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Bayesian modelling of spatial compositional
data

HÅKON TJELMELAND & KJETILL VASSMO LUND, Department of
Mathematical Sciences, Norwegian University of Science and Technology, Trondheim,
Norway

 Compositional data are vectors of proportions, specifying fractions of a whole.
Aitchison (1986) defines logistic normal distributions for compositional data by applying
a logistic transformation and assuming the transformed data to be multi-normal distri-
buted. In this paper we generalize this idea to spatially varying logistic data and thereby
define logistic Gaussian fields. We consider the model in a Bayesian framework and
discuss appropriate prior distributions. We consider both complete observations and
observations of subcompositions or individual proportions, and discuss the resulting
posterior distributions. In general, the posterior cannot be analytically handled, but the
Gaussian base of the model allows us to define efficient Markov chain Monte Carlo
algorithms. We use the model to analyse a data set of sediments in an Arctic lake. These
data have previously been considered, but then without taking the spatial aspect into
account.

1 Introduction

Compositional data are vectors of proportions, specifying D fractions of a whole.
Thus, for xó(x1, . . . , xD)T to be a compositional vector one must have xi[0 for
ió1, . . . , D and x1ò. . .òxDó1. In Aitchison & Shen (1980) and Aitchison (1982,
1986) the logistic normal distribution is introduced as a flexible parametric model
for analysis of compositional data. The model is defined from a multi-normal
distribution via a logistic transformation. Many of the nice properties of the multi-
normal class are inherited by the logistic normal family and this allows extensive
analytical treatment for logistic normal distributions.

Spatial models for proportions are also of interest in many situations. Let
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88 H. Tjelmeland & K. V. Lund

x(u)ó(x1(u), . . . , xD(u))T be a stochastic vector field, where u éRk denotes location.
For this to be a spatial compositional field the above conditions must apply for
each position u, i.e. xi(u)[0 for all u éRk and ió1, . . . , D and x1(u)ò . . . , xD(u)ó1
for all locations u éRk. For example, with Dó4 and kó3, x1(u), . . . , x4(u) may
represent volume proportions of oil, gas, water and rock as a function of location
in a petroleum reservoir. Alternatively, as in our example in Section 6 where
sediments in a lake are of interest, x1(u), . . . , xD(u) may represent proportions of
sand, silt and clay and u éR2 is geographical location.

Some spatial generalizations of the logistic normal family are discussed in the
literature. In Pawlowsky & Burger (1992), spatial interpolation of compositional
data is considered via logistic transformation in each location to obtain data in
RDñ1, followed by a co-kriging procedure. Thus, a model of correlated Gaussian
fields is adopted after the transformation. In Billheimer et al. (1997a, b) discrete
spatially correlated compositional data are modelled via underlying (unobserved)
Gaussian Markov random fields. However, this formulation allows very little
analytical computations and for inference Billheimer et al. (1997a, b) resort to
Markov chain Monte Carlo (MCMC) procedures, updating only one or a small
number of variables at a time.

In the present paper, we revisit the formulation of Pawlowsky & Burger (1992),
but we consider it in a broader setting. First, we discuss the problem of parameter
estimation by including the model in a hierarchical Bayesian framework. Second,
Pawlowsky & Burger (1992) limit the attention to complete observations, i.e. all
proportions are observed in a number of locations, whereas in this paper we also
consider observation of subcompositions and individual proportions. A subcompos-
ition is the relative proportions of only some of the components. For example, for
the oil, gas, water and rock situation mentioned above, one may easily observe the
relative volumes of oil, water and gas, whereas to get the volume proportion of
rock is a more expensive task. As discussed in Aitchson (1986), subcompositional
data fit very nicely into the logistic normal family and allow extensive analytical
treatment. Observation of individual proportions is more problematic and MCMC
is necessary to handle this case. However, the Gaussian base can be used to define
efficient algorithms, simultaneously updating large blocks of variables.

The paper is organized as follows. In the next section we introduce the basic
notation and discuss appropriate sample spaces. In Section 3, logistic Gaussian
fields are defined as a generalization of the logistic normal model of Aitchison
(1986) and, in Section 4, we discuss properties of the corresponding conditional
fields given complete or partial observations. In Section 5, a fully Bayesian model
for spatial compositional data is defined by introducing appropriate hyper-priors.
Moreover, efficient simulation algorithms for the resulting posterior is discussed.
In Section 6, we revisit a data set of sediments in an Arctic lake (Coakley & Rust,
1968). The data set has been previously analysed (Aitchison, 1986; Iyengar & Dey,
1996), but the spatial aspect of the problem was then ignored. Finally, Section 7
provides conclusions.

2 Preliminaries

In this section, we introduce some basic notation and discuss the logistic trans-
formation. Most of the treatment is based on the presentation in Aitchison (1986)
and a more thorough discussion can be found there.
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Bayesian modelling of spatial composition data 89

Let x(u)ó(x1(u), . . . ,xD(u))T; u éRk be a compositional field, i.e. xi(u) gives the
proportion of substance i in location u. Thus, the sample space of x(u) is

LDó�x(u)ó(x1(u), . . . , xD(u))T � xi(u)[0, ió1, . . . , D and ;
D

ió1
xi(u)ó1��RD

(1)

The unit sum constraint implies that any dóDñ1 dimensional sub-vector uniquely
specifies the last component and the probability density for x(u) is thereby
degenerate. We therefore focus on a vector, z(u) say, containing only the d first
components of x(u). The one-to-one relation between x(u) and z(u) becomes

z(u)óAdx(u) � x(u)óBdz(u)òcd (2)

where Ad éRdîD consists of a dîd identity matrix with an extra column of
zeros, Bd éRDîd is a dîd identity matrix with an extra row of ñ1s added, and
cdó(0, 0, . . . , 0, 1)T éRD. The sample space of z(u) becomes

Sdó�z(u)ó(z1(u), . . . , zd(u))T D zi(u)[0, ió1, . . . , d and ;
d

ió1
zi(u)\1�

(3)

The logistic transformation defines a one-to-one relation between Sd and Rd.
With y(u)ó(y1(u), . . . , yd(u))T, the logistic transformation is in vector format
given as

z(u)ó e y(u)

1ò jT
d e y(u)

� y(u)ó ln� z(u)
1ñ jT

d z(u)� (4)

where jd éRd is a column vector with all elements equal to one and the exponential
and logarithm functions should be interpreted as acting component-wise. Through-
out this paper, we consistently use x(u), y(u) and z(u) to denote stochastic fields
on LD, Rd and Sd, respectively, and let their relation be given by equations (2)
and (4). Thus, whenever the distribution of one of the fields is specified, the
distributions of the other two are also given.

Subcompositions and individual proportions can be obtained from x(u) via
selection matrices. A matrix S éRCîD, where COD, is called a selection matrix if
it has C unity elements, of which exactly one is in each row and at most one in
each column, and all other elements are equal to zero. For a given selection matrix,
S, the corresponding vector of individual proportions at location u is Sx(u). A
rescaling to obtain unit sum gives the corresponding subcomposition, xS(u), i.e.

xS(u)ó Sx(u)
jT
C Sx(u)

(5)

Note that xS(u) éLC, so xS(u) is a C-dimensional compositional field. Thus,
corresponding quantities zS(u) éSc and yS(u) éRc where cóCñ1 can be defined
by equations (2) and (4) by replacing x(u), y(u) and z(u) by xS(u), yS(u) and zS(u),
respectively. Then, quite remarkably, a linear relation between y(u) and yS(u)
results,

yS(u)óQS y(u) where QSóBT
c SBdHñ1

d éRcîd, HdóIdòJd (6)
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90 H. Tjelmeland & K. V. Lund

where Id is the dîd identity matrix and Jd is a dîd matrix with all elements equal
to one. It should be noted that the definition of yS(u) from y(u) goes via a series
of transformations, several of which are non-linear, so this simple linear relation is
not at all obvious. The result is by no means new—it is discussed in Aitchison
(1986) and forms there the main motivation for the definition of logistic normal
distributions. Likewise, this property is essential for the tractability of logistic
Gaussian fields discussed in this paper. Since equation (6) is so fundamental for
the following sections, and as Aitchison (1986) contains no clearly written proof
of the result, we include one in the Appendix.

A particular subclass of selection matrices is permutation matrices, for which
CóD. The denominator in equation (5) is then unity and the elements of xS(u)
are just a permuted version of the elements in x(u). We denote a permutation
matrix by P and the permuted variant of x(u) by xP(u)óPx(u). One should note
that yP(u)ÖPy(u) unless PóID.

3 Logistic Gaussian fields

Corresponding to how Aitchison (1986) defines logistic normal distributions
from multi-normal distributions, we here define logistic Gaussian fields from a
multivariate Gaussian process.

Definition 1:
Let y(u)ó(y1(u), . . . , yd(u))T; u éRk be a multivariate Gaussian process with mean
function k(u)óE[y(u)]ó(k1(u), . . . ,kd(u))T and covariance structure given by
c(u,u@)óCov[y(u), y(u@)]ó(cij(u, u@))d

i, jó1. Furthermore, for each u éRk, let z(u)
and x(u) be defined from y(u) by equations (4) and (2), respectively. We then call
x(u)ó(x1(u), . . . , xD(u))T; u éRk, or equivalently z(u)ó(z1(u), . . . , zd(u))T; u éRk,
a logistic Gaussian field with parameter functions k( · ) and c( · , · ).

In the definition of logistic Gaussian fields, the last proportion, xD(u), is obviously
treated differently from the other components. However, it should be noted that
a fully symmetric definition gives the same model class. More precisely, let
{v(u)ó(v1(u), . . . , vD(u))T; u éRk} be a multivariate Gaussian process with mean
function k0(u) éRD and correlation structure c0(u, u@) éRDîD, and set x(u)óev(u) /
( jT

Dev(u)) for each u éRk. Then x(u) is a logistic Gaussian field with parameter
functions k(u)óBT

dk0(u) and c(u, u@)óBT
d c0(u, u@)Bd. This result is immediate by

transforming x(u) via z(u) to the corresponding y(u) by equations (2) and (4) and
noting that this gives y(u)óBdv(u).

A logistic Gaussian field may be interpreted as a prior distribution in a Bayesian
framework. In some situations it is then natural to restrict attention to fields
where the different proportions are a priori exchangeable, i.e. to require {x(u);
u éRk}ód {Px(u);u éRk} for any permutation matrix P. This is fulfilled if and only
if k(u)ó0 for all u éRk and c(u,u@) has the form c(u,u@)óp2a(u, u@) Hd /2, where
p2[0 is the variance of the Gaussian fields, a( · , · ) is a scalar spatial correlation
function and Hd is as specified in equation (6). It should be noted that this
c( · , · ) falls within the class of intrinsic correlations structures (see, for example,
Wackernagel, 1995, Ch. 22), which is reasonable in some applications and which
has important computational advantages.

Unconditional simulation of logistic Gaussian fields in a set of grid locations is
straightforward from its definition; first simulate the multivariate Gaussian process
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Bayesian modelling of spatial composition data 91

y(u) in the given array and then use logistic transformation (4) for each grid
location. To simulate a Gaussian process many different methods exist, see Cressie
(1993) for an overview. Simulation of the Gaussian process becomes especially
simple with an intrinsic covariance structure.

4 Conditional logistic Gaussian fields

Properties of logistic Gaussian fields conditioned to data depend on the type of
observations available. In the following, we first discuss complete and subcomposi-
tional data and thereafter observations of individual proportions.

4.1 Complete and subcompositional observations

Let x(u) be a logistic Gaussian field with parameter functions k( · ) and c( · , · ).
Assume that complete or subcompositional observations are available in n locations,
u1, . . . ,un. Thus, to each ui there is an associated selection matrix Si éRCiîD and a
corresponding observation vector xSi(ui). Complete observations in location ui

correspond to setting Si equal to the identity matrix (or any other permutation
matrix).

From the definition and properties discussed in the previous sections it follows
directly that x(u) D xS1(u1), . . . , xSn(un) is also logistic Gaussian; The one-to-one
relation between xSi(ui) and ySi(ui) gives that conditioning to the vectors
xS1(u1), . . . , xSn(un) is equivalent to conditioning on yS1(u1), . . . , ySn(un). The linear
relation in equation (6) gives that y(u) D yS1(u1), . . . , ySn(un) is a multivariate
Gaussian process and, thereby, by definition of logistic Gaussian fields, that
x(u) D xS1(u1), . . . , xSn(un) is also a logistic Gaussian field. The parameter functions
of the conditional field are also readily available as the mean and covariance
functions of the corresponding Gaussian y-process. Conditional simulation of x(u)
in a set of grid locations is thereby also straightforward; first simulate the Gaussian
distributed y(u) conditioned to yS1(u1), . . . , ySn(un) and then use the logistic trans-
formation in equation (4) for each grid location. A conditional realisation of y(u)
is most efficiently obtained from an unconditional sample via a kriging procedure,
see for example Cressie (1993, Ch. 3.6.2).

4.2 Observation of individual proportions

Again, let x(u) be a logistic Gaussian field with parameter functions k( · ) and
c( · , · ), but now assume that observations of individual proportions are available
in the n locations, u1, . . . ,un. Thus, to each ui there is again associated a selection
matrix, Si éRCiîD, but now the observed values are the vectors S1x(u1), . . . , Snx(un).
In this situation there is no easy transformation of the data to corresponding values
for y(u) and the resulting conditional distribution for x(u) is neither logistic
Gaussian nor analytically tractable. Thus, properties of the conditional field must
be obtained by generating conditional realizations of x(u) by Markov chain Monte
Carlo (MCMC) procedures. It should be noted that it is sufficient to use MCMC
to generate samples of x(u1), . . . , x(un) DS1x(u1), . . . , Snx(un). If samples of the
logistic field x(u) for locations u è {u1, . . . , un} are of interest, these can thereafter
be generated directly by conditioning to simulated values for x(u1), . . . , x(un) by
the procedure discussed in Section 4.1.

As some components of x(u1), . . . , x(un) are identical to the elements of
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92 H. Tjelmeland & K. V. Lund

S1x(u1), . . . , Snx(un), sampling x(u1), . . . , x(un) DS1x(u1), . . . , Snx(un) actually means
generating samples of the elements in x(u1), . . . , x(un) that are not specified by
S1x(u1), . . . , Snx(un). Therefore, let Ti be a selection matrix that picks out the non-
observed elements of x(ui), so that

Pió�Si

Ti� (7)

is a permutation matrix, from which one can obtain x(ui) from Six(ui) and
Tix(ui) via

x(ui)óP T
i �Six(ui)

Tix(ui)� (8)

Moreover, from the unit sum constraint in each location, it follows that the last
component in Tix(ui) is given by the first DñCiñ1 elements of Tix(ui) together
with Six(ui). Thus, the variables to be simulated are z̃1óAb1T1x(u1), . . . ,
z̃nóAbnTnx(un), where bióDñCiñ1. The conditional density of interest is

f(z̃1, . . . , z̃n DS1x(u1)ó x̃1, . . . , Snx(un)ó x̃n)ë f(z1, . . . , zn) (9)

where

zió(zi1, . . . , zid)TóAdPT
i �Bd�x̃i

z̃i�òcd� for ió1, . . . , n (10)

and f(z1, . . . , zn) denotes the unconditional distribution of z(u1), . . . , z(un). Using
the transformation formula, an expression for f(z1, . . . , zn) is readily available from
the corresponding joint Gaussian distribution for y(u1), . . . , y(un).

Direct simulation from equation (9) is not feasible and one has to resort to
MCMC and the Metropolis–Hastings algorithm. For a general introduction to
this topic, see Besag et al. (1995) and references therein. Our target density
f(z̃1, . . . , z̃n DS1x(u1)ó x̃1, . . . , Snx(un)ó x̃n) typically has strong correlations
between variables. To avoid a very slow mixing Markov chain, one therefore ought
to propose changes in all variables simultaneously. The Gaussian base of the model
suggests construction of an independent proposal (Tierney, 1994) algorithm. To
see how to do this, first observe that to propose new values for z̃1, . . . , z̃n is
equivalent to proposing values for zT1(u1), . . . , zTn(un) or for yT1(u1), . . . , yTn(un),
where the one-to-one relations between the first two are

z̃ió(1ñ jT
Ci x̃i)zTi(ui) � zTi(ui)ó

z̃i

1ñ jT
Ci x̃i

(11)

As an approximation to sampling yT1(u1), . . . , yTn(un) conditioned to the observed
individual proportions, one can then sample the yTi(ui)s conditioned to the corre-
sponding subcompositions yS1(u1), . . . , ySn(un). One then remains within Gaussian-
ity and this can be used as a proposal distribution in a Metropolis–Hastings
algorithm. Thus, to generate potential new values z̃@1, . . . , z̃@n one first samples
yT1(u1)@, . . . , yTn(un)@ from the Gaussian distribution f(yT1(u1), . . . ,
yTn(un) D yS1(u1), . . . , ySn(un)) and thereafter one computes corresponding trans-
formed values zT1(ui)@ and z̃@i; ió1, . . . , n by equations (4) and (11). For math-
ematical details, see Tjelmeland & Lund (2001).
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Bayesian modelling of spatial composition data 93

The main motivation for the above independent-proposal Metropolis–Hastings
algorithm is to approximate f(yT1(u1), . . . , yTn(un) DS1x(u1), . . . , Snx(un)) with
f(yT1(u1), . . . , yTn(un) D xS1(u1), . . . , xSn(un)). It is clear that this approximation
deteriorates as n increases, with lower acceptance probabilities and slower conver-
gence as results. For n large, a better strategy is therefore to generate potential new
values as a linear combination of the current state vector and the values used
above. Mathematical details can again be found in Tjelmeland & Lund (2001).

5 A fully Bayesian model

In the previous sections, we have assumed the parameter functions of the logistic
Gaussian field to be known. In practice, this will of course typically not be the
situation. Instead, these functions have to estimated from data, or a Bayesian
formulation can be adopted. Here, we concentrate on the latter approach. No prior
distributions for the parameter functions seem to exist that allow full analytical
treatment of the resulting posterior. Thus, we have to resort to MCMC to explore
the posterior. In the following, our focus is on how to choose prior distributions
that are both flexible and give a posterior that allows effective updating of large
blocks of parameters.

5.1 Prior distribution

For the mean function, k(u), we follow the Bayesian kriging (Omre, 1987; Hjort
& Omre, 1994) framework and assume the following regression form,

kb(u)óF(u) b (12)

where b éRp is a vector of unknown parameters and F(u) éRdîp is a matrix of
known regressor functions. Via the choice of F(u) one may, for example, model
linear trends and include the effect of explanatory variables, see also the discussion
in Billheimer & Guttorp (1995). Still following the choice in Bayesian kriging, we
assume a Gaussian prior distribution for the vector b,

b~Np(k0,&0 ) (13)

where k0 and &0 are parameters to be specified.
To obtain a flexible parametric form for the covariance function, c(u,u@), we

assume an intrinsic structure with a parametric form for the spatial term, i.e.

ch,( (u,u@)óah(u,u@)( (14)

Different choices for the spatial correlation function exist—the generalized expo-
nential and the Matern correlation functions are two possibilities (Cressie, 1993).
However, as computational considerations do not favour any specific choice, we
do no closer specification at this stage. To obtain a fully specified Bayesian model,
it remains to specify priors for h and (. The natural candidate for ( is to let (ñ1

have a Wishart distribution, (ñ1~Wd(q,Q), where the scalar q[d and the positive
definite dîd matrix Q are hyper-parameters to be specified. This is the conjugate
prior distribution in the Gaussian case and, as our model also has a Gaussian base,
facilitates construction of an MCMC algorithm for the posterior distribution. For
h we assume some prior n(h).
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94 H. Tjelmeland & K. V. Lund

5.3 Simulation algorithms

In this section we discuss how to sample from the posterior distribution correspond-
ing to the prior defined above. As in Section 4, we assume the data to be exact
and discuss conditioning on complete observations, subcompositional observations
and observation of individual proportions. Unlike the situation in Section 4, all
three cases must be treated differently and in the following we consider each
situation in turn.

Complete observations Let x(u) D b,(,h be a logistic Gaussian field and let the
parameters b,( and h have prior distributions as specified above. Assume complete
observations in n locations; x(u1), . . . , x(un). As discussed in Section 4.1, condi-
tioning on x(u1), . . . , x(un) is equivalent to conditioning on the corresponding
y(u1), . . . , y(un). Thus, defining yó[y(u1)T. . . y(un)T]T, the posterior distribution
of interest can be expressed as

n(b,(, h D x(u1), . . . , x(un))ón(b,(, h D y)ën(h)n(()n(b) f(y D b,(, h) (15)

where f(y D b,(, h) is a multi-normal density. To construct an MCMC algorithm
it is natural to update the three b, ( and h separately.

To update b it is natural to consider the corresponding full conditional,
n(b D(, h, y). The situation is identical to Bayesian kriging, see Hjort & Omre
(1994, Ch. 3.1.3), and the conditional distribution is easily seen to be multi-
normal. Thus, it is natural to use a Gibbs step (Smith & Roberts, 1993) for b. To
update(, it is again most natural to use a Gibbs step as the conditional distribution
of (ñ1 given b, h, y is again a Wishart distribution. As for the updating of b, the
proposal of ( is also similar to the pure Gaussian case with conditioning on y.
Unlike the situation for b and (, there is no most natural proposal distribution for
h and, specifically, a Gibbs step is not computationally viable. However, h is
typically low dimensional and to propose a small change and accept with the
standard Metropolis–Hastings acceptance probability should therefore give satisfac-
tory convergence.

Subcompositional observations Let the x(u), b, ( and h be as in the previous
section, but consider now the situation where the available observations are the
subcompositions xS1(u1), . . . , xSn(un). Correspondingly to the situation in the previ-
ous section, conditioning to the observed subcompositions is equivalent to condi-
tioning to yS1(u1), . . . , ySn(un). Thus, introducing ySó[yS1(u1)T, . . . , ySn(un)T]T, the
posterior of interest can be expressed as

n(b,(, h D xS1(u1), . . . , xSn(un))ón(b,(, h D yS)ën(h)n(()n(b) f(yS D b,(, h) (16)

However, simulating from this distribution by a Metropolis–Hasting algorithm
similar to the one discussed in the previous section is not viable as the full
conditional (ñ1 D b, h, yS is not a Wishart or any other tractable distribution. To
avoid this complication it is preferable to include y as a latent variable, i.e. to
sample from n(b,(, h, y D xS1(u1), . . . , xSn(un))ón(b,(, h,y D yS) and update the four
groups b, (, h and y separately. To update b, ( and h, the procedures discussed
in the previous section are still natural choices, whereas for y a Gibbs step is
applicable via the procedure defined in Section 4.1.

Observation of individual proportions Let x(u), b, ( and h be as in the two previous
sections, but consider now the situation where individual proportions as observed
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Bayesian modelling of spatial composition data 95

in some locations. More precisely, let the observed values be S1x(u1), . . . , Snx(un),
where S1, . . . , Sn are selection matrices. The posterior distribution of interest is

n(b,(,h DS1x(u1), . . . , Snx(un))ën(b)n(()n(h) f(S1x(u1), . . . , Snx(un)) (17)

Similar to the situation for subcompositional observations, there exist no natural
Metropolis–Hastings algorithms for this density. Here, neither b D(, h, S1x(u1), . . . ,
Snx(un) nor ( D b, h, S1x(u1), . . . , Snx(un) are tractable distributions. Again this
complication disappears by introducing y as a latent variable. Thus, one should
sample from n(b,(, h, y DS1x(u1), . . . , Snx(un)). To update b, ( and h, the proce-
dures discussed above still apply and to update y, the Metropolis–Hastings step
discussed in Section 4.2 is the most natural choice.

6 Example: sediments in an Arctic lake

In this section, we revisit a data set of sediments in Stanwell–Fletcher lake in the
Canadian Arctic Archipelago (Coakley & Rust, 1968). The data set was previously
discussed in Aitchison (1986) and Iyengar & Dey (1996), but without taking the
spatial aspect of the problem into account. Our goal is to analyse the spatial
structure of the data and for this we use the fully Bayesian model defined in Section
5. We start with a brief introduction to the data set.

The data consist of observations in nó39 locations in Stanwell–Fletcher lake
(see Fig. 1), in each of which the water depth and the compositions of sand, silt
and clay in the upper part of the bottom sediments have been measured. The
proportions of sand, silt and clay show a clear trend with depth, see Fig. 2.

To analyse the data, we adopt the fully Bayesian model discussed in Section 5.
We let x(u)ó(x1(u),x2(u),x3(u)) where x1(u), x2(u) and x3(u) are proportions of
sand, silt and clay, respectively, at location u. We let the mean function be given
by equation (12) and use water depth as covariate in F(u). More precisely, we set
bó(b1,b2,b3,b4)T and

F(u)ó�
1 0 ln (d(u)) 0
0 1 0 ln (d(u))� (18)

F. 1. Locations with depth and sediment observations in the Stanwell–Fletcher lake. Distances are
in kilometres.
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96 H. Tjelmeland & K. V. Lund

F. 2. Proportions of sand, silt and clay as function of depth, proportions along the horizontal axis
and negative depth along vertical axis.

where d(u) denotes water depth at location u. Thus, each element in the two-
dimensional y(u) has an expectation consisting of a constant term and a term
proportional to ln(d(u)). As ah(u,u@), we take a generalized exponential correlation
function and include a nugget effect. Moreover, we also include the possibility of
no spatial correlation. Thus, with hó(R, l, e, s),

ah(u,u@)ó�
1 if uóu@

(1ñe) exp�ñ�DDuñu@DD
3R �

l

� if uÖu@ and só1

0 if uÖu@ and só0

(19)

where DD· DD denotes Euclidean distance and R[0, l é [0, 2], e é [0,1] and s é {0,1}
are spatial correlation length, form parameter for correlation function, nugget effect
and indicator for spatial correlation, respectively. It should be noted that, with the
inclusion of s, the situation can be interpreted as a model choice problem with two
competing models, one with and one without spatial correlation present, see also
the discussions in Gelfand & Dey (1994) and Carlin & Chib (1995).

We assign diffuse, but proper, prior distributions to the parameters b, ( and h.
More precisely, we let b be Gaussian with vanishing expectation and diagonal
covariance matrix with all variances equal to 1002. The (ñ1 is assigned a Wishart
distribution with qó4 and QóI2/(pñ3), so that E[(ñ1]óI2. The elements of h
are assumed a priori independent, R is assigned an exponential distribution with
expectation 15, l and e are assigned uniform distributions on the intervals [0,2]
and [0,1], respectively, and P(só0)óP(só1)ó1/2.

To sample the posterior distribution we use the MCMC algorithm discussed in
Section 5.2. After some experimentation with the algorithm we found the elements
in h to have the longest autocorrelation range and this motivated us to update h
five times for each update of b and (. The total of one update for each of b and
( and five updates for h we call one iteration. To update b and ( we use Gibbs
steps as discussed in Section 5.2. A satisfactory updating scheme for h is found by
trial and error; with probability 0.25 we propose changing the value of s to its
opposite value and keeping R, l and e unchanged, and with the remaining
probability we keep s unchanged and draw potential new values for R, l and e
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F. 3. Trace plot (500 iterations) and estimated autocorrelation function for element (1,1) in (. The
basis for the auto-correlation estimation is a 5000 iteration run, of which a 20 iteration ‘burn-in’ period

is discarded.

from their respective prior distributions. We do not claim this algorithm to be
optimal in any sense, but we found it to work satisfactory for this data set.

The MCMC procedure seems to reach convergence quickly and to have good
mixing properties. Of the simulated variables, element (1,1) of ( has the longest
auto-correlation range, see Fig. 3. We estimate the posterior probability for the
presence of spatial correlation by the fraction of iterations where só1. We get
P̂(só1 Ddata)ó0.73, which corresponds to a Bayes factor (Gelfand & Dey, 1994)
of 0.73/0.27ó2.7. Thus, the data favour the model with spatial correlation. In
Fig. 4, the estimated posterior densities for each of the 11 parameters, when
conditioned to só1, are presented. One observes that the correlation length, R,
with high probability, is quite large, but there is also a significant nugget effect
present. Instead of considering the parameters R, l and e individually, it is more
informative to study the corresponding induced correlations at different lags. The
last two sub-plots in Fig. 4 therefore give the posterior densities for the spatial
correlations at lags 1.6 km (which is the minimum distance between observations)
and 3.2 km. One can observe that the spatial correlations at lag 3.2 km is, with
high probability, rather small.

In Fig. 4 one can observe that all four elements of b are significantly different
from zero. To evaluate our choice of the transformation ln (d(u)) in the definition
of F(u), we also run a simulation where bó(b1, . . . ,b6) and

F(u)ó�
1 0 ln (d(u)) 0 d(u) 0
0 1 0 ln (d(u)) 0 d(u)� (20)

This gave posterior distributions for b5 and b6 approximately centred at the origin,
whereas the densities of b1 to b4 were essentially equal to the ones in Fig. 4. Thus,
this gives clear support for our choice of using a logarithmic transformation for the
depth.

7 Closing Remarks

The paper defines a spatial model for compositional data and evaluates the model
within a Bayesian setting. Different forms of observations are considered. Complete
observations in a number of locations is the simplest variant to handle, but we also
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98 H. Tjelmeland & K. V. Lund

F. 4. Marginal posterior densities for each of the 11 parameters present in the model (conditioned
on só1) and corresponding induced posterior densities for spatial correlation at distances 1.6 (which
is the minimum distance between two locations with observations) and 3.2. The densities presented are
produced via kernal density estimation from the output of a 5000 iteration Metropolis–Hastings run,

of which a 20 iteration ‘burn-in’ period is discarded.

define efficient MCMC algorithms to handle situations where subcompositions or
individual proportions are available. In addition to the data considered in Section
6, we have used the different algorithms discussed in this paper with several
simulated data sets and obtained good convergence rates.

In Section 5.1, we assumed an intrinsic covariance structure for the underlying
Gaussian process. The motivations for this are twofold. First, it allows a parsimoni-
ous parameterization of the covariance function. A more general form for the
covariance structure would typically include more parameters and is therefore a
viable alternative only if enough data are present or if sufficient prior information
is available. The second, and perhaps most important, motivation for the intrinsic
structure is computational efficiency. For the Metropolis–Hastings algorithms
discussed in Section 5, a general covariance structure would, in each iteration,
require matrix operations on ndînd matrices, whereas, with an intrinsic structure,
operations on nîn matrices are sufficient. At least with nó39, as in our example,
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Bayesian modelling of spatial composition data 99

the necessary inversion and decomposition of nîn matrices is computationally
unproblematic. However, even an nîn matrix can cause problems when the
number of observations, n, is large. This is, of course, a general problem for
Gaussian-based models and a full discussion of this topic is beyond the scope of
this paper. However, a possible solution can be found in the use of Gaussian
Markov random fields. The spatial covariance structure is then specified via a
sparse inverse covariance matrix and special algorithms for sparse matrices can be
used, see Rue (2001) and references therein. See also Rue & Tjelmeland (2002)
for a procedure for fitting the parameters of a Gaussian Markov random field to a
specified covariance function.
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Appendix

Proof of relation (6)

Let x éRD, y, z éRd, xS éRC, yS, zS éRc, where dóDñ1 and cóCñ1 and let
S éRCîD be a selection matrix. We will then show that the following sequence of
transformations from y to yS,

zó ey

1ò jT
d e y

, xóBdzòcd, xSó
Sx

jT
C Sx

, zSóAcxS, ySó ln� zS

1ñjT
c zS� (21)

gives the linear relation

ySóQSy where QSóBT
c SBdHñ1

d (22)

The relations in equation (21) are one-to-one except the middle one and the
corresponding four inverse transformations read

yó ln� z
1ñ jT

d z�, zóAdx, xSóBczsòcc, zSó
eyS

1ò jT
c eyS

(23)

We first observe

1ñ jT
d zó1ñ jT

d AdxóxD and ln(Adx)óAd ln(x) (24)

the last because each row of Ad has all zero elements except one which is equal to
unity. Thus, combining the two first relations in equation (23) gives

yó ln�Adx
xD �ó ln (Adx)ñ jd ln(xD)óAd ln(x)ñ jd ln(xD)óBT

d ln(x) (25)

Likewise, from the two last relations in equation (21), one gets

ySóBT
c ln(xS) (26)

from which, by inserting the definition of xS, it follows

ySóBT
c ln� Sx

jT
C Sx�óBT

c (ln(Sx)ñ jC ln( jT
C Sx))óBT

c S ln(x) (27)

by using the relations ln(Sx)óS ln(x) and BT
c jcó0.

Multiplying with BdHñ1
d from the left on each side of equation (25) and using

the matrix identity BdHñ1
d BT

dóIDñ(1/D)JD gives

BdHñ1
d yóBdHñ1BT

d ln(x)ó ln(x)ñ 1
D

Jd ln(x) (28)

so that

ln (x)óBdHñ1
d yò 1

D
JD ln(x) (29)

Thus, inserting this last expression in equation (27) one gets

ySóBT
c S�BT

d Hñ1
d yò 1

D
JD ln(x)�óBT

c SBT
d Hñ1

d y (30)

because BT
c (SJD)óBT

c JDó0. Thus, equation (22) is established.
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