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Chapter 1

The Linear Mixed Model and the
Randomized Block Design

The statistical model consists of fixed and random components. The fixed effects are repre-
sented by low dimension expressions such as curves, means etc and the random components
by densities or probability fuctions.

Example 1.1

An ecologist wanted to measure weed invasion into a woodland from a clearing. He
set up 4 transects with sample points at 0, 5, 10, 20, 30, 50 metres away from the edge to
monitor the establishment over 2 years of a number of species. Colonization depends upon
seed dispersal, season etc and for different species, the the expected profiles are shown in
Figure 1.1.

Apart from the first case (known as ubiquitous), a non-linear profile was anticipated.
Would a different design with 2 transects but with closer sampling within a transect be
better? That consideration depends on the primary interest, whether it is to

(a) model the profile across the woodland, or

(b) model the variability or clustering of the weed.

When we consider how to allocate sampling points to an experiment design, we need
to make choices from the following table,

Fixed Random
Interest
Nuisance

In (a), the fixed effects are interest and the random effects nuisance whereas in (b) the
interest is in the random effects. Designs are seldom optimal in all facets but do not have
to be inadequate in secondary interests.

2



1.1. RANDOMIZED BLOCK 3

Figure 1.1: Anticipated weed counts across a woodland
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1.1 Randomized Block

Example 1.2

This example is taken from Pinheiro and Bates [7]. The data are measures of effort required
by 9 Subjects to arise from each of 4 stool Types and the design is a randomized block
with each subject constituting a block.

Subject
Type 1 2 3 4 5 6 7 8 9

1 12 10 7 7 8 9 8 7 9 8.6
2 15 14 14 11 11 11 12 11 13 12.4
3 12 13 13 10 8 11 12 8 10 10.8
4 10 12 9 9 7 10 11 7 8 9.2

12.25 12.25 10.75 9.25 8.5 10.25 10.75 8.25 10.0

The R code to find these data is

library(nlme)

data(ergoStool)
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A basic linear model has only 1 random effect, the experiment error. In the above data
set, Subjects are a random sample from a population and are random effects so the model
has 2 random effects- subjects and error. The terminology mixed models is used when there
are models for the fixed effects and more than 1 random effect but the generic term linear
model is consistent for models where the fixed and random components are additive.

For the vector of responses for Subject i,

yi = Xiβ + Zibi + εi (1.1)

bi ∼ N(0, σ2
b ), εi ∼ N(0, σ2I) , cov(b, ε) = 0

where

Xi =


1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

 , Zi =


1
1
1
1

 (1.2)

The Z matrix is an matrix of 1’s or zeroes to indicating subject i.
Over the whole data set,
y1
...
...
y9


36,1

=


X1
...
...
X9


36,4


β1

β2

β3

β4


4,1

+


Z1

. . .
. . .

Z9


36,9

 b1
...
b9


9,1

+


ε1
...
...
ε36


36,1

The contrasts used in equation (1.2) are treatment contrasts leading to the following
interpretations of the parameters,

β1 mean of stool 1
β2 effect of stool 2 compared to stool 1
β3 effect of stool 3 compared to stool 1
β4 effect of stool 4 compared to stool 1

Other contrasts are simply different ways of spanning the parameter space and one set
of linearly independent contrasts can be transformed into another.

The analysis is done vie the lme() function and so continuing on from the previous code,

mmodel <- lme(effort ~ Type,random=~1 | Subject,data=ergoStool)

print(anova(mmodel))

print(summary(mmodel))

b <- random.effects(mmodel) # or ranef(mmodel)

In the above code, you can see separate models for fixed and random components.
The estimation procedure for linear models with random effects is REML which stands

for Residual Maximum Likelihood. For balanced data (like these), the results are the same
if Subjects (or blocks) are fitted as a fixed effect. However, blocks are nuisance effects
and we do not want to restrict the analysis by requiring interest effects be balanced over
nuisance effects. For unbalanced data, the results from
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lme(effort ~ Type,random=~1 | Subject)

and

lm(effort ~ Type + Subject)

would differ.
The usual caveats apply; accept the model if the assumptions are not contravened. To

finish off this job, you would need to check the residuals,

plot(mmodel)

A newer version of lme is lmer which is contained in the package lme4. This is widely
used in the text “Data Analysis Using Regression and Multilevel/Hierarchial Models” by
Andrew Gelman and Jennifer Hill [3]. They augment lme4 with other functions contained
in the package arm which is companion to the textbook. An example of these is the function
display.

library(lme4)

mmodel2 <- lmer(effort ~ Type + (1|Subject),data=ergoStool)

print(anova(mmodel2))

Gelman and Hill describe models such as these as varying-intercept models and this
model is multi-level in the sense that the relationship amongst types varies across subjects.

Example 1.3

These data plotted in Figure 1.2 are productivity scores for each of 6 randomly chosen
workers tested on each of 3 different machine types. Each worker used each machine 3
times - ie. 3 replicates.

We observe that variability due to replication is of lower order of magnitude than
variability amongst workers. Further exploratory data analysis (Figure 1.3) suggests a
Worker × Machine interaction.

A model whose random effects is worker (only) would be

y = Xβ + Z1b+ ε (1.3)

b ∼ N(0, σ2
bI) , ε ∼ N(0, σ2I)

implemented by

machine1 <- lme(score ~ machine,random=~1 | Worker,data=Machines)

A straightforward extension of equation (1.3) to include the obvious Worker × Machine
interaction, gives

y = Xβ + Z1b+ Z2m+ ε (1.4)

b ∼ N(0, σ2
bI) ,m ∼ N(0, σ2

mI) , ε ∼ N(0, σ2I)

which is fitted by
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Figure 1.2: Worker productivity on machines
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machine2 <- lme(score ~ machine,random=~1 | Worker/Machine,data=Machines)

These models are nested so we can compare them by a likelihood ratio test,

anova(machine1,machine2)

Model df AIC BIC logLik Test L.Ratio p-value

machine1 1 5 296.8782 306.5373 -143.4391

machine2 2 6 227.6876 239.2785 -107.8438 1 vs 2 71.19063 <.0001

In the model given at (1.4), the random interactions have the same variance, σ2
m and

the repeated measures from each subject are assumed independent. A more general model
is

yi = Xiβ + Zibi + εi i = 1, . . . , 6 (1.5)

b ∼ N(0, ψ) , ε ∼ N(0, σ2I)

where, ψ is a positive-definite symmetric 3× 3 matrix.
The code for this is implemented by

machine3 <- lme(score ~ machine,random=~Machine -1 | Worker,data=Machines)

anova(machine1,machine2,machine3)

Model df AIC BIC logLik Test L.Ratio p-value

machine1 1 5 296.8782 306.5373 -143.4391

machine2 2 6 227.6876 239.2785 -107.8438 1 vs 2 71.19063 <.0001

machine3 3 10 228.3112 247.6295 -104.1556 2 vs 3 7.37635 0.1173

So long as we have prescribed the factors correctly, the program generates the design
matrices X and Z and they can be extracted for further numerical work if required. For
example, the design matrices for Worker 1 are

X1 <- model.matrix(score ~ Machine,data=Machines[Machines$Worker==1,])

Z1 <- model.matrix( ~ Machine - 1,data=Machines[Machines$Worker==1,])

print(cbind(X1,Z1))

unit X1 Z1

(Intercept) MachineB MachineC MachineA MachineB MachineC
1 1 0 0 1 0 0
2 1 0 0 1 0 0
3 1 0 0 1 0 0

19 1 1 0 0 1 0
20 1 1 0 0 1 0
21 1 1 0 0 1 0
37 1 0 1 0 0 1
38 1 0 1 0 0 1
39 1 0 1 0 0 1
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Note that the columns of Z1 span the space of X1 but the strategy of REML estimation
does not have these matrices in conflict because the analysis projects the data into the
orthogonal spaces of (i) treatment contrasts and (ii) error contrasts by[

LT1
LT2

]
y =

[
y1

y2

]
where L1, L2 satisfy LT1X = Xp and LT2X = 0(n−p), for example L1 = X(XTX)−1XT and
L2 = I −X(XTX)−1XT . Then

`(y) = `(y1)︸︷︷︸
fixed

+ `(y2)︸︷︷︸
random

We pursue this theory (see Verbyla (1990)) [13] in detail later on.



Chapter 2

Balanced incomplete blocks

Incomplete blocks comprise a set of designs where it is not possible to allocate every
treatment in each block. This may arise if there is insufficient homogeneous material to
which the treatments are to be applied. A randomized block, where the blocks are known
to be heterogeneous, will lead to over inflated experiment error which of course reduces
the power of the block.

1. In taste testing, the palate fatigues so it is advisable to restrict the number of samples.
If 10 treatments need to be compared and each taster (block) is reliable for only 5,
then the treatments need to be allocated so that all 10 treatments can be compared.
were we to test only 5 at a time, we would incur the extra variance due to different
panels.

2. A physiotherapist is researching the use of the web for remote treatment. The exper-
iment requires that practioners rate 15 conditions by video. A randomized complete
block would require each practitioner to examine 15 videos, each of about 1 hour du-
ration. The fatigue factor suggests extra variance due to the order of the assessment
(ie. first or last etc.) and the possibility of raters not completing their assessments
put the viability of the experiment at risk. The problem is averted with an incomplete
block design.

3. In a factory experiment, different factorial combinations are are to be trialled. But as
the experiment progresses, the environment is likely to change as the factory warms
up so that the treatments are measured under different ambient conditions. To get
fair comparisons, block size should be restricted so that treatments are measured
under homogeneous conditions.

4. In a 20 team competition, there is not enough time for each team to play the others
twice in a season. After round 1, the competition draw becomes an incomplete block
experiment which allows favourable comparison of points.

From (10.6), varβ̂ = σ2(XTX)−1. The optimal variance of the parameters is a balance
between the degrees of freedom for the design matrix X and the variance, σ2. A large

9



10 CHAPTER 2. BALANCED INCOMPLETE BLOCKS

RCB may reduce |(XTX)−1| but at the expense of σ2. Small block sizes will ameliorate
this and the right balance is sought. This balance may be influenced as much by practical
experiment reasons as by the mathematics.

In chapter 1, it was mentioned that in a RCB (ie. each treatment occurs the same
number of times across blocks), blocks and treatments are orthogonal so blocks could be
fitted as fixed effects and Total SS = Block SS + Treat SS. However the mixed model
and REML estimation does not demand balance because the model has cov(ε, b) = 0 and
the estimation is via a fixed model and a random model which are orthogonal. Hence
the balance restriction is freed by REML and since Incomplete blocks do not have each
treatment occurring in each block an equal number of times, the convenient analysis is via
the mixed model.

A major class of non–orthogonal designs are those known as balanced incomplete
block designs. As the word incomplete suggests, not all treatments occur in each block.
The balance referred to is a general balance (i.e. it refers to such matters as the number of
times each pair of treatments occur together in a block) rather than meaning all treatments
occur together in all blocks.

2.1 Balanced incomplete blocks

When systematic differences exist between units, blocking is often used as a device to
improve precision. The blocks are formed from groups of similar units, and if all the
treatments under investigation are applied randomly within each block, then it is possible
to make a fair comparison between the treatments. Unfortunately the blocks may not
always contain enough units to accommodate all the treatments and an alternative solution
to Randomised Blocks is needed if the number of treatments is not to be reduced. If all
treatment comparisons are equally important then the most satisfactory design is Balanced
Incomplete Blocks (BIB).

The BIB design has three main properties

(a) all blocks have the same number of units,

(b) all treatments are equally replicated,

(c) all treatment pairs occur in the same block equally often over the whole design.

It is convenient to introduce a standard notation to describe the features of a BIB design,
and these parameters are now widely accepted.

b number of blocks
v number of treatments (sometimes t)
k number of units in a block
r number of replicates for each treatment
n total number of units
λ concurrence
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The concurrence is the number of times two treatments occur together in the same block.
The properties of a BIB design may therefore be stated in the alternative form that v > k
and k, r, λ are constant over all blocks and treatments.

Example 2.1

A typical example of a BIB design is given below.

Blocks
units 1 2 3 4 5 6 7 8 9 10

(i) 1 1 1 1 1 1 2 2 2 3
(ii) 2 2 2 3 3 4 3 3 4 4
(iii) 3 4 5 4 5 5 4 5 5 5

Observe that treatments are conventionally described by numbers. The above plan is
in its basic form before randomisation. In practice, the experimenter should allocate the
numbers randomly to the treatments, randomise the block order and the assignment of the
selected treatments to the units within each block. In the example given it is seen that
b = 10, v = 5, k = 3, r = 6, n = 30, λ = 3.

If the rows are considered as blocks the design is a BIB with b = v = 7 and k = r = 4
and λ = 2. Notice however that each column contains each treatment exactly once, so this
type of design is suitable when blocking is required in two directions. The double blocking
is reminiscent of the properties of a Latin Square and this type of design is called a Youden
Rectangle. An alternative description for Youden Rectangles is Incomplete Latin Squares,
and a method of generating them is to omit certain columns of particular Latin Square
designs. It is not always possible to find a Youden Rectangle of a prescribed specification,
but it is always possible to find a Youden rectangle where the number of treatments is one
more than the block size. All that is needed is for the last column to be dropped from the
appropriate Latin Square and a Youden Rectangle will always result. However it is not so
easy if more than two columns need be dropped.

For the particular design in Example ?? the complete Latin Square is formed through
augmentation with a further Youden rectangle.

1 2 3 6 4 5 7
2 3 4 7 5 6 1
3 4 5 1 6 7 2
4 5 6 2 7 1 3
5 6 7 3 1 2 4
6 7 1 4 2 3 5
7 1 2 5 3 4 6
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The advantage of a resolvable BIB is that it can also be analysed as a RCB if the
blocks are not significantly different (or that they do not account for sufficient extraneous
variation). The extra degrees of freedom can be pooled into a single random term, ie the
error, and we may improve the power of the design to detect differences by increasing error
df without inflating the variance. But we may make big inroads into the error by removing
block effects.

We can compare 2 designs by the ratio of the variance of a treatment contrast from
design 1 to its counterpart of design 2 and this is termed EFFICIENCY. The efficiency of
a BIB to a RCB is given by,

E =
var(τi − τj)BIB
var(τi − τj)RCB

(2.1)

=
2σ2/r

2kσ2/λv

= λv/rk = (1− 1/k)/(1− 1/v) ≤ 1

Certain resolvable designs have arisen to maximise efficiency compared to a RCB,

• v = b2, k = b, is called a square lattice,

• v = b(b− 1), k = b− 1 is called a rectangular lattice,

• v = b(b− l), k = (b− l) is called an alpha-design

2.2 Statistical model for BIB designs.

The model is similar to the randomized block design,

yij = τi + bj + εij (2.2)

but each block contains only a subset of the treatments.
If we treat blocks as fixed effects and remove their effects prior to examining treatments,

the information about the treatments comes only from comparisons within blocks and is
known as an intra-block analysis. However, we should treat blocks as another random
component because they are random samples from a population so the random parts of
the model (2.2) are modelled by

inter-block, bj ∼ N(0, σ2
β) (2.3)

intra-block, εij ∼ N(0, σ2
ε ) (2.4)

E(Yij) = τj (2.5)

var(Yij) = σ2
b + σ2

ε (2.6)

Maximum likelihood estimates can be derived from

`(y; τ, σ2
β, σ

2
ε ) = −n

2
log(2π)− n

2
log(σ2

β + σ2
ε )−

1

2

∑
i

∑
j

(yij − τi)
2

(σ2
β + σ2

ε )
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2.3 The old way

For balanced incomplete blocks, the appropriate variances can be determined by AOV.

Source df MS E(MS)

Treat (v-1) MS(Treat) σ2
ε + (kb−b)

(v−1)

∑
i τ

2
i

Blocks (b-1) MS(Blocks) σ2
ε + (kb−v)

(b−1)
σ2
β

Error bk-v-b-1 MS(Error) σ2
ε

Total (bk-1)

Thus for the balanced case, equating expected and observed mean squares leads to
estimates of the variance components and better estimates of the variances of treatment
means, eg (2.6). This is termed an inter-block analysis.

Each block is intended to be relatively homogeneous and so intra-block variance should
be less than inter-block variance.

If the treatments are not balanced across blocks, the AOV method will not work because
we cannot plug in the block size k. The REML estimation arose from this situation, (
Patterson & Thompson, 1971), but rapidly found widespread application in all facets of
statistics.

Example 2.2

Below is a set of data whose design is a balanced incomplete block, followed by an old-
fashioned analysis.

blocks treat response

1 A 20

1 B 23

1 C 16

2 A 22

2 C 19

2 D 17

3 B 25

3 C 20

3 D 21

4 A 16

4 B 20

4 D 14
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lmodel <- lm(y ~ treat + blocks)

print(anova(lmodel))

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

treat 3 48.2 16.1 13.6 0.0077 **

blocks 3 58.8 19.6 16.6 0.0050 **

Residuals 5 5.9 1.2

If the blocks term was not significant, we would resort to a completely random design.
However, it is significant here and because of non-orthogonality there is some information
about the treatments contained in the blocks.

To get estimates of the treatment means, we get a prediction of what each treatment
would have been if it had been allocated to each block. This is done by using the linear
model. In the above example, the block and treatments effects are given by

BIB.effects <- summary(BIB.lm)$coef #$

Value Std. Error t value Pr(>|t|)

(Intercept) 19.792 0.8308 23.822 2.428e-06

blocks2 1.625 0.9421 1.725 1.451e-01

blocks3 3.375 0.9421 3.583 1.583e-02

blocks4 -3.000 0.9421 -3.184 2.442e-02

treatB 2.750 0.9421 2.919 3.305e-02

treatC -3.125 0.9421 -3.317 2.107e-02

treatD -3.125 0.9421 -3.317 2.107e-02

The predictions of treatments means for each block are shown in Table 2.1. We know
that treatment A was not in block 3 but we get an estimate of it as if it did occur there.
Likewise treatment B in block 2, treatment C in block 4 and treatment D in block 1 are
estimated.

With less effort, we can see that the estimates of treatment means for A, B, C, D are


µ̂A
µ̂B
µ̂C
µ̂D

 =


1 1

4
1
4

1
4

0 0 0
1 1

4
1
4

1
4

1 0 0
1 1

4
1
4

1
4

0 1 0
1 1

4
1
4

1
4

0 0 1

×


19.79
1.625
3.375
−3
2.75
−3.125
−3.125


For this experiment b = 4, k = 3, v = 4 so equating the observed Mean Squares in the

AOV to their expected values yields,

σ2
β =

(19.6− 1.2)

(3× 4− 4)/(4− 1)
= 6.9
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Table 2.1: Estimates of treatment means for each block of a BIB
Block Treat Intercept block eff treat eff treat est mean

1 A 19.79 = 19.79
2 A 19.79 + 1.625 = 21.42
3 A 19.79 + 3.375 = 23.17
4 A 19.79 - 3 = 16.79 20.29
1 B 19.79 + 2.75 = 22.54
2 B 19.79 + 1.625 + 2.75 = 24.17
3 B 19.79 + 3.375 + 2.75 = 25.92
4 B 19.79 - 3 + 2.75 = 19.54 23.04
1 C 19.79 - 3.125 = 16.67
2 C 19.79 + 1.625 - 3.125 = 18.29
3 C 19.79 + 3.375 - 3.125 = 20.04
4 C 19.79 - 3 - 3.125 = 13.67 17.17
1 D 19.79 - 3.125 = 16.67
2 D 19.79 + 1.625 - 3.125 = 18.29
3 D 19.79 + 3.375 - 3.125 = 20.04
4 D 19.79 - 3 - 3.125 = 13.67 17.17

2.4 Analysis using a mixed model

By modelling the block effects as nuisance effects orthogonal to the treatment efects, we
simplify the analysis.

library(nlme)

blocks <- factor(rep(1:4,rep(3,4)))

treat <- factor(LETTERS[c(1:3,1,3,4,2:4,1,2,4)])

response <- c(20,23,16,22,19,17,25,20,21,16,20,14)

bib.mm <- lme(response ~ treat,random=~1| blocks)

print(anova(bib.mm))

numDF denDF F-value p-value

(Intercept) 1 5 207 <.0001

treat 3 5 18 0.0043

Linear mixed-effects model fit by REML

Data: NULL

AIC BIC logLik

49 49 -18

Random effects:

Formula: ~1 | blocks

(Intercept) Residual
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StdDev: 2.6 1.1

Fixed effects: response ~ treat

Value Std.Error DF t-value p-value

(Intercept) 20.2 1.47 5 13.8 <.0001

treatB 2.8 0.94 5 3.0 0.031

treatC -3.0 0.94 5 -3.2 0.024

treatD -3.1 0.94 5 -3.3 0.022

To get the treatment means, fit the model again without the intercept.

bib.mm2 <- lme(response ~ treat - 1,random=~1| blocks)

print(summary(bib.mm2))

Fixed effects: response ~ treat - 1

Value Std.Error

treatA 20.2 1.47

treatB 23.0 1.47

treatC 17.2 1.47

treatD 17.2 1.47

The variances are recovered with the VarCorr() function,

print(VarCorr(bib.mm))

Variance StdDev

(Intercept) 6.900 2.627

Residual 1.183 1.088

2.5 Designing an Incomplete Block

GENDEX written by Nam-Ky Nyguen in java, see
http://designcomputing.hypermart.net/. has a function called BIB. On turing, type
BIB and enter the blocking parameters. Likewise, you can generate ALPHA designs.

Exercise 2.1

Generate a BIB design for v = 15, k = 5, b = 9, r = 3.
(I propose that you do this using GENDEX which will require you to login to Turing.

Contact me for assistance. Bob Murison)
Simulate data for b ∼ N(0, 10) and treatment means 10, 10, 10, 8, 8, 8, 6, 6, 6, 5, 5, 5, 8, 8, 8

and analyse the simulated data using a mixed model. Plot a histogram of the random block
effects and tables the treatment estimates.



Chapter 3

Split plot designs

3.1 The model

The model for a randomised block design arranged in split plots is

yijk = µ + θi + βj + εij︸ ︷︷ ︸
main plots

+ τk + (θτ)ik + δijk︸ ︷︷ ︸
sub plots

where βj is a block effect, θi is a main treatment effect and µk is a sub-plot treatment
effect. It is important to notice that there are two error terms ε and δ. Both errors are
assumed to be independent ε ∼ N(0, σ2

m) and δ ∼ N(0, σ2) and the blocks are random
factors, βj ∼ N(0, σ2

b )
In the following section, b represents block size and m is the number of main plots.
We have from the linear model the following variances

var(Yijk) = σ2
m + σ2

var(Ȳi̇k) =
σ2
m + σ2

b

var(Ȳ̇̇k) =
σ2
m + σ2

bm

cov(Yijk, Yijl) =
σ2

σ2 + σ2
m

The model formula for covariance amongst sub-plot means is all important in designing
and interpreting split-plot designs. We see that if the split-model holds, there is a positive
and constant correlation between sub-plot means. If this does not hold, the model is awry
and the design is a dud.

17
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Table 3.1: Expected Mean Squares for A split experiment

Source df E(MS)
Blocks (b-1)
Main (m-1) σ2 + tσ2

m + tb
(m−1)

∑
µ2
i

B×M (Error a) (b-1)(m-1) σ2 + tσ2
m

Treat (t-1) σ2 + mb
(t−1)

∑
τ 2
k

M×T (m-1)(t-1) σ2 + b
(m−1)(t−1)

∑
(µτ)2

ik

(Error b) (b− 1) [(t− 1) + (m− 1)(t− 1)] σ2

Total (bmt-1)

The following excerpt is from the Splus manual, ch 12.
Split-plots are also encountered because of restricted randomization. For example, an

experiment involving oven temperature and baking time will probably not randomize the
oven temperature totally; but rather only change the temperature after all of the runs for
that temperature have been made. This type of design is often mistakenly analysed as if
there were no restrictions on the randomisation.

Example 3.1

Five varieties of spring wheat were sown in a randomised blocks design in four blocks.
The soil was treated with three different levels of nitrogen randomly allocated to equal
areas within each plot. The design and yields in tons/ha were as given.

V2 V5 V1 V4 V3
N1 N3 N2 N2 N3 N1 N1 N2 N3 N1 N3 N2 N2 N1 N3

Block 1 4.6 5.5 5.3 5.0 5.4 4.7 5.5 6.1 6.4 5.0 6.0 5.7 5.5 4.9 5.8
V1 V3 V2 V5 V4

N3 N1 N2 N1 N3 N2 N3 N2 N1 N2 N3 N1 N2 N1 N3
Block 2 5.8 5.0 5.5 4.9 5.5 5.4 5.4 5.0 4.7 4.6 5.0 4.2 6.2 5.7 6.5

V5 V1 V3 V2 V4
N2 N3 N1 N2 N3 N1 N3 N1 N2 N1 N3 N2 N1 N3 N2

Block 3 4.8 5.0 4.6 5.4 5.9 5.0 5.5 4.8 4.7 5.0 5.8 5.1 5.3 6.7 5.8
V2 V3 V4 V1 V5

N3 N1 N2 N3 N2 N1 N2 N1 N3 N1 N2 N3 N3 N2 N1
Block 4 5.9 5.0 5.6 4.8 4.6 4.0 5.1 4.7 5.4 5.2 5.5 5.8 5.2 4.8 4.4

The treatment levels were
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V1 Timmo N1 30 kg/ha
V2 Sicco N2 60 kg/ha
V3 Sappo N3 90 kg/ha
V4 Highbury
V5 Maris Dove

The split plot AOV is:-

Error: mainplot

Df Sum of Sq Mean Sq F Value Pr(F)

block 3 1.005 0.335 1.047 0.4073

variety 4 6.449 1.612 5.040 0.0128

Residuals 12 3.839 0.320

Error: Within

Df Sum of Sq Mean Sq F Value Pr(F)

nitrogen 2 6.487 3.244 147.1 0.0000

variety:nitrogen 8 0.105 0.013 0.6 0.7756

Residuals 30 0.662 0.022

The analysis has detected large differences between Nitrogen levels, and a smaller, but
significant difference, between Varieties. The interaction between Nitrogen and Variety is
not significant, so the varieties can be assumed to respond similarly to the various levels
of Nitrogen. Notice that the Main Plot Error is considerably greater than the Sub Plot
Error, which indicates that the use of a split plot design is justified for this experiment, for
otherwise the F value for Nitrogen, and its interaction, would have been much lower and
differences would not have been detected with the same precision.

3.2 The comparison of treatment means

When significant differences have been detected it is reasonable to ask where these differ-
ences occur. There are many methods available for an examination of treatment differences
in comparative experiments, but the standard error of the difference between two treatment
means is often helpful for this purpose. Its evaluation depends upon the result that if X and
Y are independent random variables from the distributions X ∼N(µ1, σ

2
1), Y ∼N(µ2, σ

2
2),

and n1, n2 independent samples are drawn from these distributions then

X̄ − Ȳ ∼ N

(
µ1 − µ2,

σ2
1

n1

+
σ2

2

n2

)
.

If the variances are equal, then the variance of the difference between two treatment means
is σ2( 1

n1
+ 1

n2
) and if the levels of replication are both equal to r the variance of the mean

difference between any two treatments is given by 2σ
2

r
.

The numbers of levels of M, T and Blocks are m, t and b, the Error variance for main plot
is σ2

m, and for sub plots σ2. It can be shown that the expected values of the Error Mean
Square’s for main plots and sub plots are σ2 + tσ2

m and σ2.



20 CHAPTER 3. SPLIT PLOT DESIGNS

The error difference between Main Plot Treatments p and q is

ε̄p. + δ̄p.. − ε̄q. − δ̄q.. .

Since each ε̄ is the mean of b values, and each δ̄ is the mean of bt values and all errors in this
expression are independent, the variance of the difference between Main Plot treatment
means is

2

b
σ2
m +

2

bt
σ2 =

2

bt
(σ2 + tσ2

m) .

The error difference between Sub Plot treatment means r and s is

δ̄..r − δ̄..s

and the Main Plot errors cancel since each Sub Plot treatment occurs in every Main Plot.
As each δ̄ contains mb independent errors the variance of the difference between Sub Plot
treatment means is thus 2

mb
σ2.

The interaction is a little more complicated as the error difference is

ε̄p. + δ̄p.r − ε̄q. − δ̄q.s

Suppose that two treatment combinations have the same main plot treatment, then the ε
terms cancel as they are exactly the same error term. The variance of the error difference
δp.q − δr.s is 2

b
σ2. However for different main plots the ε̄ terms do not cancel so the variance

of the error difference is

2
σ2
m

b
+ 2

σ2

b
=

2

b
(σ2 + σ2

m) .

Table 3.2: Summary table for variances of treatment differences

Main plot treatments 2
bt

(σ2 + tσ2
m)

Sub plot treatments 2
mb

σ2

Combinations(same Main Plot Treatment) 2
b
σ2

Combinations(different Main Plot Treatment) 2
b

(σ2 + σ2
m)
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In the analysis of variance table the main plot error estimates σ2 + tσ2
m and the sub plot

error estimates σ2. Hence the variance of the difference between T×M means with differing
levels of M is

2

b
(σ2 + σ2

m) .

It follows therefore that the variance of the T×M treatment difference is

2

bt
(Main Plot Error + (t− 1)Sub Plot Error)

In the example b = 4, t = 3, m = 5 so σ2 = 0.022 and hence σ2
m = 0.099. The Variety

means are
V1 V2 V3 V4 V5
5.59 5.24 5.03 5.68 4.81

and so 0.053 is the variance of the difference. It should be remembered that this
estimate is not very precise as Varieties were not the main source of interest.

The Nitrogen means are
N1 N2 N3

4.860 5.285 5.665
and the variance of the difference is 0.022. However, since the Nitrogen levels are

evenly spaced, it would seem better to examine the Nitrogen effect for linear and quadratic
components.
The interaction is not significant, so does not justify close scrutiny. However, the variance of
the difference is 0.01103 for Variety×Nitrogen combinations with the same level of Variety,
0.06067 otherwise. An inspection of the two way table of means for Variety and Nitrogen
indicates that the response for each factor behaves in a ‘parallel’ fashion in the presence
of the other.

Means table
V1 V2 V3 V4 V5 all V

N1 5.175 4.825 4.050 5.175 4.475 4.860
N2 5.625 5.250 5.050 5.700 4.800 5.285
N3 5.975 5.650 5.400 6.150 5.150 5.665
all N 5.592 5.242 5.033 5.675 4.808 5.270

One point that emerges from this analysis is the comparison of the error variances.
For comparisons of Sub Plot treatments the error variance is σ2, but if the mt treatments
had been arranged in b randomised blocks a much greater error variance could have been
expected since the Main Plot error is 14.5 times as great as the Sub Plot error. Some of the
comparisons that can be made e.g. of Main Plot treatment levels at fixed levels of the Sub
Plot treatment, or across different Main Plot and Sub Plot treatment levels, have major
inferential problems. These are due to the estimates of variance involving two different
Residual Mean Squares with different d.f. and different expectations.
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3.3 The mixed model analysis

See [12].
For a vector of observations from block i and mainplot i,j, we write the model as

yij = Xijβ + Z1,ijbi + Z2,ijdij + εij (3.1)

bi ∼ N(0,ψ1) ,dij ∼ N(0,ψ2) εij ∼ N(0, σ2I)

Furthermore, the random effects are uncorrelated.
The design matrix for blocks is Z1, Z2 is the design matrix for the block by main

treatment interaction, ψ2 is diag(σ2
m),.

In the lme() function, we include a random term for blocks and main plots (variety in
this case) within blocks,

Wheat <- expand.grid(nitro=1:3,Variety=paste("V",1:5),block=1:4)

Wheat$block <- factor(Wheat$block)

Wheat$Variety <- factor(Wheat$Variety)

Wheat$nitro <- factor(Wheat$nitro)

Wheat$yield <- c(5.5,6.1,6.4,4.6,5.3,5.5,4.9,5.5,5.8,5.0,5.7,6.0,4.7,5.0,5.4,

5.0,5.5,5.8,4.7,5.0,5.4,4.9,5.4,5.5,5.7,6.2,6.5,4.2,4.6,5.0,

5.0,5.4,5.9,5.0,5.1,5.8,4.8,4.7,5.5,5.3,5.8,6.7,4.6,4.8,5.0,

5.2,5.5,5.8,5.0,5.6,5.9,4.0,4.6,4.8,4.7,5.1,5.4,4.4,4.8,5.2)

library(nlme)

Wheat.model <- lme(yield ~ nitro*Variety,random= ~1 | block/Variety,data=Wheat)

print(VarCorr(Wheat.model))

Variance StdDev

block = pdLogChol(1)

(Intercept) 0.001184 0.03441

Variety = pdLogChol(1)

(Intercept) 0.099120 0.31483

Residual 0.022054 0.14850

If we equate the observed mean squares to their expected values using the results in
Table 3.1,

σ2
m + 3× σ2 = 0.320

σ2 = 0.022
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Hence the estimates of variances are:-

σ̂2 = 0.022

σ̂2
m =

(0.32− 0.022)

3
= 0.1

and these estimates (Moment estimates) agree with the mixed model estimates.
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Chapter 4

Mixed Model Theory

The linear mixed model has the general form,

y = Xβ + Zu + ε (4.1)

=
[

X | Z
]  β

u

+ ε (4.2)

u ∼ N(0,D), ε ∼ N(0,R) , E(uε) = 0

4.1 Residual Maximum Likelihood

Temporarily consider model (4.1) as

y = Xβ + ε , ε ∼ N(0, σ2V ) (4.3)

where

ε = Z1u1 + Z2u2 + . . .+ ε

V =

(
I +

nu∑
i=1

γiZiZ
T
i

)
γi = σ2

i /σ
2
e , E(uiuj) = 0, E(ui, ε) = 0

The purpose of rewriting the model this way is to indicate that the variance components
are from the space of error contrasts.

For known Zi, the variance matrix contains unknown parameters γi and the dispersion
parameter σ2. In a model with only 1 random component, the measurement error, it is not
necessary to model the random components because they are residuals. With more than
1 random component, we need to model sources of the variance.

In mixed models we estimate variance components for

(i) efficiency of fixed effects,

25
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(ii) reliable estimates of fixed effects,

(iii) of interest in themselves, not nuisance parameters.

In a model containing only random effects, the variance components can be estimated
by equating observed mean squares to their expected values. In a balanced mixed effects
model, the old way was to estimate fixed effects, subtract from the data and apply moment
estimation to the residuals, (Henderson’s methods). In cases where there is a lack of
balance, matrix multiplication becomes exorbitant so we turn to likelihood methods.

The normal likelihood function is

L(β, γ, σ|y) = (2πσ2)−
n
2 |V |−

1
2 exp

{
− 1

2σ2
(y −Xβ)T V −1 (y −Xβ)

}
and its logarithm is

`(β, γ, σ|y) = −n
2

log(2πσ2)− 1

2
log |V | − 1

2σ2
(y −Xβ)T V −1 (y −Xβ) . (4.4)

Then,

∂`

∂β
= 0 ⇒ β̂ = (XTV −1X)−XTV −1y (4.5)

∂`

∂γi
= 0 ⇒ γ̂i = (4.6)

∂`

∂σ2
= 0 ⇒ σ̂2 = n−1(Y −Xβ)Tσ−1(y −Xβ) (4.7)

The equations are solved by the iterative Newton-Raphson algorithm,
β
γ1
...
σ2


j

=


β
γ1
...
σ2


j−1

−


∂2`
∂β2 . . .
∂2`
∂β∂γ1

∂2`
∂γ2

1
. . .

...
...

. . .
∂2`

∂(σ2)2


−1

j−1


∂`
∂β
∂`
∂γ1
...
∂`
∂σ2


j−1

(4.8)

θj = θj−1 − Ij−1 ×∆j−1

The matrix of second derivatives is called the Hessian and the negative inverse is the
observed information matrix, I. The expectation of the negative of the inverse Hessian is
the Fisher Information matrix.

In (4.5) and (4.7), we see that an estimate of β is required to get an estimate of σ2

which is a “double dipping” of the information contained in the data. Residual Maximum
Likelihood arose from the observation that estimates of variance components in mixed
model estimation were often biassed downwards whereas they were not for the variance
component model (ie all random effects).
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Patterson and Thompson [6] subdivided the likelihood into 2 spaces,

(i) the space spanned by treatment contrasts, and

(ii) the space spanned by error contrasts, orthogonal to the treatment contrasts.

The treatment given below is well explained in Verbyla (1990) [13].
For L = (L1, L2)

T such that LT1X = Ip and L2 such that LT2X = 0(n−p),

LTy =

[
LT1
LT2

]
× y =

[
yT1
yT2

]
then, [

yT1
yT2

]
∼ N

([
Bp

0(n−p)

]
, σ2

[
L1V L

T
1 L1V L

T
2

L2V L
T
1 L2V L

T
2

])
One choice for L1 (of rank p) is (XTX)−1XT .
The likelihood can be written as the sum of orthogonal components,

`(β, γ, σ|y) = `1(β|y1)︸ ︷︷ ︸
fixed

+ `2(γ, σ|y2)︸ ︷︷ ︸
set of error contrasts

.

Variance parameter estimates are estimated by maximizing `2 while estimation of β is
through `1.

The forms of −2 log(`2) and −2 log(`) are given below in (4.9) and (4.10),

−2 log(`2) = (n− p) log(2π) − log |XTX| + log |V |+ log |XTV −1X|+ (y −Xβ̂)TV −1(y −Xβ̂)

(4.9)

−2 log(`) = (n− p) log(2π) + log |V |+ log |XTV −1X|+ (y −Xβ̂)TV −1(y −Xβ̂)

(4.10)

The difference between (4.9) and (4.10) is the term log |XTX| which penalises the
likelihood of the nuisance parameters whose information is in y2 for the degrees of freedom
used in calculating the interest parameters, β̂.

4.2 Properties of REML

(i) For every set of (N − p) linear error contrasts, the REML log-likelihood is the same.

(ii) No matter what (N − p) linearly independent error contrasts are used, maximising
their likelihood always leads to the same equations for estimating variance compo-
nents γi and σ2.

(iii) Optimal property. The derivation which shows `2 to be a marginal likelihood for
Y2 = LT2 y also shows that `2 is the conditional likelihood of y|β̂.
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(a) For given (γi, σ
2), the estimator β̂ is sufficient for β, so it is this conditional

likelihood which is used to find the most powerful similar tests of hypotheses
concerning (γi, σ

2).

(b) estimators β̂,s2 are jointly sufficient for β,σ2 for any given γ so that most power-
ful similar tests for γ alone may be constructed using the conditional distribution
of (y|β̂, s2). Now s2/σ2 ∼ χ2

n−p so that the density function of s2,

f1(s
2) =

sn−p−2 exp
{
− s2

2σ4

}
σn−p2

n−p
2 Γ

(
n−p

2

)
and the distribution of (y|β̂, s2),

f2(y|β̂, s2) ∝ exp
{
log |V |+ log |XTV −1X|+ (n− p− 2) log s2

}
does not involve β, σ2. At γ = γ0, V = V (γ0),

β̂ = (XTV −1X)−XTV −1y

s2 = (y −Xβ̂)TV −1(y −Xβ̂)

A most powerful similar test of

H0 : γ = γ0 versus

H1 : γ = γ1

is `3(γ1)− `3(γ0) ≥ K where K is chosen to give some significant level.

(iv) Unbiassed estimating equations.

` = −1

2

[
n log(2πσ2) + log |V |+ σ−2(y −Xβ)TV −1(y −Xβ)

]
where V = V (θ). The MLE’s are derived by equating derivatives to zero,

∂`

∂β
= σ−2XTV −1(y −Xβ)

∂`

∂σ2
= −(n/2σ2) + (1/2σ4)(y −Xβ)TV −1(y −Xβ)

∂`

∂γi
= −1

2

{
∂ log |V |
∂γi

+ σ−2(y −Xβ)T
[
∂V −1

∂γi

]
(y −Xβ)

}

The expectations of each of these expresions is zero. Moreover E
(
∂`
∂β

)
= 0 when σ̂2,

γ̂ is substituted for σ2, γ. Thus ∂`
∂β

remains an unbiassed estimating equation giving

β̂ = (XTV −1X)−XTV −1y .
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However if β̂ is substituted for β in ∂`
∂σ2 and ∂`

∂γi
, the expectation is no longer zero,

E
{

(y −Xβ̂)TV −1(y −Xβ̂)
}

= (n− p)σ2 .

Therefore,

E

(
∂`

∂σ2

)
= − n

2σ2
+

(n− p)σ2

2σ4
= − n

2σ2
+

(n− p)

2σ2
.

Hence,
∂`

∂σ2
− E

(
∂`

∂σ2

)
= −(n− p)

2σ2
+

(y −Xβ̂)TV −1(y −Xβ̂)

2σ4

becomes the unbiassed estimating equation for true σ2 used in V −1. For estimating
γi, first note that

E
{

(y −Xβ̂)(y −Xβ̂)T
}

= σ2
[
V −X(XTV −1X)−1XT

]
.

The derivative for γi has expectation given by,

−2E

(
∂`

∂γi

)
=

∂ log |V |
∂γi

+ σ−2 × E

{
tr

[
∂

∂γi
(V −1(y −Xβ̂)(y −Xβ̂)T

]}
=

∂ log |V |
∂γi

+ tr

{
∂V −1

∂γi

[
V −X(XTV −1X)−1XT

]}
= −tr

[
XT

(
∂V −1

∂γi

)
X(XTV −1X)−1

]
=

∂
(
log |XTV −1X|

)
∂γi

.

The unbiassed estimating equation after β is replaced by β̂ in ∂`
∂γi

is

∂

∂γi
log |V |+ ∂

∂γi
log |XTV −1X|+ σ−2(y −Xβ̂)T

∂V −1

∂γi
(y −Xβ̂) = 0

which is the same as in previous expressions of REML.

The construction of estimating equations via

∂`

∂θ
− E

(
∂`

∂θ

)
= 0

is known as profile likelihood estimation [1].

Write

∂`?

∂θ
=

∂`

∂θ
− E

(
∂`

∂θ

)
= 0

ie. `? = `− ψ

where ψ =

∫
E

(
∂`

∂θ

)
dθ .
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Hence ψ can be considered an adjustment term for the log-likelihood.

For normal distributions, the adjustment is

ψ = −1

2
log{2πvar(β̂)} =

1

2
log |2πIβ̂|

where Iβ̂| is the information matrix for β̂ or XTV −1X.

4.3 Orthogonality of parameters

Our aim is to estimate the conditional distribution of the interest parameters, given the
MLE for nuisance parameters.

In (4.2), the parameter set is partitioned into 2 vectors of lengths p1, p2. In the mixed
model we have stipulated that random effects are uncorrelated. Cox and Reid (1987) define
the orthogonality property for θ = (ψ, λ), of lengths (p1, p2), by

iψ,λ =
1

n
E

(
∂`

∂ψ

∂`

∂λ

)
=

1

n
E

(
− ∂2`

∂ψ∂λ

)
= 0 (4.11)

where iψ,λ is an element of the Information matrix. Orthogonality between interest and
nuisance effects is a key condition of the REML method, even if it is local rather than
global orthogonality. The element i is assumed to be O(1) as n→∞.1

If (4.11) holds at only 1 parameter value θ0, it is locally orthogonal at θ0. Local
orthogonality can always be achieved in a Hilbert space but global orthogonality is possible
only in special cases.

For θ = (ψ, λ),

(a) the MLE’s, ψ̂ and λ̂ are asymptotically independent,

(b) se(ψ̂) is the same whether λ is known or not,

(c) the estimation of (ψ̂, λ̂) is simpler,

(d) MLE of ψ when λ is known, ψ̂λ, varies only slowly with λ.

To study the last point, expand the joint likelihood near (ψ̂, λ̂),

`(ψ, λ) = `(ψ̂, λ̂) +
[

(ψ − ψ̂) (λ− λ̂)
] [ ∂`

∂ψ
∂`
∂λ

]
ψ̂,λ̂︸ ︷︷ ︸

=0

+

1

2

[
(ψ − ψ̂) (λ− λ̂)

] [ ∂2`
∂ψ2

∂2`
∂ψ∂λ

∂2`
∂ψ∂λ

∂2`
∂λ2

]
ψ̂,λ̂

[
(ψ − ψ̂)

(λ− λ̂)

]
+

Op

(∥∥[ (ψ − ψ̂) (λ− λ̂)
]∥∥3
)

≈ `(ψ̂, λ̂) +
1

2

[
−nĵψ,ψ(ψ − ψ̂)2 − 2nĵψλ(ψ − ψ̂)(λ− λ̂)− nĵλλ(λ− λ̂)2

]
(4.12)

1O(1) is explained in the appendix.
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where ĵψψ = iψψ + Zψψ/
√
n, E(Zψψ) = 0 and Zψψ = Op(1).

Rewriting (4.12) in terms of i and Z and differentiating wrt ψ, ψ̂λ satisfies the relation

niψψ(ψ̂λ − ψ̂) +
√
nZψψ(ψ̂λ − ψ̂) +

1

2
(ψ̂λ − ψ̂)2

√
n
∂Zψψ
∂ψ

+
1

2
(ψ̂λ − ψ̂)2n

∂iψψ
∂ψ

+ . . . = 0

Because of the following results ,

∂Zψψ
∂ψ

= Op(1)
∂iψψ
∂ψ

= O(1)

ψ̂λ − ψ̂ = Op

(
1√
n

)
λ̂ψ − λ̂ = Op

(
1
n

) ,

then iff iψλ = 0 (ie orthogonality), the first term is Op(
√
n) and the remaining terms are

O(1).
The idea that ψ̂λ is similar for different λ is illustrated in Figure 4.1 where ψ = ν and

λ = σ2.
If ψ̂λ = ψ̂ for all λ, then ψ and λ are orthogonal parameters. Models from the expo-

nential family contain ψ as part of the canonical parameter and λ as the complementary
part of the expectation, eg.

• Normal µ, σ2

• Gamma ν, φ (shape and scale parameters)

Typically ψ is orthogonal to λ1, . . . , λp2 where ψ is interest and the λ’s are nuisance
but they can be of interest. This is the basis of REML - finding a representation of the
nuisance effects orthogonal to the interest effects.

4.4 Mixed Model Equations (MME)

From (4.1), we have

var(y) = V = ZDZT + R (4.13)

XTV−1Xβ̂ = XTV−1y (4.14)

The estimating equations for the mixed model are[
XTR−1X XTR−1Z
ZTR−1X ZTR−1Z +D−1

] [
B̃
ũ

]
=

[
XTR−1y
ZTR−1y

]
(4.15)

Because the equations are solved iteratively, D may become singular and a preferable
alternative to (4.15) is[

XTR−1X XTR−1Z
ZTR−1X ZTR−1Z +I

] [
B̃
ν̃

]
=

[
XTR−1y
ZTR−1y

]
(4.16)
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Figure 4.1: Estimation of interest, given nuisance parameters and orthogonality177
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Figure 7.3: Perspe
tive plot of the log-likelihood against the dispersions � and �2. Theparameter values are � = 4 and �2 = 0:25. The plot shows that the peak with respe
t to�2 is not as noti
eable as its 
ounterpart �

where Dν̃ = ũ.
Taking the matrix results on faith,[

B̂
ũ

]
=

[
(XV −1X)−XTV −1y

DZTV −1(y −Xβ̂)

]
(4.17)
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The algorithm is

1. Derive variance components of V by REML.

2. Given the variance parameters, calculate B̂ by Generalised Least Squares (GLS).

3. Given variance components and B̂, calculate ũ.

Some points of note:-

(i) ũ is referred to as the Best Linear Unbiased Predictor (BLUP).

Although B̂ is not invariant to the choice of (XTV−1X)−1, the occurrence of B̂ in
ũ = DZTV−1(y−XB̂) is such that ũ is invariant to (XTV−1X)−1 and ũ is the same
for all solutions of B̂.

(ii) Under normality assumptions, ũ is exactly the same as E(u|y), save for β̂ in place
of β. Since under normality β̂ is the m.l.e. of β when D and V are known, we can
refer to

ũ = Ê(u|y) = DZTV−1(y −XB̂)

as the ML estimator of the conditional mean E(u|y).
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Chapter 5

Variance Models

Systematic effects are modelled by curves, means etc. and random efects are modelled
by density functions. At the heart of the multivariate density function is the covariance
matrix. In the same way as we seek to generalise the systematic effect through models,
we also find “smooth” models for densities to conserve degrees of freedom yet retain the
important information.

Before launching into a mixed-model analysis, recall that there must be repeated mea-
sures (in time, space or measurement) from a sampling unit to have a mixed model with
random subject effects. That means we have to mentally organise the data according to
its source, ie. subject, repeated measures, treatment etc.

5.1 Variance Components

Write the mixed model with separate the mean and covariance structures,

Y = Xβ + E (5.1)

and
E ∼ N (0,V(α)) (5.2)

We assume that E can be additively decomposed into

1. random effects,

2. serially correlated variation and

3. measurement error,

Ei,j = Ziui + Wi(tij) + εi,j , (5.3)

and

var(Ei,j) = ZDZ′ + σ2
rR + σ2I . (5.4)

35
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We decompose the systematic part of the model into components guided by the experi-
ment design and exploratory data analysis. Once we recognise the structure of the random
part, we can explore for likely components.

5.1.1 Pure Serial Correlation

Assume that there are repeated measurements over time from a single subject,

y1, y2, . . . , yn ,

so that equation (5.3) reduces to
Ei,j = Wi(tij)

and (5.4) is
var(Ei,j) = σ2R

The sample covariance amongst the Ei,j is
σ11

σ21 σ22
...

. . .
...

. . .

σn1 σnn

 = σ2


ρ11

ρ21 ρ22
...

. . .
...

. . .

ρn1 ρnn


If we use an outo-correlation function ρ(u) to model the correlation of observations that are
u apart, eg. ρ(u) = exp(−φu), the covariance matrix is modelled in terms of the parameter
φ.

V = σ2


ρ(0)
ρ(1) ρ(0)

ρ(2) ρ(1)
. . .

...
. . .

ρ(n− 1) ρ(1) ρ(0)


5.1.2 Random effects plus measurement error

The components from equation (5.3) are

Ei,j = Ziui + εi,j .

Random Intercepts

If the random effects are scalar intercepts,

var(E) = σ2

(
σ2
u

σ2
J + I

)
.

The variance of each Ej is σ2 + σ2
u and the correlation between any 2 measurements from

the same unit is ρ = σ2
u/(σ

2 + σ2
u).
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Random Slopes

If

Y = Xβ +

Z︷ ︸︸ ︷

1 t1
1 t2
...

...
1 tK

1 t1
1 t2
...

...
1 tK




u11

u12

u21

u22

+ ε

where u1 and u2 are Normal random vectors with variances σ2
1 and σ2

2, representing inter-
cepts and slopes respectively,

var(Ej) = σ2
1 + t2jσ

2
2 + σ2 .

For j 6= k,
Cov(Ej, Ek) = σ2

1 + tjtkσ
2
2

where we see that covariance increases as t increases.

Correlation may be represented by random effects

Diggle, Liang and Zeger (1994), page 88 state

Whilst serial correlation would appear to be a natural feature of any longitu-
dinal model, in specific applications its effect may be dominated by the combi-
nation of random effects and measurement error.

5.1.3 Random effects, Serial Correlation and Measurement Error

If in the above example the time variable was not included in the Z matrix, the variance
model would have components due to random intercepts, measurement error and as likely,
there would be serial correlation.

The variance matrix (5.4) becomes

var(E) = σ2

(
I +

σ2
u

σ2
J +

σ2
r

σ2
R

)
, (5.5)

where
• I is the identity matrix,
• J is a matrix of 1’s or 11′,
• R is a correlation matrix.

The information on σ2
u comes from replication of treatment units, σ2

r is derived from
amongst times within units and σ2 is residual.
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5.1.4 The variogram

The diagnostic to show the relative importance of each of the random components is the
variogram (see [2]), defined as

γ(v) =
1

2
E
[
{Y (t)− Y (t− v)}2

]
, v ≥ 0

In a first pass at the data, a saturated model is fitted for the fixed effects, saving the
residuals. The sample variogram is a plot of the observed half squared differences between
pairs of residuals (vijk) and plotted versus the corresponding time (or space) differences
(δijk),

vijk =
1

2
(rij − rik)

2, δijk = tij − tik .

A smooth line regressed through the points (δ, v).
The information contained in the vijk would have the contributions from

• Measurement error,
• Components due to random effects,
• Serial correlation.

Figure 5.1 is an idealised variogram which shows how the components affect the shape
of the curve. From the sample variogram of the residuals, we can gauge what variance
components should be modelled and when the variance model is satisfactory, the variogram
should be flat.

Figure 5.1: Variogram
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5.2 Matrix results

5.2.1 “Tearing”

Solution for B̂ requires inverting V but as D is often block diagonal and R either diagonal
or patterned (eg banded), we use the result that

Vn,n
−1 = (Zn,qDq,qZ

T
q,n + R)−1

n,n

= R−1 −R−1Z(D−1 + ZTR−1Z)−1ZTR−1 (5.6)

Now if R has a “simple” inverse and q << n, the patterned form is computationally less
intensive than the original form.

5.2.2 Kronecker Product

Let A = [aij] be an m× n matrix, B = [bkl] be an p× q matrix,

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

...
am1B am2B . . . amnB


In this product matrix the term aijbkl occurs in row (i−1)p+k and column (j−1)q+1

but it is usually easier to refer to such a term as the i, j; k, l term since it is the k, l term
of block i, j.

5.2.3 The vec operator

The vec of an m× n matrix A, denoted by vec(A), is an mn vector formed by packing the
columns of the matrix A one below the other.

If A is m× n, B is n× p, C is p× q, then

vec(AB) = (I ⊗ A)vecB = (B′ ⊗ Im)vecA (5.7)

vec(ABC) = (C ′ ⊗ A)vecB (5.8)

5.2.4 Cholesky Decomposition

For any n× n symmetric positive definite matrix A, there exists a unique diagonal matrix
triangular T with positive diagonal elements such that

A = TT ′ (5.9)

Moreover, taking U to be the unique upper triangular matrix and D = {di} to be the
unique diagonal matrix such that A = U ′DU ,

T = D
1
2U (5.10)

where D
1
2 = diag(

√
d1,
√
d2, . . .

√
dn).
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5.3 Nested Random Effects

Consider a field trial where spatial variation can be anticipated and where yields from
adjacent plots may be more alike (ie. higher correlation) than when the plots are more
widely separated.

row 1

row r

column
1 c

1,1 1,c1,c

1,r r,c

One model would be to regard rows and columns as random effects,

Y11
...
Y1c

Yr1
...
Yrc



= Xβ +



1
...
1

1
...
1

1
...
1



×

 Ur1
...

Urr

+



1
. . .

1
1

. . .

1

1
. . .

1



×

 Uc1
...
Ucc

+ ε

Rather than estimating individual row and column effects (which are nuisance), we
could detrend the spatial variation amongst residuals across the field with a model of
random effects. This has the effect of mathematically adjusting the yields from individual
plots to what they would be on the average plot, ie. subtract the plot effect.

If the correlation amongst rows is ρr(|i− j|) and columns is ρc(|m−n|), the correlation
between 2 plots which are dr rows apart and dc columns apart may be reasonably repre-
sented by ρr(dr)× ρc(dc); this is called a separable process. The rc× rc correlation matrix
is

Ψrc,rc = Rr,r ⊗ Cc,c .
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So options are

(i) Include row and column random effects

(ii) Detrend by modelling the serial correlation across the plots.

Doing both (i) and (ii) would likely be overfitting.

5.4 Patterned Matrices in R

Modelling the variances leads to patterned variance-covariance matrices. In R , the nlme li-
brary provides several classes of positive definite matrices that are used to specify patterned
variance-covariance matrices for random effects. They are

pdBlocked blocked diagonal
pdCompSymm split-plot
pdDiag diagonal
pdIdent multiple of Identity
pdSymm general +’ve definite matrix
(default)

5.4.1 Split-plot experiment on Oats - alternative way 1

Let indices i, j, k indicate Block i, Variety j, Nitrogen k.
For the ith block,

yi︷ ︸︸ ︷

Yi11

Yi12

Yi13

Yi14

Yi21

Yi22

Yi23

Yi24

Yi31

Yi32

Yi33

Yi24



=

X︷ ︸︸ ︷

N1

N2

N3

N4

N1

N2

N3

N4

N1

N2

N3

N4



×
[
β0

β1

]
+

Z︷ ︸︸ ︷

1
1
1
1

1
1
1
1

1
1
1
1



×

 bi + bi,1
bi + bi,2
bi + bi,3

 + ε

Note,

X =


1
1
1
1

⊗

N1

N2

N3

N4

 , Z =

 1
1

1

⊗


1
1
1
1

 .
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Define distributions,

bi
∗ ∼ N(0, ψi

∗) , εi ∼ N(0, σ2I) , cov(bi
∗, εi) = 0 ,

where

ψi
∗ =

 σ2
1 + σ2

2 σ2
1 σ2

1

σ2
1 σ2

1 + σ2
2 σ2

1

σ2
1 σ2

1 σ2
1 + σ2

2

 .

The ψi
∗ matrix is compound symmetric.

The R code for this model and the output are listed below.

library(nlme)
data(Oats)
mm1.Oats <- lme(yield ~ nitro,data=Oats,

random=list(Block=pdCompSymm(~Variety-1) ) )

print(summary(mm1.Oats))
#################################################################
Linear mixed-effects model fit by REML
Data: Oats
AIC BIC logLik
603 614 -297

Random effects:
Formula: ~Variety - 1 | Block
Structure: Compound Symmetry

StdDev Corr
VarietyGolden Rain 18.2
VarietyMarvellous 18.2 0.635
VarietyVictory 18.2 0.635 0.635
Residual 12.9

Fixed effects: yield ~ nitro
Value Std.Error DF t-value p-value

(Intercept) 81.9 6.95 65 11.8 <.0001
nitro 73.7 6.78 65 10.9 <.0001
Correlation:

(Intr)
nitro -0.293
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5.4.2 Split-plot experiment on Oats - alternative way 2

Define the design matrix and random effects as

Zi =

 1 1 0 0
1 0 1 0
1 0 0 1

⊗


1
1
1
1

 , bi
? =


bi
bi,1
bi,2
bi,3


and bi

? ∼ N(0, ψ?). The covariance matrix for random effects is

ψi
? =


σ2

1

σ2
2

σ2
2

σ2
2


the R code and output is

mm2.Oats <- lme(yield ~ nitro,data=Oats,
random=list(Block=pdBlocked(list(pdIdent( ~1),pdIdent(~Variety-1) ) )))

print(summary(mm2.Oats))
##########################################################
Linear mixed-effects model fit by REML
Data: Oats
AIC BIC logLik
603 614 -297

Random effects: Composite Structure: Blocked
Block 1: (Intercept)
Formula: ~1 | Block

(Intercept)
StdDev: 14.5
Block 2: VarietyGolden Rain, VarietyMarvellous, VarietyVictory
Formula: ~Variety - 1 | Block
Structure: Multiple of an Identity

VarietyGolden Rain VarietyMarvellous VarietyVictory Residual
StdDev: 11 11 11 12.9

Fixed effects: yield ~ nitro
Value Std.Error DF t-value p-value

(Intercept) 81.9 6.95 65 11.8 <.0001
nitro 73.7 6.78 65 10.9 <.0001
Correlation:

(Intr)
nitro -0.293
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5.5 Crossed Random Effects

Crossed random effects are modelled by a combination of pdBlocked and pdIdent objects.

Example

The data are log(optical density) measures from cell cultures in 2 blocks of 30 wells,
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Dilutions

There are 6 samples (treatments) randomly assigned to rows and 5 serial dilutions
randomly assigned to columns. the data are Assay in the nlme library.

The systematic effects are sample*dilut and the random effects are
block/(row + column).

Index the blocks by i, the rows by j, columns by k. Then

yijk = µ+ sj + dk + (s : d)jk + bi + rij + cik + εijk ,

bi ∼ N(0, σ2
b ) rij ∼ N(0, σ2

r) cij ∼ N(0, σ2
c ) εijk ∼ N(0, σ2)

cov(b, r) = 0 cov(b, c) = 0 cov(r, c) = 0

Write the vector of random effects as

Ui =



bi
ri,1
...
ri,6
ci,1
...
ci,5


.

Then

var(Ui) =

 σ2
b

σ2
rI6

σ2
cI5

 .

That is Ui has a block-diagonal structure with each block being a multiple of the identity.
The R code to construct this is
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data(Assay)
mm.assay <- lme(logDens ~ sample*dilut, Assay,

random=pdBlocked(list( pdIdent(~1),pdIdent(~ sample-1),pdIdent(~dilut-1))))
print(summary(mm.assay))
#################################################
Linear mixed-effects model fit by REML
Data: Assay

AIC BIC logLik
-9.07 38.6 38.5

Random effects:
Composite Structure: Blocked

Block 1: (Intercept)
Formula: ~1 | Block

(Intercept)
StdDev: 0.00981

Block 2: samplea, sampleb, samplec, sampled, samplee, samplef
Formula: ~sample - 1 | Block
Structure: Multiple of an Identity

samplea sampleb samplec sampled samplee samplef
StdDev: 0.0253 0.0253 0.0253 0.0253 0.0253 0.0253

Block 3: dilut1, dilut2, dilut3, dilut4, dilut5
Formula: ~dilut - 1 | Block
Structure: Multiple of an Identity

dilut1 dilut2 dilut3 dilut4 dilut5 Residual
StdDev: 0.00914 0.00914 0.00914 0.00914 0.00914 0.0416

numDF denDF F-value p-value
(Intercept) 1 29 538 <.0001
sample 5 29 11 <.0001
dilut 4 29 421 <.0001
sample:dilut 20 29 2 0.119
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Chapter 6

Change Over designs

Designs in which each experimental unit receives a cyclical sequence of several treatments
in successive periods are known as change-over designs. Historically they found favour
because subject effects could be eliminated from experiment error but with the penalty
that performance in a given period might reflect not only the direct effect of the treatment
but also the residual effects of preceding treatments. Another reason for using change over
designs is to get replication over periods when there is a shortage of experiment material
and the researcher feels it is safe to get extra replication by giving more than 1 treatment
to each experiment unit. Animal pen studies are sometimes done this way.

Direct and residual effects can be separated by appropriate choice of treatment se-
quences when it can be assumed that the residual effects persist only one period. We
consider (i) balanced and (ii) partially balanced change over designs which may have an
extra period which are formed by simply repeating the final period. The extra period
provides the property that each treatment is preceded by the others equally often - ie a
treatment is also preceded by itself. If first residuals are important, the extra period design
is better but the extra period is unnecessary if residual effects are negligible.

In balanced designs, have all treatment contrasts of equal precision and in partially
balanced designs, some contrasts are estimated with greater precision than others.

6.1 Latin squares and incomplete blocks

The notation is

• t - treatments

• p - periods

• b - blocks

• k - number of units per block
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Table 6.1: Change-over design for 4 treatments using orthogonal Latin squares

Square 1 Square 2 Square 3 Square 4
UNITS

Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2 2 1 4 3 3 4 1 2 4 3 2 1 2 4 1 3
3 3 4 1 2 4 3 2 1 2 1 4 3 3 1 4 2
4 4 3 2 1 2 1 4 3 3 4 1 2 4 3 2 1

Table 6.2: Change-over design for 7 treatments and 4 periods in blocks of 7

period Incomplete Square 1 Incomplete Square 2
1 1 2 3 4 5 6 7 1 2 3 4 5 6 7
2 2 3 4 5 6 7 1 7 1 2 3 4 5 6
3 4 5 6 7 1 2 3 5 6 7 1 2 3 4
4 7 1 2 3 4 5 6 2 3 4 5 6 7 1

The simplest type of change over design is a latin square with rows representing periods
of time and columns representing experimental units. If there were no carry over effects,
the data would simply be analysed as if it arose from an ordinary latin square. Residual
effects are allowed for by including terms for them in the statistical model.

Complete sets of orthogonal Latin squares, eg Table 6.1 will ensure that each treatment
is preceded by each other equally often but limits on resources will usually not allow this.

Many of the design properties are retained when rows are dropped from the latin
square (p < t) or for an incomplete block where k < t. In an incomplete latin square, each
treatment receives an incomplete set of treatments.

In order to estimate direct and residual effects, block size must be at east 3.

6.2 Analysis

If t1, t2, t3 represent the direct effects of 3 treatments and r1, r2, r3 the residual effects,
the total effects of a sequence of treatments 1,2,3 are represented by

1. t1

2. t2 + r1

3. t3 + r2

Thus the statistical model has components due to
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1. Blocks (random effects)

2. Periods within Blocks (random effects)

3. Units within Blocks (random effects)

4. Direct effects (fixed effects)

5. Residual effects (fixed effects)

and we would regard items 1,2,3 as nuisance and items 4 and 5 as interest.

Example 6.1

The design is 4 blocks of orthogonal 3 × 3 Latin squares with an extra period where
the rows are Periods and the columns are units.

Block 1 Block 2 Block 3 Block 4
Unit Unit Unit Unit

Period 1 2 3 1 2 3 1 2 3 1 2 3
1 1 4 3 1 3 2 3 4 2 1 2 4
2 4 3 1 3 2 1 4 2 3 2 4 1
3 3 1 4 2 1 3 2 3 4 4 1 2
4 3 1 4 2 1 3 2 3 4 4 1 2

The data shown in Table 6.3 are milk yields (fcm) and the extra periods, indicated by
†, could be dropped to compare the basic design with the extra period design.

Within each Block we have the additional blocking factors of Periods (the rows) and
Units (the columns), the random model is

Block + Block.Period + Block.Unit

where Block.Period would require 3 df for each block, ie 12 df, and there would be 8 df for
Block.Unit.

The systematic effects are the direct and residual treatment effects.
The statistical model for these data is

yitsu = τi + Ri′,(t−1) + Bs + Bs.Pt + Bs.Uu + εitsu

Bs ∼ N(0, σ2
B) Bs.Pt ∼ N(0, σ2

BP ) Bs.Uu ∼ N(0, σ2
BU) ε ∼ N(0, σ2)
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To fit this model, we need to generate indicator variables R2, R3,R4 to denote the
treatment which preceded each particular case so that the coefficients of these indicator
variables estimate the residual effect. The indicators for residual effects were plugged in
by hand but could be generated with smart computing, eg

d1 <- dim(milk.g)[1]
units <- 1:d1
# Calculate indicators for residual effects
milk.g$R4 <- milk.g$R3 <- milk.g$R2 <- milk.g$R1 <- rep(0,d1)
Tmat <- model.matrix( ~ Treat - 1,data=milk.g)
Pmat <- model.matrix( ~ Period -1,data=milk.g)
notP4 <- apply(Pmat[,1:3],1,sum)

for (i in 1:4){
Tind <- Tmat[,i]*notP4 # indicator of Ti occurring in periods 1, 2 or 3
Rirows <- units[Tind==1] + 1 # move 1 down
switch(i,

milk.g[Rirows,"R1"] <- 1,
milk.g[Rirows,"R2"] <- 1,
milk.g[Rirows,"R3"] <- 1,
milk.g[Rirows,"R4"] <- 1,

stop() )
}

milk.g <- groupedData(fcm ~1 | Block,data=milk)

milk.lme1 <- lme(fcm ~ Treat + R2 + R3 + R4 -1,data=milk.g,

random=pdBlocked(list(pdIdent( ~1),pdIdent(~Unit -1),pdIdent(~ Period -1))))

print(summary(milk.lme1)$tTable) #$

The function pdIdent() produces a patterned matrix, Identity in this case.
The estimates of the direct and residual effects are:-

Value Std.Error

Treat1 27.4 3.5

Treat2 27.7 3.5

Treat3 27.9 3.5

Treat4 28.1 3.5

R2 -0.06 0.42

R3 0.25 0.42

R4 -0.06 0.42
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Example 6.2

A Incomplete Block design for 6 treatments in 4 blocks, 4 periods and 4 units per block
is shown below.

Block 1 Block 2 Block 3
Unit Unit Unit

Period 1 2 3 4 1 2 3 4 1 2 3 4
1 1 2 5 4 4 6 3 1 5 2 6 3
2 4 1 2 5 1 4 6 3 6 5 3 2
3 2 5 4 1 6 3 1 4 2 3 5 6
4 5 4 1 2 3 1 4 6 3 6 2 5

The model is the same as before and the essential R code is

XOIB.g <- groupedData(y ~1 | Block,data=XOIB)

XOIB.lme1 <- lme(y ~ Treat + R2 + R3 + R4 + R5 + R6 -1,data=XOIB.g,

random=pdBlocked(list(pdIdent( ~1),pdIdent(~Unit -1),pdIdent(~ Period -1))))

print(summary(XOIB.lme1)$tTable) #$
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6.3 Change Over Designs - computing Guide

milk <- expand.grid(Period=1:4,Unit=1:3,Block=1:4)

milk$Treat <- c(1,4,3,3,4,3,1,1,3,1,4,4, 1,3,2,2,3,2,1,1,2,1,3,3,

3,4,2,2,4,2,3,3,2,3,4,4, 1,2,4,4,2,4,1,1,4,1,2,2)

milk$fcm <- c(38.7,37.4,34.3,31.3,48.9,46.9,42.0,39.6,35.2,33.5,28.4,25.1,

34.6,32.3,28.5,27.1,32.9,33.1,27.5,25.1,30.4,29.5,26.7,23.1,

25.7,26.1,23.4,18.7,30.8,29.3,26.4,23.2,25.4,26.0,23.9,19.9,

21.8,23.9,21.7,17.6,21.4,22.0,19.4,16.6,22.8,21.0,18.6,16.1)

milk$Subject <- factor((milk$Block-1)*3 + milk$Unit)

milk$Block <- factor(milk$Block)

milk$Period <- factor(milk$Period)

milk$Unit <- factor(milk$Unit)

milk$Treat <- factor(milk$Treat)

milk$R4 <- milk$R3 <- milk$R2 <- milk$R1 <- rep(0,48)

milk$R1[c(2,8,11,14,20,23,38,44,47)] <- 1

milk$R2[c(16,19,22,28,31,34,39,42,48)] <- 1

milk$R3[c(4,7,10,15,18,24,26,32,35)] <- 1

milk$R4[c(3,6,12,27,30,36,40,43,46)] <- 1

library(nlme)

milk.g <- groupedData(fcm ~1 | Block,milk)

milk.lme1 <- lme(fcm ~ Treat + R2 + R3 + R4 -1,data=milk.g,

random=pdBlocked(list(pdIdent( ~1),pdIdent(~Unit -1),pdIdent(~ Period -1))))

print(summary(milk.lme1)$tTable) #$
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Table 6.3: 4 treatments in a 3 × 3 latin square + extra period

Block Unit Subject Period Treat R1 R2 R3 R4 fcm
1 1 1 1 1 0 0 0 0 38.7
1 1 1 2 4 1 0 0 0 37.4
1 1 1 3 3 0 0 0 1 34.3
1 1 1 4 3 0 0 1 0 31.3 †
1 2 2 1 4 0 0 0 0 48.9
1 2 2 2 3 0 0 0 1 46.9
1 2 2 3 1 0 0 1 0 42.0
1 2 2 4 1 1 0 0 0 39.6 †
1 3 3 1 3 0 0 0 0 35.2
1 3 3 2 1 0 0 1 0 33.5
1 3 3 3 4 1 0 0 0 28.4
1 3 3 4 4 0 0 0 1 25.1†
2 1 4 1 1 0 0 0 0 34.6
2 1 4 2 3 1 0 0 0 32.3
2 1 4 3 2 0 0 1 0 28.5
2 1 4 4 2 0 1 0 0 27.1 †
2 2 5 1 3 0 0 0 0 32.9
2 2 5 2 2 0 0 1 0 33.1
2 2 5 3 1 0 1 0 0 27.5
2 2 5 4 1 1 0 0 0 25.1 †
2 3 6 1 2 0 0 0 0 30.4
2 3 6 2 1 0 1 0 0 29.5
2 3 6 3 3 1 0 0 0 26.7
2 3 6 4 3 0 0 1 0 23.1 †
3 1 7 1 3 0 0 0 0 25.7
3 1 7 2 4 0 0 1 0 26.1
3 1 7 3 2 0 0 0 1 23.4
3 1 7 4 2 0 1 0 0 18.7 †
3 2 8 1 4 0 0 0 0 30.8
3 2 8 2 2 0 0 0 1 29.3
3 2 8 3 3 0 1 0 0 26.4
3 2 8 4 3 0 0 1 0 23.2 †
3 3 9 1 2 0 0 0 0 25.4
3 3 9 2 3 0 1 0 0 26.0
3 3 9 3 4 0 0 1 0 23.9
3 3 9 4 4 0 0 0 1 19.9 †
4 1 10 1 1 0 0 0 0 21.8
4 1 10 2 2 1 0 0 0 23.9
4 1 10 3 4 0 1 0 0 21.7
4 1 10 4 4 0 0 0 1 17.6 †
4 2 11 1 2 0 0 0 0 21.4
4 2 11 2 4 0 1 0 0 22.0
4 2 11 3 1 0 0 0 1 19.4
4 2 11 4 1 1 0 0 0 16.6 †
4 3 12 1 4 0 0 0 0 22.8
4 3 12 2 1 0 0 0 1 21.0
4 3 12 3 2 1 0 0 0 18.6
4 3 12 4 2 0 1 0 0 16.1 †
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Chapter 7

Semi-parametric regression

A modern statistical concept is to use the flexibility of a smoother to represent the sys-
tematic effect and parametric densities to model the random effects. If we categorize the
model by parameters θ ∈ Ω, then for particular types of models,

parametric Ω is finite dimensional Euclidean space,
semi-parametric Ω is a combination of infinite dimensional space

and finite dimensional Euclidean space,
non-parametric Ω is infinite dimensional space

One must keep this in mind when interpreting the models.
Consider categories of smoothers,

B-splines kernel splines
Wavelets loess

projection pursuit

Splines are often the smoother of choice because their flexibility in modelling situations
but with mathematics, it is often possible to transform one form of smoother into another.
Wavelets are almost solely the preserve of high intensity data such as in signals and images.

7.1 Generalized Cross validation

Suppose

y = g(η) + ε, ε ∼ N(0, σ2) where (7.1)

η = β0 + s1(x1) + s2(x2) + . . . (7.2)

The smooth terms can be written as a suitable set of basis functions,

s(x) =
k∑
j=1

βjbj(x)

where the bj(x) are a set of basis functions such as

55



56 CHAPTER 7. SEMI-PARAMETRIC REGRESSION

• Hermite polynomials,

b0(x) = 1, b1(x) = 2x, b2(x) = 4x2 − 2, b3(x) = 8x3 − 12x,

bn(x) = e2nx−n
2

,

∫ 1

−1

bm(x)bn(x) = 0

• cubic splines

b1 = x , bj = |x− x∗j |3 , j > 1

where x∗j are the knot points.
Hence (7.2) can be written as a linear model and in the case of cubic splines,

η = β0 + β1x− 1 +

k1∑
j=1

βj+1|x1 − x∗1,j|+ . . . or

η = Xβ

At this point the degrees of freedom depend on the number of knot points . To avoid
influence of the knot points, the model overfits and controls smoothness by a penalty
function. So it may be considered as putting in a lot of df and then taking out the
redundant ones where the data indicate they are not needed. Consequently we may end up
with fractional df.

It is timely to note the Littlewood-Paley-Stein theorem,

Theorem 1 If 1 < p <∞, there exist 2 constants, Cp ≥ cp > 0 such that for all functions
belonging to Lp(Rn),

cp||g||p ≤ ||fp|| ≤ Cp||g||p ,

where

||f ||p =

(∫
Rn
|f(x)|p

) 1
p

and

g(x) =

 ∞∑
x=−∞

|
∑

2j≤k≤2j+1

(ak cos kx+ bk sin kx)|2
 1

2

The term g(x) is the Fourier transform of the data y and this theorem is stating
properties of the basis functions used to represent y. With well chosen basis functions,
cp and Cp will be close ∀p. With poorly chosen basis functions, the addition of extra
terms is not so much fine tuning as fixing the discrepancies of the low order terms and
so the representation of y by

∑
bi(x) has localized hot spots of spectral energies. If the

spectral energy is distributed evenly across x, ||f ||p will be approximately the same for
p = 2, 4, 6, . . ..
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The penalty function for splines is the roughness defined by∫
[s′′(x)]

2
dx = βTSβ

and the β’s are estimated by minimizing

−`(β) +
∑
i

λiβ
TSβ where λi are weights.

In the GLM setting we require Γi,i = ∂yi
∂µi

and Wi,i =
(
∂µi
∂yi

)
/∂µi
∂θi

, θ being the canonical

parameter. Then the steps in fitting a semiparametric model are:-

1.

z = η + Γ(y − µ)

2. find λi that minimizes

||W 1
2 (z −Xβ||2

tr(I − A)2

where A = X(XTWX +
∑

i λiβ
TSβ)−1W is the hat matrix and tr(A) = df.

This algorithm is known as generalized cross validation.

7.2 GAM’s in R

The mgcv library in R1 fits Generalized Additive Models using generalized cross validation.
The example is for modelling elbow flux over time. A subject receives some physiotherapy
treatment and the blood flow through the elbow is measured (as elbow flux) for the next
hour. In the study, there were many subjects but only the data from one is used here to
demonstrate GAMS. The data are saved in elbowdat.csv and an exploratory data analysis
shows a highly nonlinear trend of ef over time.

library(mgcv);library(lattice)
elbow.df <- read.csv("elbowdat.csv",header=T)
ef.eda <- xyplot(ef ~ time,data=elbow.df,type=c(’p’,’smooth’))
print(ef.eda)

1fttp://mirror.aarnet.edu.au/pub/CRAN
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time, ef
0, 437.18
2, 454.17

2.5, 402.79
3.5, 372.25
4, 334.55
5, 414.66

5.5, 545.38
6.5, 534.95
11.5, 536.43
16.5, 519.49
21.5, 408.01
26.5, 325.76
31.5, 278.54
36.5, 282.47
41.5, 314.69
46.5, 352.42 time
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There is slight evidence that the variance is proportional to the mean although the
cluster of points between 10 and 20 minutes which are approximately ef= 530, would
not support that assertion. Nevertheless, over the whole data set (trust me), the gamma
distribution was deemed to adequately model the random component.

model1 <- gam(ef ~ s(time),data=elbow1,family=Gamma(link=log))

> anova(model1)
Family: Gamma
Link function: log

Formula: ef ~ s(time)
Approximate significance of smooth terms:

edf Est.rank F p-value
s(time) 3.868 8.000 5.104 0.00736

The AOV indicates that the spline satisfactorily represents the systematic effect.
The fit of the spline component is shown in Figure 7.1. In the left frame, the plot is

of the fitted trend on the log scale of the link function. The right frame shows the fitted
response with 95% CI’s..

plot(model1)

preds <- predict(model1,se=T,type="response")
elbow.df$fitted <- preds$fit
elbow.df$lwr <- preds$fit - 2* preds$se.fit
elbow.df$upr <- preds$fit + 2* preds$se.fit

trellis.device(theme="col.whitebg",width=5,height=4.5)
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Figure 7.1: The systematic effect of time on elbow flux.
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fit.plot <- xyplot(ef+fitted+lwr+upr ~ time,data=elbow.df,type=c(’p’,’l’,’l’,’l’),
ylab="elbow flux",
panel=function(x,y){
ntimes <- length(x)/4

l1 <- 1:ntimes
l2 <- (ntimes+1):(2*ntimes)
l3 <- (2*ntimes+1):(3*ntimes)
l4 <- (3*ntimes+1):(4*ntimes)
panel.xyplot(x[l1],y[l1])
panel.xyplot(x[l2],y[l2],type=’l’)
panel.xyplot(x[l3],y[l3],type=’l’,lty=2)
panel.xyplot(x[l4],y[l4],type=’l’,lty=2)

}
)
print(fit.plot)
dev.off()

The R newsletter June 2001 at the CRAN web site has a paper by Simon Wood on
GAM’s.
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Example
The next example shows how to fit GAMs within a group such as the levels of a

treatment.
The data are Glucose concentrations in sheep taken over about 2 hours after the sheep

had been injected with hormones,
(a) Cortisol (C), (b) Glucagon (G), (c) Adrenalin (A), (d) C+A, (e) C+G+A.
The full data are on the web site and only the first few lines are shown here.

Sheep Weight Treatment Time Glucose
148 32 C 0 2.97
148 32 C 2 3.06
148 32 C 5 3.21
148 32 C 10 3.31
148 32 C 15 3.39
148 32 C 20 3.44

library(mgcv)
Glucose.df <- read.table("Glucose.txt",header=T)

trellis.device(theme="col.whitebg")
GlucoseEDA.plot <- xyplot(Glucose ~ Time|Treatment,data=Glucose.df,

type=c(’p’,’smooth’),layout=c(5,1) )
print(GlucoseEDA.plot)

Exploratory data plots show that the responses of Glucose over time are non-linear and that
the shape of response differs amongst treatments.

Figure 7.2: Exploratory data plots for Glucose response to hormones
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The concept of an interaction does not apply in semi-parametric regression and the effect of
time is estimated within each treatment. This requires that we set up an indicator variable for
each treatment and use this to specify that the spline fit is within that group.

trt.levels <- levels(Glucose.df$Treatment)
# a loop to get dummy variables that indicate which treatment

for (i in seq(along=trt.levels)){
Glucose.df[,trt.levels[i]] <- as.numeric(Glucose.df$Treatment==trt.levels[i])

} # end of the i loop

mod1 <- gam(Glucose ~ Treatment +
s(Time,by=A)+s(Time,by=C)+s(Time,by=G)+s(Time,by=CA)+s(Time,by=CGA),
data=Glucose.df )

print(anova(mod1))

par(mar=rep(2,4),mfrow=c(3,2) )
for(j in 1:5){
plot(mod1,shade=T,select=j,xlab="",ylab="",main=trt.levels[j])

}
plot(mod1,all.terms=T,select=6)

The following code plots the fitted responses.
The plot of the model in Figure 7.3 shows the spline effects for each level and the all.terms

option gives the comparison of mean values.
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Figure 7.3: Fitted responses from GAM models within treatment levels
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The profile of fitted values is used to estimate, with 95% CI’s, the time to max concentration.
#_____________________________________________
closest <- function(s,v){ # a function to be used in the panel
delta <- abs(s-v)
pp <- order(delta)[1]
return(pp)}
#_____________________________________________
uTimes <- sort(unique(Glucose.df$Time))
ntimes <- length(uTimes)
pred.df <- expand.grid(Time=uTimes,Treatment=trt.levels)
for (i in seq(along=trt.levels)){
pred.df[,trt.levels[i]] <- as.numeric(pred.df$Treatment==trt.levels[i])

} # end of the i loop
preds <- predict(mod1,newdata=pred.df,se=T)
pred.df$fit <- preds$fit
pred.df$lwr <- preds$fit - 2*preds$se.fit
pred.df$upr <- preds$fit + 2*preds$se.fit

points.df <- aggregate(Glucose.df[,"Glucose"],
by=list(Glucose.df$Time,Glucose.df$Treatment),FUN=mean)

pred.df$means <- points.df$x

ylim=c(2,11)
trellis.device(theme="col.whitebg",device="pdf",file="GlucoseFit.pdf",width=6,height=5)
fit.plot <- xyplot(fit+lwr+upr+means ~ Time|Treatment,data=pred.df,ylim=ylim,

layout=c(5,1),ylab="Glucose nano-moles/litre",
panel=function(x,y){
ntimes <- length(x)/4

l1 <- 1:ntimes
l2 <- (ntimes+1):(2*ntimes)
l3 <- (2*ntimes+1):(3*ntimes)
l4 <- (3*ntimes+1):(4*ntimes)

v <- c(x[l2],rev(x[l3]),x[l2[1]])
w <- c(y[l2],rev(y[l3]),y[l2[1]])
panel.polygon(v,w,col=gray(0.8),border=gray(0.8))
panel.xyplot(x[l1],y[l1],type=’l’,lwd=2)

panel.abline(h=max(y[l1]),lty=2)
panel.points(x[l4],y[l4])

xmax <- (l1)[y[l1]==max(y[l1])]
x1 <- x[(2*ntimes+1):(2*ntimes+xmax)][closest(max(y[l1]),y[(2*ntimes+1):(2*ntimes+xmax)])]
x2 <- x[(2*ntimes+xmax) :(3*ntimes)][closest(max(y[l1]),y[(2*ntimes+xmax):(3*ntimes)])]
y1 <- ylim[1]
y2 <- y[l3][closest(max(y[l1]),y[l3]) ]
panel.segments(x1,y1,x1,y2,lty=2)
panel.segments(x2,y1,x2,y2,lty=2)

}
)
print(fit.plot)
dev.off()
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7.3 Smoothing splines are BLUPS

In his comment upon Geoff Robinson’s 1991 paper, That BLUP is a Good Thing: The estimation
of Random Effects [8], Terry Speed [11] showed that splines are BLUPS. This permits the non-
linear smooth splines to be implemented in a linear mixed model which substantial power for
modelling data. This is expertly developed in Verbyla et al. (1999) and the models can be fitted
using the specialized package ASREML written by Arthur Gilmour.

Theory and implementation are also given in the book “Semi-parametric Regression” by David
Ruppert, Matt Wand and Ray Carroll [9].

Consider a linear model
y = g(x) + ε , ε ∼ N(0, σ2R)

and write -2 log-likelihood as

` = −2 log |σ2R| − 1
2σ2

[
(y − g)TR−1(y − g) + λs

∫ {
g′′(x)

}2
dx

]
The solution through REML estimation of variance components and mixed model estimating

equations utilizes matrices which are functions of difference between samplings of the variable in
the spline function. Define these differences as hj = xj+1 − xj . Then

∆ =



. . .

. . . . . .

. . . . . . . . .
1

hi+1
−
(

1
hi

+ 1
hi+1

)
1
hi

. . . . . . . . .


n,n−2

,
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and

G =


. . . . . .
. . . . . . . . .

hi+1

6
hi+hi+1

3
hi+1

6
. . . . . . . . .


n−2,n−2

At the design points,
ĝ =

(
R−1 + λs∆G−1∆

)
R−1y (7.3)

Equation (7.3) can be reparameterized into the standard form for a mixed model by utilizing,

Xs =

 1 x1
...

...
1 xn


Zs = ∆(∆T∆)−1

H = σ2
(
R+ λ−1

s ZsGZ
T
s

)
so that

ĝ = Xsβ̂s + Zsũs

whereβ̂s = (XT
s H

−1Xs)−1XT
s H

−1y

ũs = (ZTs R
−1Zs + λsG

−1)ZTs R
−1(y −Xβ̂s)

λs =
σ2

σ2
s

= γ−1
s

The log-likelihood is a conditional likelihood of y|us and the penalty is the log-density function
of us. Splines in GLM’s are fitted using the method of Schall (1991) [10].

7.4 Splines in the GLM using ASREML

The ASREML program [4] is not simple but its power makes it worth having and learning. The
routines are in GENSTAT and a S-PLUS module is being fine tuned (I think). I use a primitive
R function called asr() which sets the job up and after some translation, passes it to the compiled
ASREML program. My R code is

attach("/ASREML/.RData",pos=2)
model2 <- asr("ef !GAMMA !LOG ~ mu int !r spl(int) SUBNO SUBNO.int",data=elbow,title="elbow flux")
detach(2)

which writes out the code for ASREML in a file called elbow.as and also rewrites the data into
elbow.asd,
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elbow flux
SUBNO 25 !A
TRT 19 !A
int
treatment 1 !A
aet
uet
aht
uht
asc
usc
ef
hf

elbow.asd !skip 1
ef !GAMMA !LOG ~ mu int !r spl(int) SUBNO SUBNO.int

The fit is similar to that with gam() in R

Figure 7.4: Smooth splines for a Gamma model in ASREML
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Chapter 8

Longitudinal Data

Repeated Measures data are those which consitute a set of repeated measures, over time, from the
same sampling unit. Because the sampling is from the same unit, the data contains information
from the unit (ie random effect) and the systematic effect of time. In conjunction with this, the
measurements are correlated because they all have something in common, the unit itself. Another
potential source of correlation is that an observation is influenced by previous observations and
this is termed autoregressive correlations.

Modelling of repeated measures data needs to account for the correlations so that the model
can best allocate the information between systematic and random effects.

8.1 The data file

Early repeated measures models were cast as multivariate models in order to capture the corre-
lations amongst the data. This idea was superseded and now we analyze repeated measures in a
univariate fashion, 

Y1

Y2
...
Yτ

 =


X1 0 0 0
0 X2 0 0

0 0
. . . 0

0 0 0 Xτ

×

β1

β2
...
βp

+ ε .

We have the time variable as a column of the Xi’s,

Xi =


1 0 . . . 1 . . . ti,1
1 0 . . . 1 . . . ti,2
...

...
...

...
...

...
1 0 . . . 1 . . . ti,ni


The important difference between this model and simple linear models is that elements of ε

are not assumed to be independent or to have constant variance,

67
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An example of data file on carbon form Tillage and Rotation treatments, measured at
0,3,4,6,12 months is:-

Plot Sample Rotation Tillage Block Time C
P1 S1 R1 T1 B1 0 1.53
P2 S2 R1 T1 B1 0 1.47
P3 S3 R1 T1 B1 0 1.29
. . . . . . .
P9 S3 R2 T2 B1 0 2.06
P10 S1 R1 T1 B1 0 1.4
P11 S2 R2 T1 B1 0 1.46
P12 S3 R2 T1 B1 0 1.53
P1 S1 R1 T1 B1 3 1.21
P2 S2 R1 T1 B1 3 1.17
P3 S3 R1 T1 B1 3 1.31
. . . . . . .
P22 S1 R1 T2 B2 3 1.39
P23 S2 R1 T2 B2 3 1.91
P24 S3 R1 T2 B2 3 1.42
P1 S1 R1 T1 B1 4 1.04
P2 S2 R1 T1 B1 4 1.12
P3 S3 R1 T1 B1 4 1.07
. . . . . . .
P22 S1 R1 T2 B2 4 1.25
P23 S2 R1 T2 B2 4 1.21
P24 S3 R1 T2 B2 4 1.23
P1 S1 R1 T1 B1 6 1.44
P2 S2 R1 T1 B1 6 1.39
P3 S3 R1 T1 B1 6 1.15
. . . . . . .
P10 S1 R2 T1 B1 6 1.23
P11 S2 R2 T1 B1 6 1.17
P13 S1 R2 T1 B2 6 1.29
P14 S2 R2 T1 B2 6 1.14
. . . . . . .
P22 S1 R1 T2 B2 12 1.83
P23 S2 R1 T2 B2 12 1.70
P24 S3 R1 T2 B2 12 1.40

In this case all treatments are sampled at the same times 0,3,4,6 and 12 months and the data
have been blocked for each sample time. Note that Plot=P12 at Time=6 is missing so that data
is either deleted or denoted as a missing value NA.
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The next example is measurements of Metabolizable Energy of deer which are born at different
times and hence are sampled on different days. There are 25 animals and the data are blocked
as all the repeated measurements for the first animal, followed by the repeated measurements for
the second and so on.

Tag Strain Sex Age Agewks ME Lwt
204 3 1 227 32.43 123.22 71.50
204 3 1 234 33.43 125.56 73.00
204 3 1 241 34.43 122.94 75.00
204 3 1 248 35.43 123.00 74.50
204 3 1 255 36.43 117.83 75.00
204 3 1 262 37.43 107.25 75.50
204 3 1 269 38.43 108.58 75.00
. . . . . . .
207 3 1 224 32.00 133.05 67.50
207 3 1 231 33.00 131.76 67.50
207 3 1 238 34.00 137.45 67.50
207 3 1 245 35.00 128.62 68.00
207 3 1 252 36.00 129.41 69.00
207 3 1 259 37.00 129.24 69.00
. . . . . . .
293 4 2 540 77.14 108.91 96.50
293 4 2 547 78.14 151.51 98.50
293 4 2 554 79.14 131.97 98.50
293 4 2 563 80.43 125.17 99.50
293 4 2 568 81.14 138.74 101.00
293 4 2 575 82.14 128.27 96.50
293 4 2 582 83.14 121.92 99.50
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If there are repeated measurements in two directions, eg time and depth, the data file is set
up similar to the above but with both classifying variables, eg

Hole Treatment Stratum Depth Calendar WC
E2B Control Beneath 20 07/08/95 19.62
E2B Control Beneath 20 07/25/95 18.98
. . . . . .
E2B Control Beneath 40 07/08/95 17.64
E2B Control Beneath 40 07/25/95 17.74
. . . . . .
E2B Control Beneath 60 07/08/95 16.97
E2B Control Beneath 60 07/25/95 16.86
. . . . . .
E2B Control Beneath 80 07/08/95 17.88
E2B Control Beneath 80 07/25/95 17.92
. . . . . .
E2B Control Beneath 100 07/08/95 11.8
E2B Control Beneath 100 07/25/95 11.5
. . . . . .
E2B Control Beneath 120 07/08/95 9.41
E2B Control Beneath 120 07/25/95 9.41
. . . . . .
F1B Deforest Beneath 20 01/27/94 16.0
F1B Deforest Beneath 20 02/11/94 14.70
. . . . . .
F1B Deforest Beneath 40 01/27/94 17.30
F1B Deforest Beneath 40 02/11/94 14.91
. . . . . .
F1B Deforest Beneath 60 01/27/94 18.54
F1B Deforest Beneath 60 02/11/94 14.40
. . . . . .
F1B Deforest Beneath 80 01/27/94 19.82
F1B Deforest Beneath 80 02/11/94 14.86
. . . . . .
F1B Deforest Beneath 100 01/27/94 23.69
F1B Deforest Beneath 100 02/11/94 18.65
. . . . . .
F1B Deforest Beneath 120 01/27/94 23.86
F1B Deforest Beneath 120 02/11/94 23.69
. . . . . .
F1B Deforest Beneath 140 01/27/94 20.10
F1B Deforest Beneath 140 02/11/94 21.63

The data are unbalanced in that sampling times are different for sites and the numbers of depths
differ between treatments. The imbalance does not complicate the analysis.
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8.2 Exploratory Data Analysis

Analyses of longitudinal data compare profiles over time and indeed time might be viewed as the
primary systematic effect to be investigated.

Lattice graphics in R can be tweaked to give multi-panel plots to reveal structure.
This example concerns repeated measures of carbon from 2 tillage × 2 rotation treatments.

Cplot_xyplot(C ~ Time| Rotation*Tillage,data=carbon,
panel=function(x,y){panel.xyplot(x,y);panel.loess(x,y)})

print(Cplot)
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This is not an analysis of the data but it does reveal the interaction of treatments and
time and the changing variance. If we were to ignore the variance structure, it is as likely that
the interaction would be missed because of the inappropriate allocation of the information to
systematic and random effects.
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8.3 Statistical model for repeated measures

The correlations and changing variances which are charactersitic of longitudinal data are often
induced by the units such as animals or plots. This is because over time, observations within a
unit may be more alike than those of the same treatment but sampled from another unit. Hence
the random component is affected by sampling units.

The basic model is

y = treatment + time + treatment : time + ERROR ,ERROR ∼ A distribution

Note how general this is and the error model is not restricted to a simplistic (and unrealistic)
i.i.d. Momentarily we regard both treatment and time as factors for which we need to construct
contrasts to get a more specific model. Also, we have recognised that the random structure may
contain a number of model terms.

The model may then contain these components,

y = treatment + time + treatment : time + unit + unit : time + error

unit ∼ N(0, σ2
u × J1)

unit : time ∼ N(0, σ2
ut × J2)

error ∼ N(0, σ2 ×R)

The symbols J1, J2, R denote matrices which give the weights to be applied to the variance
components for each part of the model.

That is the model for the random components may include,

• Measurement error,

• Components due to random effects,

• Serial correlation

8.3.1 Random components

A line plot of the response over time for each unit can sometimes tell us about the random
component. If the plot reveals basically parallell lines but with different intercepts, the appro-
priate model regards the intercept as a random effect. In this case, the correlations amongst the
repeated measures are uniform.

The more usual case is that the lines fan out because the individuals change differently over
time. In that case, the interaction of the individual and the systematic time effect would be fitted
as a random effect and this representation leads to a covariance structure that is dependent upon
the differences between sampling times.

The following 3 examples are (i) Ca intake, (ii) egg weight measured on the same birds and
the ME of deer. The Ca intake data show a fan out over time suggestion and animal × time
interaction and the egg weight data suggest that differences are primarily due to animals only or
a random intercept model. The deer data show a fanning out at the maximum.
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xyplot(Caint ~ weekno|Ca*feed,type=’l’,data=Caint,
panel=panel.superpose,groups=an)
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Traces display fanning out suggesting random animal × time effect.
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ewt ~ weekno|Ca*feed,type=’l’,data=ewt,
panel=panel.superpose,groups=an)
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Traces are parallel suggesting random animal effect.
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xyplot(ME ~ Agewks|Sex*Strain,data=deerdf,type=’l’,panel=panel.superpose,groups=Tag)
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Separation at maximum is bigger than at the start and the traces close up again.
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8.3.2 Systematic components

Models for the systematic effect are gleaned from loess curves which in the following cases suggest
splines to represent the effect over time.

xyplot(Caint ~ weekno|Ca*feed,data=Caint,ylim=c(0,4),
panel=function(x,y){panel.xyplot(x,y);panel.loess(x,y,span=1/4) })

0

1

2

3

4

Ca
feed

20 30 40 50

Ca
feed

Ca
feed

20 30 40 50

Ca
feed

Ca
feed

20 30 40 50

0

1

2

3

4

Ca
feed

weekno

C
ai

nt



8.3. STATISTICAL MODEL FOR REPEATED MEASURES 77

xyplot(ewt ~ weekno|Ca*feed,data=ewt,
panel=function(x,y){panel.xyplot(x,y);panel.loess(x,y,span=1/4) })
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xyplot(ME ~ Agewks|Sex*Strain,data=deerdf,
panel=function(x,y){panel.xyplot(x,y);panel.loess(x,y,span=1/4) })
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8.4 Linear Mixed Models for repeated Measures

Example 8.1

The example shown in Figure 8.1 are the body weights of rats that were published by Crowder
and Hand ([??]) and the data set is included in the nlme library of R , see [7]. The essential R
code loads the nlme, grid and lattice libraries and plots the traces of each rat with a separate
frame for each Diet.

library(nlme);library(grid);library(lattice)
data(BodyWeight)

xyp2 <- xyplot(weight ~ Time|Diet,data=BodyWeight,
panel=panel.superpose,groups=Rat,type=’l’,layout=c(3,1))
print(xyp2)

Figure 8.1: Profiles of rat body weights over time for 3 treatments
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Exploratory plots such as these are necessary to see the structure of both systematic and
random effects. We observe that
(i) the response is approximately linear over time for all rats,
(ii) that diets 2 and 3 produce heavier rats than diet 1,
(iii) that growth rate for diet 1 is less that the rates for diets 2 and 3,
(iv) that the variability in diets 2 and 3 is greater than in diet 1,
(v) within Diets slopes are similar,
(vi) differences amongst rats at the beginning are preserved throughout the trial.

We can visualise the mean response as a weighted average of the individual profiles provided
that the amongst rats variance should figure in the averaging so that the top rat in diet 2 does
not unduly influence the mean response for that diet, for instance.
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8.5 A statistical model for repeated measures

Although the rat bodyweights data are simplistic, they suffice to identify the essential ingredients
of a model and the steps required to fit the model to the data.

In following a unit through time, the response will be a combination of these effects,
(i) treatment,
(ii) time,
(iii) treatment × time,
(iv) unit,
(v) unit × time

The remaining component is the residuals which may not be independent if an observation at
say time ti is influenced by the outcome at a previous sampling, say ti−1. This occurs when there
is feedback. Figure ?? shows the responses of subjects’ elbow flux (blood flow through the elbow)
over 15 minutes. Peaks are followed by troughs; the “saw-toothing” is measurement error and
successive observations are negatively correlated. If we identify this correlation, the resultant fit
will be a smooth track through the observations but otherwise the model will struggle to interpret
the saw-toothing as systematic information if residuals are assumed independent.

The linear response for each rat is found conveniently in nlme() by the lmList() function and
these individual fits may help in explaining random effects when the model is fitted. Confidence
intervals for these estimates are derived using intervals().

bwlist1 <- lmList(weight ~ Time,data=BodyWeight)
bwint1 <- intervals(bwlist1)
print(bwlist1)
print(bwint1)
Call:
Model: weight ~ Time | Rat
Data: BodyWeight

Coefficients:
(Intercept) Time

2 227 0.330
3 247 0.398
4 255 0.330
1 245 0.484
8 252 0.409
5 256 0.406
6 264 0.318
7 268 0.202
11 443 0.363
9 407 1.011
10 408 1.341
12 552 1.148
13 462 0.919
15 524 0.493
14 526 0.315
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16 503 0.905

Degrees of freedom: 176 total; 144 residual
Residual standard error: 4.44

We fit the model (??) to these data with the lme() function. In the next sequence of code,
2 models are fitted. The purpose of the first is to get the AOV and the second is to get the
regression coefficients in a convenient form.

mod1 <- lme(weight ~ Diet*Time,data=BodyWeight,random=~ Time|Rat)
mod2 <- lme(weight ~ Diet/Time-1,data=BodyWeight,random=~ Time|Rat)

print(anova(mod1))
print(summary(mod2))

numDF denDF F-value p-value
(Intercept) 1 157 1713.2 <.0001
Diet 2 13 85.4 <.0001
Diet:Time 3 157 32.6 <.0001

The fixed effects are those represented by the symbol β in equation (??).

Fixed effects: weight ~ Diet/Time - 1
Value Std.Error DF t-value p-value

Diet1 251.7 13.094 13 19.219 <.0001
Diet2 452.3 18.518 13 24.426 <.0001
Diet3 503.7 18.518 13 27.202 <.0001
Diet1:Time 0.4 0.091 158 3.946 1e-04
Diet2:Time 1.0 0.129 158 7.491 <.0001
Diet3:Time 0.7 0.129 158 5.105 <.0001

The random effects are saved in mod1$coefficients$random and the parameters designated
u in (??).

$Rat
(Intercept) Time

2 -25.100 -0.0282
3 -4.720 0.0355
4 3.759 -0.0278
1 -6.501 0.1157
8 0.207 0.0456
5 4.287 0.0431
6 12.265 -0.0378
7 15.803 -0.1461
11 -11.043 -0.5608
9 -45.178 0.0403
10 -43.585 0.3475
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12 99.806 0.1730
13 -40.910 0.2406
15 19.478 -0.1524
14 21.131 -0.3182
16 0.300 0.2300

Example 8.2

These data are chick weights and are akin to the rats data but with more features. They are
also included as part of the nlme package, Pinheiro and Bates [7]. In the following R code, we
load the library nlme to get the data and to use the lme() function. Plotting is done using the
xyplot() function which is part of the lattice library. Many of these plotting functions also rely on
functions from the grid library so we load it as well.

library(nlme);library(grid);library(lattice)

data(ChickWeights); print(names(ChickWeight))

xyp2 <- xyplot(weight ~ Time|Diet,data=ChickWeight,
panel=panel.superpose,groups=Chick,type=’l’)

print(xyp2)

Figure 8.2: Chick weights over time.
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These traces suggest that the systematic effect of Time within each Diet be curved or be
piecewise linear with change point at about 12 days. There is a clear Chick × Time interaction
as shown by the fanning out of the traces indicating that some chicks grow faster than others.

A clearer view of the systematic effect is obtained when the data are plotted as points and
the trend is plotted as a loess curve. This can be achieved by instructing the function of how to
draw each plot with the panel= option
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xyp1 <- xyplot(weight ~ Time|Diet,data=ChickWeight,
panel=function(x,y){panel.xyplot(x,y);panel.loess(x,y)})
print(xyp1)

Figure 8.3: Loess plot of trend of chick weights over time.
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In Figure 8.2, observe that in Diets 1 and 4 the lightest chick drops out before the trial is
complete. That sort of dropout can affect the mean profile because the upward trend may be more
due to the remaining chicks that due to the effect of Diet over time. The necessary adjustments
for dropouts are not covered in this section but the issue here is that the exploratory data plots
revealed the likely bias due to dropouts.

Example 8.3

These data are repeated measurements of Metabolizable energy of 2 Strains of deer× {Male,Female}
where the objective was to use the profile to detect the weeks where the body temperature was
heightened. The researcher was questioning whether the red deer rutted at a different time to
the Pere David deer.

xyp1 <- xyplot(ME ~ Agewks|Sex*Strain,data=deerdf,
panel=panel.superpose,groups=Tag,type=’l’)

print(xyp1)

These plots suggest that the systematic part be represented by a spline curve. Note also
that the effects due to animals (called Tag in the data frame) are greater when the curve is
maximum than when minimum. The following code has worked but at severe stress to the
computer so I am not recommending it for home computers. The bs() function fits a B-spline
and the Tag*bs(Agewks,df=4) interaction accounts for the changing Tag effects with time.

model2 <- lme(ME ~ Strain*Sex*bs(Agewks,df=5),
random =~ bs(Agewks,df=4) | Tag,data=deerdf)
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Figure 8.4: Profiles of ME for 2 strains and M,F deer.
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Figure 8.5: Fitted profiles and observed ME for 2 strains and M,F deer.
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Chapter 9

Generalised Linear Mixed Models

The content of this is drawn from [2].
The ideas of a linear mixed model extend to regression models for discrete and non-Gaussian

continuous data. In the linear model, a random effects model is appropriate if the coefficients
can be thought of as a sample from a distribution. There must be repeat samples from each
experiment unit to define a random effects model.

In the non-Gaussian setting it is assumed that the data for an experiment unit are independent
observations following a GLM but regression coefficients can vary from unit to unit according to
a distribution. So the assumptions are:-

1. The conditional distribution of Yij given ui follows a distribution from the exponential
family with density f(yij |ui,β)

f(yij |ui) = exp [{(yijθij)− ψ(θij))} /φ+ c(yij ;φ)]

µij = E(Yij |ui) = ψ′(θij) = g−1(xijβ + zijui) (9.1)
vij = var(Yij |ui) = ψ′′(θij)φ = v(µij)φ (9.2)

(9.3)

where g() is the link function (g−1() is the inverse of the link function) and v() is the
variance function. The vectors x and z have dimensions p and q respectively.

2. Given ui, the repeated measurements Yi1 , . . . , Yni are independent.

3. The ui are independent and identically distributed with density function f(ui; G). Com-
monly, f(ui; G) is a normal distribution with zero mean and variance matrix G(α).

Correlation amongst observations from a unit, Yi1, . . . , Yi,ni arises from their sharing unob-
servable variables ui. The random effect model is most useful whenthe objective is to make
inference about individuals rather than population averages.
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9.1 Inference

Maximum Likelihood

The likelihood of the data expressed as a function of unknown parameters is

L(β,α; y) =
m∏
i=1

∫ ni∏
j=1

f(yij |β,ui)f(ui;α)dui

It is the integral over the unobserved random effects of the joint distribution of the data and
random effects. With Gaussian data, the integral has a closed form solution and relatively simple
methods exist for maximising the likelihood or restricted likelihood. With non-linear models,
numerical techniques are needed.

We consider the random effects as missing data so that the ‘complete’ data for a unit is
(yi,Ui). Denote ` = log(L) and

µij(Ui) = E(yij |Ui) = g−1(xijβ + zijUi)

The score equation for β is

∂`

∂β
= Sβ(β,α|yU) =

m∑
i=1

ni∑
j=1

xij{yij − µij(Ui)} = 0

The score equation for G is

SG(β,α|y) =
1
2
G−1

{
m∑
i=1

E(UiU′
i|yi)

}
G−1 − m

2
G−1 (9.4)

These are solved using the E-M algorithm. In the estimation step, the expectations are
evaluated using current parameter values and this may involve multivariable integration of large
dimension. This will usually be done by Monte-Carlo integration.

Quasi-likelihood

An alternative strategy that avoids the problem of integration is to use conditional models rather
than conditional means in the score equation for β. This is equivalent to approximating f(yi|Ui)
by a normal distribution with with the same mode and curvature.

Let

vij = var(yij |Ui)
Qi = diag{vijg′(µij)2}
ζij = g(µij) + (yij − µij)g′(µij) j = 1, . . . , ni

Vi = Qi + bZiGZ′i

The matrix Vi is a ni × ni matrix and Zi is a ni × q matrix whose jth row is zij .



9.2. PENALISED QUASI-LIKELIHOOD METHODS 89

For a fixed G, updated values of β and U are obtained by iteratively solving

β̂ =

(
m∑
i=1

X′
iV

−1
1 Xi

)−1 m∑
i=1

X′
iV

−1
i ζi (9.5)

Ûi = GZiV−1
i (ζi −Xiβ)

(9.6)

These are the mixed model equations applied to the transformed variable ζ.
From equation (9.4),

Ĝ = m−1
m∑
i=1

E(UiU′
i|yi) (9.7)

= m−1
m∑
i=1

E(Ui|yi)E(Ui|yi)′ +m−1
m∑
i=1

var(Ui|yi)

(9.8)

Plugin values are

E(Ui|yi) = Ûi

var(Ui|yi) = m−1
m∑
i=1

(Z′iQ
−1
i Zi +G−1)−1

The approximation gives reasonable estimates of β but the approximation is not reliable if
there are few observations and the density of the transformed random variable is far from normal.

9.2 Penalised Quasi-likelihood methods

An implementation of the above technique is the glmmPQL function in the MASS library. this is a
wrapper that implements linearization within the lme() function.

The data in the file AlmondFlowers.txt are the frequencies of flower stages from 162 trees on
August 24th, 2006. The data were determined from photographs and the purpose was to select
late-flowering trees that would minimise frost damage. The first 10 trees are listed in Table 9.1

The flower stages are ordered categories which can be analysed as a proportional odds logistic
regression. This requires that we calculate the cumulative counts across the ordered categories.
The trees are random samples so enter the model as a random effect.

logit(p) = Xβ + ZU

where p are the cumulative probabilities, X is the design matrix for categories and β are the
category effects, Z is the indicator matrix for trees and U are the random tree effects.

The following R program reads the data, transforms to cumulative counts, reshapes the data
into the long format prior to doing the analysis using glmmPQL.
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Table 9.1: Frequencies of Flower stages at 1 sampling

No TreeTag Date Bud PtlTip HalfOpen Anth X1stPtlFall PostAnth OvarySwell Total
1 1at02 1 0 0 2 84 18 29 0 133
2 1at03 1 0 0 0 45 17 87 0 149
3 1at04 1 3 12 2 67 2 1 0 87
4 1at05 1 4 11 0 118 11 9 0 153
5 1at09 1 68 53 25 33 1 0 0 180
6 1at12 1 49 49 20 43 0 0 0 161
7 1at16 1 1 1 1 80 8 1 0 92
8 1at18 1 24 55 32 161 0 0 0 272
9 1at19 1 52 57 62 117 0 0 0 288
10 1at20 1 1 1 2 82 15 40 0 141

#_____________ AlmondFlowers.R ________________
options(digits=2)
library(MASS);library(nlme)

FlT <- read.table("AlmondFlowers.txt",header=T)
vnames <- names(FlT)
FlT[,4:10] <- t(apply(FlT[,4:10],MAR=1,FUN=cumsum) )

VFlT <- reshape(FlT,varying=list(vnames[3:9]),v.name="Counts",direction="long",timevar="Category",
times=1:7)
VFlT$Category <- factor(VFlT$Category,labels=vnames[3:9])

oT <- order(VFlT$TreeTag)
VFlT <- VFlT[oT,]

Mod1 <- glmmPQL(Counts/Total ~ Category,data=VFlT,random=~ 1|TreeTag,family="binomial",weights=Total)

The next few lines of code extract the fixed and random effects and plots the distribution
function.

theta <- fixef(Mod1)
alpha <- ranef(Mod1)
oalpha <- order(unlist(alpha))
Tree.effects <- data.frame(Tree=(row.names(alpha))[oalpha],effect=alpha[oalpha,])
print(Tree.effects)
tree.density <- density(Tree.effects$effect)
tree.distribution <- tree.density
tree.distribution$y <- cumsum(tree.density$y)
tree.distribution$y <- tree.distribution$y/max(tree.distribution$y)
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plot(tree.distribution$y~tree.distribution$x,main="distribution of random tree effects",
type=’l’,xlab="Tree effect on logistic scale",las=1,ylab="distribution function")

rug(side=1,x=Tree.effects$effect)

Figure 9.1: Distribution of tree effects for flower stages
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Negative tree effects are associated with late flowering. From the model we observe that when
logit(p) is reduced, this is a shift to the left of the distribution function and a shift to the left is
to the early stages of flowering. That is on August 26th, those trees found to have negative tree
effects will not be highly represented in the later flowering stages; they have not developed too
early.

(The final analysis of these data used the bayespolr function in arm but the model given
here serves as an example.)
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9.3 GEE

In cases where predictions are for population averages rather than for individuals, a marginal
model can be fitted using a GEE (Generalized Estimating Equation). [2], [5]

In a mixed model, correlation was represented by the shared random effect across repeated
measurements. For a GEE, the correlation structure has to be supplied. Suppose that there are
n repeated measurements and that the correlations amongst these are represented by a n × n
matrix, R(α). The correlation parameters α are in an s× 1 vector and fully characterise R(α).

The variance function is ψ′′(θit)/φ (see (9.2) ). The unscaled (i.e. omit the scale parameter
φ) matrix of variance functions across the repeated measures, t = 1 . . . , ni, from unit i is Ai =
diag(ψ′′(θit).

Define
Vi = A

1
2
i R(α)A

1
2
i /φ

which is the covariance of Yi if R(α) is true.
The estimating equations for a GLM are of the form,

m∑
i=1

XT
i ∆i(Yi − µi)

where

∆i =
d{ψ′(θit)}

dηit

and ηit is the linear predictor.
This is extended to contain the correlations to form the GEE,∑

i = 1m(Ai∆iXi)TV −1(Yi − µi) (9.9)

Equation (9.9) can be expressed as a function of β alone if α is replaced by α̂ which is m− 1
2

consistent.1. Also φ is replaced by a m− 1
2 consistent estimator φ̂ when β is known.

The estimating algorithm is evaluated using modified Fisher scoring.

1. Start with estimates α̂, φ̂ and β0.

2. Estimate a new β, conditional on the previous estimate β̂ and α̂, φ̂.

3. New estimates α̂ and φ̂, conditional on the current estimate β̂.

4. Iterate

The updated estimate of β is estimated using modified Fisher scoring.

β̂j+1 = β̂j −

{
m∑
i=1

(Ai∆iXi)′Ṽ −1
i (Ai∆iXi)

}−1{ m∑
i=1

(Ai∆iXi)′Ṽ −1
i (Yi − µi)

}
(9.10)

where Ṽi(β) = Vi[β, α̂{β, φ̂(β)}] The matrices in equation (9.10) are functions of β.

1m
1
2 (α̂− α) = Op(1)
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Estimators of α and φ.

Pearson residuals are given by

r̂it = {yit − ψ′(θ̂it)}/{ψ′′(θ̂it)}
1
2

where θ̂it depends upon the current value for β. The scale parameter φ is estimated by

φ̂−1 =
m∑
i=1

ni∑
t=1

r̂2it/(N − p) (N =
∑
i

ni, p = regression df).

An empirical estimate of R is

R̂uv =
m∑
i=1

r̂iur̂iv/(N − p)

Suppose that we wish to model the correlation structure as a function of the parameters α
and the distance between observations,

corr(yit, yit′) = α|t−t
′|

.K-Y Liang Since E(r̂itr̂it′) ≈ α|t−t
′|, α can be estimated as the slope in the regression of log(r̂itr̂it′)

on log |t− t′|.
Hence we see the algorithm iterates between estimating (β|α̂, φ̂) and (phi,α|β̂)
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Example
The data in PastureSpecies.txt contains percentages of 6 groups of pastures measured at

7 times from 3 farming systems (A, B, C). Within each farm type, there are several paddocks
with a Farm× Paddock being an experimental unit.

These are analysed by a binomial GEE using geeglm in the geepack package.

Table 9.2: First 12 rows of PastureSpecies.txt

Farm Padd Days Group Frequency ExpUnit Total fDays
1 B 1 0 SowFertResp 54 B.1 100 0
2 B 1 0 NatCoolPeren 4 B.1 100 0
3 B 1 0 NatWarmPeren 0 B.1 100 0
4 B 1 0 YrlGrnPer 26 B.1 100 0
5 B 1 0 WarmAnn 1 B.1 100 0
6 B 1 0 CoolAnn 9 B.1 100 0
7 B 1 256 SowFertResp 42 B.1 100 256
8 B 1 256 NatCoolPeren 21 B.1 100 256
9 B 1 256 NatWarmPeren 3 B.1 100 256
10 B 1 256 YrlGrnPer 23 B.1 100 256
11 B 1 256 WarmAnn 0 B.1 100 256
12 B 1 256 CoolAnn 8 B.1 100 256

The analysis accounts for 2 sources of correlation,

• correlation amongst groups and
• correlation amongst repeated measures

Define

• Rg(α) as the amongst groups correlation matrix and

• Rt as the correlation due to repeated measures from the same experiment unit.

These are estimated separately and the working correlation is RB = Rt ⊗Rg.
The program below does the job in 3 stages:-

1. Run a GLM on the univariate frequency of each group at each sampling and save the
residuals. For each sampling, the residuals are saved in a matrix with 6 columns ( 1 for
each group) which is used to calculate the correlation matrix. There are 7 such correlation
matrices, one for each sampling, and in this exercise the average of the 7 is used as the
estimate of Rg. This may not be a suitable choice as the correlation could change with
time. This working correlation matrix is named workcorr1.

2. Using workcorr1, a GEE analysis is done of the multivariate frequencies from the 6 groups
at each sampling. residuals are saved and used to construct the working correlation for
amongst samplings, Rt which is named workcorr2 in the program.

3. The big working correlation matrix, RB, is calculated as above. ( WORKCORR <-workCorr1 %x% workCorr2).
The GEE analysis of the full data set gives regression coefficients which are the log-odds
of pasture presence in one farm system compared to another over time.
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Table 9.3: R program for a GEE analysis

library(geepack)
# groups of pasture
Grp.names <- c("SowFertResp","NatCoolPeren","NatWarmPeren","YrlGrnPer","WarmAnn","CoolAnn")
grp.nos <- 1:6
samplings <- c("Mar 00","Dec 00","Dec 01","Dec 02","Feb 03","Feb 04","Feb 05")

PS.df <- read.table("PastureSpecies.txt",header=T)
PS.df$ExpUnit <- interaction(PS.df$Farm,PS.df$Padd)
PS.df$Total <- rep(100,dim(PS.df)[1])
PS.df$fDays <- factor(PS.df$Days)
lDays <- levels(PS.df$fDays); nDays <- length(lDays)

# Building a working correlation matrix Rg %*% Rt
CORR <- Resids <- Fitted <- list()

# Do samplings individually
for (m in 1:nDays){ # selecting each sampling time
Sm <- subset(PS.df,subset=PS.df$fDays==lDays[m]) # Sample=m

# Do each component at a sampling individually
dim0 <- dim(Sm)[1]

eachTRmat <- matrix(0,dim0,6,dimnames=list(NULL,Grp.names) ) # seting up R_g
######### STAGE 1 ###################

for (k in 1:6){ # selecting each pasture group
SmTk <- subset(Sm, subset=Sm$Group==Grp.names[k] ) # Sample=m, Time=k

# naive GLM for each group at each time
comp.glm <- glm(Frequency/Total ~ Farm,data=SmTk,family="binomial",weights=Total)
eachTRmat[,k] <- residuals(comp.glm,type="pearson")

} # --------------- end of the k loop
CorMat <- cor(eachTRmat)
CORR[m] <- list(CorMat)

# Averaging the amongst species correlation over times (very rough)
if(m==1) workCorr1 <- CORR[[1]]/7
else workCorr1 <- workCorr1 + CORR[[m]]/7

######### STAGE 2 #####################
# Now get sets of residuals from each sampling, using the groups as a multivariate

botanal.model <- geeglm(Frequency/Total ~ Farm/Group,data=Sm,
family=binomial,id=ExpUnit,zcor=workCorr1,na.action=na.omit)

# Save Residuals from time-by-time analyses in a list
Resids[m] <- list(botanal.model$residuals)

} # __________________ end of the m loop
# the big model with groups and samplings combined
R <- matrix(unlist(Resids),150,7,dimnames=list(NULL,samplings) )
vR <- var(R)
Tcor <- cor(R)
Lower <- Tcor[lower.tri(Tcor)]
workCorr2 <- diag(7)
workCorr2[workCorr2==0] <- mean(Lower)
WORKCORR <-workCorr1 %x% workCorr2
########### STAGE 3 ###################
botanal.bigmodel <- geeglm(Frequency/Total ~ fDays/Group/Farm,data=PS.df,
family=binomial,id=ExpUnit,zcor=WORKCORR,na.action=na.omit)

summ <- summary(botanal.bigmodel)
beta <- round(summ$coefficients,2)
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Chapter 10

Appendix - Linear least squares

10.1 Least squares in matrix form

The linear regression relationship between a dependent variable Y and a set of independent
(explanatory) variables xj , j = 1 . . . p can be expressed in matrix form as

Y = Xβ + ε , ε ∼ N(0, σ2I) (10.1)

where Y is a vector of length n, X is a matrix of dimensions n× p and β is a vector of length
p. For example, for a straight line E(yi) = β1 + β2xi where E represents expected value. In
matrix form this becomes  E(y1)

...
E(yn)

 =

 1 x1
...

...
1 xn

( β1

β2

)

The residual sum of squares (SS) is given by

Sr = (Y −Xβ)T (Y −Xβ). (10.2)

The least squares estimate of β (the vector of model parameters) is that which gives the least
(minimum) value of Sr. Following the standard procedure for minimising functions, differentiating
Sr with respect to β gives

∂Sr
∂β

∝XT (Y −Xβ).

Setting this derivative equal to zero gives

0 = XT (Y −Xβ̂)

therefore (10.3)
XTXβ̂ = XTY and (10.4)

β̂ = (XTX)−1XTY (10.5)
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Equations (10.4) are known as the normal equations. These equations assume that the
matrix XTX can be inverted (i.e. is non singular).

Defining the variance/covariance matrix of Y as Var(Y )

assume that Var(Y ) = σ2I where I is the identity matrix,
and σ2 is a scalar representing the variance of yi

and Var(β̂) = E[(β̂ − β)(β̂ − β)T ] .

[The latter expression assumes that E(β̂) = β.]

Now β̂ − β = (XTX)−1XTY − (XTX)−1(XTX)β
= (XTX)−1XT (Y −Xβ)

So Var (β̂) = (XTX)−1XTE[(Y −Xβ)(Y −Xβ)T ]X(XTX)−1

= (XTX)−1XTIX(XTX)−1σ2

= (XTX)−1σ2. (10.6)

This is the estimate of the variance/covariance matrix of β̂ i.e. the variance/covariance matrix
of the parameter estimates.

10.2 Gauss Markov Theorem

If a linear function lTβ =
∑j=p

j=1 ljβj is estimated by a linear combination of observations
mTY =

∑i=n
i=1 miyi, then the unbiased estimator with minimum variance is the corresponding

function of the least squares estimates lT β̂.

10.3 Partitioning of parameter vector β

In any vector of parameters β it is likely that interest will be centred on some of the parameters.
In such circumstances rather than looking to see whether there are differences between all of
the parameters one might only be interested in testing for differences between the parameters
of interest. One way of approaching this problem is to break down (or partition) the parameter
vector into parts. The vector β of equation 10.1 can be split (or partitioned) into two parts(

β1

β2

)
,where β is p× 1, and β1 is q × 1, β2 is (p− q)× 1

Interest is in the parameter vector β2. β1 contains only parameters not of interest and which
can be eliminated.

X can be partitioned similarly into (X1|X2), where X1 is n× q, and X2 is n× (p− q).

Let C = XTX =
(
C11 C12

C21 C22

)
=
(
XT

1X1 XT
1X2

XT
2X1 XT

2X2

)

and C−1 =
(
C11 C12

C21 C22

)
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The normal equations (XTX)β̂ = XTY give

C11β̂1 +C12β̂2 = XT
1 Y

C21β̂1 +C22β̂2 = XT
2 Y

]
. (10.7)

Fitting β1 only, ignoring β2, gives

β̂1 = C−1
11 X

T
1 Y

[Solution of normal equations (10.4) (XT
1X1)β̂1 = XT

1 Y ]

The second equation of (10.7) gives [C22 = (C22 −C21C
−1
11 C12)−1 from right of C−1]

β̂2 = C22(XT
2 −C21C

−1
11 X

T
1 )Y .

Notice that this expression becomes β̂2 = C−1
22 X

T
2 Y only when C21 = 0 (zero matrix).

If C = XTX =
(
C11 0
0 C22

)
(10.8)

X1,X2 are orthogonal to each other, i.e. estimation of β̂1 and β̂2 are independent of each other.
If X1,X2 are not orthogonal, estimation of β̂2 is related to estimation of β̂1.
Fitting β2 ignoring β1 would give β̂2 = C−1

22 X
T
2 Y , fitting β̂2 after eliminating β̂1 gives

β̂2 = C22(XT
2 −C21C

−1
11 X

T
1 )Y .

Sum of squares for β̂ = Y TXβ̂

Sum of squares for β̂1 = Y TX1β̂1

Sum of squares for β̂2 = β̂
T

2 (C22)−1β̂2
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10.4 Order Notation

This notation refers to orders of magnitudes in asymptotics, i.e. how a statistic, which is a
function of sample size, behaves as sample size increases.

cn = O(dn) ⇒ lim
n→∞

cn
dn
≤ Const.

cn = o(dn) ⇒ lim
n→∞

cn
dn

= 0

cn ∼ dn ⇒ lim
n→∞

cn
dn

= 1

The limit can also be expressed in this form:-

cn = o(dn) ⇒ cn
dn
→0 as n→∞

For random variables,

Un = Op(dn) ⇒ lim
n→∞

Un
dn

is bounded in probability

Un = op(dn) ⇒ lim
n→∞

Un
dn

→ 0 in probability.

For the latter, we require that given ε > 0, there exists constants kε and n0 = n0(ε) such that
if n > n0 P {|Un| < dnkε} > 1− ε.

In particular, Un = c+ op(1) ⇒ Un
p→ 1.

An important special case is when var(Un) ≤ v

n
, for n ≥ n0 and for finite v > 0. Then

Un = E(Un) = Op(n−
1
2 ).

If in addition, E(Un) = µ+O(n−
1
2 ), then Un = µ+Op(n−

1
2 ).


