Cox
PH model permits flexible (nonparametric) estimation of the baseline hazard
and, as a consequence, permits analysis of the survival function at any specific
settings of the covariate values. Thus, it is necessary to extend the linear model
approach to one that allows similar flexibility in analyzing conditional survival
functions. Fortunately, the methodology of regression quantiles introduced
by Koenker and Bassett (1978) provides just such flexibility. This methodology
has recently been extended to allow for standard right censoring and, thus, to
provide a flexible alternative to the Cox PH model. See Portnoy (2003).

8.2 What are regression quantiles?

Traditionally, statisticians carried out their analyses by taking the sample av-
erage as an estimate of the population mean. If some notion of variability was
desired, one simply assumed normality and computed a standard deviation.
Unfortunately, even after transformation, real data is rarely (if ever!) exactly
normal, and it often displays some form of heterogeneity in the population.
This was realized as early as 1890 by Sir Francis Galton, the inventor of the
idea of regression. In his book, Natural Inheritance (1889, page 62) Galton
chided those of his statistical colleagues who

limit their inquiries to Averages and do not revel in more comprehensive views.
Their souls seem as dull to the charm of variety as that of a native of one of our
flat English counties, whose retrospect of Switzerland was that, if the mountains
could be thrown into its lakes, two nuisances would be got rid of at once.

The question then is what can replace such mean analyses. In the same book,
Galton argued that any complete analysis of the full variety of experience
requires the entire distribution of a trait, not just a measure of its central ten-
dency. Galton then introduced the empirical quantile function as a convenient
graphical device for this purpose. That is, Galton suggested that heterogene-
ity among subpopulations could be identified and analyzed by considering the
set of percentiles as a function of the probability, 7. The focus of this section
is to show how the idea of univariate quantiles can be extended to regression
settings, and especially to linear regression models.



WHAT ARE REGRESSION QUANTILES? 215

8.2.1 Definition of regression quantiles

Formally, given a random variable Y of measurements for some population,
the population quantile is defined to be the value Qy (7) satisfying

PY <Qy(r)}=r7 for 0 <7 <1 (8.1)

The cumulative distribution function (d.f.) is considered as more basic, and
so the quantile function is typically defined as

Qv (r) = Fy' (1) = inf{y : Fy(y) > 7},
where Fy (y) is the (population) d.f.

Recall from Chapter 2 that the population quantile is estimated by a specific
order statistic, or by a linear combination of two adjacent order statistics.
For example, the sample median for a sample of even size is the average of
the two middle order statistics. In fact, statisticians will generally allow any
value between the two order statistics to be called a median. In this sense,
the median is not unique. Note however that the length of the interval of
nonuniqueness is just the distance between two successive observations, and
in a sample of size n this distance is roughly proportional to 1/n (unless there
is an interval about the median with zero probability). Since the statistical
accuracy of the estimator of the median is proportional to 1/y/n (just as for
the mean), there is clearly no statistical implication of this nonuniqueness.

However, even if the quantile function provides a reasonable approach to the
analysis of heterogeneity, the question remains of how to generalize the notion
to more complicated settings like regression models. In terms of the popu-
lation, there does seem to be a direct generalization in terms of conditional
quantiles. If we observe a random response, Y, and wish to model the response
as a (perhaps linear) function of a vector of explanatory variables, then one
can take x to be the realization of a random vector X and consider the condi-
tional distribution of Y given X = x for each fixed x. This permits us to define
the conditional quantile of Y given X = z as the inverse of the conditional
d.f. Specifically, the conditional quantile, Qy|x (7; x), satisfies

P{Y <Qyix(riz)| X =z} =1 (8.2)

Traditional regression analysis posits a single regression curve, e.g., the con-
ditional mean function. Following Galton, we suggest that letting 7 vary and
considering the family of conditional quantile curves provides a much more
complete picture of the data.

In general, the conditional quantile functions may not be linear in z. This leads
to difficulties in interpretation as well as nearly insurmountable computational
issues if the dimension of z is large. Thus, it would be desirable to estimate
conditional quantile curves under the assumption that they are linear in the
z-coordinates (at least, after some appropriate transformations). This will
preserve the ease of interpretation offered by linear models; and, as will be
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shown, it will provide very fast computation. So we turn to the problem of
how to estimate such linear regression functions, recognizing that the notion
of quantile seems to require the perplexing task of ordering these regression
lines.

For linear conditional quantiles, an especially useful solution to this problem
was introduced by Koenker and Bassett (1978), who observed that a more
fruitful approach to generalizing the concept of quantiles might employ an
implicit characterization: the 7th sample quantile may be expressed as the
solution to the problem; choose £ to minimize

Re(€) = > pr(Vi =), (8.3)

where p; is the piecewise linear “check” function,
pr(u) =u(r—I(u<0)=7u" + (1-7)u" . (8.4)
Here u™ and u™ are the positive and negative parts of u (taken positively).

One way to see that this is so is to note that R, (&) is a piecewise linear function
and that the directional derivatives in both left and right directions from the
order statistic corresponding to the Tth-quantile must be nonnegative for this
corresponding order statistic to be optimal. Some details of algorithms for
minimizing (8.3) will be given in the next section. This use of the directional
derivative (or what mathematicians call the subgradient conditions) will be
exploited in a strong way in extending these ideas to censored observations in
the next section.

Consider a general linear response model: let {Y;, z,} denote a sample of
responses Y and explanatory variables z (in m dimensions) and suppose

Yi=zif+z, i=1...,n, (8.5)

where 3 is an m-dimensional parameter and z; is a random disturbance. As
noted above, there is no natural notion of ordering the sample in terms of re-
gression planes. However, the implicit approach to defining the sample quan-
tiles via optimization does extend in a natural way, yielding the m-dimensional
regression quantiles, B(T), minimizing (over /) the objective function

ZpT . —z,/B). (8.6)

Following Koenker and Bassett (1978), extensive development has shown these
regression quantiles to generalize successfully many of the fundamental prop-
erties of the sample quantiles. First note that these regression quantile param-
eters depend on the probability, 7. Specifically, the jth coordinate of @(T)
gives the marginal effect of a unit change in the jth explanatory variable, 2/
on the (conditional) Tth-quantile of the response. If there is an intercept term
in (8.5) and the errors are iid, then the intercept coefficient is a location shift
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of the quantile function for the error distribution, but the beta coefficients
for the z’s are constant in 7. Thus, if the § coeflicients really change with
T, there must be heterogeneity in the population. This heterogeneity can be
much more than simple heteroscedasticity (that is, unequal variances). It will
represent the possibly varying effect of heterogeneity among subpopulations.

Specifically, the variation in the (’s permits the structure of the linear rela-
tionship to change with the response quantile. For example, in a study relating
student performance to the time spent on homework, it would not be surpris-
ing if the better performing students had a larger regression coefficient. Or
in studies of animal or plant growth, it would not be surprising to find that
those individuals whose growth is the fastest depend very differently on vari-
ables like nutrition or treatment than those growing more slowly. In fact, such
heterogeneity seems even more likely to occur for responses that are time du-
rations (see Koenker and Geling (2001) and several examples at the end of
this chapter). As a consequence, it becomes especially important to extend
the regression quantile approach to censored survival data.

It is important to consider the possible sources of heterogeneity in regression
models. In most cases, such heterogeneity can arise from the presence of ex-
planatory variables that are not included in the study. If such variables have
an effect on the response and are correlated with the explanatory variables
that are measured, then their effect must be observed as variation (over 7)
of the 3 coefficients for those z’s that were observed. Thus, regression quan-
tiles provide a natural approach to analyzing as well as diagnosing population
heterogeneity, especially if it is caused by inadequacies in the model.

8.2.2 A regression quantile example

To clarify these ideas, consider an example of an artificial data set based
loosely on a study of how student performance depends on the amount of
study time. Here the explanatory variable X is the average weekly number of
hours spent on homework, and the response variable Y is the student’s grade
point average (GPA). For pedagogic purposes, a sample of size n = 10000
was simulated so that the conditional quantiles were in fact linear, but not
parallel (as they would be if the errors were iid). First, consider the condi-
tional quantiles at specific x-values corresponding to homework times of 5,
10, 15, 20, and 25 hours. In most data sets, there would not be enough obser-
vations at any one x-value to estimate an entire quantile function. But here
(when rounded slightly), there were from 12 to nearly 150 observations at each
of these values. A plot (for these z-values only) is given in Figure 8.1. The
plot indicates sample quantiles at each z above corresponding to probabilities
T =".1, .25, .5, .75, and .9. These quantiles have been connected to produce
piecewise linear conditional quantile functions. Note that the statistical ac-
curacy of these estimates is only proportional to one over the square root of
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the number of observations in each sample. Some improvement in accuracy
can be obtained by assuming the quantile functions are linear in x and fit-
ting the 5 points for each quantile using least squares. The linear quantile
estimates are given as dotted lines in the plot. Notice that though the data
were simulated to have linear quantile functions, the discrepancy between the
piecewise linear quantile functions and their linear approximations is notice-
able. This is a consequence of the relatively small sample sizes at each of the
5 x-values. Now consider the entire data set. A plot is given in Figure 8.2.

— conditional quantile
-~ linear fit

é 1‘0 1‘5 éO 2‘5
homework hours
Figure 8.1 Student performance vs. homework; conditional quantiles at x =

5,10, 15, 20, 25. Curves (from bottom to top) correspond to quantiles T =
1, .25, .5,.75, .9.

The solid lines are the regression quantiles, B(T), for 7 = .1, .25, .5, .75, .9,
computed by minimizing (8.6). Since /10000 ~ 100, these lines are accurate
to roughly 1% (or better). The dotted lines are the fitted lines from the pre-
vious plot. Notice the clear heterogeneity. Finally, Figure 8.3 shows one of the
most important facets of regression quantile analysis: a plot of the regression
coefficient B (1) against the probability 7. The plot was produced by comput-
ing the regression quantiles for 7 = .01 : .99, together with 95% confidence
intervals based on asymptotic theory discussed in the next section, and then
shading the region between the confidence bands. The fact that B(T) is so
obviously nonconstant in 7 demonstrates clear heterogeneity. Here, this het-
erogeneity is a form of “heteroscedasticity,” or the variation in the standard
deviation of the response with x. In fact, the data were simulated to have an
error standard deviation proportional to z. One might interpret the results as
follows: since the GPA’s for the poorest students are essentially independent
of study time, such students are apparently unable to make good use of study
time. The better students seem much better able to make good use of study
time, and their performance benefits in a way that is proportional to study
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—— regression quantiles
-~ fit from Figure 8.1

5 10 15 20 25
homework hours

Figure 8.2 Student performance vs. homework; regression quantiles. Curves (from
bottom to top) correspond to quantiles T = .1, .25, .5, .75, .9.

time. Notice that true conditional quantile functions must be monotonically
increasing with 7. The fact that the regression quantile lines cross in the lower

beta
0.06 0.08 0.10
| | |

0.04
|

0.02
|

Figure 8.3 Student performance vs. homework; the regression quantile homework
coefficient as a function of T.

left corner of Figure 8.2 is an artifact of random variation in the statistical
estimates. There are clearly very few of these extremely poor students, and
thus the regression quantiles are not sufficiently well estimated in this region
to avoid crossing. Note that the dotted lines in Figure 8.2 cross for much
larger xz-values — thus indicating their relatively greater statistical variability.
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Also note that the crossing problem can often be alleviated by choosing better
models. If we assume that Y is a (3-parameter) quadratic function of z, then
the quantile functions do not cross at all on the domain of the observed data,
even though the quadratic coefficients are very small (so that the quadratic
curves remain very nearly linear; see Figure 8.4).

5 10 15 20 25
homework hours

Figure 8.4 Student performance vs. homework; regression quantiles for the quadratic
model: Y (GPA) = (o + fix + Bax® where x = homework hours.

8.3 Doing regression quantile

The algorithm and asymptotic inference

Almost all of the properties of the regression quantiles arise from one funda-
mental fact: although the objective function (8.6) appears to be quite com-
plicated, each regression quantile solution is exactly the solution of a linear
programming problem. In mathematical optimization, a linear programming
problem is simply to maximize (or minimize) a linear combination of variables,
subject to a set of linear inequalities.

To see that a regression quantile solution also solves a linear programming
problem, introduce auxiliary variables {v; } and {w;} fori = 1,..., n satisfying

v —w; =Y; —ziB, where wv; >0, w; >0. (8.7)
Now express the objective function (8.6) by writing
pr(Yi — i) = pr(vi —wi) = (vi —wi) (1 — I(v; —w; < 0)) .

It is now clear that any value of (v; — w;) can be achieved by taking either
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v; =0 or w; =0 (or both) without increasing the objective function. If we
take one of v; or w; to be zero, then from the equality Y; — 2.0 = v; — w; , the
other must become either the positive or negative part of Y; — z:3. Thus, at
a solution, the objective function becomes B

(tv; + (1 — 1)w;) . (8.8)

n

?

WHY! Therefore, the regression quantile solution minimizes a linear combi-
nation of the (2n + m) variables ({v;}, {w;}, B) subject to the linear con-
straints (8.7).

To see what this means, consider a linear programming problem in two di-
mensions: minimize ax+by subject to a family of linear constraints. The con-
straints require (z, y) to lie in the intersection of a family of half-spaces; that
is, in a simplex S as indicated in Figure 8.5. The sets {(z, y) : ax+by = ¢}
form a family of parallel straight lines (as ¢ varies); and so to minimize az+by,
it suffices to move the line ax 4+ by = ¢ parallel to minimize c¢. That is, in
Figure 8.5, choose the point of .S that just touches the line ax+by = ¢ closest
to the origin. Generally, this point will be a vertex of S (unless ax + by = ¢
is parallel to one of the boundary edges of S, at which the entire bound-
ary segment will be solutions). A vertex of S is defined by taking two of

Figure 8.5 Linear programming simplex of points satisfying linear constraints.

the inequality constraints to be equalities. In terms of the regression quan-
tile problem in m dimensions, this means that v; = w; = 0 for exactly m
indices. Equivalently, a regression quantile solution must have m zero residu-
als; that is, it must fit m observations exactly. In fact, there will be exactly m
zero residuals unless more than m observations lie on the same m-dimensional
plane, which happens with zero probability if the response has a continuous
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distribution. The specific set of m observations is defined by the minimization
problem. To find the set, consider the classical simplex algorithm for linear
programming problems. Start at an arbitrary vertex, and then move in the
direction of steepest descent (in Figure 8.5, to the southwest) from vertex to
vertex until reaching the optimal solution. A move from one vertex to the
next is called a pivot and consists of replacing one of the constraints defining
the first vertex by another one to define the next vertex. In the language of
regression quantiles for an m-dimensional parameter, one simply replaces one
of the m observations fit perfectly (that is, with zero residual) by another
observation that is to have zero residual at the next vertex.

Suppose we have found a solution at 7 = 7y, and now consider what happens
as the parameter 7 changes. Mathematically, in the objective line, ax+by = ¢,
the coefficients a and b now depend linearly on 7. Thus, as 7 changes, the slope
of the line changes continuously; that is, the line tilts. The optimal vertex at
T = 7o will remain optimal for an interval of 7 values until the line tilts (with
this optimal vertex held fixed) to lie along the adjoining boundary segment.
At this point, both vertices (and all points along the boundary segment) will
be optimal solutions. Furthermore, if 7 continues to change, the line continues
to tilt, and the next vertex will become a unique solution for another interval
of 7 values. Thus, the regression quantile solutions form a piecewise constant
function of 7, with breakpoints at the 7 values for which two adjacent vertices
are both solutions. Note that this nonuniqueness is really no more problematic
than for one-sample quantiles. It is in fact a direct generalization of the fact
that the median of an even number of observations is any value between the
two middle observations.

Thus, to find the regression quantile solutions, the major problem is to iden-
tify the interval over which a solution is optimal. This is a direct consequence
of the subgradient conditions. Suppose we are at a specific solution, ﬁ (10)-
Simply take directional derivatives of the objective function (8.6) with respect
to each coordinate of 3 (that is, in the positive and negative direction). The
condition that these directional derivatives must be nonnegative at a solution
gives 2m inequalities that are linear in 7. These inequalities provide m up-
per bounds and m lower bounds for the values of 7 for which /3 (10) remains
optimal. Thus, the largest of the m lower bounds and the smallest of the m
upper bounds provide the interval around 7, where B(Tg) remains optimal.
To find the next solution (say for the next larger 7 value), simply delete the
observation corresponding to the inequality giving the smallest upper bound
(that is, the first inequality constraint on 7 to be violated), and replace it with
the “nearest” observation.

As a consequence, to find the entire set of all regression quantile solutions, one
begins by using the simplex algorithm to solve for the initial quantile, 3 (0) (at
7 = 0); and then successively applies the above pivoting method to find suc-
cessive breakpoints {7;}, and the corresponding solutions. The computation
of the subgradient inequalities and the pivoting process will be illustrated in
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the next section in the context of censored regression quantile. Some exercises
are given to lead the student through this process.

[43

In Section 8.5, the censored regression quantiles will be defined as “weighted”
regression quantiles with the weights {w; > 0} determined empirically. Note
that the weighted version of the objective function (8.6) is just

RYB) =Y wip(Yi—z/B) = > pr(w;¥i —wiz;B), (8.9)
=1 i=1

and so weighted regression quantiles can be computed by applying the un-
weighted algorithm to the responses {w;Y;} and design vectors {w;z;}.

Many basic properties now follow from these considerations. It can be shown
that the number of observations below the 7th regression quantile plane, y =
g’@(r), is within m of the appropriate number, 7n. That is, the empirical
regression quantile plane lies above a fraction 7 of the data with accuracy m /n.
Note that this accuracy is much better than the usual statistical accuracy
of 1/y/n. One can also show that the regression quantile z/3(7) is in fact
monotonically nondecreasing in 7. That is, there can be no crossing at (or
near) the mean, T, of the explanatory variables. The subgradient condition
also implies that B(T) depends on the responses {Y;} only through the sign
of the residual. Hence, if the responses are perturbed so that the sign of the
residuals does not change, then the regression quantiles remain unchanged.
See Exercise 8.6(b).

One other crucial consequence of the subgradient conditions is the following:
in random regression problems, the number of breakpoints is of order n log n
with probability tending to one. See Portnoy (1991a). In practice, one rarely
needs more than 3n breakpoints unless n is much larger than 10*. Thus, the
computation of the entire regression quantile process requires only a constant
times n pivots, and is quite quick.

Finally, the subgradient conditions permit the development of an asymptotic
theory for regression quantiles. Specifically, under relatively mild conditions,
one can show that B(T) has an asymptotic normal approximation, and that
furthermore, this approximation is uniform in € < 7 < 1 — e for any fixed
e > 0. Specifically, we have the following limiting distribution result: if the
conditional quantiles are in fact linear, and other regularity conditions hold,
then (conditionally on {z,}),

nt (B(r) - 6(r)) & N (0, D;'SD;Y) | (8.10)
where
D =n"'Y waifi (F (7))
i=1

with F; denoting the d.f. for the ith observation, and f; its density; and where
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1 1 &
Y=7(1-1) E(X/X> =7(1-71) - Zglgi
i=1

Recall that when the pair (X, Y) is assumed to have a joint distribution (in
Rm+1) then F; and f; are the conditional d.f. and density of Y given X = gz,
respectively. Thus, the density of the response at the specified conditional
quantile plays a crucial role in the asymptotics. Specifically, this requires that
the response distribution not be discrete.

These asymptotics can be used to develop appropriate inferential methodolo-
gies. Specifically, hypothesis tests and confidence intervals have been devel-
oped and shown to be generally good approximations in numerous examples
and simulation experiments. For some recent examples of this asymptotic de-
velopment, see Portnoy (1991b), Gutenbrunner et al. (1993), Koenker (1994)
and Koenker and Machado (1999). It also justifies the bootstrap method for
finding confidence intervals described in Section 8.6.

Remark:

The past 20 years has seen major breakthroughs in computational methods
for very large linear programming problems. These approaches are called in-
terior point methods, as they approximate the constrained linear problem by
a smooth problem that permits one to approach the vertex from within the
simplex region in a very fast and accurate manner. For the regression quan-
tile problem, these methods can be combined with a stochastic preprocessing
step to provide an algorithm that is provably faster than least squares meth-
ods (with probability tending to one) when the sample size is very large and
the number of parameters is moderate. In fact, the algorithms developed in
Portnoy and Koenker (1997) provide computation times comparable to those
required by modern least squares methods for all sample sizes investigated,
and strictly faster in some cases with n > 10°. In this sense, quantile regres-
sion can be considered as even simpler than least squares.

8.4 Censored regression quantile model and Cox model

We extend the regression quantile approach to the case of right-censored data.
To describe the basic models, consider the response variables to be the survival
times {T; : ¢ =1, ---, n} that would generally be censored and that depend
on m-dimensional covariates {x, € R®™ : ¢ = 1, ---, n}. It is natural to
consider the pairs {(T},z;)} as a multivariate iid sample in R™*; but since
our approach is based on conditional quantiles, we will develop the theory
conditionally on {z;}. That is, {z;} will be taken to be fixed; and when needed,
P, will denote the conditional probability as a function of z;. In applications,
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T; could be some function of the survival times: the “log” transformation
providing the usual accelerated failure time model. See Chapter 4.4.

As discussed in Section 8.2, the basic regression quantile model specifies that
the conditional quantiles of T; given z, obey a linear regression model. Specif-
ically, assume there are real-valued functions {3(7)} for 0 < 7 <1 such that
z}3(7) gives the Tth conditional quantile of T} given z;; that is,

P AT, <zip(r)} =7, i=1,....n. (8.11)

Here, f; and F; will denote the conditional density and d.f. for T; given z,,
respectively. Asymptotic theory will require certain smoothness conditions
on the densities and regularity on the design vectors. Note that the family
densities for {T;} need not be a location-scale family. These distributions
may be quite different for different observations. All that is needed is for the
conditional quantiles to be linear in the parameters in (8.11).

In addition, there are censoring times, {C; : ¢ =1, ---, n}. The distribution
of C; may depend on z;, but conditionally on z,, T; and C; are independent.
This gives the general random censoring model. Define the censored (observed)
random variables and censoring indicator by

Y; = min {Tu Cl} and (51 = I{Tiéci}’ (812)

respectively. Again, the triples {(T;, C;, ¢;)} are often considered as a random
sample. Note that although the conditional quantiles for {T;} are assumed to
be linear (in ), the quantiles for {Y;} need not satisfy any linear model (nor
need have any special form). As usual, all inference on 3(7) must be expressed
in terms of the observable censored values {Y;}, even though the parameters

B(7) pertain to the model for the (latent) survival times {7;}.

Traditionally, the model used for analysis of censored survival times is the
Cox PH model on the hazard function:

d fi(t)
hi(t) = h(tlz = z;) = —— log S;(t) = ———— . 8.13
(t) = h(tle = ;) = — = log Si(t) = RO (8.13)
Here F;(t) and f;(¢t) denote the conditional d.f. and density of T; given
z;, and S;(t) is the conditional survival function given {z,}; i.e., S;(t) =
1— Fi(t).
Recall from Chapter 4.3, expression (4.7), that the Cox PH model takes
log(h;) to be additively separable in ¢ and linear in the covariates. Specif-
ically, h;(t) is modelled as

hi(t) = ho(t) %2, i=1,... n, (8.14)

where ho(t) is the baseline hazard function. In this model, the conditional
quantiles have a rather special form: by integrating,

S;(t) = exp {—Ho(t)eﬂiﬁ} , where Hy(t) = /Ot ho(s) ds.
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So the conditional quantile for Y at z becomes

Qeon(7|2) = Hy* (~log(1 - 7)e=2) . (8.15)

Note that the exponential form of the Cox PH model requires that the quan-
tiles (for 0 < 7 < 1) all have a special form depending on Hy: In particular,
they are all specific monotone functions of Hy. As noted in Section 8.1, this
greatly restricts the behavior of the quantile effects. Section 8.6 provides ex-
amples of heterogeneity that violate the Cox PH model. The ADDICTS data
of Chapter 7.1 also shows heterogeneity as described in Exercise 8.2.

One other important difference between the two approaches is the following:
the fact that the regression quantile analysis fits all quantiles necessarily re-
duces the statistical accuracy of the estimates (especially for larger quantiles,
where more of the censored observations play a role). Thus, effects are some-
times less significant (especially for larger 7-values) than suggested by the
Cox method. In other words, the fact that the Cox effects are global (that
is, the coefficients are constant) tends to provide a more powerful analysis if
the model is correct. However, this comes at the cost of possibly missing im-
portant sources of heterogeneity: if the Cox PH model is wrong, the analysis
may have substantial biases. On the other hand, the regression quantile ap-
proach is most valuable exactly when such heterogeneities are present. When
the regression quantile model fits better than the Cox PH model, effects will
tend to be more significant for the regression quantile approach as indicated
in Section 8.6.3.

One disadvantage of the quantile approach appears when the covariates can be
time-dependent. The instantaneous nature of the hazard function allows the
extended Cox model to apply. However, it is not possible to identify the con-
ditional quantile function for the survival times if the covariates change with
time. The fundamental reason is that for statistical purposes it is not possible
to condition on future (unknown) values of the covariate. Some progress may
be possible in special cases of time-varying covariates. For example, if mea-
surements are only taken at a few discrete times, then it might be reasonable
to assume that the covariates (and, hence, the conditional quantile models)
remain fixed between the measurements. Then the survival times between the
measurements could obey a fixed regression quantile model, and the total sur-
vival time could be analyzed as a sum of regression quantile models. However,
such approaches remain to be developed.

The main point here is that the quantile model and the Cox PH model are
complementary. If the survival times are natural units of analysis, then the
quantile model (which posits linearity for survival times) is likely to provide
better results (as suggested by the quote of Cox at the beginning of this chap-
ter). But in many cases (especially those with time-dependent covariates), the
mortality process is the natural unit of analysis and the Cox PH model (which
posits log-linearity of the hazard function) would then seem more reasonable.
In fact, it is easy to apply both models in most problems; and the combination
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would be significantly more informative than restricting to any one model.
Note that the two models are really different. If we are sure of the model,
then one is right and the other wrong. However, we rarely believe that mod-
elled relationships are exactly linear. Thus the use of both approaches (and
the consequent variation in the point-of-view) provides not only a broader
perspective, but is much less likely to miss important relationships.

8.5 Computation of censored regression quantiles

The algorithm here generalizes the Kaplan-Meier (K-M) estimator of Chap-
ter 2 directly to the regression quantile setting. It reduces exactly to the K-M
estimator when there is a single sample; and when there is no censoring, it is
closely related to the parametric programming method described in Koenker
and d’Orey (1987). It depends on a combination of two crucial ingredients:
(1) a new way of viewing the redistribute-to-the-right form of the K-M
estimator as a recursively reweighted empirical survival function, and (2) a
fundamental calculation showing that the weighted subgradient inequalities
remain piecewise linear in the quantile, 7, and thus permitting the develop-
ment of an effective version of simplex pivoting.

8.5.1 The new Kaplan-Meier weights

As shown in Chapter 2.1, one way to compute the K-M estimator is to redis-
tribute the mass of each censored observation to the observations on the right
and then to compute the (recursively reweighted) empirical d.f. Basically, one
redistributes the mass at C; to observed values above C;. The fundamental
insight here is that since the empirical quantile function for any 7 depends
only on the signs of the residuals, the mass at C; may be redistributed to
any point above all the data (e.g., infinity), and not necessarily to specific
observations above C;. The advantage of this insight is that the reweighting
then applies in more general regression settings where it is not known which
observations lie “above C;.”

The basic problem now is to estimate the censoring probability, P{T; > C;},
for each censored observation. From a regression quantile perspective, this
means finding the value 7; at which the quantile function, z/5(7), crosses C;.
For each censored observation (§; = 0), if 7; is given, then weights w;(7) can
be defined for 7 > 7; as follows:
T —T;
w;(7) =7 (8.16)

Note that this is just the conditional probability that the observation lies
below the 7th-quantile given that it lies above C;.
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These weights can be used to define a weighted regression quantile prob-
lem (8.9) with weighted “pseudo-observations” at C; (with weight w;(7)) and
at +oo (with weight (1 — w;(7))). If 79 is fixed and all 7; < 7y are defined,
this weighted regression quantile problem can be solved for 7 > 7. This per-
mits the recursive definition of 7; for the next censored observation that is
crossed. Since the recursive definition of the weights (8.16) depends only on
the breakpoints of the empirical quantile function, it suffices to describe how
they are computed for the classical K-M estimator, and this will be done in
the following section.

8.5.2 The single-sample algorithm

Consider a single sample with {Y; = min(7}, C;), d;} observed, but with no
covariates. Temporarily think of the K-M technique as estimating the quantile
function instead of the survival function. This is just a matter of associating
the time points with one minus the probability jumps in the output of the
K-M algorithm. Specifically, consider the ordered observations, Y(;) < ¥() <
. < Y(p). If the smallest j — 1 observations (Y(1),Y(a),...,Y(;_1)) are all
uncensored, then for 7 < (5 — 1)/n the K-M empirical quantile is just the
inverse of the usual empirical d.f., and so has an increase of size Y(;) — Y(;_1)
at probability values, i/n for ¢ = 1,...,(j — 1). Now, consider the smallest
censored observation, say Y(;) = C(;). How can we define the jump in the
empirical quantile function for 7 > (j — 1)/n, i.e., for subsequent uncensored
observations? (Note: the K-M estimator does not associate any positive prob-
ability with censored observations, and so all jumps in the quantile function
must correspond to uncensored observations). At the first censored point, let
71 denote the accumulated probability up to the first censored observation:
71 = (j — 1)/n. Now consider splitting the censored observation into two ob-
servations with weights depending on the subsequent value of 7: one at the
censored observation, C(;), with weight w;(7) = (7 — 71)/(1 — 71) and the
other at +oo with weight 1 — wy(r) = (1 — 7)/(1 — 71). Note that wq(7)
estimates the conditional probability that T; < F ~1(7) given T; > C;. This
process can now be iterated recursively: at each 7, weight earlier (crossed)
censored observations by we(7), give weight 1 — we(7) to +oo (for the ¢-th
crossed censored observations), and give unit weight to all other observations
(both censored and uncrossed uncensored observations). Since the empirical
quantile function depends only on the sign of the residuals, it follows (with
a bit of calculation) that this process will reproduce the inverse of the d.f.
corresponding to the K-M estimator (just as for the classical “redistribute-to-
the-right” algorithm). The K-M estimator of the survival function is then just
1 minus this d.f. estimator. The essential point is the simple observation that
since the quantile estimate depends only on the sign of the residual, the mass
to be redistributed may be assigned to any sufficiently large value, say +oc.

As an example, consider estimating the survival function based on the single
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sample with 10 observations at y = 1, 2, ..., 10. Suppose the observations
y =05,y =17, and y = 8 are censored (that is, known only to lie above the
respective values: 5, 7, and 8). The survival estimator based on the weighting
scheme above is developed as follows: Since the first four observations are
uncensored, there is a jump of size .1 at each of these four observations. Thus,
the survival estimator is (1-.1) =.9, (1-.2) = .8, (1-.3) =.7, and (1 - .4)
= .6 at these four points. Notice that each observation is the 7th-quantile for
an interval of 7-values. For example, y = 4 is the 7th-quantile for .3 < 7 < 4.

The next observation, y5 = 5, is censored and so we define the weighting con-
stant by (8.16) using the breakpoint 74y = .4 to define 7; = .4 for the first
censored observation. We then split the censored observation ys = 5 into an
observation at 5 with weight (7 — .4)/(1 — .4) and one at +oo with weight
(1 —-7)/(1—.4). There is no jump at y = 5, so the survival function jumps
to the value (1 —7) (= (1 — 7)) at y = 6. To find 75, we need to find
the interval on which the observation y = 6 is the 7th-quantile. To do this,
consider the objective function (8.3), and consider the directional derivatives
as y decreases from y = 6 and as y increases from y = 6. See Figure 8.6.

*—o—eo —0 C— e —C—C—e—=e
o 1 2 3 4 5 6 7T 8

Figure 8.6 Contributions to the directional derivatives.

As y decreases from y = 6, there are four smaller (uncensored) observations
(each weighted fully) and one censored observation that was split with weights
(tr—.4)/.6 at y =5 and weight (1 —7)/.6 at +00. Note that the left direc-
tional derivative of p, is —(1 — 7), since as y decreases we are getting closer
to observations with negative residual, each of which contributes the slope
(1 — 7). Thus, the contribution of these smaller observations to the direc-
tional derivative of the objective function is

- <4+ T;'4) (1—7).

Since we are moving y to the left, the observation y = 6 is counted with
all observations above y = 6. These are all fully weighted (since even the
censored observations must be above y = 6). So, similarly, the contribution to
the directional derivative from larger values (including the value at +o00) is

1 —
(5+ .67> T.

Thus, the condition that the left directional derivative must be positive for
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y = 6 to be optimal requires

<5+%)7 - (4+T;'4) (1—7)>0.

Analogously, calculating the directional derivative to the right yields

() (o5

Solving these two inequalities gives 7 > .4 and 7 < .52. Thus, 7 = .52,
and the survival function jumps down to (1 —.52) = .48 at y = 6. Note that
in solving the inequalities, the 7(1 — 7) terms cancel, thus leaving equations
that are linear in 7. The fact that these are now linear equations (and not
quadratic) is crucial for permitting linear programming methods to be applied
in more general regression problems.

The next two observations are censored and so are assigned initial weights
7o = 73 = .52 for the second and third censored observations (for 7 > .52).
As above, the next breakpoint of the survival function occurs at y = 9 (the
next uncensored point) and satisfies

(2+ 1.67+2(1.48T)>T <5+T.6.4+2(T.48'52))(1T) -,

1—-7 2(1-7) T—.4 2(r—.52)
_ ) >
<1+ 5 + YT >T+<6+ 5 + Y (1-7)>0,

which gives .52 < 7 < .76 . Thus, the survival function jumps to (1—.76) = .24
at y = 9. Finally, it jumps to zero at y = 10. This is exactly the K-M estimate.

8.5.83 The general censored regression quantile algorithm

The above approach to the K-M estimator generalizes directly to the regres-
sion quantile model. The specific steps of the censored regression quantile
computation are as follows:

1. Choose the first breakpoint, 71, and compute the initial quantile function
B(7) for 0 < 7 < 71 by the usual (uncensored) regression quantile algorithm
(Koenker and d’Orey, 1987). This assumes that none of the basis elements
defining this first solution are censored. Clearly such censored observations
only imply that the corresponding survival time is above the bottom of the
data. Any such censored values provide no information and can be deleted

(as is done by the K-M estimator).
2. Let J be fixed (less than the number of censored observations), and suppose
we have computed the breakpoints {7; : j < J} for the “smallest” J

censored observations. Suppose also that we have computed the regression
quantiles 5(7) for 7 < 7, and let J be the (-th breakpoint (7; = 7). To
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compute the next breakpoint (or breakpoints), and the regression quantile
function, B(T) for 75 < 7 < Ty41, simply carry out weighted simplex
pivots until the next censored observation is crossed. To describe this more
precisely, let M denote the indices for censored observations that have
previously been crossed. That is, each i € M corresponds to the j(i)th
censored observation encountered by the algorithm; and for each i € M, a
value 7; = 7;(;) has been assigned to each of these censored observations
to provide the weight w;;(7) given by (8.16). Then, for 7 > 7; but such
that 3(7) crosses no other censored point not already in M, 3(7) is chosen
to minimize the weighted regression quantile objective function,

dYopr(Yimzif) + Y {wi(7) p-(Ci — zif)
igM ieM
+ Q- wi(T)p- (Y —2iB)},  (8.17)
where Y* may be taken to be +o0o or any value sufficiently large to exceed
all {zi8 : i € M}, and p, is the quantile loss (8.4). Computing directional
derivatives with respect to 3, in the positive and negative directions gives
m gradient conditions of the form ¢; < a+ br < ¢y (with b positive). The
details of this computation are given in Portnoy (2003); and this is where
the linearity in 7 is crucial. Solving the subgradient conditions determines
T(¢+1) (as in the one-sample example above), and a single simplex pivot de-
fines é(r) for 7y < 7 < 7(p41). Continuing these subgradient calculations

and pivots determines /3 (7) until the next previously unweighted censored
observation is crossed; that is, until there is a new censoring point, Cj-,
with Ci+ < gg*é(ng*ﬂ)), where ¢* is the index of the next censored obser-
vation that is crossed, and £* is the number of the last pivot before C;-. We
now define j(i*) = J + 1 and 7741 = 7). Note that previously crossed
censored observations have a positive weight associated with the censoring
point, C; (for j(i) < J), and so are treated as regular known observations
(though with weights less than 1), for 7 > 7.

3. Now, note that all censored observations that were not reweighted (and
split) before 7; must have had positive residuals (C; > 2/3(77)). At this
point, as noted above, at least one (and perhaps several) of these censored
observations are crossed (so that Cj« < zi. B(f’ 7+1) for at least one and
perhaps more than one value i*). These observations must now be split and
reweighted. We define the corresponding 7; = 7%, j = J + 1,... for all of
the observations crossed at this pivot, where 7% = 7(4-) is the 7-breakpoint
corresponding to the last pivot before any new censored observations were
crossed. These 7; for the newly crossed censored points are now used to
define future weights using (8.16). Lastly, we split each of the newly crossed
censored observations by giving weight w;(7) to the newly crossed censored
observation, C;, and adding weight 1 — w;(7) to +00. We can now continue
pivoting exactly as in step 2.

4. The algorithm stops when either the next breakpoint equals 1, or when only
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nonreweighted censored observations remain above the current solution. In
this latter case, the last breakpoint, 7x, will be strictly less than unity
(in fact, it will be one minus the sum of all the weights redistributed to
infinity). This is exactly analogous to the K-M estimate when the largest
observations are all censored, and the survival distribution is defective.

This approach requires approximately a constant times nlogn pivots, essen-
tially as many as for the uncensored parametric programming calculation of
the entire regression quantile process (Portnoy, 1991a). Thus, it is extremely
quick for modest samples, and should be entirely adequate for sample sizes up
to several thousand or so. See Section 8.6. There are several technical compli-
cations that are addressed in detail in Portnoy (2003). In addition, the current
software permits the specification of a grid of T-values (say 7 = .01 : .99) so
that the censored regression quantiles are computed only along this grid. This
approach is somewhat quicker in large data sets (of size greater than 1000).

8.6 Examples of censored regression quantile

After a brief description of the current software, two examples will be pre-
sented. The first is the CNS lymphoma data set, which was analyzed using
the Cox PH model in Chapter 5. Unlike the analysis in Chapter 5, the quantile
analysis suggests that there is no significant AGE60 effect, nor a significant
AGEG60xSEX interaction. One possible interpretation is that these effects are
only needed in the Cox PH model to adjust for a more general form of het-
erogeneity. Specifically, these effects might be most important for the larger
responses, but might not be significant since the quantile analysis provides a
defective distribution (i.e., several of the largest survival times are censored).
In fact, the largest 7 probability is about .79. This indicates that there is lit-
tle information in the data concerning the right tail of the distribution (say,
7 > .75). Thus, a regression quantile analysis might miss the AGE60 and
AGEG60xSEX effects that appear only in the higher quantiles, even though
these would appear in a Cox analysis since the Cox PH model combines all
the information in a single estimate. Therefore, the fact that the Cox approach
finds AGE60 and AGE60xSEX effects could be an instance of the comment
in Section 8.4 that Cox methods are more powerful when the model holds, but
may miss important sources of heterogeneity. Note: when both approaches are
used with only the three main effects (KPS.PRE., GROUP, and SEX), the
two analyses are not very dissimilar. The KPS.PRE effect in the regression
quantile model is significant for 7 < .6, though not as significant as indicated
by the Cox analysis; the GROUP effect just fails to be significant at the 5%
level for the 30th percentile and smaller, while it is significant for the Cox
analysis; and the SEX effect (which had a p-value of .052 under the Cox PH
model) is highly significant for smaller 7 but not at all significant for larger
7. The details of the analysis from which these conclusions were drawn are
provided in Section 8.6.2.
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The second example comes from the text by Hosmer and Lemeshow (1999). It
concerns the comparison of two courses of treatments for drug abuse (“long”
and “short”). The dependent variable is the time to relapse. Here, the quan-
tile analysis suggests that an important variable related to treatment com-
pliance had been ignored. Inclusion of this covariate provides an example
where the Cox PH and regression quantile models differ significantly. The re-
gression quantile analysis provides much more significance for the treatment
effect (once the significant “compliance-related” covariate is included). It also
suggests that the population is heterogeneous in that the coefficient for the
“compliance-related” covariate is not constant in 7, the effect being greater
for those with shorter times to relapse (7 < .2) and smaller for those with
longer periods before relapse (7 > .7). This is essentially the opposite of what
a Cox PH model would suggest for this effect. The treatment effect appears
to be constant in 7, and thus independent of the response level. However, as
noted above, it is significantly larger than what would be suggested by the
Cox approach. The detailed analysis appears in Section 8.6.3.

8.6.1 Software for censored regression quantiles

Software for computing censored regression quantiles and carrying out ap-
propriate inference is under active development. At the present time, soft-
ware consisting of R programs are available at http://www.stat.uiuc.edu/
~portnoy/steve.html and have been tested using R and S-PLUS under PC
and UNIX environments. The current implementations follow the above algo-
rithm using the R function crq. This function requires a model formula just
like that in coxph, but generally incorporating a transformation of the re-
sponse. For example, to use “log”-times (that gives an accelerated failure rate
model), execute > out <- crq(Surv(log(time),status) ~ model), where
model is given by a model formula.

This program outputs a list consisting primarily of the matrix out$sol that
has a column for each 7-breakpoint and rows corresponding to the breakpoint
value of 7 (row 1), the coefficient for each of the variables in the model (that
is, éj (1) isin row j+1), and the central quantile function, Qo (7) = 2’@(7)
(in the last row). Some other optional input parameters may be specified, and
additional output provides a list of the 7; for all censored observations. This
information permits the censoring weights to be defined, and allows alternative
(weighted) regression quantile algorithms to be used.

To provide a simple example of the form of the output, consider a very simple
quantile regression with 5 observations:

x <- 1:5

y <- exp(l + x + .2*xrnorm(5))
s <- ¢(1,1,0,0,1)

ex <- crq(Surv(log(y),s) ~ x)

vV V V V
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> ex$sol
[,1] [,2] [,3]
[1,] 0.0000000 0.3333333 1.0000000
[2,] 0.4816187 0.8141252 0.8141252
[3,] 1.1322560 1.0657547 1.0657547
[4,] 3.5953226 3.7449506 3.7449506

The first row of ex$sol is the 7 breakpoints. There is only one jump in the
quantile function at 7 = .3333333. The quantile at 7 = 0 has intercept and
slope approximately equal to .482 and 1.132, respectively. The value of the
(T = 0) regression line at the weighted mean of the z-values (Z = 2.75) is 3.595.
This is the value of the central quantile function for 0 < 7 < .3333333. This
central quantile function corresponds to the inverse of the baseline survival
function in a Cox PH model. The regression quantile line does not change
until 7 = .3333333. The next quantile fit (for all 7 > .3333333) has intercept
= .814 and slope = 1.066 with 3.745 being the value of this line at T = 2.75
(to three decimal places). From this output, one could plot the data and
regression quantile fits to see when the censored observations are crossed. It
is easy here to see that the fourth observation lies below all the data, and so
it was deleted in the algorithm. Only the third observation is actually crossed
at 7 = .333333 and this crossing value can be used to define the censoring
weights (as a function of 7) with 71 = .333333. See (8.16), Section 8.5.1.

The current software uses a bootstrap method for inference. For this purpose,
the user must specify the number of bootstrap resamples (B) and a vector of
probabilities (71, ..., 7x). The routine described more completely in the exam-
ples below then resamples the data (with replacement) B times, calls crq, and
saves the regression coefficients {B*(T) : T=T1, " ,, 7} for all of the boot-
strap resamples. Using these resample-based regression coefficients, confidence
intervals are produced by applying a variant of the bootstrap Interquartile
Range method that permits confidence intervals to be asymmetric. For de-
tails, see Portnoy (2003). These confidence intervals seem to work well in
practice so far, but there are a large number of possible alternatives that re-
quire investigation. Ongoing research may find some of these alternatives to
be preferable. R functions are also available for producing tables of the confi-
dence intervals and for producing plots of the B (7) functions and of the central
survival function, the inverse of the conditional quantile function at the mean
vector T. By default, these plots also graph results from fitting the Cox PH
model for purposes of comparison.

8.6.2 CNS lymphoma example

The first example is the CNS lymphoma data for which Cox PH models were
fit in Chapter 5. For simplicity, we will use the usual “log” transformation
suggested by the accelerated failure rate model and fit log(7") in terms of the
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explanatory variables discussed in Chapter 5. Given only 58 observations, it
is not surprising that both models tend to fit adequately and generally tell a
somewhat similar story. However, as noted above, the ability of the regression
quantile model to allow for much more general heterogeneity comes at a cost
in statistical accuracy. Here, when we use model selected in Chapter 5 (ex-
planatory variables: KPS.PRE., GROUP, SEX, AGE60, and SEXxAGEG60),
the regression quantile analysis suggested that the AGE60 and SEX x AGE60
were no longer statistically significant for any 7. It also generally showed less
significance for the other coefficients. Otherwise, the analysis suggested that
there was little difference between the Cox PH model and the censored re-
gression quantile model; and in fact there appeared to be little heterogeneity
in the data once the log(T) transformation was taken.

To present a more detailed example, we will therefore use the slightly simpler
model suggested above based only on the explanatory variables: KPS.PRE.,
GROUP, and SEX. Specifically, the model we fit is:

log(B3TODEATH) ~ o+ 5y KPS.PRE. + 3, GROUP + 33 SEX . (8.18)

The first step is to use crq to compute the censored regression quantile coef-
ficients ﬁj (7).

> attach(cns2)

> cns2.crq <- crq(Surv(log(B3TODEATH) ,STATUS) ~ KPS.PRE.+GROUP
+SEX)

This produces the solution matrix cns2.crq$sol as described above. Here,

cns2.crg$sol is a 6 by 61 matrix. The first row (the 7 breakpoints) has

largest value .7868, indicating that there are censored observations above all

uncensored ones so that the survival distribution is defective. The next four

rows correspond to the coefficients for the INTERCEPT, KPS.PRE., GROUP,

and SEX, respectively; and the last row gives the central quantile.

Generally, we may view the regression quantile coefficients Bj(T) by plotting
the values in the (j + 1)th row of cns2.crq$sol against the first row (and
connecting the points linearly). The central quantile function may be inverted
to obtain a regression quantile version of a central survival function. This is an
analog of the Cox PH survival function evaluated at x = Z, referred to as the
Cox PH baseline survival function. The two may be compared. Specifically,
the central regression quantile survival function is

8 =1-Q5'(e), (8.19)
where the exponentiation is needed to reverse the logarithm transformation
in (8.18).

At this point, it would be useful to look at the coefficients éj (1), but we
first need some measure of statistical accuracy. The bootstrap samples needed
to compute confidence intervals as described above may be obtained using
the function crq.boot. Unfortunately, the repeated samples in the bootstrap
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sometimes lead to serious degeneracy problems. One easy way to adjust for
this is to “dither”; that is, add purely random noise that is smaller than the
accuracy of the data. Thus, the following R commands may be run:

Kd <- KPS.PRE. + .0001*rnorm(58)

Gd <- GROUP + .0001*rnorm(58)

Sd <- SEX + .0001*rnorm(58)

dith <- crq(Surv(log(B3TODEATH) ,STATUS) ~ Kd+Gd+Sd)
cns2.b <- crq.boot(dith,400,.1%(1:8))

V V V VvV VvV

This produces a bootstrap sample of size 400 of each of the coefficients in
the model (the intercept and the 3 explanatory coefficients) at each of the
deciles (r = .1, .2, ---, .8). A plotting function can now be used to graph
/3’]- (7). The function that does this also produces an analog of the effect of the
jth explanatory variable on the conditional quantile function as given by the
Cox PH model. Basically, this is just an estimate of the derivative of the Cox
conditional quantile (8.15) with respect to () (the jth explanatory variable).
Specifically, the vector of analogous Cox PH effects is

0

QC()]J(T) = % QCOQ:(T|£) |§:§ . (820)

The following commands produce Figure 8.7, which gives plots for the regres-
sion quantile coefficients for each of the explanatory variables in model (8.18).

> cns2.cox <- coxph(Surv(B3TODEATH,STATUS) ~ KPS.PRE.+GROUP
+SEX)

> pltbeta.IQR(cns2.crg$sol,cns2.b,1,cns2.cox,"CNS2")

> pltbeta.IQR(cns2.crg$sol,cns2.b,2,cns2.cox,"CNS2")

> pltbeta.IQR(cns2.crg$sol,cns2.b,3,cns2.cox,"CNS2")

In each plot in Figure 8.7, the small dashed line is the conditional quantile
coeflicient 6}(7’) as described above. The solid line is just a smoothed version
of this (using the function supsmu). The large dashed line is the estimated Cox
effect (8.20) for the corresponding variable. The shaded area represents the
confidence bands for the regression quantile coefficients as described above.
Note that since the Cox PH model imposes a fixed shape for the conditional
quantile, this line must have the same form in each of the plots. Specifically,
any pair of such “Cox-effect” curves are proportional; or equivalently, the ratio
of the curves for any pair of variables must be a constant independent of 7.

What is most clear here is that the confidence bands are wider than any
differences in the plots. The regression quantiles seem somewhat constant,
and seem to have a slightly different shape from the analogous Cox effects.
There may be a decline in the KPS.PRE. and, especially, the SEX coeffi-
cients: these coefficients seem to be somewhat larger for small 7 and nearly
zero for large 7. Such behavior could not have been captured using the Cox
PH model. In general, the regression quantile effects appear to be larger in
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KPS.PRE.
GROUP

Figure 8.7 Censored regression quantile functions for each of the coefficients
i (8.18) for CNS data. The small dashed line is the raw estimates, the solid line
smooths these estimates, and the large dashed line is the analogous Cox PH effect.
Shading gives 95% pointwise confidence bands for the quantile functions as described
above.

absolute value than the analogous Cox effects though the difference is not
statistically significant. Thus, there is some suggestion of heterogeneity in the
model for log(B3TODEATH), and some hint that the Cox PH model may
be missing something, but there is not sufficient statistical accuracy to make
these features statistically significant.

The central regression quantile survival function (8.19) is compared with the
Cox baseline survival function in Figure 8.8. Here the shaded region is the
Cox PH model confidence bands, and the dotted lines are the upper and
lower bands from the censored regression quantile analysis. Clearly there is
little real difference. Lastly, we compare the individual coefficients numerically.
The summary of the analysis of the Cox PH model is

> summary (cns2.cox)

coef exp(coef) se(coef) z P

KPS.PRE. -0.0347 0.966 0.010 -3.45 0.00056
GROUP 0.7785 2.178 0.354 2.20 0.02800
SEX -0.7968 0.451 0.410 -1.94 0.05200

The Cox analysis provides strong statistical significance for KPS.PRE. and
mild significance for GROUP, with SEX just missing significance at the .05



238 CENSORED REGRESSION QUANTILES
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Figure 8.8 Central regression quantile survival function for CNS data as computed
by crq with the Cox PH baseline survival function. The shaded region gives the 95%
confidence bands for the Cox PH estimate.

level. For regression quantiles, we must generally look at coefficients for multi-
ple values of 7. We list results for the 30th, 50th (median), and 70th-percentiles
(that is, corresponding to the third, fifth, and seventh indices of the T-vector
specified in the crq.boot computation):

> sumpr.crq(ci.boot(cns2.crg$sol,cns2.b,c(3,5,7)))
tau = 0.3 95% CI
COEF LOWER UPPER Z-STAT PROB
INT -4.86428 -8.38705 -0.47820 -2.41100 0.01591
KPS.PRE. 0.05616 0.00369 0.09410 2.43480 0.01490
GROUP -1.15368 -1.89674 0.49020 -1.89470 0.05814
SEX 1.73653 0.51390 2.44730 3.52080 0.00043

tau = 0.5 95% CI
COEF LOWER UPPER Z-STAT PROB
INT -2.80811 -6.56808 0.11712 -1.64659 0.09964
KPS.PRE. 0.03855 0.02051 0.08354 2.39748 0.01651
GROUP -0.59175 -2.13677 0.31737 -0.94520 0.34455
SEX 1.24505 -0.38702 2.31650 1.80628 0.07103

tau = 0.7 95% CI
COEF LOWER UPPER Z-STAT PROB
INT -0.14279 -6.793e+00 1.86465 -0.06465 0.94845
KPS.PRE. 0.02245 -2.755e-05 0.09584 0.91783 0.35871
GROUP -0.96943 -3.322e+00 0.33687 -1.03866 0.29896
SEX 0.04948 -1.161e+00 3.56127 0.04108 0.96724



EXAMPLES OF CENSORED REGRESSION QUANTILE 239

For the 30th-percentile responses, the regression quantile analysis shows the
GROUP and KPS.PRE. effects to be significant at very similar levels to those
given by the Cox analysis. However, the SEX effect is much more significant
in this lower percentile than is indicated by the Cox analysis. So for shorter
survival times (specifically, the 30th-percentile), on the average women live
el'™ = 5.7 times longer than men with other factors fixed. The Cox PH
model suggests that women have about .45 of the hazard rate of men with
other factors fixed, but doesn’t apply directly to survival times. The SEX
effect in the Cox PH model is also weaker, just missing significance at the .05
level.

The median (7 = .5) regression quantile still shows a significant KPS.PRE.
effect, but the GROUP effect is no longer significant, and the SEX effect
just missed significance at the 5% level. Perhaps surprisingly, none of the z-
variables are significant for the 70th-percentile. This is because there is little
information at the larger percentiles — recall that the distribution is actually
defective above .79 since so many of the largest observations are censored. As
noted in the introduction to this section, since the Cox PH model is global,
it does not need information in this right tail; but for the same reason, it is
unable to find the greater significance in the smaller (and middle) percentiles.

8.6.3 UMARU impact study (UIS) example

The following example is taken from the text by Hosmer and Lemeshow (1999).
It concerns the comparison of two courses of treatments for drug abuse ( “long”
=1 and “short” = 0). The dependent variable is the time to relapse, with those
not relapsing before the end of the study considered as censored. This data
set contains complete records for 575 subjects and 8 independent variables. In
addition to the treatment effect, TREAT (“1” for 6 month treatment, “0” for
3 month treatment), the independent variables were the following covariates:
AGE (in years), BECK (a depression score at admission to the program),
IV3 (1 if there was recent IV drug use, 0 otherwise), NDT (the number of
prior drug treatments), RACE (“white” or “other”), SITE (“A” or “B”), and
LOT (number of days on treatment). The text develops a model with NDT
transformed into a two-dimensional variable (ND1 and ND2), and did not use
the “compliance” indicator, LOT. Their “best model” used TREAT, AGE,
BECK, IV3, ND1, ND2, RACE, SITE, AGE x SITE, and RACE x SITE.

Use of the Cox PH model is described extensively in Hosmer and Lemeshow.
Here a censored regression quantile analysis is performed on log(TIME). Using
the design matrix for the text’s model, the regression quantile analysis showed
almost exactly the same results as the Cox PH model. The quantile function
estimates and their confidence bands were barely distinguishable when plotted,
and there were no significant differences between 3(7) and the Cox f-effect
estimates as defined by (8.20). B B



240 CENSORED REGRESSION QUANTILES

However, note that the text did not use the “compliance” indicator: the num-
ber of days actually on treatment. Indeed, introduction of such a variable
generally complicates the interpretation of the treatment effect. Nonetheless,
in an effort to use this information, consider using the fraction of the assigned
treatment time actually administered. That is, define FRAC to be LOT/90
for the “short” treatment and LOT/180 for the “long” treatment. It turned
out that FRAC was only mildly correlated with the treatment effect, thus sug-
gesting that the treatment effect can be interpreted independently of FRAC.
Introduction of the FRAC variable provides models that are clearly better,
both for regression quantiles and for the Cox PH model: the test statistics for
testing the entire model nearly triple. When FRAC is included in the model
and the RACE x SITE interaction is deleted (since it is now highly insignif-
icant), a rather different comparison emerges. Figure 8.9 presents the central
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crqci's

0.8

survival prob
0.6

0.4

0.2

0.0
|

log(time)

Figure 8.9 The central survival function for the Drug relapse data from Hosmer and
Lemeshow (1999) as computed by crq with a bootstrap 95% pointwise confidence
band indicated by the dotted line. The shaded region gives the 95% confidence bands
for the Cox PH estimate.

and baseline survival function estimates. Although the censored quantile and
Cox estimates tell a similar qualitative story, it is clear that two estimates
differ, especially in the left tail. The confidence interval widths are somewhat
similar, but the Cox baseline estimate has a much heavier left tail. These
differences would be quite clear in density or hazard function estimates.

Figure 8.10 summarizes the quantile coefficient effects: [3(7) for regression
quantiles and b(7) from (8.20) for the Cox approach. The Cox estimate of the
treatment coefficient is Bl = .49 (std. err. = .10), indicating that the hazard
rate to remain drug-free is e = 1.6 times greater for patients on the long
treatment than for those on the short treatment (on the average, other factors
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) s aus.3v

Figure 8.10 Quantile regression coefficients for the Drug relapse data from Hosmer
and Lemeshow (1999), with shaded 95% confidence bands. The large dashed line is
the Cox effect (8.20).
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kept fixed). The treatment quantile effect is in the fifth panel: the Cox PH
quantile effect (8.20) is much smaller for 7 < .8. The regression quantile
approach suggests a definitely stronger treatment effect: in fact, for 7 < .6, the
z-statistic for 3(7) is roughly twice as large as the Cox z statistic (z = 10.8
for the regression quantile at 7 = .4 vs. z = 5.1 for the Cox effect). The
regression quantile coefficient is quite constant for 7 < .8, and is generally
greater than .65. Since the response is “log(survival time),” this indicates
that patients on the long treatment remain drug-free nearly twice as long
as those on the short treatment (other factors kept fixed). The effect of the
fraction of treatment completed (FRAC) also shows substantial differences
between the approaches. The regression quantile model indicates that the
response to FRAC decreases as 7 increases (that is, it tends to be larger for
those with smaller relapse times), and that it is much larger than suggested
by the Cox PH model (except perhaps for very large 7). The greater flexibility
provided by regression quantile appears to permit a more sensitive analysis
of the treatment effect. Specifically, the quantile restrictions imposed by the
Cox PH model appear to confound the treatment and FRAC effects, making
the treatment effects appear less significant.

8.7 Exercises
A. Applications

8.1 For the sample, y; =1, 2, 3, 4, 5, plot 2?21 pr(yi — &), the objective func-
tion (8.3), as a function of ¢ for 7 = .3 and 7 = .5. Plot the objective
function for random samples rnorm(20) and runif(100) for 7 = .3 and
T =.5.

8.2 Review the ADDICTS data of Chapter 7.1. Although the earlier analysis
suggested an extended Cox model approach, here we compare the Cox
PH analysis of Part II with a censored regression quantile approach. The
output using censored regression quantile analysis follows. We also replace
“dose” with “log(dose)” and present the output using both coxph and crq,
crq.boot. Interpret the results and compare the two approaches. Is use of
“log(dose)” preferable to “dose” for the regression quantile approach and/or
for the Cox approach?

\

attach(add.d)

add.crq <- crq(Surv(log(time),status) ~ clinic+prison
+dose)

cd <- clinic + .0001*rnorm(238)

pd <- prison + .0001*rnorm(238)

dd <- dose + .0001*rnorm(238)

dith <- crq(Surv(log(time),status) ~ cd + pd + dd)

add.b <- crq.boot(dith, 400, .05%(1:13))

sumpr.crq(ci.boot(add.crq$sol,add.b,c(5,8,10,12)))

\

V V. V V V VvV



EXERCISES 243

tau = 0.25 95% ci
COEF LOWER UPPER Z-STAT PROB

INT 3.42390 1.65476 4.90419 4.13048 1.8100e-05
clinic 0.29668 -0.11256 0.78374 1.29754 9.7222e-02
prison -0.48268 -0.81721 -0.03592 -2.42175 7.7230e-03

dose 0.03195 0.01751 0.05802 3.09122 9.9667e-04

tau = 0.4 95% ci
COEF LOWER UPPER Z-STAT PROB

INT 3.37272 2.32915 4.26161 6.84156 3.9167e-12
clinic 0.57125 0.04284 1.01549 2.30228 1.0660e-02
prison -0.22725 -0.80909 0.26516 -0.82926 2.0348e-01

dose 0.03232 0.02306 0.04951 4.78956 8.3573e-07

tau = 0.5 95% ci
COEF LOWER UPPER Z-STAT PROB

INT 3.52229 2.89783 4.51857 8.51920 0.0000e+00
clinic 0.71024 -0.01413 1.40258 1.96520 2.4694e-02
prison -0.23882 -0.47497 0.12842 -1.55150 6.0386e-02

dose  0.03098 0.02299 0.03795 8.11770 2.2204e-16

tau = 0.6 95% ci
COEF LOWER UPPER Z-STAT PROB

INT 4.06809 2.39009 4.92696 6.28610 1.6281e-10
clinic 0.74531 0.20936 1.32380 2.62160 4.3759e-03
prison -0.20959 -0.43355 0.12202 -1.47880 6.9591e-02

dose 0.02371 0.01686 0.03958 4.09120 2.1455e-05

> add.cox4 <- coxph(Surv(time,status) ~ clinic+prison
+log(dose))
> add.crg4 <- crq(Surv(log(time),status) ~ clinic+prison
+log(dose) ,mw=100)
> add.b4 <- crq.boot(add.crq4,400,.05%(1:13) ,mw=100)
> summary (coxph(Surv(time,status) “clinic+prison+log(dose)))

coef exp(coef) se(coef) z P
clinic -1.043 0.352 0.215 -4.85 1.3e-06
prison 0.348 1.416 0.168 2.07 3.8e-02

log(dose) -1.867 0.155 0.331 -5.65 1.6e-08

exp(coef) exp(-coef) lower .95 upper .95

clinic 0.352 2.837 0.2311 0.537
prison 1.416 0.706 1.0188 1.967
log(dose) 0.155 6.471 0.0808 0.295

Rsquare= 0.232 (max possible= 0.997)

Likelihood ratio test= 62.8 on 3 df, p=1.52e-13
Wald test = 56.1 on 3 df, p=3.91e-12
Efficient score test = 58.1 on 3 df, p=1.5e-12
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8.3

8.4

> print(cox.zph(add.cox4))
rho chisq P
clinic -0.2626 11.689 0.000629
prison -0.0437 0.287 0.592354
log(dose) 0.0562 0.376 0.539872
GLOBAL NA 12.999 0.004638

> sumpr.crq(ci.boot(add.crq4$sol,add.b4,c(5,8,10,12)))

tau = 0.25 95% ci
COEF LOWER UPPER Z-STAT PROB
INT -2.88006 -8.89829 1.08524 -1.1308 0.25812
clinic 0.29180 0.01799 0.94047 1.2399 0.21499
prison -0.49407 -0.86352 -0.16336 -2.7662 0.00567
log(dose) 2.01427 1.14010 3.50626 3.3370 0.00085
tau = 0.4 95% ci
COEF LOWER UPPER Z-STAT PROB
INT -2.37891 -9.46431 1.24350 -0.8709 0.38382
clinic 0.50623 0.00287 1.24570 1.5967 0.11034
prison -0.26376 -0.89769 0.13690 -0.9994 0.31760
log(dose) 1.90928 0.98582 3.38150 3.1242 0.00178
tau = 0.5 95% ci
COEF LOWER UPPER Z-STAT PROB
INT -0.12469 -4.63002 1.91981 -0.0746 0.94051
clinic 0.63428 -0.10334 1.21299 1.8889 0.05891
prison -0.20672 -0.53684 0.10206 -1.2683 0.20468
log(dose) 1.37392 0.86498 2.44177 3.4156 0.00064
tau = 0.6 95% ci
COEF LOWER UPPER Z-STAT PROB
INT 0.15301 -2.04626 1.15444 0.1874 8.5135e-01
clinic 0.74609 0.24016 1.07773 3.4919 4.7965e-04
prison -0.23769 -0.47199 -0.03798 -2.1468 3.1806e-02
log(dose) 1.31160 1.07247 1.74661 7.6267 2.3981e-14

Theory and WHY!

Prove that expression (8.8) gives the quantile objective function at a solu-
tion.

For a single sample Y1, ..., Y,, with order statistics Y1) < Y(o) < ... <Y(y),
show that the ith largest observation, Y{;), is the Tth-quantile if and only if
(i—1)/n <7 <'i/n . Use the subgradient inequality: specifically, show that
the left derivative (in the negative direction) is nonnegative if and only if
—(i—1)(1=7)+(n—4i+1)7 >0, and the right derivative (in the positive
direction) is nonnegative if and only if (1 —7) — (n—14)7 > 0.
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8.5 Cousider the simple regression through the origin. Take a sample (z;,y;)
and note that each observation determines a line through the origin (and
through that point) with slope b; = y;/x;. You may assume that the {z;}
are all different positive values. Let {b(;)} denote the ordered values of the
slopes (in increasing order), and let x} denote the z; value corresponding
to by (note: zj is not the ordered value of z;, but is the denominator of

b(z)) Let s = .7, ;. Let 3(7) be the regression quantile coefficient; that
is, the value of b achieving min, Y .- | p-(y; — bx;) .

(a) Show that ((r) = by if and only if the following two subgradient
inequalities hold:

|
=
|
2
8
SLox
+
ﬂ
8
L%
W%
o

j=1 j=t
4 n
(1—7‘)25[1;—7’ Z r; > 0.
j=1 j=i+1

As a consequence, show that B( ) = by if and only if

) .
—E; ! ;<T<L;:1x;

S S

(b) For the sample of four pairs: {(x;, y;) = (1, 2), (2, 3), (3,9), (4, 5)},
compute [(7) for all 7. Plot the unique regression quantile lines and
indicate the corresponding 7-intervals.

Hint: make a table of the ordered slope values, the corresponding
and the partial sums of the {z}}.

(¢) Do the same as in (b) above for {(z;, v;) = (-1, 1), (1, 1), (2, 3), (3, 2)}.
Hint: Is the first observation (-1, 1) a solution for any 77

8.6 Consider the general regression quantile setup, but extend the notation so
that 8 depends explicitly on the data: that is, write §(7; X, Y) for 3(7),

where X is the design matrix with rows z;, and the responses are in the
vector Y .

(a) Using the objective function (8.6), show the following:

Q(T; X, cY) = Cé(’l’; X, Y) for ¢>0
B(r; X, Y+Xa) = B(rX,Y)+a for a € R™.
(b) Show that the subgradient inequalities depend on the y; values only

through the sign of the residuals. As a consequence, if y; is perturbed so
that (y; — z} ﬁ( )) keeps the same sign, then ﬁ( 7) remains unchanged.
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Accelerated failure time model, 99,

101 106, 156, 213

Acute myelogenous leukemia (AML)

maintenance data, 2

fitting of exponential model to, 75
fitting of gamma model to, 144
fitting of log-logistic model to, 79, 84
fitting of log-normal model to, 84
fitting of Weibull model to, 78, 83
Kaplan-Meier curve for, 29, 40
log-logistic survival curves for, 80
log-rank test on, 44

method, software using, 234
sample, 176, 236
validation
of cut point analysis, 172
of model selection, 110
Breslow estimate, 159
BTT study, see Birth to Ten study

C

Cause-specific hazard function, 197
Censored data, 1, 2
Censored regression quantiles, 132, 194,

quantiles for, 84 85
naive descriptive analysis of, 4, 36
nonparametric analysis of, 35, 39,
44 46
- plots of, 81, 87, 145
AIC, see Akaike’s information criterion
Akaike’s information criterion (AIC),
106, 107, 124, 147
AML, see Acute myelogenous leukemia
Ancillary variable, 182
Anderson-Gill formulation, 193
Asymptotic variance, 65
Auxiliary variables, 220

B

BBBD, see Blood-brain barrier
disruption
Binomial populations, comparison of, 40
Birth to Ten (BTT) study, 49 51
Bivariate vector field, delta method for,
89
Blood-brain barrier disruption (BBBD),
2, 3,121, 123
Bootstrap, 176
density histogram, 177
Interquartile Range method, 234

137, 213 245
alternative to Cox PH model, 213
censored regression quantile model
and Cox model, 224 227
coefficients, 233
computation of censored regression
quantiles, 227 232
general censored regression
quantile algorithm, 230 232
new Kaplan-Meier weights,
227 228
single-sample algorithm, 228 230
examples of censored regression
quantile, 232 242
CNS lymphoma example, 234 239
UMARU impact study example,
239 242
exercises, 242 245
functions, 237, 241
model, 224
software for, 233

Censoring and truncation models, 2,

918

current status data, 14 15
exercises, 21 23

interval censoring, 16 17
left, 12
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left-censored and doubly-censored
data, 15 16
random censoring, 1, 12 14
delta method, 73
exponential model under, 71 75
likelihood function, 13, 71
MLE, 71 72, 74
right, 12
truncation, 17 18
Type I censoring, 9 10, 107
Type II censoring, 10 12
Central quantile function, 233
Central regression quantile survival
function, 235, 238, 240
C.I., see Confidence interval
CI estimator, see Cumulative incidence
estimator
CNS lymphoma data, 2
checking adequacy of PH model,
166 172
Cox PH analysis of, 121 135
cut point analysis, 172 179
quantile analysis of, 232, 234 239
Cohort, 28
Competing risk(s), 195 201
definition of, 195
library, 201
see Cumulative incidence estimator
Compliance
indicator, 239, 240
-related covariate, 233, 240
see UMARU impact study
Conditional probability, 6
Conditional quantiles, 216, 218
Confidence interval (C.I.), 66
Covariance matrix, 65
for estimates of scale and shape
parameters of Weibull, log-logistic,
log-normal models, 90
Covariate(s)
stratifying on, 46
vector, 95, 98, 100, 101
Cox proportional hazards (PH) model,
99, 100, 121 141, 157
AIC procedure for variable selection,
124 133
Akaike’s information criterion for
Cox PH model, 124 125
appropriateness of, 136

Index

baseline survival function, 235
comparison with quantile regression,
234 242
cut point analysis, 172
data diagnostic methods, 159 179
estimates from fitting a, 125
exercises, 137 139
for LTRC data, 209
hazard function, 123
partial likelihood function, 158
stratified, 133 137, 191
test of adequacy of, 160, 164
validity of, 145
Cox-Snell residuals, 149, 159, 160
overall model fit and, 169
plot, 168
Cox survival curves, estimated, 175
stratified Cox PH regression, 133 135
Cumulative hazard(s) function, 6
graph of, 146
log, 90, 105
log-log scale, 99, 134 135
to time, estimates of, 33
Cumulative incidence (CI) estimator,
195, 196, 199, 200
function, 197
Cut point analysis, 172
robustness of, 176

Data
diagnostics, see Model checking
censored, 2
CNS, 3, 121, 238
entry and import/export of data
files, 20 21
fictitious, 43, 47
file, importing of, 20, 21
Datasets
AML study, see Acute myelogenous
leukemia maintenance data
Australian study of heroin addicts
(ADDICTS), 187 194
Birth to Ten (BBT) data, 49 51
CNS lymphoma data, see CNS
lymphoma data
Diabetes data, 52 53, 93 94,
117 120, 137 139
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Motorette data, see Motorette data
example
Psychiatric inpatients data, 206 212
UMARU impact study (UIS),
239 242
Defined time-dependent variables, 181
Definitions, basic, 5 9
Degeneracy problems, 236
Delayed entry time, 17
Delta-beta, 165
Delta method, 34, 37, 66, 89, 111
Deviance, 148
partial, 151
residual(s), 148, 149, 155
motorette data and, 156
outliers and, 170
d.f., see Distribution function
dfbeta, 152, 155, 164, 165, 171
Directional derivatives, 229
Discrete lifetimes, 62
Distribution(s)
asymptotic, 38, 44, 65, 91
closeness, 160
exact, 41, 68
exponential, see Exponential
extreme value, 58, 112, 150
function (d.f.), 5, 78
gamma, see Gamma
large sample, 65
log-logistic, see Log-logistic
log-normal, see Log-normal
log-transform, 62 63
Weibull, see Weibull
Doubly-censored data, 15

Empirical hazards, comparison of,
32 33, 39, 46

Empirical survivor function (esf), 26,
27, 29

Estimable quantity, 197

Euler’s constant, 58

Exact distribution theory under
exponential, 68

EXCEL spreadsheet, 20, 21

Explanatory variables, 95

Exponential

253

confidence interval for survival
probability, 74
density, 56
distribution, 55
model, fitting of data to AML data,
68
- plots, 77
regression model, 96 98
Exposure variable, hazard ratio for,
186, 192
Extended Cox model, 101, 137, 181 194
analysis, 192 194
examples, 184 194
exercises, 212
stratified Cox model, 191 192
types of time-dependent predictor
variables, 181 183
External characteristics, 182
Extreme minimum value distribution,
58
Extreme value model, 150

Failure(s), 1
competing-risk, 196, 198, 200
estimate of probability of, 197
time, 1, 11, 18, 95

First order Taylor approximation, 33,
66, 89, 90

Fisher information matrix, 65

Fisher’s exact test, 41

Fixed censoring time, 9

Full model, expression of, see
Two-sample problem

Gamma

densities, 61, 62

distribution, 56, 61 62, 68

model, 56

- plot, 144, 145
General lag-time extended model, 184
Goodness of fit, 56, 147
Grambsch-Therneau test, 164, 189
Graphical methods

basic, 144

checks of overall model adequacy, 147
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Greenwood’s estimate, modified, 202,
206, 207

Greenwood’s formula, 32, 34, 207

Greenwood’s standard errors, 37

Hazard(s)
crossing over time, 136, 137
empirical, 46
estimates of, 32
exponential, 56
flexible estimation of baseline, 214
function(s), 2, 6, 7, 123
baseline, 96, 100, 103, 105
cause-specific, 197
cumulative, see Cumulative
hazard(s)
modelling of, 18
monotone, 61
plotting of cumulative, 134 135,

146
gamma, 62
log-, 96

log-logistic, 61

log-normal, 60

rates, types of, 8

ratio (HR), 45, 88, 100, 121, 157
confidence intervals, 194
cumulative, graph of, 146
exposure variable, 192
expression of, 186
general formula for extended Cox

model, 184

heavyside function and, 187
time-dependent, 186

Weibull, 57, 60

HR, see Hazard ratio

1

iid, 9

Independence assumption, 13

Indicator variable, 20

Interaction models, 125

Internal variable, 182

Interquartile Range method, bootstrap,
234

Interval censoring, 16

Invariance property, 65

Index

Jacobian matrix, 90
Joint confidence regions, 67

Kaplan-Meier (K-M) estimator of
survival probability, 25 40
estimate, 27 30, 202, 205
estimate of variance of, 32
large sample theory, 38
modified, 202, 205
statistic, proofs of normality of, 44
survival curve

adjusted for covariates in
ADDICTS data, 191 192
of AML data, 35 36, 39 40
of CNS data, 122
overall survivor function, 199
weights, new, 227
K-M, see Kaplan-Meier

Lag-time effect, 183
Large sample distribution of MLE, 65
Left censoring, 12, 15
Left-truncated and right-censored
(LTRC) data, 202 212
Left truncation, 17
most common type of, 17
time, 203
Length-biased sampling, 17
Likelihood
function, 10, 11, 13, 64, 191, 148
ratio test (LRT), 55, 67, 70, 74, 77,
83
to further reduce, 126, 130
general version of, 91
overall model fit, 87
statistic, 91
Linear conditional quantiles, 216
Linear inequalities, 222
Linear predictor, 80, 105
Linear programming simplex of points,
221
Link function, 96
Location(s)
comparison of, 82
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family, member of, 62
-scale family, 55, 63, 144, 225
covariance matrix of parameter
estimates, 90
Log-hazard, linear predictor of, 96
Log-likelihoods, profile, 173, 174
Log-linear models, 63, 105
Log-log cumulative hazards, 99, 105,
135
Log-logistic
confidence interval for survival
probability, 90
densities, 61
distribution, 59 61,63
fitting data to, 79, 84, 109
model, 79, 81, 90, 102, 104, 105, 106
odds of survival, 60, 106
odds ratio (OR) of survival, 104, 106
Proportional odds property, 104, 105,
106
Proportional times property, 104, 105
- plots, 81, 87, 115
times ratio (TR), 104, 106
Log-normal
densities, 60
distribution, 59
model, fitting of data to, 81, 109
- plots, 87, 115
Log-rank statistic, computing of, 43, 47
Log-rank test, 40, 41, 188
AML data, 44
CNS data, 122
Log-transform, 63, 80, 105
LRT, see Likelihood ratio test
LTRC data, see Left-truncated and
right-censored data

Mantel-Haenszel (MH)
computations of, 43
proofs of normality of, 44
statistic, 40, 42
test, 40, 41, 45

Martingale residual, 149, 151, 160, 161,
169, 177, 178

Maximum likelihood estimation (MLE),
10, 13, 55, 64, 65, 68, 92
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Maximum partial likelihood estimates,
159
Mean residual life, 7, 38
Mean survival time, 7, 34, 37, 69
Mean value, 7
Median
C.IL for, 73, 74
MLE of, 70
nonparametric estimation of, 34, 35,
36, 37, 39
MH, see Mantel-Haenszel
Middle order statistics, average of, 215
MLE, see Maximum likelihood
estimation
Model(s)
accelerated failure time, 99, 101, 103,
105, 213
adequacy
diagnostic tool for checking, 64
graphical check for, 64, 147
bootstrap set based, 110
censored regression quantile, 224
censoring, 2, 9
Cox PH, see Cox proportional
hazards model
deviance, 148
exponential, 56, see also Exponential
fitting of to AML data, 75
goodness of fit to, 56
regression, 96
extended Cox, 101, 137, see also
Extended Cox model
extreme value, 58, 63, 150
frequently used continuous, 56
full, expression for two-sample
problem, 80
gamma, 56, 61, 144
general lag-time extended, 184
identification, 109
interaction, 125
log-linear, 63
log-logistic, see Log-logistic
log-normal, see Log-normal
log-transform, scale parameter in, 81
parametric regression, 88, 105
random censoring, 12, 13, 158
regression, see Regression models
saturated, log-likelihood of, 148, 153
selection procedure, 106, 107, 129
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automated, 124
interaction terms in, 129
stratified, 121, 133, 136, 191
truncation, 2, 9
Weibull, see Weibull
Model checking, data diagnostics,
143 180
basic graphical methods, 144 146
Cox proportional hazards model,
157 179
CNS lymphoma example, 166 172
Cox-Snell residuals for assessing
overall fit of PH model, 159 160
cut point analysis with bootstrap
validation, 172 176
deviance residuals to detect
possible outliers, 161 162
dfbetas to assess influence of each
observation, 164 165
Grambsch and Therneau’s test for
PH assumption, 164

Martingale residuals for identifying

best functional form of
covariate, 160 161

Schoenfeld residuals to examine fit

and detect outlying covariate
values, 162 163
exercises, 179 180
Weibull regression model, 147 156
Cox-Snell residual, 149
deviance, deviance residual, and
graphical checks for outliers,
148 150
deviance residual, 149 151
dfbeta, 152
graphical checks of overall model
adequacy, 147 148
Martingale residual, 149
Motorette example, 152 156
partial deviance, 151 152
Modified Greenwood’s formula, 202,
206, 207
Modified Kaplan-Meier estimate, 202,
205, 207

Modified Kaplan-Meier survivor curves,

208
Modified partial likelihood, 209
Mortality rate 6
Motivation, examples, 2 5

Index

AML study, 2

CNS lymphoma data, 2 4

naive descriptive analysis of AML
study, 4 5

Motorette data example, 107, 152

deviance residuals, 155, 156

hours of failure to, 108

- plots, 115

results of fitting parametric models
to, 108

Weibull hazard and survival
functions fit to, 114

Weibull regression model adequacy,
152 156

Nelson-Aalen estimate, 33, 159, 198, 199
New Kaplan-Meier weights, 227
Neyman-Pearson/Wilks likelihood ratio

test, 67, 92, see also LRT

Nonparametric methods, 25 53

comparison of survivor curves, 39 51
comparing two binomial
populations, 40 41
example of Simpson’s paradox,
49 51
Fisher’s exact text, 41
hazard ration as measure of effect,
45 46
Mantel-Haenszel /log-rank test,
41 44
stratifying on covariate, 46 47
exercises, 51 53
Kaplan-Meier estimator of survival,
25 39
confidence interval estimates of
survival probability, 37
estimates of hazard, 32 33
estimates of quantiles, 33 34
Greenwood’s formula, 32
redistribute-to-the-right algorithm,
30 31
truncated mean residual life, 38
truncated mean survival time,
34 36, 37

Observed information matrix, 65
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Odds of survival, 60, 106
Odds-ratio (OR) of survival, 104, 106
One-sample problem
nonparametric methods, 25 39
parametric methods, 68 80
Oregon Health & Sciences University
(OHSU), 2
Outliers
deviance residuals to detect, 149 150,
161, 170
graphical checks for, 148, 155 156,
170
Overall effect, 185

Parametric methods, 55 94
bivariate version of delta method, 89
confidence intervals and tests, 66 67
delta method for bivariate vector
field, 89 90
exercises, 92 94
frequently used models, 56 64
construction of quantile-quantile
plot, 63 64
discrete lifetimes, 62
exponential distribution, 56
extreme value distribution, 58 59
gamma distribution, 61 62
log-logistic distribution, 59 61
log-normal distribution, 59
Weibull distribution, 57 58
general version of likelihood ratio
test, 91
maximum likelihood estimate, 64 66
one-sample problem, 68 80
no censoring, data fit to
exponential, 68 71
random censoring, data fit to
exponential, 71 77
two-sample problem, 80 89
fitting data to Weibull, log-logistic,
and log-normal models, 81 84
prelude to parametric regression
models, 88 89
quantiles, 84 86
Partial deviance, 151
Partial likelihood, 103, 123, 158, 209
p-d.f., see Probability density function

257

PH, see Proportional hazards property,
see also Cox proportional hazards
model

Pivot, 222

PL estimator, see Product-limit
estimator

Plot(s)

Cox-Snell residual, 168, 169
dfbeta, 155, 171, 172
diagnostic, 171, 173, 190
Martingale residuals, 168, 169, 177,
178
probability, 144
-, 55, 63, 64, 144, 155
exponential, 77
gamma, 145
log-logistic fit, 81, 87
motorette data, 115, 155
Weibull fit, 81, 87, 115, 155

Population mortality data, 8

Potential contribution, 30, 199, 200

Probability
conditional, 6
density function (p.d.f.), 5, 6, 7
failure, 195, 196
plot, 144

Product-limit (PL) estimator, 27

Profile
likelihood function, 172
log-likelihoods, 173, 174

Programming problems, breakthroughs
in computational methods for, 224

Proportional hazards (PH) property,
88, 100, 105

Proportional odds property, 104, 105,
106

Proportional times property, 104, 105

Pseudo-observations, weighted, 228

pth-quantile, 6, 33, 37, 69, 72, 84

- plot,
uantile(s)
approach, disadvantage of, 226
coefficient effects, 240
conditional, 216, 218
estimate of, 33, 84, 85
function(s)

see uantile-quantile plot
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central, 233

conditional, 215
linear conditional, 216
regression, 216, 219

analysis, 226

central, survival function, 235, 238

coefficients, 235, 241

doing, 220

example, 217, 232

median, 239

model, 242

software for censored, 233

weighted, 223
true standard, 63

uantile-quantile ( - ) plot, 55, 63,

64, 144, 155
AML data, 77, 81, 87, 145
construction of, 63, 144
exponential, 77, 81
gamma, 145
log-logistic fit, 81, 87, 115
log-normal fit, 87, 115
motorette data, 115
use of for diagnostic purposes, 64, 75
Weibull fit, 81, 87, 115

Random censoring, 1, 12, 71 75
delta method, 73
exponential likelihood, 71
likelihood, 13, 65
likelihood ratio test, 74 75
MLE, 71 72, 74
model, 13, 158
Random disturbance, 216
Rao statistic, 67
RC data, see Right-censored data
Redistribute-to-the-right algorithm, 30,
196, 199, 200, 228
Regression models, 95 120
accelerated failure time model,
101 105
AIC procedure for variable selection,
106 117
Akaike’s information criterion,
106 107
fitting of Weibull model, 110 117
motorette data example, 107 108

Index

S code for computing AIC for
specified distributions, 108 109
Cox proportional hazards model,
100 101, 121 141, 157
exercises, 117 120
exponential regression model, 96 98
heterogeneity in, 217
Weibull regression model, 98 100
Regression quantile(s), 214 224
analysis, 194, 226
censored, see Censored regression
quantiles
coefficients, 216
definition of, 215
doing, 220
example, 217
limiting distribution of, 223
median, 239
weighted, 223
Reliability function, 5
Residual(s)
Cox-Snell, 149, 159, 160, 169
deviance, 149, 155
motorette data and, 156
outliers and, 170
Martingale, 149, 151, 160, 177, 178
nonzero, 162
Schoenfeld, 162, 163
kth, 165
largest absolute valued, 169
ordered survival times and, 171
scaled, 164
Right-censored (RC) data, 12, 17, 204,
211
Right truncation, 17, 18
Risk, 6
estimates of, 32
scores, 150
set just before time, 28
Robustness, bootstrap validation to
check, 176

Sampling, length-biased, 17

Saturated model, log-likelihood of, 148,
153

S/R functions written by the authors
ci.boot, 238
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crq, 233
crq.boot, 235, 236
cutpt.coxph, 173
emphazplot, 45 46
extcox.1Et, 193
hazard.km, 38 39
pltbeta.l R, 236
qq.gamma, 144, 145
qq.loglogisreg, 86, 114
qq.loglogistic, 79
qq.lognormreg, 86, 114
qq.weibreg, 86, 114
qq.weibull, 75, 76
quantile.km, 38 39
sumpr.crq, 238
weib.loglik.theta, 77
Schoenfeld residual(s), 162, 163
kth, 165
largest absolute valued, 169
ordered survival times and, 171
scaled, 164
Simplex, 221, 222
Simpson’s paradox, 47, 49
Single-sample algorithm, 228
Singularities, 176
Spline smoother, 190
Statistical model identification, 109
Statistical modelling, importance
principle in, 126
Status variable, 20
Stratified Cox model, 121, 133 137, 191
Subdistribution function, 30, 197
Subgradient conditions, 222, 223
Survival, 213
analysis, 1
function, nonparametric, 35
goals of, 2, 18, 19
measure of effect in, 100, 104
Confidence intervals for, 32, 37, 74,
90
curve(s)
estimated, 208, 210
Kaplan-Meier, 36, 192
function(s)
central, 235, 238, 240
CNS data, 3, 122
K-M estimate for, 25 39
mean, 7
odds of, 60, 106
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true probability of, 74
Survivor
curves
comparison of, 39
exponential, 56
modified K-M, 208
function, 1, 5, 13, 96, 102, 103
baseline, 101, 235
estimated, 115
K-M estimator of, 28, 29
modified K-M estimator of, 205

Test(s)
confidence intervals and, 66
Fisher’s exact, 41
Grambsch-Therneau, 164, 189
log-rank, 40, 41, 44, 188
LRT, see Likelihood ratio test
Mantel-Haenszel, 40, 41, 45
Neyman-Pearson/Wilks likelihood
ratio, 67
truncated permutation, 204
Time to cure the disease, 14
Time-to-event data, 1, 57
Time-independent variable, 160, 181
Time to side effect, 14
Time to tumor, 14
Times-ratio (TR), 104, 106
Treatment variable, confounding of
factors with, 46
Truncated mean residual life, estimate
of, 38
Truncated mean survival time, 34, 37
Truncated permutation test, 204
Truncation, 17
left, most common type of, 17,
202 210
models, 2, 9, see also Censoring and
truncation models
right, 17, 18
Two-sample problem
nonparametric methods, 39 51
parametric methods, 80 89
Type I censoring, 9, 107
Type II censoring, 10
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UMARU impact study (UIS) example,
239
compliance indicator, 239, 240
quantile analysis of, 239 242

\%

Variable(s)

ancillary, 182

auxiliary, 220

defined time-dependent, 181

exposure, hazard ratio for, 182, 184,

185, 186, 187, 192, 193, 194

internal, 182

time-dependent, 181, 185

time-independent, 181
Variance

asymptotic, 65

-covariance matrix, 111

see also Covariance matrix
Vertex, 221

Wald statistic, 67
Weibull

confidence interval for survival
probability, 90

density, 57

distribution, 56, 57

fitting AML data to, 77 78, 81 83,
86, 87

hazard(s), 57

models, 56, 77, 81, 110

- plots, 81, 87, 115

regression model, 98 99, 102, 103,
105, 147, 156
cumulative hazard, 99
estimation and testing, 110 111
fitting motorette data to, 107-108,

112 117

hazard, 98, 105
log-cumulative hazard, 99, 105

survivor function, 57, 93
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